JP5803270B2 - 耐圧潰性に優れた高強度耐サワーラインパイプ及びその製造方法 - Google Patents
耐圧潰性に優れた高強度耐サワーラインパイプ及びその製造方法 Download PDFInfo
- Publication number
- JP5803270B2 JP5803270B2 JP2011115446A JP2011115446A JP5803270B2 JP 5803270 B2 JP5803270 B2 JP 5803270B2 JP 2011115446 A JP2011115446 A JP 2011115446A JP 2011115446 A JP2011115446 A JP 2011115446A JP 5803270 B2 JP5803270 B2 JP 5803270B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- pipe
- formula
- steel
- hardness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Metal Rolling (AREA)
Description
[1]厚鋼板からなる母材を管状に成形し、そのシーム部を2層以上の溶接によって接合した溶接鋼管であって、
質量%で、
C: 0.02〜0.08%
Si: 0.01〜0.50%
Mn: 0.5〜1.5%
P: 0.010%以下
S: 0.001%以下
Al: 0.06%以下
Nb: 0.002〜0.100%
Ca: 0.0005〜0.0040%
O: 0.0030%以下
を含有し、さらに、
Cu: 1.0%以下
Ni: 1.0%以下
Cr: 1.00%以下
Mo: 0.5%以下
の中から選ばれる1種以上を含有し、
さらに、式(1)で規定されるCeqが0.30以上、
式(2)で規定されるPHICが0.10以下、
式(3)で規定されるACRが1.00〜6.00であり、
残部Feおよび不可避的不純物からなり、
母材表層部の金属組織が上部ベイナイトであるか又はフェライト及び上部ベイナイトであり、
母材管厚中心部の金属組織が上部ベイナイト単相であり、
管厚全域で島状マルテンサイト(M−A)の体積分率が4%以下、
かつ、管周方向同位置における管厚方向の硬度差の最大値が50以下、
管厚方向同位置における管周方向の硬度差の最大値が50以下、
表層硬さの最大値が248以下
であることを特徴とする耐圧潰性に優れた高強度耐サワーラインパイプ。
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 式(1)
PHIC=4.46C+2.37Mn/6+(1.18Cr+1.95Mo+1.74V)/5+(1.74Cu+1.7Ni)/15+22.36P 式(2)
ACR=(Ca−(0.18+130Ca)O)/1.25S 式(3)
ここで、各式の右辺の元素記号はそれぞれの含有量(質量%)を表わし、含有しない場合は0とする。
[2] さらに、質量%で、
V: 0.005〜0.100%
Ti: 0.005〜0.050%
Mg: 0.0005〜0.0040%
の中から選ばれる1種または2種以上を含有することを特徴とする[1]記載の耐圧潰性に優れた高強度耐サワーラインパイプ。
[3]真円度が下記の(4)又は(5)式を満たすことを特徴とする[1]又は[2]記載の耐圧潰性に優れた高強度耐サワーラインパイプ。
D/t0.6≦85の場合 Dmax−Dmin≦3.0 式(4)
D/t0.6>85の場合 Dmax−Dmin≦0.04D/t0.6−0.4 式(5)
ここで、D: 公称外径(mm)、t: 管厚(mm)、Dmax−Dmin: 真円度(mm)、Dmax:測定最大外径(mm)、Dmin:測定最小外径(mm)である。
[4] 鋼素材を、900〜1200℃に加熱後、900℃以下の累積圧下率を30〜90%とし圧延終了温度を(Ar3−10℃)以上とした熱間圧延を行った後、
加速冷却の直前に鋼板表面での噴射流衝突圧が1MPa以上のデスケーリングを行い、
直ちに(Ar3−30℃)以上の温度から表層の冷却速度が200℃/s以下かつ平均の冷却速度が10℃/s以上で冷却停止温度が300℃〜600℃になる加速冷却を行い、
その後室温まで冷却して得られた厚鋼板を、冷間で管状に成形し、突合せ部を溶接し鋼管とした後、さらに、0.5〜1.1%の拡管率で拡管を行うことによって製造することを特徴とする[1]及至[3]のいずれか一つに記載の耐圧潰性に優れた高強度耐サワーラインパイプの製造方法。
以下に成分組成の限定理由を説明する。なお、成分組成を示す単位は、全て質量%とする。
Cは焼き入れ性を高め強度確保に重要な元素であるが、0.02%未満では十分な強度が確保できない。また、0.08%を超えて添加すると、硬質第2相の生成が顕著となり、耐サワー性の確保が困難となる。また、硬質第2相が増えることは鋼管の圧縮強度を低下させ、耐圧潰性も低下させることになる。よって、C含有量は、0.02〜0.08%の範囲とする。さらに好適には、0.03〜0.06%である。
Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.50%を超えるとマルテンサイト体積分率の増加による耐サワー性、耐圧潰性、靱性および溶接性の劣化が起こるため、Si含有量は0.01〜0.50%の範囲とする。さらに好適には、0.01〜0.30%の範囲である。
Mnは強度、靭性向上に有効な元素であるが、0.5%未満ではその効果が十分でなく、1.5%を超えると中央に偏析し、中央偏析硬さの増加およびMnSの生成により耐サワー性能を著しく劣化させる。従って、Mn含有量は、0.5〜1.5%の範囲とする。より好ましくは、1.0〜1.5%である。
Pは偏析に濃化する元素であり、少量含まれるだけでも中央偏析の硬さを顕著に上げ、耐サワー性を劣化させるため、少なければ少ないほどよい。ただし、0.010%までは許容することができる。
SはMnと結合し、MnSを生成する。また、SはMnと同じく中央に偏析しやすい元素であるためS量が多いとMnSの中央偏析が多数生成することになり、耐サワー性を著しく劣化させる。従って、Sは極力低減することが望ましいが、0.001%までは許容することができる。
Alは脱酸剤として添加されるが、0.06%を超えると鋼の清浄度が低下し、Al系介在物が生成することにより耐サワー性能を劣化させるため、Al含有量は0.06%以下とする。より好ましくは、0.01〜0.05%の範囲である。
Nbは制御圧延の効果を高め、組織細粒化により強度、靭性を向上させる元素である。しかし、0.002%未満では効果がなく、0.100%を超えると溶接熱影響部の靭性が著しく劣化するため、Nb含有量は0.002〜0.100%の範囲とする。より好ましくは、0.005〜0.060%である。
Caは中央偏析に生成する針状MnSの形態を球状にすることにより、耐HIC性能を向上させる。その効果をえるためには、0.0005%以上添加することが好ましいが、0.0040%を超えて添加するとCaOSクラスタが生成し、耐HIC性能がむしろ劣化することになるため、Ca含有量は0.0005〜0.0040%とする。より好ましくは、0.0015〜0.0040%である。
Oは鋼中に不可避的に含まれる元素であり、通常AlやCaと結合した酸化物として存在している。これらAl,Ca系酸化物の鋼中含有量が多くなりすぎると、クラスタを形成し耐HIC性能を劣化させるため、Oの含有量を0.0030%以下とする。
Cuは靭性の改善と強度の上昇に有効な元素である。しかしながら、1.0%を超えて添加すると溶接性の劣化や析出脆化による母材、HAZの靱性劣化、さらにはM−A分率の増加による圧縮強度の低下が問題になるため、Cuを添加する場合には上限を1.0%とする。より好ましくは、0.05〜0.45%である。
Niは靭性の改善と強度の上昇に有効な元素である。しかしながら、1.0%を超えて添加すると連続鋳造時にスラブに割れが生じ、表面の手入れが必要となり、著しい生産性の低下を招き、さらにM−A分率の増加による圧縮強度の低下が問題になるため、Niを添加する場合には上限を1.0%とする。より好ましくは、0.05〜0.45%である
Cr:1.00%以下
CrはMnと同様に低Cでも十分な強度を得るために有効な元素である。しかしながら、1.0%を超えて添加すると溶接性の劣化やM−A分率の増加による圧縮強度の低下を招くため、Crを添加する場合はその含有量は1.00%以下とする。より好ましくは0.10〜0.40%である。
Moは焼き入れ性を向上し強度上昇に大きく寄与する元素である。しかし、0.50%を超える添加はM−A分率の増加による圧縮強度の低下や溶接熱影響部靭性の劣化を招くため、Moを添加する場合は、その含有量は0.50%以下とする。より好ましくは、0.05〜0.30%である。
下記式(1)で定義されるCeqは本来は溶接時のHAZ(溶接熱影響部)最高硬さを示す指標であるが、同時に母材強度ともよい相関を示すことが知られている。Ceqは0.30未満の場合、所望の母材強度が得られないため、Ceqの下限を0.30とする。
ここで、各式の右辺の元素記号はそれぞれの含有量(質量%)を表わし、含有しない場合は0とする。
下記式(2)で定義されるPHICは一般的な炭素等量の式に用いられる合金元素およびPについて、中央偏析部への濃化度を熱力学計算により求めて濃化度合いの係数を加えたもので、中央偏析部の最終凝固部の硬さを間接的に表示することができる。このPHICが1.00を超えると中央偏析に粗大なMnSが生成していなくても、NbTi―CNなどを起点にHIC割れが発生するため、上限を1.00とする。
PHIC=4.46C+2.37Mn/6+(1.18Cr+1.95Mo+1.74V)/5+(1.74Cu+1.7Ni)/15+22.36P 式(2)
ここで、各式の右辺の元素記号はそれぞれの含有量(質量%)を表わし、含有しない場合は0とする。
下記式(3)で定義されるACRは中央偏析に生成するMnSをCaによって球状化させえるかを評価する指標であり、1.00未満の場合、中央偏析に粗大なMnSが残留し耐HIC性能を劣化させる。1.00以上の場合は、CaOSが生成し、粗大なMnSの生成はなくなるが、6.00を超えるとCaOSがクラスタを生成し、耐HIC性能を劣化させるため、ACRの範囲を1.00〜6.00の範囲とする。
ACR=(Ca−(0.18+130Ca)O)/1.25S 式(3)
ここで、各式の右辺の元素記号はそれぞれの含有量(質量%)を表わす。
Vは主に焼入れ性を高めることで母材強度を向上させることができる。その効果は0.005%未満では現れず、一方で0.100%を超える添加により析出脆化を起こし、母材靱性、HAZ靱性を劣化させるため、Vを添加する場合にはその範囲は0.005〜0.100%とすることが好ましい。より好ましくは0.005〜0.050%である。
TiはTiNのピンニング効果により加熱時のオーステナイトの粗大化を抑制し、母材や溶接熱影響部の靭性を改善するために有効な元素である。しかし、0.005%未満では効果が無く、0.050%を超える添加はTiNが粗大化し、逆に溶接熱影響部靭性の劣化を招くため、Tiを添加する場合にはその含有量は0.005〜0.050%の範囲とすることが好ましい。さらに、Ti含有量を0.005〜0.030%にすると、より優れた靭性を示す。
Mgはアルミナクラスタ(Al2O3)を、Al−Mg系酸化物として微細分散させることで母材およびHAZ靭性向上に寄与する元素である。その効果を得るためには、0.0005%以上添加することが好ましいが、0.0040%を超える添加で、MgCaOSクラスタを形成し、耐HIC性能を劣化させるため、Mgを添加する場合にはその添加量は0.0005〜0.0040%とすることが好ましい。
2.金属組織(ミクロ組織)
本発明では、母材の金属組織の形態および体積分率を規定する。ここで、体積分率は各金属組織の面積率を測定し体積分率とみなしている。
表層組織は耐SSC性を確保するために過度に焼きの入った組織になることを防ぐ必要がある。本発明では、加速冷却の直前にデスケーリングを行うことで、厚いスケールの生成に起因した表層での硬化組織の生成を抑制し、表層組織を上部ベイナイトにするか、もしくはフェライト+上部ベイナイト(フェライトと上部ベイナイトとの混合組織をこのように表記する)主体にすることで、表層硬さの過度な上昇を防ぐ。なお、これらの主体組織以外としては、マルテンサイト、M−A、下部ベイナイト、パーライトおよびセメンタイトがあり、いずれも、フェライト、上部ベイナイトに比べて硬い組織であるため、少ない方が良い。なお、主体組織の体積分率を特には規定しないが、より好ましくは85%以上である。このとき、上部ベイナイトのラス間に生成するセメンタイトは上部ベイナイトの一部として測定する。また、表層とは最表層から管厚方向2mmまでの領域のことである。
管厚中央の組織は、母材強度およびHIC性能を確保する上で重要な因子である。HIC性能確保および圧縮強度確保の観点からは、できるだけ均一な組織であることが望ましく、強度確保の観点からフェライト単相組織では不適格で、下部ベイナイトやマルテンサイト単相組織にすると硬さが大きくなりすぎてHIC試験時に中央偏析から割れが生じるため、母材強度、耐HIC性能の両立のためには、上部ベイナイト単相組織とする必要がある。
M−Aは上述した硬質第2相の中でも、最も硬度が大きい組織であり、耐HIC性能および圧縮強度を顕著に劣化させるため、できるだけ少ない方がよい。加速冷却で鋼管素材を製造する場合はM−Aが不可避的に存在するが、4%までは許容することができる。管厚全域とは、中央偏析部を除く鋼管母材全域のこととする。
本発明では、管周方向、管厚方向の硬さ分布および硬さの最大値を規定する。なお、硬さはビッカース硬さ試験機で荷重10kgf(98N)で測定したものとする。
管周方向の硬度差は、主に加速冷却時の表面性状に起因して発生する。スケールが厚い箇所は過度に冷却されて表層が著しく硬化し、一方スケール厚が薄い箇所では、それほど表層が硬化しないため表層硬さに大きな差が出ることになる。管周方向の硬度差が大きいと、UOE造管時のC−U−O成形における形状の乱れが生じ、その結果、所望の真円度を得るためにより大きな拡管率を必要とする。拡管率が大きくなると、バウシンガー効果により圧縮強度が低下するため、耐圧潰性が低下することになる。一方で、管周方向の硬度差が小さいと、拡管率が小さくても高い真円度を得ることができ、圧縮強度の低下の抑制および真円度の確保の両面から耐圧潰性を向上させることができる。その効果は、管周方向の硬度差が50を超えてしまうと見られなくなるため、上限を50とする。より好ましくは40以下である。なお、管周方向の硬度差は管長方向の同じ位置で管厚方向に1mmピッチで測定したものについて比較するものとし、上述したように管周方向の硬度差は主に表層部で生じるため、表層から1mmおよび裏層から1mmの2箇所を測定すれば、その鋼管の管周方向の硬度差を代表とみなすことができる。
管厚方向の硬度差は、主に加速冷却前の表層組織形態、加速冷却の冷却速度、加速冷却時の表面性状に起因して発生し、管周方向の硬度差と同じく、UOE造管時のC−U−O成形における形状の乱れが生じ、その結果、所望の真円度を得るためにより大きな拡管率を必要としてしまう。拡管率が大きくなると、バウシンガー効果により圧縮強度が低下するため、耐圧潰性が低下することになる。一方で、管厚方向の硬度差が小さいと、拡管率が小さくても高い真円度を得ることができ、圧縮強度の低下の抑制および真円度の確保の両面から耐圧潰性を向上させることができる。その効果は、管周方向の硬度差が50を超えてしまうと見られなくなるため、上限を50とする。より好ましくは40以下である。なお、管厚方向の硬度差は管周方向および管長方向の同じ位置で測定したものについて比較するものとする。
表層硬さが248を超えるとSSCで割れが生じるため、表層硬さの最大を248以下とする。なお、表層硬さの測定位置は、表層から1mmおよび裏層から1mmとし、前述したように局所的な硬化部はデスケーリング水のかかり方による表層のスケールむらに起因するため、ある管長位置においてミルデスケーリング装置および加速冷却前デスケーリング装置のノズル間隔のうち大きい方の長さの2倍の長さの管周方向位置を最大でも20mmピッチで測定したうちの最大値を用いることができる。
真円度が高いほど、耐圧潰性が向上する。ここで、真円度とは、Dmax−Dminと定義する。Dmaxは測定最大外径(mm)で、Dminは測定最小外径(mm)である。ここで、真円度は、製造された鋼管の任意の管長位置で管周を12等分あるいは24等分して対向する位置での外直径を測定し、それらのうちの最大値と最小値をDmax,Dminとすることで求めることができる。
D/t0.6≦85の場合 Dmax−Dmin≦3.0 式(4)
D/t0.6>85の場合 Dmax−Dmin≦0.04D/t0.6−0.4 式(5)
ここで、D: 公称外径(mm)、t: 管厚(mm)である。
本発明では、上記の母材ミクロ組織および硬さ分布および所望の性能を得るための、鋼管素材および鋼管の製造方法を規定する。
スラブをオーステナイト化しつつ、最低限のNbの固溶量を得るため、下限温度は900℃である。一方、1200℃を超える温度までスラブを加熱すると、NbCおよびTiNによるピンニング効果が弱まり、オーステナイト粒が著しく成長し、母材靭性が劣化する。このため、スラブ加熱温度は900〜1200℃の範囲とする。
本発明に係る鋼は、Nb添加によって900℃以下では、オーステナイト未再結晶温度領域となる。この温度域以下において累積で大圧下の圧延を行うことにより、オーステナイト粒を伸展させ、特に板厚方向で細粒とし母材靭性を向上させる。累積圧下率が30%未満の場合は、細粒化が十分でなく靱性が劣化するため、900℃以下の温度域での累積圧下率は30%以上とする。累積圧下率が大きいほど圧延時の鋼板の反りや圧延能率の低下などが問題となり、また90%を超える圧下率を確保しても材質特性に大きな変化がみられないため、上限を90%とする。好ましくは50〜90%である。
圧延終了温度は、低い方が母材靱性が良好になるが、(Ar3−10℃)を下回ると管厚中央付近の母材組織に加工フェライトが生成し耐HIC性能が劣化するため、下限を(Ar3−10℃)とする。より好ましくは、(Ar3−10℃)以上830℃以下である。なお、温度の測定は、圧延終了後ただちに放射温度計により鋼板表面温度を測定するものとする。Ar3点は実質的に同一とみなせる化学成分の鋼の熱膨張試験で加工後の変態開始温度を測定することが望ましいが、下記の式(6)で代用してもよい。
Ar3(℃)=910−310C−80Mn−20Cu−55Ni−15Cr−80Mo
式(6)
ここで、各元素記号は含有量(質量%)で、含有しない場合は0とする。
さらに上記製造工程に加えて、加速冷却の直前に高衝突圧の噴射流によるデスケーリングを行う。鋼板内の材質均一性に優れた高強度鋼板とするためには、鋼板内の硬さのばらつきを低減することが必要であり、特に鋼板内部の強度を保ちながら、表層部の硬さを抑制することが重要である。圧延後の鋼板においては、圧延前および圧延中のデスケーリング等により幅方向にスケールの厚さにむらが生じることがある。また、スケール厚さが大きい場合には、部分的にスケールの剥離が生じることがある。圧延後の加速冷却の際に、スケール厚さにばらつきがあると、その厚さに応じて鋼板表面の冷却速度も変化してしまい、その冷却速度に応じて鋼板表面の硬さも変化してしまう。鋼板を高強度化するためには、加速冷却時の冷却速度を大きくすることが有効であるが、高冷却速度の冷却では表層硬さに及ぼすスケール厚さの影響が顕著になるため、スケール厚さにむらがあると硬さのばらつきが増大して鋼板内の材質均一性が劣化する。その対策として、高衝突圧のデスケーリングによりスケール厚さを冷却速度に大きな差が生じない程度に均一に薄くすることができる。
加速冷却開始温度が低いと、鋼板の板厚中央、すなわち、管厚中央にフェライトが生成し、耐HIC性能が劣化するため、(Ar3−30℃)以上とする。より好ましくは、(Ar3−30℃)〜(Ar3+10℃)の範囲である。なお、温度の測定は、加速冷却前デスケーリングの直前に放射温度計により表面温度を測定するものとする。Ar3は式(6)を代用してもよい。
表層の加速冷却速度は表層の組織および硬さを決定する重要な因子であり、表層の冷却速度が200℃/sを超えると表層組織にマルテンサイトや下部ベイナイトが多数生成し、表層硬さが大きくなるため上限を200℃/sとする。好ましくは板厚中央の冷却速度以上、150℃/s以下である。
鋼板の平均の冷却速度は、鋼板の板厚中央、すなわち、管厚中央の組織および硬さを決定する重要な因子であり、鋼板の板厚方向の平均の冷却速度が10℃/s未満では管厚中央にフェライトが生成し、耐HIC性能が劣化するため、下限を10℃/sとする。より好ましくは、10〜100℃/sである。
圧延終了後、ベイナイト変態の温度域である300〜600℃まで加速冷却することにより、ベイナイト相を生成させる。冷却停止温度が300℃を下回ると加速冷却時に未変態であったオーステナイトから多くのM−Aが生成し、耐HIC性能および圧縮強度が低下するため、下限を300℃とする。一方で600℃を超えると、所望の強度が得られないだけでなく、加速冷却時に未変態であったオーステナイトの一部がフェライト変態し、耐HIC性能および圧縮強度が低下するため、上限を600℃とする。温度の測定は、復熱で表層と板厚中央の温度差が小さくなったときに表面を放射温度計で測定するものとする。より好ましくは、鋼板全体の水冷が終了してから10〜120秒の時間の範囲内で測定するものとする。
本発明では、加速冷却停止後の冷却過程が鋼板の材質や形状へ及ぼす影響は大きくない。そのため、加速冷却後の鋼板を室温まで冷却するための冷却手段は、例えば、空冷とする。ここで、空冷とは放冷してもよいし、また、鋼板に空気を吹き付けて積極的に冷却してもよい。これ以外に、水冷や、その他の手段でもかまわない。
一般に厚肉高強度UOE鋼管は、0.9〜1.2%程度の範囲の拡管率で造管を行う。拡管率は、耐圧潰性を確保する上で重要な因子であり、拡管率を低くするほど圧縮強度が上昇するが、真円度が低下する。一方で、拡管率を高くするほど真円度は高くなるが、圧縮強度は下がり、さらにはダイスによる鋼管の傷つきが問題になる。拡管率を0.5%より小さくしても圧縮強度上昇効果はあまり期待できないので、下限を0.5%とする。一方で、本発明では、管厚および管周方向の硬さを均一化することによって成形性を著しく向上させているため、拡管率が低くても、所望の真円度を得ることができる。真円度は拡管率が1.1を超えるとそれ以降は拡管率増加による真円度向上効果が飽和するため、上限を1.1%とする。以上に規定した拡管率0.5〜1.1%の範囲で造管すれば、優れた耐圧潰性能が得られる。また、より好ましくは0.5〜1.0%である。
Claims (4)
- 厚鋼板からなる母材を管状に成形し、その突合せ部を2層以上の溶接によって接合した溶接鋼管であって、
質量%で、
C: 0.02〜0.08%
Si: 0.01〜0.50%
Mn: 0.5〜1.5%
P: 0.010%以下
S: 0.001%以下
Al: 0.06%以下
Nb: 0.002〜0.100%
Ca: 0.0005〜0.0040%
O: 0.0030%以下
を含有し、さらに、
Cu: 1.0%以下
Ni: 1.0%以下
Cr: 1.00%以下
Mo: 0.50%以下
の中から選ばれる1種以上を含有し、
さらに、式(1)で規定されるCeqが0.30以上、
式(2)で規定されるPHICが1.00以下、
式(3)で規定されるACRが1.00〜6.00であり、
残部Feおよび不可避的不純物からなり、
母材表層部の金属組織が上部ベイナイトであるか又はフェライト及び上部ベイナイトであり、
母材管厚中心部の金属組織が上部ベイナイト単相であり、
管厚全域で島状マルテンサイト(M−A)の体積分率が4%以下、
かつ、管周方向同位置における管厚方向のビッカース硬度差の最大値が50以下、
管厚方向同位置における管周方向のビッカース硬度差の最大値が50以下(ただし管周方向同位置における管厚方向のビッカース硬度差の最大値が30以下かつ管厚方向同位置における管周方向のビッカース硬度差の最大値が30以下において管厚全域で島状マルテンサイト(M−A)の体積分率が1%以下は除く)、
表層ビッカース硬度の最大値が248以下
であることを特徴とする耐圧潰性に優れた高強度耐サワーラインパイプ。
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 式(1)
PHIC=4.46C+2.37Mn/6+(1.18Cr+1.95Mo+1.74V)/5+(1.74Cu+1.7Ni)/15+22.36P 式(2)
ACR=(Ca−(0.18+130Ca)O)/1.25S 式(3)
ここで、各式の右辺の元素記号はそれぞれの含有量(質量%)を表わし、含有しない場合は0とする。 - さらに、質量%で、
V: 0.005〜0.100%
Ti: 0.005〜0.050%
Mg: 0.0005〜0.0040%
の中から選ばれる1種以上を含有することを特徴とする請求項1記載の耐圧潰性に優れた高強度耐サワーラインパイプ。 - 真円度が下記の(4)又は(5)式を満たすことを特徴とする請求項1又は2記載の耐圧潰性に優れた高強度耐サワーラインパイプ。
D/t0.6≦85の場合 Dmax−Dmin≦3.0 式(4)
D/t0.6>85の場合 Dmax−Dmin≦0.04D/t0.6−0.4 式(5)
ここで、D: 公称外径(mm)、t: 管厚(mm)、Dmax−Dmin: 真円度(mm)、Dmax:測定最大外径(mm)、Dmin:測定最小外径(mm)である。 - 鋼素材を、900〜1200℃に加熱後、900℃以下の累積圧下率を30〜90%とし圧延終了温度を(Ar3−10℃)以上とした熱間圧延を行った後、
加速冷却の直前に鋼板表面での噴射流衝突圧が1MPa以上のデスケーリングを行い、
直ちに(Ar3−30℃)以上の温度から表層の冷却速度が200℃/s以下かつ板厚方向の平均の冷却速度が10℃/s以上で冷却停止温度が300℃〜600℃になる加速冷却を行い、
その後室温まで冷却して得られた厚鋼板を、冷間で管状に成形し、
突合せ部を溶接し鋼管とした後、
さらに、0.5〜1.1%の拡管率で拡管を行うことによって製造する
ことを特徴とする請求項1〜3のいずれか1項に記載の耐圧潰性に優れた高強度耐サワーラインパイプの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011115446A JP5803270B2 (ja) | 2011-05-24 | 2011-05-24 | 耐圧潰性に優れた高強度耐サワーラインパイプ及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011115446A JP5803270B2 (ja) | 2011-05-24 | 2011-05-24 | 耐圧潰性に優れた高強度耐サワーラインパイプ及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012241270A JP2012241270A (ja) | 2012-12-10 |
JP5803270B2 true JP5803270B2 (ja) | 2015-11-04 |
Family
ID=47463302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011115446A Active JP5803270B2 (ja) | 2011-05-24 | 2011-05-24 | 耐圧潰性に優れた高強度耐サワーラインパイプ及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5803270B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5751013B2 (ja) * | 2011-05-24 | 2015-07-22 | Jfeスチール株式会社 | 耐圧潰性および耐サワー性に優れた高強度ラインパイプの製造方法 |
JP5751012B2 (ja) * | 2011-05-24 | 2015-07-22 | Jfeスチール株式会社 | 耐圧潰性および耐サワー性に優れた高強度ラインパイプの製造方法 |
JP6241434B2 (ja) * | 2014-11-28 | 2017-12-06 | Jfeスチール株式会社 | ラインパイプ用鋼板、ラインパイプ用鋼管、およびその製造方法 |
CN111183238A (zh) * | 2017-09-28 | 2020-05-19 | 杰富意钢铁株式会社 | 耐酸管线管用高强度钢板及其制造方法以及使用了耐酸管线管用高强度钢板的高强度钢管 |
JP7155702B2 (ja) * | 2018-07-19 | 2022-10-19 | 日本製鉄株式会社 | 耐サワーラインパイプ用厚鋼板およびその製造方法 |
BR112022008897A2 (pt) * | 2020-01-17 | 2022-08-23 | Nippon Steel Corp | Placa de aço e tubo de aço |
BR112022013767A2 (pt) * | 2020-03-04 | 2022-10-11 | Nippon Steel Corp | Tubo de aço e placa de aço |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5098256B2 (ja) * | 2006-08-30 | 2012-12-12 | Jfeスチール株式会社 | 耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板およびその製造方法 |
JP5223511B2 (ja) * | 2007-07-31 | 2013-06-26 | Jfeスチール株式会社 | 高強度耐サワーラインパイプ用鋼板およびその製造方法および鋼管 |
JP5343519B2 (ja) * | 2007-11-07 | 2013-11-13 | Jfeスチール株式会社 | ラインパイプ用鋼板および鋼管 |
JP5245476B2 (ja) * | 2008-03-15 | 2013-07-24 | Jfeスチール株式会社 | ラインパイプ用鋼板 |
JP5348383B2 (ja) * | 2008-09-30 | 2013-11-20 | Jfeスチール株式会社 | 圧潰強度に優れた高靱性溶接鋼管およびその製造方法 |
JP5614040B2 (ja) * | 2009-03-25 | 2014-10-29 | Jfeスチール株式会社 | 厚鋼板の製造設備及び製造方法 |
JP2010247227A (ja) * | 2009-03-25 | 2010-11-04 | Jfe Steel Corp | 厚鋼板の製造設備及び製造方法 |
JP5487682B2 (ja) * | 2009-03-31 | 2014-05-07 | Jfeスチール株式会社 | 強度−伸びバランスに優れた高靭性高張力鋼板およびその製造方法 |
-
2011
- 2011-05-24 JP JP2011115446A patent/JP5803270B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012241270A (ja) | 2012-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5751012B2 (ja) | 耐圧潰性および耐サワー性に優れた高強度ラインパイプの製造方法 | |
JP5751013B2 (ja) | 耐圧潰性および耐サワー性に優れた高強度ラインパイプの製造方法 | |
JP5796351B2 (ja) | 耐圧潰性に優れた高強度耐サワーラインパイプおよびその製造方法 | |
JP5783229B2 (ja) | 熱延鋼板およびその製造方法 | |
US9181609B2 (en) | Welded steel pipe for linepipe having high compressive strength and excellent sour gas resistance and manufacturing method thereof | |
JP5811591B2 (ja) | 耐圧潰性および溶接熱影響部靱性に優れた高強度ラインパイプ及びその製造方法 | |
US9089919B2 (en) | Welded steel pipe for linepipe with high compressive strength and manufacturing method thereof | |
JP5142141B2 (ja) | ハイドロフォーム加工用鋼管素材熱延鋼板およびハイドロフォーム加工用鋼管ならびにそれらの製造方法 | |
JP5348383B2 (ja) | 圧潰強度に優れた高靱性溶接鋼管およびその製造方法 | |
EP2505681A1 (en) | Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same | |
JP5782827B2 (ja) | 高圧縮強度耐サワーラインパイプ用鋼管及びその製造方法 | |
JP5803270B2 (ja) | 耐圧潰性に優れた高強度耐サワーラインパイプ及びその製造方法 | |
WO2015151469A1 (ja) | 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管 | |
JP5768603B2 (ja) | 高一様伸び特性を備え、かつ溶接部低温靱性に優れた高強度溶接鋼管、およびその製造方法 | |
JP5782828B2 (ja) | 高圧縮強度鋼管及びその製造方法 | |
JP6048615B2 (ja) | 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管 | |
EP3276026A1 (en) | Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe | |
JP4824143B2 (ja) | 高強度鋼管、高強度鋼管用鋼板、及び、それらの製造方法 | |
JP2013139628A (ja) | 鋼板内の材質均一性に優れたラインパイプ用高強度鋼板とその製造方法 | |
JP2015189984A (ja) | 低降伏比高強度高靭性鋼板、低降伏比高強度高靭性鋼板の製造方法および鋼管 | |
JP5786351B2 (ja) | 耐コラプス性能の優れたラインパイプ用鋼管 | |
JP5211843B2 (ja) | 耐圧潰性に優れた溶接鋼管およびその製造方法 | |
JP5640792B2 (ja) | 圧潰強度に優れた高靱性uoe鋼管及びその製造方法 | |
JP7215332B2 (ja) | 耐サワーラインパイプ用溶接鋼管の製造方法 | |
WO2022239591A1 (ja) | 高強度熱延鋼板およびその製造方法、並びに高強度電縫鋼管およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20150120 |
|
RD13 | Notification of appointment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7433 Effective date: 20150128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20150128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150804 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150817 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5803270 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |