JP5806673B2 - Stainless steel wire for cold heading - Google Patents
Stainless steel wire for cold heading Download PDFInfo
- Publication number
- JP5806673B2 JP5806673B2 JP2012536280A JP2012536280A JP5806673B2 JP 5806673 B2 JP5806673 B2 JP 5806673B2 JP 2012536280 A JP2012536280 A JP 2012536280A JP 2012536280 A JP2012536280 A JP 2012536280A JP 5806673 B2 JP5806673 B2 JP 5806673B2
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- steel wire
- lubricating
- wire
- lubricant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 37
- 239000000463 material Substances 0.000 claims description 97
- 239000000314 lubricant Substances 0.000 claims description 82
- 230000001050 lubricating effect Effects 0.000 claims description 76
- 238000000576 coating method Methods 0.000 claims description 65
- 239000013078 crystal Substances 0.000 claims description 58
- 239000011248 coating agent Substances 0.000 claims description 57
- 239000007769 metal material Substances 0.000 claims description 54
- 238000012545 processing Methods 0.000 claims description 44
- 239000011347 resin Substances 0.000 claims description 42
- 229920005989 resin Polymers 0.000 claims description 42
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 29
- 239000000470 constituent Substances 0.000 claims description 25
- 238000010438 heat treatment Methods 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 238000002425 crystallisation Methods 0.000 claims description 10
- 230000008025 crystallization Effects 0.000 claims description 10
- 229910002804 graphite Inorganic materials 0.000 claims description 10
- 239000010439 graphite Substances 0.000 claims description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 8
- 239000000835 fiber Substances 0.000 claims description 7
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims description 7
- 229910052582 BN Inorganic materials 0.000 claims description 6
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 5
- 210000003462 vein Anatomy 0.000 claims description 5
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 4
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims description 2
- 239000000203 mixture Substances 0.000 description 45
- 229910052751 metal Inorganic materials 0.000 description 38
- 239000002184 metal Substances 0.000 description 38
- 238000000034 method Methods 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 238000005242 forging Methods 0.000 description 14
- 238000005461 lubrication Methods 0.000 description 13
- 239000007787 solid Substances 0.000 description 13
- 238000001035 drying Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 229920003023 plastic Polymers 0.000 description 10
- 239000004033 plastic Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000010935 stainless steel Substances 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000005491 wire drawing Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 229910021538 borax Inorganic materials 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000000344 soap Substances 0.000 description 6
- 235000010339 sodium tetraborate Nutrition 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 4
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 235000011941 Tilia x europaea Nutrition 0.000 description 4
- -1 aliphatic monocarboxylic acid Chemical class 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 230000009931 harmful effect Effects 0.000 description 4
- 239000004571 lime Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 4
- 229910052939 potassium sulfate Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 229910000990 Ni alloy Inorganic materials 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- 229910001069 Ti alloy Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229920000800 acrylic rubber Polymers 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 235000011151 potassium sulphates Nutrition 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 239000004328 sodium tetraborate Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- 229910001257 Nb alloy Inorganic materials 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 125000005250 alkyl acrylate group Chemical group 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910001000 nickel titanium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 229910004835 Na2B4O7 Inorganic materials 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007739 conversion coating Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 230000008821 health effect Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical compound C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 235000015393 sodium molybdate Nutrition 0.000 description 1
- 239000011684 sodium molybdate Substances 0.000 description 1
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 1
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- WYXIGTJNYDDFFH-UHFFFAOYSA-Q triazanium;borate Chemical compound [NH4+].[NH4+].[NH4+].[O-]B([O-])[O-] WYXIGTJNYDDFFH-UHFFFAOYSA-Q 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- WUUHFRRPHJEEKV-UHFFFAOYSA-N tripotassium borate Chemical compound [K+].[K+].[K+].[O-]B([O-])[O-] WUUHFRRPHJEEKV-UHFFFAOYSA-N 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M173/00—Lubricating compositions containing more than 10% water
- C10M173/02—Lubricating compositions containing more than 10% water not containing mineral or fatty oils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C9/00—Cooling, heating or lubricating drawing material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M103/00—Lubricating compositions characterised by the base-material being an inorganic material
- C10M103/06—Metal compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/10—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
- C10M105/14—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms polyhydroxy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/16—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen having hydroxy groups bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/20—Aldehydes; Ketones
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/22—Carboxylic acids or their salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/22—Carboxylic acids or their salts
- C10M105/28—Carboxylic acids or their salts having only one carboxyl group bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/32—Esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/32—Esters
- C10M105/36—Esters of polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/32—Esters
- C10M105/38—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M171/00—Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
- C10M171/06—Particles of special shape or size
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/06—Metal compounds
- C10M2201/062—Oxides; Hydroxides; Carbonates or bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/08—Inorganic acids or salts thereof
- C10M2201/084—Inorganic acids or salts thereof containing sulfur, selenium or tellurium
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/085—Phosphorus oxides, acids or salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/087—Boron oxides, acids or salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/10—Compounds containing silicon
- C10M2201/102—Silicates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/12—Groups 6 or 16
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/055—Particles related characteristics
- C10N2020/06—Particles of special shape or size
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/64—Environmental friendly compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Lubricants (AREA)
- Metal Extraction Processes (AREA)
Description
本発明は、冷間又は温間加工に供される種々の被加工用金属材料に用いられる金属材料塑性加工用潤滑剤組成物、該組成物から形成される潤滑被膜及び該皮膜で被覆された被覆金属材料、並びに被覆金属材料の製造方法に関する。 The present invention relates to a metal composition plastic working lubricant composition used for various metal materials for work to be subjected to cold or warm working, a lubricant film formed from the composition, and a film coated with the film. The present invention relates to a coated metal material and a method for producing the coated metal material.
従来、ステンレス鋼やチタン、ニッケル基合金などの特殊金属材料は、他の通常金属に比して耐食性、耐熱性及び機械的特性など多くの優れた特性を有し、今日の技術進歩に必要不可欠なものとされている。これらの特殊金属材料は、例えば、ねじ、ボルト、ナット、ピン、ロープ、軸受け又はばね等の機械要素製品や種々の機械構成材料に幅広く活用されている。 Traditionally, special metal materials such as stainless steel, titanium, and nickel-based alloys have many excellent properties such as corrosion resistance, heat resistance, and mechanical properties compared to other ordinary metals, and are indispensable for today's technological progress. It is supposed to be. These special metal materials are widely used for machine element products such as screws, bolts, nuts, pins, ropes, bearings or springs, and various machine components.
ところで、前記特殊金属材料は、高強度で硬質かつ靭性に乏しいため、難加工材料に位置付けされる。例えば、これら難加工性の金属材料は、前記種々の製品とするための加工を行う際、材料の割れ、断線又は折損等の加工トラブルが生じやすい。そこで、これらのトラブルを抑制するために、並びに、ダイス、ロール及びパンチ等の加工用工具の長寿命化を図るために、最適な潤滑技術が求められている。 By the way, the special metal material is positioned as a difficult-to-process material because it is high in strength, hard and lacks toughness. For example, these difficult-to-work metal materials are prone to processing troubles such as cracking, disconnection, or breakage of the material when processing to obtain the various products described above. Therefore, in order to suppress these troubles and to extend the life of processing tools such as dies, rolls, and punches, an optimal lubrication technique is required.
例えば、上記特殊金属材料を細径化する伸線加工や、得られた細線をヘッダー圧造したりばね成形に供する場合、従来、金属材料の表面に、Cu、Ni又は他の金属のメッキを施したり、樹脂材料、石灰、蓚酸塩、又は燐酸塩等の有機、無機の種々の潤滑被膜を施すことが行われている。また、このような被覆を形成するものの他、その加工の直前に例えば金属石鹸、二硫化モリブデン、黒鉛、硼砂、石灰などの補助潤滑剤、又はさらに必要に応じて添加される種々の添加剤などを含む補助潤滑剤を並行して使用する併用型の潤滑方法も知られている。 For example, when drawing the special metal material to reduce the diameter, or for subjecting the obtained thin wire to header forging or spring forming, conventionally, the surface of the metal material is plated with Cu, Ni or other metal. In addition, various kinds of organic and inorganic lubricating coatings such as resin materials, lime, oxalate, and phosphate are applied. In addition to those that form such coatings, auxiliary lubricants such as metal soap, molybdenum disulfide, graphite, borax, lime, etc., or various additives that are added as necessary, immediately before the processing. There is also known a combined lubrication method in which an auxiliary lubricant containing
特に上記併用型の潤滑方法は、前記難加工性の金属材料によるねじやボルト、ナットなどを形成する強度の圧造加工や、硬質線材を用いるばね成形などのような過酷な加工処理に有効である。しかしながら、これら潤滑被膜は、前記加工潤滑性能に加え、近年の地球環境にも配慮した組成の検討の必要性がある。 In particular, the above-described lubrication method is effective for severe processing such as strong forging to form screws, bolts, nuts and the like with the difficult-to-work metal material and spring forming using a hard wire. . However, for these lubricating coatings, there is a need to examine the composition in consideration of the global environment in recent years in addition to the processing lubrication performance.
例えば、下記特許文献1には、高級脂肪族モノカルボン酸とジアミン、又は高級脂肪族モノカルボン酸と多塩基酸の混合物とジアミンとの反応によって得られるカルボン酸アマイド系ワックスを含有する金属材料の引き抜き加工用潤滑剤が提案されている。 For example, the following Patent Document 1 discloses a metal material containing a carboxylic acid amide wax obtained by a reaction of a higher aliphatic monocarboxylic acid and a diamine, or a mixture of a higher aliphatic monocarboxylic acid and a polybasic acid and a diamine. Drawing lubricants have been proposed.
また、下記特許文献2には、ステンレス鋼線に、厚さ1μm以上5μm以下のNiメッキを施し、更にその表面にハロゲンを含む合成樹脂を被覆して断面減少率60%以上の伸線加工を加え、表面粗さを0.8s〜12sに調整した自動コイリング用鋼線とし、これによって潤滑性能を改善し、伸線時のダイス寿命向上やコイリング速度向上を図ることが提案されている。
Further, in
また、下記特許文献3では、環境対応型加工被膜として、K2SO4とNa2SO4のうちいずれか一つ又はそれらの混合物を75〜90重量%、Na2B4O7を3〜25重量%、及び非イオン系界面活性剤を2〜10重量%含有するものからなる硫酸塩皮膜を施したステンレス鋼線が提案されている。
Moreover, in the following
さらに、特許文献4では、コイリング特性に優れたばね用ステンレス鋼線を提供するために、ステンレス鋼線の表面に窒化処理にて窒化層を設け、これを伸線して、表面にクラックによる窒化層のアイランドを所定の大きさで形成し、これによって、付与される補助潤滑剤の収容を高めることが提案されている。 Furthermore, in Patent Document 4, in order to provide a spring stainless steel wire having excellent coiling characteristics, a nitrided layer is provided on the surface of the stainless steel wire by nitriding treatment, and this is drawn, and the nitrided layer due to cracks is formed on the surface. It has been proposed to form the islands of a predetermined size, thereby increasing the containment of the applied auxiliary lubricant.
しかし、蓚酸塩やリン酸塩で化成被膜処理したものや、さらにその上に金属石けんなどの固体滑剤を付着させた潤滑被膜は、金属材料の塑性加工後、潤滑被膜を除去するために酸洗い、水洗などの処理が必要であり、環境面において問題がある。 However, lubricant coatings that have been treated with a conversion coating with oxalate or phosphate, or a solid lubricant such as metal soap on top of it, can be pickled to remove the lubricant coating after plastic processing of the metal material. In addition, there is a problem in terms of the environment, such as washing with water.
また、特許文献1に提案されている潤滑剤は耐熱性に劣るという問題がある。 Further, the lubricant proposed in Patent Document 1 has a problem that it is inferior in heat resistance.
さらに、特許文献2では、その構成被膜はハロゲン含有合成樹脂を含み、具体的には四フッ化エチレン樹脂などのフッ素系樹脂や塩素系樹脂であるため、その除去が困難であり、又はその除去に有機溶剤を必要とする。このため、特許文献2の技術も、環境面において問題がある。
Furthermore, in
特許文献3は、地球環境に対応してはいるが、硫酸塩、硼酸塩自体では潤滑性が乏しく、これらの潤滑被膜では十分な課題解決は図れていない。
Although
さらに、特許文献4のステンレス鋼線では、その表面に形成される前記窒化層のアイランドが、そのまま残留するため、金属材料の表面状態を低下させ、製品価値を減じるという問題がある。 Furthermore, in the stainless steel wire of Patent Document 4, the island of the nitride layer formed on the surface remains as it is, so that there is a problem that the surface state of the metal material is lowered and the product value is reduced.
そこで、本発明では、従来の潤滑被膜の課題を解決するべく案出されたもので、潤滑性能に優れ金属材料の加工性能を高めるとともに、金属材料の表面状態を低下することなく容易に除去することができ、環境保全に有効でかつインライン化可能な汎用性の高い冷間圧造用ステンレス鋼線を提供することを目的とする。
Therefore, the present invention has been devised to solve the problems of conventional lubricating coatings, and has excellent lubrication performance and enhances the processing performance of the metal material, and can be easily removed without reducing the surface state of the metal material. An object of the present invention is to provide a stainless steel wire for cold heading that can be used in-line and can be inlined.
本願請求項1に係る発明は、線径が0.5〜10mmで、引張強さが900MPa以下の軟質ステンレス鋼線であって、表面に、(A)硫酸塩、ホウ酸塩又はケイ酸塩よりなる群から選ばれる少なくとも1種の無機塩、(B)グラファイト、二硫化モリブデン又は窒化ホウ素からなる平均粒径20μm以下の滑物質、並びに(C)前記無機塩(A)及び滑物質(B)を固着保持する平均分子量8000〜50000のアクリル酸系、スルホン酸系又はポリビニル系の水溶性樹脂材料を含有する固化物からなる潤滑皮膜を具え、前記潤滑皮膜は、構成原料(A):(B):(C)の重量比が、1:0.5〜3:0.5〜8であり、前記潤滑皮膜は、前記無機塩(A)の少なくとも一部が結晶化した結晶部を有し、前記潤滑皮膜の表面視において、前記結晶部の面積率が40〜70%であることを特徴とする冷間圧造用ステンレス鋼線である。 The invention according to claim 1 is a soft stainless steel wire having a wire diameter of 0.5 to 10 mm and a tensile strength of 900 MPa or less, and (A) a sulfate, borate or silicate on the surface. At least one inorganic salt selected from the group consisting of: (B) a lubricating material having an average particle size of 20 μm or less, comprising graphite, molybdenum disulfide or boron nitride; and (C) the inorganic salt (A) and the lubricating material (B ) Is fixedly held and comprises a lubricating film made of a solidified material containing an acrylic acid-based, sulfonic acid-based or polyvinyl-based water-soluble resin material having an average molecular weight of 8000 to 50000, and the lubricating film is composed of constituent raw materials (A): ( B): The weight ratio of (C) is 1: 0.5 to 3: 0.5 to 8, and the lubricating film has a crystal part in which at least a part of the inorganic salt (A) is crystallized. In the surface view of the lubricating film, A cold stainless steel wire for forging, wherein the serial crystalline portion area ratio of 40 to 70%.
本願請求項1に係る潤滑剤組成物は、固体滑物質の分散剤として使用される樹脂材料(C)が水溶性であるため、調製が容易であり、固体滑物質を分散させる能力に優れているため分散安定性に優れる。しかも本発明で形成される被膜は、有機溶剤を必要とせず水で容易に除去することができる。さらに、無機塩(A)及び滑物質(B)が水溶性樹脂材料(C)によって金属材料表面に強固に保持されるため、蓚酸塩やリン酸塩などによる化成被膜処理などの下地処理を必要とせず、該組成物を直接金属材料表面に塗布し、乾燥させることによって潤滑性能に優れた潤滑被膜を容易に提供することができる。 Since the resin material (C) used as a solid lubricant dispersing agent is water-soluble, the lubricant composition according to claim 1 of the present application is easy to prepare and has an excellent ability to disperse the solid lubricant. Therefore, it has excellent dispersion stability. Moreover, the film formed in the present invention can be easily removed with water without the need for an organic solvent. Furthermore, the inorganic salt (A) and the lubricant (B) are firmly held on the metal material surface by the water-soluble resin material (C), so that it is necessary to have a surface treatment such as a chemical film treatment with oxalate or phosphate. Instead, the composition can be directly applied to the surface of the metal material and dried to easily provide a lubricating coating having excellent lubricating performance.
また、前記樹脂材料(C)は、より好ましくは、アクリル酸アルキルエステルを主成分とするアニオン性基含有アクリル酸アルキルエステル共重合体である。 The resin material (C) is more preferably an anionic group-containing alkyl acrylate copolymer having an alkyl acrylate as a main component.
前記潤滑被膜は、無機塩(A)と粒径20μm以下の滑物質(B)及びこれらを金属材料に結合保持する水溶性樹脂材料(C)で構成され、環境面において改善される。また、潤滑皮膜は、無機塩(A)と滑物質(B)は前記樹脂材料(C)によって金属材料表面に強固に保持され、しかも前記無機塩(A)の少なくとも一部が結晶化した結晶部を備えるため、さらに向上した潤滑性能を有し、特に強加工や難加工性の金属材料の潤滑被膜として好適である。
The lubricating coating is composed of an inorganic salt (A), a slipping material (B) having a particle size of 20 μm or less, and a water-soluble resin material (C) that binds and holds these to a metal material, and is environmentally improved. The lubricating film is a crystal in which the inorganic salt (A) and the lubricant (B) are firmly held on the surface of the metal material by the resin material (C), and at least a part of the inorganic salt (A) is crystallized. Since it has a portion, it has a further improved lubricating performance, and is particularly suitable as a lubricating coating for a metal material that is hard or difficult to process.
また、前記結晶部が、粒状、短繊維状及び葉脈状のいずれか1種以上の形状を有し、かつ潤滑皮膜の外表面上に凸設された張出部として形成されることが好ましい。 Moreover, it is preferable that the said crystal | crystallization part has one or more types of a granular form, a short fiber form, and a vein form, and is formed as an overhang | projection part protrudingly provided on the outer surface of the lubricating film.
また、上記潤滑被膜は、被加工用金属材料の表面上に0.3〜12g/m2の付着量で形成されてなる被覆金属材料が好ましい。The lubricating coating is preferably a coated metal material formed on the surface of the metal material to be processed with an adhesion amount of 0.3 to 12 g / m 2 .
このような潤滑被膜を具える被覆金属材料は、塑性変形による成形加工において、金属石鹸、二硫化モリブデン、黒鉛、硼砂又は石灰などの前記補助潤滑剤を第二潤滑物質として併用してもよく、かかる場合には第二潤滑物質は効果的に前記結晶部の間に保持され、潤滑性能のさらなる向上が図られる。また、結晶部の突出によって形成される微小凹凸は潤滑被膜に形成されるものであり、前記特許文献4における窒化層のような異相をあえて設けることなく、潤滑剤の収容効率を高める効果を有する。この為、該表面潤滑剤を除去した金属材料は、表面性の低下が抑制され、仕上げ処理工程を軽減するなど、コストダウンにも貢献する。 The coated metal material having such a lubricating coating may be used in combination with the auxiliary lubricant such as metal soap, molybdenum disulfide, graphite, borax or lime as the second lubricating substance in the molding process by plastic deformation, In such a case, the second lubricating substance is effectively held between the crystal parts, and the lubricating performance is further improved. In addition, the micro unevenness formed by the protrusion of the crystal part is formed in the lubricating coating, and has an effect of increasing the efficiency of housing the lubricant without providing a different phase like the nitride layer in Patent Document 4. . For this reason, the metal material from which the surface lubricant has been removed contributes to cost reduction, such as a reduction in surface properties and a reduction in the finishing process.
また、前記軟質ステンレス鋼線は、固溶化熱処理仕上げを経たものを加工率30%以下の伸線加工されたものであるのが好ましい。
Moreover, it is preferable that the soft stainless steel wire is wire-drawn with a processing rate of 30% or less after a solution heat treatment finish .
1 被覆金属材料
2 金属線
3 潤滑皮膜
K 結晶部1 Coated
以下、本発明の実施の一形態が図面に基づき説明される。
図1に示されるように、被覆金属材料1は、長尺状の金属線2と、その外表面全体をほぼ一様に覆う潤滑被膜3とを有し、金属線2と潤滑被膜3は一体化するとともに、該潤滑被膜3は、その一部組成の結晶化による結晶部Kを有する。Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the coated metal material 1 has a
前記金属線2は、その目的や用途に応じて選定された金属材料の線材である。該金属材料としては、従来より塑性加工に適用されているものが使用できる。このような金属材料としては、例えば、ステンレス鋼、チタン又はチタン合金、ニッケル又はニッケル合金、ニオブ又はニオブ合金などの難加工性の金属材料が好適であり、その中でも加工硬化特性の大きい前記ステンレス鋼やチタン合金が望ましい。また、前記塑性加工には、圧造加工、プレス加工、曲げ加工、転造加工又はばね加工等の種々のものが含まれる。
The
特に、前記圧造加工やプレス加工は、金属材料を瞬間的に押圧し大きく張出変形させるため、本発明の潤滑皮膜は、材料の変形割れや工具類の欠損を抑制するのに有効である。また、本発明の潤滑皮膜は、ばね成形においても、所定のばね弾性を持つ高強度の金属細線を用いた塑性加工に有効である。 In particular, the forging and pressing processes press the metal material instantaneously and cause a large overhanging deformation, so that the lubricating coating of the present invention is effective in suppressing deformation cracking of the material and loss of tools. The lubricating coating of the present invention is also effective for plastic working using a high-strength fine metal wire having a predetermined spring elasticity in spring forming.
また、冷間圧造加工用の金属線2としては、例えば、線径が0.01〜20mm程度、好ましくは0.5〜10mmで、かつ、その引張強さが900MPa以下に軟質仕上げした金属線材が好適である。一方、ばね用の金属線2としては、例えば、線径が0.01〜10mm程度で、かつ、引張強さ1600〜2600MPa程度の高強度特性を具える冷間伸線加工された金属線材が好適に用いられる。金属材料がステンレス鋼である場合、上記のような強度特性を得るために、前者の圧造加工用金属線では、例えば固溶化熱処理仕上げしたものや、これを更に加工率30%以下(好ましくは3〜20%)の軽度の伸線加工や圧延加工でスキンパス仕上げされたものが好ましい。また、後者のばね用金属線では、最終仕上げが例えば加工率60%以上の冷間伸線加工によって加工硬化されたものが好ましい。
As the
金属線2の断面形状は、円形又は非円形のいずれでも良い。また、金属線2は、その長手方向の表面粗さや形状も任意に設定される。例えば、金属線2は、長手方向に沿って外径を周期的に変化させた波付け形状のものでもよい。さらに、潤滑皮膜で覆われる金属材料は、長尺な線材の他、棒状、帯状、シート状乃至塊状など種々形状品に対して幅広く採用でき、本発明はこれら形状のものも含む。
The cross-sectional shape of the
このような金属材料(本形態では金属線2)を被覆する潤滑被膜3は、本発明では次の3種類の構成材を含有する金属材料塑性加工用潤滑剤組成物から形成される。第一構成材として、硫酸塩、ホウ酸塩、ケイ酸塩、リン酸塩、モリブデン酸塩及びタングステン酸塩よりなる群から選ばれる少なくとも1種の無機塩(A)が使用される。また、第二構成材として、平均粒径20μm以下の微粒子状の滑物質(B)が使用される。さらに、第三構成材として、水溶性樹脂材料(C)が使用され、これは前記無機塩(A)と滑物質(B)を固着保持する働きを有する。潤滑被膜3は、これら構成材(A)〜(C)を所定の比率で配合した水性潤滑剤組成物を前記金属材料に塗布し、乾燥固化することによって得られる。そして本発明は、これら構成材からなる潤滑被膜2において、前記無機塩(A)の少なくとも一部が結晶化した結晶部Kを有することを特徴とする。
In the present invention, the
前記第一構成材の無機塩(A)は、潤滑被膜のキャリア性、耐圧性を向上させるもので、水溶性であり、これと併用する樹脂材料(C)と共に、所定温度に加熱することで容易に水に溶解する。無機塩(A)は、塗膜の乾燥に伴って少なくともその一部を結晶化できるものが好適する。 The inorganic salt (A) of the first constituent material improves the carrier property and pressure resistance of the lubricating coating, is water-soluble, and is heated to a predetermined temperature together with the resin material (C) used in combination therewith. Easily soluble in water. As the inorganic salt (A), those capable of crystallizing at least a part thereof with drying of the coating film are suitable.
前記無機塩(A)としては、例えば、硫酸ナトリウム、硫酸カリウムなどの硫酸塩、硼酸ナトリウム、硼酸カリウム、硼酸アンモニウムなどの硼酸塩、ケイ酸ナトリウム、ケイ酸カリウムなどのケイ酸塩、リン酸亜鉛、リン酸カルシウムなどのリン酸塩、モリブデン酸アンモニウム、モリブデン酸ナトリウムなどのモリブデン酸塩、又はタングステン酸ナトリウムなどのタングステン酸塩等が挙げられる。これらは単独で用いてもよく、あるいは2種以上組み合わせて用いられてもよい。特に、硫酸カリウムや硼酸ナトリウムは、伸線にて優れたキャリア効果をもたらし、かつ、水溶性で結晶は耐圧に優れる為、本発明において好適である。 Examples of the inorganic salt (A) include sulfates such as sodium sulfate and potassium sulfate, borates such as sodium borate, potassium borate and ammonium borate, silicates such as sodium silicate and potassium silicate, and zinc phosphate. And phosphates such as calcium phosphate, molybdates such as ammonium molybdate and sodium molybdate, and tungstates such as sodium tungstate. These may be used alone or in combination of two or more. In particular, potassium sulfate and sodium borate are suitable in the present invention because they provide an excellent carrier effect in wire drawing, and are water-soluble and crystals have excellent pressure resistance.
第二構成材は、前記無機塩(A)とともに潤滑被膜3を構成する滑物質(B)であり、潤滑被膜において摩擦抵抗を低下させる機能を発揮する。滑物質(B)としては、例えばグラファイト、二硫化モリブデン、窒化ホウ素、二硫化タングステン、フッ化黒鉛又はPTFEなどが好適に用いられる。これら滑物質は、そのいずれかを単独であるいは任意な2種以上組み合わせて用いることができる。滑物質(B)の平均粒径は20μm以下であるが、その下限は、1μm以上であることが好ましい。滑物質(B)の形状は特に限定されないが、例えば微粒子状のものが好ましい。
The second constituent material is a lubricating material (B) that constitutes the lubricating
前記滑物質(B)は、その被覆処理やその後の加工に伴って形状変化することが推測される。しかし、その平均粒径が20μmを超えるような粗大なものでは、これを潤滑剤として液中に混合する際、底部に堆積しやすくなって一様な被覆状態が得られ難い。また、粗大粒子では、被膜表面性状を低下させる。かかる観点から、滑物質(B)のより好ましい平均粒径は15μm以下である。なお、前記平均粒径とは、その一群から任意に抽出した複数の粒子を測定した各粒子の最大寸法の平均を意味するものとする。 It is presumed that the slipping material (B) changes its shape with the coating process and subsequent processing. However, when the average particle size is larger than 20 μm, when it is mixed in the liquid as a lubricant, it is easy to deposit on the bottom and it is difficult to obtain a uniform coating state. Moreover, with coarse particles, the coating surface properties are lowered. From this viewpoint, the more preferable average particle diameter of the lubricant (B) is 15 μm or less. In addition, the said average particle diameter shall mean the average of the largest dimension of each particle | grain which measured several particle | grains arbitrarily extracted from the group.
グラファイトは、特にすべり性に優れ良好な潤滑性能をもたらすとともに、軽度の衝撃で容易に細粒化でき、また耐熱性や導電性にも優れる。このため、グラファイトは、本発明の前記滑物質(B)として特に好適である。したがって、これを含む潤滑皮膜は、例えば圧造加工のように瞬間的に大きな圧力を受けるような加工に用いる場合には、その負荷圧力を吸収して発生熱による焼き付きを防ぐ。また、グラファイトを含む潤滑皮膜は、直接通電で行われる温間加工の際、加熱を容易なものとし、工具寿命の増大や加工割れなどのトラブル軽減に寄与する。 Graphite is particularly excellent in slipperiness and provides good lubrication performance, and can be easily fine-grained with a slight impact, and also has excellent heat resistance and electrical conductivity. For this reason, graphite is particularly suitable as the lubricating material (B) of the present invention. Therefore, when the lubricating film including this is used for processing that momentarily receives a large pressure, such as forging, for example, the load pressure is absorbed to prevent seizure due to generated heat. In addition, the lubricating film containing graphite facilitates heating during warm working performed directly by energization, and contributes to an increase in tool life and troubles such as machining cracks.
また第三構成材である水溶性の樹脂材料(C)は、これが潤滑被膜として固化した状態で、前記無機塩(A)及び滑物質(B)を金属材料2に強固に固着させる固着性を発揮する。該樹脂材料(C)は、溶液状態で滑物質(B)に斤力を生じさせたり、水溶液の粘度上昇を生じさせて滑物質(B)の沈降を防止したり、界面活性剤として滑物質(B)を親水性として分散を安定化させる特性が必要とされる。また、前記潤滑被膜はその加工後にしばしば除去することが行われる。その場合、特殊な溶媒等を用いることなく水やお湯で容易に溶解できるよう、前記樹脂材料(C)は、水溶性をもたらす平均分子量が5000〜100000の電気的性質を有する樹脂材料によるものとしている。
Further, the water-soluble resin material (C) which is the third constituent material has an adhesive property for firmly fixing the inorganic salt (A) and the lubricant (B) to the
すなわち、前記平均分子量が5000未満のものでは、潤滑剤組成物の粘度が低下し、その付着量が減少するとともに、固着強度が低下し、良好な被膜、即ち適正潤滑状態が得られ難い。逆に、前記平均分子量が100000を超える高分子のものでは、水溶性の領域を超えるため本発明には適さない。また、粘性を高めて前記滑物質(B)のぬれ性を減じたり、内部に微細空孔をもたらすなど構造的にも好ましいものとは言えない。より好ましくは、前記樹脂材料(C)の平均分子量は8000〜50000、さらに好ましくは10000〜35000である。 That is, when the average molecular weight is less than 5,000, the viscosity of the lubricant composition decreases, the adhesion amount decreases, the fixing strength decreases, and it is difficult to obtain a good coating, that is, an appropriate lubrication state. On the contrary, a polymer having an average molecular weight exceeding 100,000 is not suitable for the present invention because it exceeds the water-soluble region. Moreover, it cannot be said that it is structurally preferable that the viscosity is increased to reduce the wettability of the sliding material (B), or that fine pores are provided inside. More preferably, the resin material (C) has an average molecular weight of 8000 to 50000, more preferably 10,000 to 35,000.
より好ましい前記水溶性の樹脂材料(C)としては、例えば、アクリルアミド系樹脂やアクリレート系樹脂などのアクリル酸系樹脂及びその他のカルボン酸基含有樹脂、スルホン酸系樹脂、ポリビニルアルコールなどのポリビニル系樹脂などの親水性官能基を有するものが挙げられる。これら樹脂材料は、特に次記説明の電気的性質を備えるものが好ましく、より好ましくは、その非誘電率が2〜12、より望ましくは2.0〜8.0であることによって、該電気的性質の促進が図れるため、好ましい。前記アクリル酸系樹脂の中には、熱硬化により強固な膜を形成するものもある。例えば、塑性加工後に脱膜を必要としない場合、加熱乾燥又は熱処理によって無機塩(A)及び/又は滑物質(B)の脱落し難い被膜を形成することもできる。特に好ましい樹脂材料(C)としては、アクリル酸アルキルエステルを主成分とするアニオン性基含有アクリル酸アルキルエステル共重合体が挙げられる。 More preferable examples of the water-soluble resin material (C) include acrylic resins such as acrylamide resins and acrylate resins and other carboxylic acid group-containing resins, sulfonic acid resins, and polyvinyl resins such as polyvinyl alcohol. And those having a hydrophilic functional group. These resin materials preferably have the electrical properties described below, and more preferably have a non-dielectric constant of 2 to 12, more desirably 2.0 to 8.0. This is preferable because properties can be promoted. Some of the acrylic acid resins form a strong film by thermosetting. For example, when it is not necessary to remove the film after plastic working, it is also possible to form a film in which the inorganic salt (A) and / or the lubricant (B) is not easily removed by heat drying or heat treatment. Particularly preferable resin material (C) includes an anionic group-containing alkyl acrylate copolymer having an alkyl acrylate as a main component.
なお、前記樹脂材料(C)が電気的性質を有するとは、電荷及び/又は極性を有する樹脂材料であることを意味し、その検証は、例えばクロマトグラフやFT−IRなどで求められる構造式から行うことができる。またこうした特性は、特にその分子構造でO及びHを含む親水性の官能基を持つもので達成可能であり、これによって水溶性の樹脂材料となり得る。同様に非誘電率は、JIS−K6911にも示され、例えばコンデンサーを形成してその電気容量による平行平板法、電波を当てて反射を測定する自由空間法など種々方法が提案される。このような樹脂材料(C)は、前記粒子状の滑物質(B)に絡みつき、凝集しようとする引力と、離そうとする電荷による斥力を発生させ、水溶性の粘度上昇を生じさせ滑物質(B)の沈降を防止したり、界面活性剤として滑物質(B)を親水性とし分散を安定化させたりして安定で均一良好な潤滑剤組成物をもたらすこともできる。 The resin material (C) having electrical properties means a resin material having electric charge and / or polarity, and its verification is a structural formula required by, for example, chromatograph or FT-IR. Can be done from. Such characteristics can be achieved particularly with a hydrophilic functional group containing O and H in its molecular structure, which can be a water-soluble resin material. Similarly, the non-dielectric constant is also shown in JIS-K6911. For example, various methods such as a parallel plate method using a capacitor formed by forming a capacitor and a free space method of measuring reflection by applying radio waves are proposed. Such a resin material (C) is entangled with the particulate lubricant (B) and generates an attractive force to be aggregated and a repulsive force due to an electric charge to be released, thereby causing an increase in water-soluble viscosity and causing the lubricant. It is also possible to prevent the sedimentation of (B), or to make the lubricant (B) hydrophilic as a surfactant to stabilize the dispersion, thereby providing a stable and uniform lubricant composition.
本発明に用いられる前記樹脂材料(C)は、水溶性であり、水や温水などに容易に溶解する。このため、被覆処理段階や最終加工後において、皮膜を除去するには、有機溶剤など有害薬液の使用が抑えられるメリットがあり、環境的にも好ましい。 The resin material (C) used in the present invention is water-soluble and easily dissolves in water or warm water. For this reason, in order to remove the film at the coating treatment stage or after the final processing, there is a merit that the use of a harmful chemical solution such as an organic solvent can be suppressed, which is preferable from the environmental viewpoint.
本発明の金属材料塑性加工用の潤滑剤組成物は、上記構成材(A)〜(C)を水に溶解又は分散させることで調製し、該水は塗布後の乾燥手段によって最終的に除去することで構成材(A)〜(C)でなる潤滑被膜が形成される。各構成材(A)〜(C)の配合比は、その固化状態における重量換算で1:0.01〜20:0.01〜20(固形分重量比)、好ましくは1:0.1〜12:0.1〜10とする。さらに好ましくは 例えば冷間圧造用では1:0.5〜3:0.5〜8とし、また、ばね用では1:1〜6:1〜10になるように配合され、またその付着量は、例えば固形分として0.3〜12g/m2程度になるように、潤滑剤組成物の濃度や粘度を調整して用いられる。通常、潤滑剤組成物は固形分濃度が3〜30重量%になるように調製される。The lubricant composition for metal material plastic working according to the present invention is prepared by dissolving or dispersing the constituent materials (A) to (C) in water, and the water is finally removed by a drying means after coating. By doing so, a lubricating coating made of the constituent materials (A) to (C) is formed. The blending ratio of each constituent material (A) to (C) is 1: 0.01 to 20: 0.01 to 20 (solid content weight ratio), preferably 1: 0.1 to 20 in terms of weight in the solidified state. 12: 0.1-10. More preferably, for example, it is 1: 0.5 to 3: 0.5 to 8 for cold heading, and 1: 1 to 6: 1 to 10 for springs. For example, the concentration and viscosity of the lubricant composition are adjusted so that the solid content is about 0.3 to 12 g / m 2 . Usually, the lubricant composition is prepared so that the solid content concentration is 3 to 30% by weight.
前記付着量が0.3g/m2未満であると潤滑性能が充分に発揮されず、12g/m2を超える量を付与してもそれに見合う潤滑性能は得られず、却って加工時の目詰まり等の弊害をもたらすこととなる。また、前記固形分濃度が3重量%未満であると、1回の塗布操作で充分な付着量を得難く、30重量%を超えると、溶液粘度が高くなりすぎるなど塗布操作上の問題が生じる。When the adhesion amount is less than 0.3 g / m 2 , the lubrication performance is not sufficiently exerted, and even if an amount exceeding 12 g / m 2 is applied, the corresponding lubrication performance cannot be obtained, and clogging at the time of processing is on the contrary. It will cause harmful effects such as. Further, when the solid content concentration is less than 3% by weight, it is difficult to obtain a sufficient amount of adhesion by one coating operation, and when it exceeds 30% by weight, problems in coating operation such as excessively high solution viscosity arise. .
本発明の被覆金属材料は、前記潤滑剤組成物を金属線2に塗布し、塗膜を乾燥することによって得られる。潤滑剤組成物の塗布は、浸漬塗布又は噴霧塗布など任意の方法で行うことができる。乾燥工程では、無機塩(A)の結晶析出及び水溶性樹脂材料(C)の造膜が起こり、水の蒸発の完結により金属材料表面に密着した潤滑被膜が形成される。潤滑剤組成物は、予め、例えば40〜100℃、好ましくは60〜100℃に加温しておくことで、滑物質(B)を備え無機塩(A)の結晶化を促進することができ好ましい。
The coated metal material of the present invention is obtained by applying the lubricant composition to the
上記乾燥工程での温度及び時間は特に制限されないが、通常、室温〜150℃で例えば1〜1000秒程度の加熱が行われる。乾燥は、時間が短くて済むよう、例えば80℃以上、好ましくは100℃以上の熱風乾燥が好適に行われる。このようにして得られる潤滑被膜は、無機塩(A)、滑物質(B)及び水溶性樹脂材料(C)を前記配合比で含んでいる。滑物質(B)及び樹脂材料(C)の配合比がそれぞれ0.01未満のものでは、結晶部Kの面積率が大きくなりすぎ、又は強固な被膜がはられ難い。一方、これらの配合比がそれぞれ20を超えるものでは、結晶部Kの面積率が小さくなる他、樹脂材料(C)の割合が大きすぎるため、充分な潤滑性能が発揮されない。 Although the temperature and time in the drying step are not particularly limited, heating is usually performed at room temperature to 150 ° C., for example, for about 1 to 1000 seconds. For drying, hot air drying at, for example, 80 ° C. or higher, preferably 100 ° C. or higher is suitably performed so that the time can be shortened. The lubricating film thus obtained contains the inorganic salt (A), the lubricant (B), and the water-soluble resin material (C) in the above blending ratio. When the compounding ratio of the lubricant (B) and the resin material (C) is less than 0.01 respectively, the area ratio of the crystal part K becomes too large, or a strong coating is difficult to be obtained. On the other hand, when these compounding ratios exceed 20, the area ratio of the crystal part K becomes small and the ratio of the resin material (C) is too large, so that sufficient lubrication performance is not exhibited.
図3は、前記被覆金属線材(被覆金属材料1)の製造プロセスの一例である。該プロセスは、
(1)前記被加工用の素材金属線(素材金属材料11)と前記潤滑剤組成物12とを準備する準備段階、(2)所定温度に加熱した前記潤滑剤組成物12に素材金属線11を浸漬して、潤滑剤組成物12を塗布するとともに、該素材金属線11の表面を加温する段階と、
(3)前記構成材(A)〜(C)が前記素材金属線11上に結晶化またはフィルム化する造膜段階と、(4)結晶部を有する潤滑被膜を乾燥固化して該結晶部を定着させる乾燥段階を具えてなる。FIG. 3 is an example of a manufacturing process of the coated metal wire (coated metal material 1). The process
(1) A preparation stage for preparing the material metal wire (material metal material 11) for processing and the
(3) A film-forming stage in which the constituent materials (A) to (C) are crystallized or filmed on the
本実施態様において、素材金属線11はその目的、用途に応じて調整された寸法、形状、特性を持つ長尺材料を、例えばリールやキャリア10に巻回したものが準備され、これはガイドロールR1、R2、R3を経て連続的に繰り出しながら、水性潤滑剤組成物12を加熱状態で貯留した槽13内に導入される。これにより、素材金属線11は、その表面上に所定量の前記潤滑剤組成物12が塗布される。
In this embodiment, the
潤滑剤組成物12は、前記構成材(A)及び(C)の水溶液中に滑物質(B)が分散した水性分散液で、好ましくは、図示しない適宜の加熱手段によって所定温度に加熱される。加熱温度は、前記樹脂材料(C)の種類や結晶分量に応じて適宜に設定され、例えば前記アクリル酸アルキルエステル共重合体を含有するものでは、60〜100℃に設定することで、被膜固化後の潤滑被膜に前記無機塩(A)の結晶を効果的に析出させることができる。
The
また、例えば前記構成材(C)としてスルホン酸系樹脂やアミド基を有するアクリル酸系樹脂を含有するものでは、前記乾燥やその後の加熱処理での設定温度を、例えば樹脂材料のガラス転移温度TG以上の加熱温度にすることで、熱硬化性を増加させて潤滑被膜としての固着強固を高めることもできる。 For example, in the case where the constituent material (C) includes a sulfonic acid resin or an acrylic acid resin having an amide group, the set temperature in the drying or the subsequent heat treatment is set to, for example, the glass transition temperature TG of the resin material. By using the above heating temperature, thermosetting property can be increased and the firmness as a lubricating coating can be enhanced.
また前記貯槽13は、前記長尺金属線11が所定の温度になるよう、該金属線11の送給速度とともに調整されたストランド長さを備える十分な容積を有する。そして、貯漕13の液面を出た金属線11は、潤滑剤組成物12の熱によって、その外面上に前記結晶、フィルムが生成され、乾燥器15によって乾燥される。その後、金属線11は、巻取りリール14に巻き取られる。なお本形態では、潤滑剤の付着量が、所定範囲に達した状態で定着するように、予め設定した位置に温風乾燥器15を配置し、例えば温度100℃以上の温風送給によって潤滑剤を定着させる。
The
この工程で、前記浸漬・加温段階は貯槽13内で行われ、無機塩(A)の結晶化と樹脂材料(C)のフィルム化の前記造膜段階は貯槽13の液面から乾燥器15までの領域で行われる。したがって、一連の工程により、連続処理が図れ、インライン化が可能になる。なお、金属線11の送給速度は、潤滑剤組成物12の組成及びその乾燥条件によって適宜調節することができるのは言うまでもない。
In this process, the immersion / heating step is performed in the
また、潤滑被膜3の成形後に更に中間加工を行う場合、形成された潤滑被膜3に含まれる滑物質(B)とは異なる種類の滑物質を第二潤滑物質として被覆金属材料に与えてもよい。その第二潤滑物質としては、例えば、金属石鹸、二硫化モリブデン、グラファイト、窒化ホウ素、二硫化タングステン、フッ化黒鉛、硼砂、石灰又はPTFE粉末などが挙げられる。中間加工としては、例えば、加工率30%以下の軽度の伸線又は圧延加工や、加工率60%以上の強度の伸線又は圧延加工が挙げられる。本発明の被覆金属材料は、前述のごとく潤滑被膜表面に微細凹凸を有するので、適用された第二潤滑物質の保持性能が高く、優れた潤滑性能を発揮する。
When intermediate processing is further performed after the formation of the lubricating
図2A及び2Bには、潤滑被膜3に形成された前記結晶部Kの分布状態の一例が示されており、これらは35〜80倍に拡大した顕微鏡写真である。前記結晶部Kは、潤滑被膜の構成材の種類や分量比率によって結晶状態が異なり、図2Aのものは、無機塩に硫酸塩などを用いたことにより、点状乃至短繊維状の張出部が形成されている。また、図2Bのものは、硼酸塩などを用いたことにより、葉脈状の張出部が形成されている。
2A and 2B show an example of the distribution state of the crystal part K formed on the
上記各図に見られるように、潤滑被膜の外表面において、各結晶部Kは、その面上から凸設した張出状態で一様に分布しており、結晶部K間には平面的な凹部を備える。このため、被覆金属材料の外表面は、結晶部Kによる凸部と前記凹部とを持つ微小凹凸面として形成され、潤滑性の向上に寄与している。 As seen in each of the above figures, on the outer surface of the lubricating coating, each crystal part K is uniformly distributed in a protruding state protruding from the surface, and is flat between the crystal parts K. A recess is provided. For this reason, the outer surface of the coated metal material is formed as a micro uneven surface having a convex portion by the crystal portion K and the concave portion, and contributes to improvement of lubricity.
前記結晶部Kは、その潤滑被膜3中に単層で形成されたものだけでなく、厚さ方向に複数の積層分布状態で形成されてもよい。さらに、結晶部Kの方向性は、全ての結晶部が該潤滑被膜の平面方向と並行状態であることは必要とせず、例えば斜め方向に交差する場合を含む。
The crystal part K is not limited to a single layer formed in the
また、前記結晶部Kは、その構成要素の無機塩(A)によるものであることは、走査型電子顕微鏡やX線分析を用いた画像回析により、各元素別の構成パターンと該結晶部Kとの符号で確認されている。このようなパターンの画像解析により、該結晶部Kの面積率は容易に求めることができる。結晶部Kの面積率は、平面視における潤滑被膜の単位面積当たりにおける結晶部Kの合計面積の割合として定義され、20〜80%であることが好ましい。この場合、該面積率は、任意に選択された数点の測定視野の結果の平均値で示される。 In addition, the fact that the crystal part K is due to the inorganic salt (A) as a constituent element indicates that the constituent pattern for each element and the crystal part are obtained by image diffraction using a scanning electron microscope or X-ray analysis. It is confirmed by the sign K. By the image analysis of such a pattern, the area ratio of the crystal part K can be easily obtained. The area ratio of the crystal part K is defined as a ratio of the total area of the crystal part K per unit area of the lubricating coating in plan view, and is preferably 20 to 80%. In this case, the area ratio is represented by an average value of the results of several arbitrarily selected measurement visual fields.
前記画像回析での観察によれば、結晶部K以外の部分は実質的に滑物質(B)が検出され、かつその部分は凹部であることが認められる。従って、このような微小凹凸面は、例えばその後の加工時に付与される前記補助潤滑剤を効率よく収容して潤滑性を高めることができる。即ち、結晶部Kの面積率の最適化によって、難加工材の圧造加工やばね成形のような過酷な加工処理に優れた潤滑性を持たせることができ、前記面積率と潤滑性との間に関連性があることも確認されている。 According to the observation by the image diffraction, it is recognized that the slip material (B) is substantially detected in the part other than the crystal part K, and that the part is a concave part. Therefore, such a micro uneven surface can efficiently contain the auxiliary lubricant applied at the time of subsequent processing, for example, and can improve lubricity. That is, by optimizing the area ratio of the crystal part K, it is possible to give excellent lubricity to harsh processing such as forging of difficult-to-work materials and spring forming, and between the area ratio and the lubricity. It has also been confirmed that
図4は、その結果の一例であって、横軸は結晶部Kの面積率(%)、縦軸は前記圧造加工における加工寿命(加工数)の関係を示す。本実施態様では、面積率は20〜80%に設定されるのが好ましい。図4から明らかなように、面積率が20%を下回るものでは、適宜行われる中間加工において被覆金属材料に付与される補助潤滑剤の収容保持力が低下し、工具寿命を低下させる。逆に、面積率が80%を超えるものでは、補助潤滑剤の十分な収容スペースが得られず、また結晶部Kは非常に硬質でもあることから、これを必要以上に多量に含むと、被加工用金属材料の表面性を低下させ、また加工工具の寿命低下などの原因となる。したがって、結晶部Kの面積率は、より好ましくは30〜80%、さらに好ましくは40〜70%、特に好ましくは40〜60%に設定される。 FIG. 4 shows an example of the result, in which the horizontal axis indicates the area ratio (%) of the crystal part K, and the vertical axis indicates the relationship between the processing life (number of processing) in the forging process. In this embodiment, the area ratio is preferably set to 20 to 80%. As is apparent from FIG. 4, when the area ratio is less than 20%, the holding and holding force of the auxiliary lubricant applied to the coated metal material in the intermediate processing appropriately performed is lowered, and the tool life is shortened. On the contrary, when the area ratio exceeds 80%, a sufficient storage space for the auxiliary lubricant cannot be obtained, and the crystal part K is very hard. The surface property of the metal material for processing is deteriorated, and the life of the processing tool is reduced. Therefore, the area ratio of the crystal part K is more preferably set to 30 to 80%, further preferably 40 to 70%, and particularly preferably 40 to 60%.
なお、結晶部Kの大きさや形態は、その処理条件や構成材の種類などによって適宜変化する。結晶部Kの形状は特に限定されないが、図2A及び2Bに示されるような粉末状や短繊維状乃至葉脈状のいずれか1種以上の形状を備えることが好ましく、その大きさ(構成寸法)は、0.5mm以下の微細なものが好ましい。ここで結晶部Kの構成寸法は、粉末状の結晶ではその最大直径の平均値で示され、繊維状乃至葉脈状のものではこれを構成する単一エレメント(各単一線)の最大太さの平均値で示される。 Note that the size and form of the crystal part K appropriately change depending on the processing conditions, the types of constituent materials, and the like. The shape of the crystal part K is not particularly limited, but it is preferable to have at least one of a powder form, a short fiber form, or a vein form as shown in FIGS. 2A and 2B, and its size (constituent dimension). Is preferably as fine as 0.5 mm or less. Here, the constituent dimensions of the crystal part K are indicated by the average value of the maximum diameter in the case of powdery crystals, and the maximum thickness of the single element (each single line) constituting this in the case of a fibrous or leaf-like one. It is shown as an average value.
結晶部Kの寸法が0.5mmを超えるものでは、その後の成形加工において表面の粗雑化をもたらし、また前記短繊維状や葉脈状のものでは、結晶部間の凹部の小スペース化によって、補助潤滑剤の収容効率が低下する。結晶部Kの寸法は、より好ましくは0.1mm以下である。 If the size of the crystal part K exceeds 0.5 mm, the surface will be roughened in the subsequent molding process, and in the case of the short fiber shape or the vein shape, the space between the crystal parts is reduced, thereby assisting. Lubricant storage efficiency decreases. The dimension of the crystal part K is more preferably 0.1 mm or less.
結晶部Kが短繊維状又は葉脈状の場合、結晶部の単一エレメントが所定長さ(L)(例えば0.01〜1mm)を有し、その長さ(L)と太さ(D)とのアスペクト比(L/D)が平均1.5〜50の範囲内にあることが好ましい。特に、結晶部Kが必要以上に長い場合、そのランダム分布で確定される網目が大きくなるため、好ましくない。結晶部Kに関して、より好ましいアスペクト比は、2〜20である。こうしたアスペクト比の調整は、例えば前記乾燥の条件設定で行うことができる。 When the crystal part K has a short fiber shape or a vein shape, a single element of the crystal part has a predetermined length (L) (for example, 0.01 to 1 mm), and its length (L) and thickness (D) The aspect ratio (L / D) is preferably in the range of 1.5 to 50 on average. In particular, when the crystal part K is longer than necessary, the network determined by the random distribution becomes large, which is not preferable. A more preferable aspect ratio for the crystal part K is 2 to 20. Such adjustment of the aspect ratio can be performed, for example, by setting the drying conditions.
本実施形態では、被加工用金属材料が、冷間圧造成形やばね成形用に用いられる潤滑被覆線材である場合について説明されている。また、潤滑剤組成物が、金属材料の全面に一様に塗布され、被覆形成処理された場合を中心に説明した。しかし、本発明は、これらに限定されるものではなく、例えば金属材料として棒材や帯材、シート材、塊材など種々形状品の選択や、その材質の種類及び大きさ程度の応用は、当業者で容易になし得るものであり、本発明の一形態として包含されるべきものである。 In the present embodiment, the case where the metal material to be processed is a lubricating coated wire used for cold head forming or spring forming is described. Further, the description has been made mainly on the case where the lubricant composition is uniformly applied to the entire surface of the metal material and subjected to a coating formation treatment. However, the present invention is not limited to these, for example, selection of various shaped products such as bars, strips, sheets, and lump materials as metal materials, and application of the types and sizes of the materials, It can be easily made by those skilled in the art and should be included as one embodiment of the present invention.
次に、以下の実施例により、本発明を更に詳細に説明する。 The following examples further illustrate the present invention.
[供試材の作製]
本実施例では、その被処理材料として、鋼種SUS304、316及びXM7型の冷間圧造用のオーステナイト系ステンレス鋼3種が選定され、各々線径3.65mmに冷間伸線加工したものを素材とした。そして、これらを温度1000〜1100℃でストランド型の熱処理装置で固溶化熱処理するとともに、下記の潤滑剤組成物を用いて被覆し、被覆ステンレス鋼線を得た。この処理工程で、前記熱処理装置は、その出口側に図3に示す構造の被覆装置を連結して、固溶化熱処理と被覆処理が同時に行えるように一連のインライン装置として構成されている。潤滑剤組成物は次の組成ものを用いた。[Production of test materials]
In this embodiment, steel materials SUS304 and 316 and XM7 type austenitic
[潤滑剤組成物]
(A) 硫酸ナトリウム 10重量%
(B) 硼酸ナトリウム 2重量%
(C) 窒化ホウ素(平均粒径 5μm) 10重量%
(D) アクリル酸系樹脂 10重量%
(アニオン系アクリル酸アルキルエステル共重合体/誘電率3.8で電荷・極性有)
(E) 水 68重量%
(A):(B):(C):(D)=5:1:5:5(固形分重量比)
固形分濃度 32重量%[Lubricant composition]
(A)
(B)
(C) Boron nitride (average particle size 5 μm) 10% by weight
(D)
(Anionic acrylic acid alkyl ester copolymer / dielectric constant 3.8 with charge and polarity)
(E) Water 68% by weight
(A) :( B) :( C) :( D) = 5: 1: 5: 5 (solid content weight ratio)
Solid content concentration 32% by weight
これら(A)〜(E)を混合した潤滑剤組成物を、幅200×奥行き600×高さ300mmの貯槽内に導入して、外部ヒーターで温度80〜95℃の範囲に加熱しながらよく攪拌し、水性分散液とした。この状態で、前記無機塩と水溶性樹脂材料は溶媒の水に溶解し、この水溶液に窒化ホウ素が均一に分散するものであった。 The lubricant composition in which these (A) to (E) are mixed is introduced into a storage tank having a width of 200 × depth of 600 × height of 300 mm, and stirred well while being heated to a temperature range of 80 to 95 ° C. with an external heater. An aqueous dispersion was obtained. In this state, the inorganic salt and the water-soluble resin material were dissolved in the solvent water, and boron nitride was uniformly dispersed in the aqueous solution.
[被膜形成・結晶化処理]
被膜形成処理は、前記潤滑剤組成物の組成や加熱温度及び貯槽容積に基づき、被処理線材(ステンレス鋼線)の送給速度を調節することで塗膜付着量が所定の範囲になるように行われる。本実施例においては、線材供給速度を3〜7m/min.にすることで、平均付着量が 6〜12g/m2の範囲になるように調整された。蒸発水の補充は適宜行う自動調整によって行った。この為、該潤滑剤の被覆状態はいずれも良好で、付着量のバラツキも少なく抑えることができた。[Film formation / crystallization treatment]
The coating formation treatment is performed so that the coating amount is within a predetermined range by adjusting the feeding speed of the wire to be treated (stainless steel wire) based on the composition of the lubricant composition, the heating temperature and the storage tank volume. Done. In this example, the average adhesion amount was adjusted to be in the range of 6 to 12 g / m 2 by setting the wire supply speed to 3 to 7 m / min. The replenishment of the evaporating water was carried out by automatic adjustment as appropriate. For this reason, the coating state of the lubricant was good, and variation in the amount of adhesion could be suppressed.
このようにして浸漬塗布された被処理線材は、その液面から送り出され、該液面から約0.8mの位置に配置した筒状の温風乾燥器によって、塗布された潤滑剤組成物を100℃で完全に乾燥させ、潤滑被膜を線材に定着させた。また、前記貯槽は80〜95℃に加温されているので、線材が液面から温風乾燥器に至るまでの間に水分が蒸発し無機塩の結晶が析出するのが観察された。 The wire to be treated thus applied by dip coating is sent out from the liquid level, and the coated lubricant composition is applied by a cylindrical hot air dryer placed at a position of about 0.8 m from the liquid level. It was completely dried at 100 ° C., and the lubricating coating was fixed on the wire. Moreover, since the said storage tank was heated at 80-95 degreeC, it was observed that a water | moisture content evaporates and the crystal | crystallization of an inorganic salt precipitates between a wire from a liquid level to a warm air dryer.
このような一連の金属線材の熱処理及び被膜形成処理を前記速度で行うことにより、各ステンレス鋼線はその表面上に付着量6〜12g/m2の潤滑被膜で被覆され、図2Aのような短繊維状の結晶部を備える潤滑被膜を有する軟質ステンレス鋼線が得られた。X線回析装置(堀場製作所製)による画像解析で求めた結晶部は、幅10〜50μm、平均アスペクト比2〜15の短繊維状のものがランダム分布したもので、その面積率は、平均49.6〜52.1%であった。 By performing such a series of heat treatment and film formation treatment of the metal wire at the above-mentioned speed, each stainless steel wire is coated on its surface with a lubricating film having an adhesion amount of 6 to 12 g / m @ 2, as shown in FIG. 2A. A soft stainless steel wire having a lubricating coating with fibrous crystal parts was obtained. The crystal part obtained by image analysis using an X-ray diffraction apparatus (manufactured by Horiba Seisakusho) is a random distribution of short fibers having a width of 10-50 μm and an average aspect ratio of 2-15. It was 49.6 to 52.1%.
また、結晶部は、その拡大顕微鏡観察により、凸設した張出状態が確認されているが、更に該被覆鋼線の所定位置における潤滑剤の有無による表面粗さ(Rz)の下記測定結果からも、その裏付けがなされた。
・潤滑被膜面上の表面粗さ 9.6〜10.4μm
・潤滑剤除去面の表面粗さ 7.6μmFurther, the crystal part has been confirmed to have a protruding state by magnifying microscope observation, and further from the following measurement result of the surface roughness (Rz) depending on the presence or absence of a lubricant at a predetermined position of the coated steel wire. But that was backed up.
・ Surface roughness on the lubricating coating surface 9.6 to 10.4 μm
・ Surface roughness of lubricant removal surface 7.6μm
[比較潤滑剤]
比較潤滑被膜(比較例)として、前記3種のステンレス鋼線の各々に、付着量6〜12g/m2で蓚酸塩被膜を形成し、比較線材として用いた。なお、該蓚酸塩被膜は、従来からステンレス鋼の冷間加工用として多用されてきたものであるが、その処理過程では六価Crの発生や有害物を含んだミストが生じるなど有害な重金属を含むスラッジや廃酸の問題があり、近年は縮小化傾向にある。[Comparative lubricant]
As a comparative lubricating film (comparative example), an oxalate film was formed on each of the three types of stainless steel wires with an adhesion amount of 6 to 12 g / m 2 and used as a comparative wire. The oxalate coating has been widely used in the past for cold working of stainless steel, but in the treatment process, harmful heavy metals such as generation of hexavalent Cr and mist containing harmful substances are generated. There is a problem of sludge and waste acid containing, and in recent years it has been on a shrinking trend.
[中間加工処理]
本実施例の被覆軟質ステンレス鋼線に、更に加工率4%でスキンパス伸線加工を施して表1に記載の冷間圧造用ステンレス鋼線を得た。このスキンパス加工は、補助潤滑剤に、金属石鹸を併用したものを用い、該補助潤滑剤が前記鋼線表面の凹部内に保持されていることが認められた。[Intermediate processing]
The coated soft stainless steel wire of this example was further subjected to skin pass drawing at a processing rate of 4% to obtain stainless steel wires for cold heading shown in Table 1. In this skin pass processing, a combination of a metal soap and an auxiliary lubricant was used, and it was confirmed that the auxiliary lubricant was held in the recesses on the surface of the steel wire.
[潤滑性試験]
次に、前記実施例の表1の各ステンレス鋼線を用い、その加工性を評価する圧造試験が行われた。試験は、スピンドル油を滴下しながら十字皿頭ねじの圧造成形を冷間加工で行ったもので、加工条件は工具鋼製のヘッダーパンチにより毎分150個の送り速度で合計25000個のヘッダー成形を行い、工具面数とワレ等の欠陥発生の有無を観察した。[Lubricity test]
Next, the forging test which evaluates the workability was performed using each stainless steel wire of Table 1 of the said Example. The test was performed by cold forming of the countersunk head screw while dripping the spindle oil. The processing conditions were a total of 25,000 headers formed at a feed rate of 150 pieces per minute using a tool steel header punch. Then, the number of tool surfaces and occurrence of defects such as cracks were observed.
試験結果は良好であり、本実施例の潤滑被膜は、比較例の蓚酸塩被膜を超える15000個の工具寿命が得られるものであった。又、加工ワレや焼付きなどの問題はなくヘッダー加工をすることができた。この加工点数は、圧造加工性の加工寿命を評価するもので、本実施例の被膜は比較潤滑剤である蓚酸塩被膜と同等以上の潤滑性であることが認められた。得られた圧造製品(試料No.A−2)の表面状態の一例を、図5に示すが、焼付きの痕跡は認められない。 The test results were good, and the lubricating coating of the present example had a tool life of 15000 tools exceeding the oxalate coating of the comparative example. Moreover, there was no problem of cracking or seizure, and header processing was possible. This number of processing points is an evaluation of the processing life of the forging workability, and it was confirmed that the coating film of this example had a lubricity equivalent to or higher than that of the oxalate film as a comparative lubricant. An example of the surface state of the obtained forged product (sample No. A-2) is shown in FIG. 5, but no trace of seizure is observed.
前記XM7ステンレス鋼線(線径:3.65mm)の固溶化熱処理材について、前記構成材(A)無機塩、(B)滑物質、(C)水溶性樹脂の水準を変えた次の加工性評価を合わせて行った。その評価は前記と同様にヘッダー加工による工具寿命で確認し、結果を表2に示す。 Regarding the solution heat treatment material of the XM7 stainless steel wire (wire diameter: 3.65 mm), the following workability is obtained by changing the level of the constituent material (A) inorganic salt, (B) lubricant, and (C) water-soluble resin. The evaluation was performed together. The evaluation was confirmed by the tool life by header processing as described above, and the results are shown in Table 2.
これら各実施例より、本発明に係る潤滑被膜は従来の潤滑剤と同様にステンレス鋼のヘッダー圧造用として、特に難加工性材料の強加工用被膜に採用可能であることが確認された。 From these Examples, it was confirmed that the lubricating coating according to the present invention can be used as a stainless steel header forging as in the case of conventional lubricants, in particular, as a highly processing coating for difficult-to-work materials.
[チタン−ニッケル合金帯材への適用例]
下記組成の潤滑剤組成物が調製された。
(A) ケイ酸ナトリウム
(B) 二硫化モリブデン(平均粒径 2μm)
(D) アクリル酸系樹脂 10重量%
(アニオン系アクリル酸アルキルエステル共重合体/誘電率2.7で電荷・極性有)
固形分重量比 (A):(B):(C)=5:4:2
固形分濃度 22重量%[Example of application to titanium-nickel alloy strips]
A lubricant composition having the following composition was prepared.
(A) Sodium silicate (B) Molybdenum disulfide (
(D)
(Anionic acrylic acid alkyl ester copolymer / dielectric constant 2.7 with charge and polarity)
Solid content weight ratio (A) :( B) :( C) = 5: 4: 2
Solid content 22% by weight
Ni-Ti合金は金属間化合物であり難加工材として知られ、伸線においても伸線ダイスによる疵や断線が生じ易いものとされている。その対策として例えば酸化被膜によるスケール引きが行われているが、スケール引きは疵や断線は生じ難いものの最終製品でデスケールしなければならず、その際、酸を用いる為に表面性状が低下して、製品品質を損なうという欠点がある。 Ni—Ti alloy is an intermetallic compound and is known as a difficult-to-process material, and it is considered that wrinkles and wire breakage are easily caused by wire drawing dies. As a countermeasure, for example, scaling with an oxide film is performed. However, scaling is not likely to cause wrinkles or disconnection, but it must be descaled with the final product. , There is a drawback of deteriorating product quality.
そこで、該Ni-Ti合金線への本潤滑被膜の適応性を評価する為に、線径1.8mmの合金焼鈍材100kgに前記潤滑剤組成物を2〜6g/m2塗布し、線径1.6mmへ伸線を行った。伸線において疵や断線はなく、良好な加工性が得られ、最終製品では、上層部の金属石鹸の除去に必要なアルカリ洗浄と湯洗のみで潤滑被膜すべてを除去することができた。これにより、酸洗工程の省略が可能となり、環境負荷の低減とともに、作業性が向上し、また、品質的にも線径公差の範囲を狭めることに成功した。Therefore, in order to evaluate the adaptability of this lubricating coating to the Ni—Ti alloy wire, 2 to 6 g / m 2 of the lubricant composition was applied to 100 kg of the alloy annealed material having a wire diameter of 1.8 mm, and the wire diameter was Drawing was performed to 1.6 mm. There was no wrinkling or disconnection in the wire drawing, and good workability was obtained. In the final product, all of the lubricating coating could be removed by only alkali washing and hot water washing required for removing the upper layer metal soap. As a result, the pickling step can be omitted, the environmental load is reduced, the workability is improved, and the range of the wire diameter tolerance has been successfully reduced in terms of quality.
[ばね用ステンレス鋼線の伸線加工]
下記組成の潤滑剤組成物が調製された。
(A) 硫酸カリウム
(B) グラファイト(平均粒径 3μm)
(C) カルボン酸塩系水溶性樹脂(アンモニウム塩/電荷・極性有)[Drawing of stainless steel wire for springs]
A lubricant composition having the following composition was prepared.
(A) Potassium sulfate (B) Graphite (
(C) Carboxylate water-soluble resin (ammonium salt / charged / polar)
固形分重量比 (A):(B):(C)=1:15:2
固形分濃度 18重量%
線径1.5mmのSUS304N1ステンレス鋼線の焼鈍材200kgに、前記潤滑剤組成物を0.3〜2g/m2塗布し、線径0.7mmへ伸線を行った。伸線後の材料に疵がないか確認を行ったが表面状態は良好で、被膜剥離や疵などの表面欠陥は見られなかった。続いて、ばねのコイリング性を確認した。従来からばね材のコイリング加工にはニッケル鍍金材が主流である為、ニッケル鍍金材を比較材として比較試験を行った。Solid content weight ratio (A) :( B) :( C) = 1: 15: 2
Solid content 18% by weight
The lubricant composition was applied in an amount of 0.3-2 g / m 2 to 200 kg of an annealed SUS304N1 stainless steel wire having a wire diameter of 1.5 mm, and the wire was drawn to a wire diameter of 0.7 mm. The material after drawing was checked for flaws, but the surface condition was good and no surface defects such as film peeling or wrinkles were found. Subsequently, the coiling property of the spring was confirmed. Conventionally, since nickel plating materials have been the mainstream for coiling of spring materials, comparative tests were conducted using nickel plating materials as comparative materials.
試験は、次の仕様による圧縮ばねについて、そのコイリング成形におけるばね自由長のばらつき3σで評価しており、実施例材の0.25に対して比較例材0.24とほぼ同等の結果であり、またニッケル鍍金材では、例えば生体アレルギーという健康への影響の他、これを除去する際にも廃液処理等の環境負荷や、除去後の表面状態の低下は避け難いという問題があったのに対し、本発明品ではこうした問題が改善できるものであった。 In the test, compression springs according to the following specifications were evaluated with a spring free length variation 3σ in the coiling molding, and the results were almost the same as the comparative example material 0.24 against the 0.25 of the example material. In addition, in the case of nickel plating materials, for example, in addition to the health effects of biological allergies, there were problems that it was unavoidable to remove the environmental load such as waste liquid treatment and the reduction of the surface condition after removal when removing this. In contrast, the product of the present invention can improve such problems.
ばね緒元
押しばね D/d=20.0
自由長15.5mm
自由長公差 ±0.3mm
総巻き数10
速度50個/分Spring origin Push spring D / d = 20.0
Free length 15.5mm
Free length tolerance ± 0.3mm
Total number of
50 pieces / minute
以上説明のように、本発明による潤滑被膜は、潤滑性が要求される種々の用途に使用することができる。特に、ステンレス鋼やチタン又はチタン合金、ニッケル又はニッケル合金、ニオブ又はニオブ合金などの難加工性の金属材料の圧造加工やプレス加工、曲げ加工、転造加工、ばね加工等、過酷な塑性加工の潤滑手段として利用でき、優れた潤滑性と地球環境的な問題を解消してインライン化可能な技術を提供するものである。 As described above, the lubricating coating according to the present invention can be used for various applications that require lubricity. In particular, severe plastic processing such as forging, pressing, bending, rolling, spring processing of difficult-to-work metal materials such as stainless steel, titanium or titanium alloy, nickel or nickel alloy, niobium or niobium alloy, etc. It provides a technology that can be used as a lubrication means and that can be inlined with excellent lubricity and global environmental problems.
Claims (5)
(A)硫酸塩、ホウ酸塩又はケイ酸塩よりなる群から選ばれる少なくとも1種の無機塩、
(B)グラファイト、二硫化モリブデン又は窒化ホウ素からなる平均粒径20μm以下の滑物質、並びに
(C)前記無機塩(A)及び滑物質(B)を固着保持する平均分子量8000〜50000のアクリル酸系、スルホン酸系又はポリビニル系の水溶性樹脂材料を含有する固化物からなる潤滑皮膜を具え、
前記潤滑皮膜は、構成原料(A):(B):(C)の重量比が、1:0.5〜3:0.5〜8であり、
前記潤滑皮膜は、前記無機塩(A)の少なくとも一部が結晶化した結晶部を有し、
前記潤滑皮膜の表面視において、前記結晶部の面積率が40〜70%であることを特徴とする冷間圧造用ステンレス鋼線。
A soft stainless steel wire having a wire diameter of 0.5 to 10 mm and a tensile strength of 900 MPa or less,
(A) at least one inorganic salt selected from the group consisting of sulfate, borate or silicate,
(B) A slipping material having an average particle diameter of 20 μm or less made of graphite, molybdenum disulfide, or boron nitride, and (C) an acrylic acid having an average molecular weight of 8000 to 50000 for fixing and holding the inorganic salt (A) and the slipping material (B). A lubricant film comprising a solidified material containing a water-soluble resin material of a sulfonic acid type or a polyvinyl type,
The lubricating coating has a weight ratio of constituent raw materials (A) :( B) :( C) of 1: 0.5 to 3: 0.5 to 8,
The lubricating film has a crystal part in which at least a part of the inorganic salt (A) is crystallized,
A stainless steel wire for cold heading, wherein an area ratio of the crystal part is 40 to 70% in a surface view of the lubricating film.
前記固化物の外表面上に凸設された張出部として形成されてなる請求項1記載の冷間圧造用ステンレス鋼線。 The crystal part has one or more shapes of granular, short fiber shape and vein shape,
The stainless steel wire for cold heading according to claim 1, wherein the stainless steel wire is formed as an overhang protruding on the outer surface of the solidified product.
The stainless steel wire for cold heading according to any one of claims 1 to 4, wherein the soft stainless steel wire is drawn after a solution heat treatment finish at a processing rate of 30% or less .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012536280A JP5806673B2 (en) | 2010-09-30 | 2011-08-19 | Stainless steel wire for cold heading |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010222509 | 2010-09-30 | ||
JP2010222509 | 2010-09-30 | ||
PCT/JP2011/068787 WO2012043087A1 (en) | 2010-09-30 | 2011-08-19 | Lubricant composition for metal material plasticity processing, lubricating film and coated metal material provided therewith, and method for manufacturing coated metal material |
JP2012536280A JP5806673B2 (en) | 2010-09-30 | 2011-08-19 | Stainless steel wire for cold heading |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2012043087A1 JPWO2012043087A1 (en) | 2014-02-06 |
JP5806673B2 true JP5806673B2 (en) | 2015-11-10 |
Family
ID=45892562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012536280A Active JP5806673B2 (en) | 2010-09-30 | 2011-08-19 | Stainless steel wire for cold heading |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP5806673B2 (en) |
KR (1) | KR101838307B1 (en) |
CN (1) | CN103154216B (en) |
HK (1) | HK1185907A1 (en) |
TW (1) | TWI513812B (en) |
WO (1) | WO2012043087A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6211678B2 (en) * | 2014-02-21 | 2017-10-11 | 日本パーカライジング株式会社 | Composition for direct current cathode electrolysis, metal material with lubricating film and method for producing the same |
CN105899650B (en) * | 2014-03-28 | 2020-02-21 | 日本帕卡濑精株式会社 | Aqueous lubricating coating treatment agent having excellent corrosion resistance and workability, and metal material |
JP6617922B2 (en) * | 2016-03-22 | 2019-12-11 | 住友電気工業株式会社 | Oil tempered wire |
KR102006129B1 (en) | 2017-09-21 | 2019-08-01 | 재단법인 포항산업과학연구원 | Pre-treatment agent for metal stainless steel drawing process and method for preparing the same |
EP3797894B1 (en) * | 2018-05-22 | 2023-01-18 | Hitachi Metals, Ltd. | Method for manufacturing forged article |
CN117102407B (en) * | 2023-10-25 | 2024-01-02 | 江苏莱赫润轧辊科技有限公司 | Processing device for chilled cast iron piston rod |
CN118341927A (en) * | 2024-04-22 | 2024-07-16 | 广东韶铸精锻有限公司 | Multistage warm forging line |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5025471A (en) * | 1973-07-07 | 1975-03-18 | ||
JPS5220967A (en) * | 1975-08-12 | 1977-02-17 | Nippon Shii Bii Kemikaru Kk | Composite lubrication coating for steel or alloy steel |
JPH0657441A (en) * | 1992-08-17 | 1994-03-01 | Nippon Steel Corp | Hard lubricant plated steel sheet excellent in pressability and sliding wear resistance |
JP2000063880A (en) * | 1998-06-09 | 2000-02-29 | Nippon Parkerizing Co Ltd | Lubricant composition for plastic working of metallic material |
JP2000309793A (en) * | 1999-04-27 | 2000-11-07 | Nippon Parkerizing Co Ltd | Water-based lubricant for plastic working of metallic material |
JP2002317191A (en) * | 2001-04-19 | 2002-10-31 | Nippon Parkerizing Co Ltd | Lubricating agent for processing metallic material, and method for treatment thereof |
JP2002361302A (en) * | 2001-05-31 | 2002-12-17 | Nippon Parkerizing Co Ltd | Method for rolling metal material plate |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IN192718B (en) * | 1998-06-09 | 2004-05-15 | Nihon Parkerizing |
-
2011
- 2011-08-19 WO PCT/JP2011/068787 patent/WO2012043087A1/en active Application Filing
- 2011-08-19 JP JP2012536280A patent/JP5806673B2/en active Active
- 2011-08-19 CN CN201180005862.8A patent/CN103154216B/en active Active
- 2011-08-19 KR KR1020127022356A patent/KR101838307B1/en active IP Right Grant
- 2011-09-07 TW TW100132205A patent/TWI513812B/en active
-
2013
- 2013-11-27 HK HK13113269.2A patent/HK1185907A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5025471A (en) * | 1973-07-07 | 1975-03-18 | ||
JPS5220967A (en) * | 1975-08-12 | 1977-02-17 | Nippon Shii Bii Kemikaru Kk | Composite lubrication coating for steel or alloy steel |
JPH0657441A (en) * | 1992-08-17 | 1994-03-01 | Nippon Steel Corp | Hard lubricant plated steel sheet excellent in pressability and sliding wear resistance |
JP2000063880A (en) * | 1998-06-09 | 2000-02-29 | Nippon Parkerizing Co Ltd | Lubricant composition for plastic working of metallic material |
JP2000309793A (en) * | 1999-04-27 | 2000-11-07 | Nippon Parkerizing Co Ltd | Water-based lubricant for plastic working of metallic material |
JP2002317191A (en) * | 2001-04-19 | 2002-10-31 | Nippon Parkerizing Co Ltd | Lubricating agent for processing metallic material, and method for treatment thereof |
JP2002361302A (en) * | 2001-05-31 | 2002-12-17 | Nippon Parkerizing Co Ltd | Method for rolling metal material plate |
Also Published As
Publication number | Publication date |
---|---|
KR101838307B1 (en) | 2018-03-13 |
KR20130124148A (en) | 2013-11-13 |
CN103154216A (en) | 2013-06-12 |
TWI513812B (en) | 2015-12-21 |
HK1185907A1 (en) | 2014-02-28 |
WO2012043087A1 (en) | 2012-04-05 |
JPWO2012043087A1 (en) | 2014-02-06 |
TW201213536A (en) | 2012-04-01 |
CN103154216B (en) | 2015-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5806673B2 (en) | Stainless steel wire for cold heading | |
JP4271573B2 (en) | Manufacturing method of metal wire for header processing | |
KR101633005B1 (en) | Method for coating metal surfaces with a phosphate layer and then with a polymer lubricant layer | |
WO2013129268A1 (en) | Water-soluble lubricating agent for plastic working, metal material for plastic working, and worked metal article | |
JP5355583B2 (en) | Dry film corrosion resistant cold forming lubricant | |
JP2011231408A (en) | Phosphate coated stainless steel wire for cold heading, and self-drilling screw using the stainless steel wire | |
WO2015146466A1 (en) | Steel wire rod having coating film that has excellent corrosion resistance and workability and method for producing same | |
JP6216208B2 (en) | Non-phosphating agent for plastic working, treatment liquid, chemical film and metal material having chemical film | |
KR20190132391A (en) | Drawing lubricant and drawing method of base metal using the same | |
WO2015118602A1 (en) | Lubricating coating agent for metal plasticity processing and metal material for metal plasticity processing | |
JP3881269B2 (en) | Surface treatment method for plastic working of metal materials | |
JP4797915B2 (en) | Manufacturing method of steel wire for cold forging | |
JP4603394B2 (en) | Copper or copper alloy strip for press working | |
WO2007132851A1 (en) | Lubricant for steel pipe cold working and relevant method of cold working | |
JP5237525B2 (en) | Treatment liquid for improving moldability of magnesium alloy plate, method for producing magnesium alloy plate using the same, and method for warm working | |
JP3462632B2 (en) | Aqueous lubricant composition for plastic working of metal materials and surface treatment method thereof | |
JP2006051801A (en) | Magnesium alloy plate for forming work, magnesium alloy case, and method for manufacturing magnesium alloy case | |
JPH06330077A (en) | Lubricant for cryogenic temperature working of aluminum and its alloy and method for cryogenic temperature working | |
TW202115282A (en) | Surface-treated zinc coated steel sheet and method for producing the same | |
JP5171221B2 (en) | Metal material for plastic working and method for producing the same | |
JP2012219365A (en) | Manufacturing method of metallic material for plastic woking and worked metal product | |
WO2023138372A1 (en) | Strip steel and manufacturing method therefor | |
JP7131914B2 (en) | Aluminum plate material and its manufacturing method | |
JP2012051014A (en) | Stainless steel wire rod for warm drawing and method of drawing the same | |
JP3340835B2 (en) | Water-based lubricant composition for plastic working of metal material and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140605 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141021 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150825 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150904 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5806673 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |