Nothing Special   »   [go: up one dir, main page]

JP5898944B2 - Photocatalyst coating liquid and inorganic material having photocatalytic function - Google Patents

Photocatalyst coating liquid and inorganic material having photocatalytic function Download PDF

Info

Publication number
JP5898944B2
JP5898944B2 JP2011274259A JP2011274259A JP5898944B2 JP 5898944 B2 JP5898944 B2 JP 5898944B2 JP 2011274259 A JP2011274259 A JP 2011274259A JP 2011274259 A JP2011274259 A JP 2011274259A JP 5898944 B2 JP5898944 B2 JP 5898944B2
Authority
JP
Japan
Prior art keywords
tio
titanium oxide
copper
terms
cuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011274259A
Other languages
Japanese (ja)
Other versions
JP2013124312A (en
Inventor
達志 長江
達志 長江
義行 中西
義行 中西
創史 大山
創史 大山
賢治 井上
賢治 井上
井筒 裕之
裕之 井筒
英和 上田
英和 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Taki Kasei Co Ltd
Original Assignee
Toto Ltd
Taki Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd, Taki Kasei Co Ltd filed Critical Toto Ltd
Priority to JP2011274259A priority Critical patent/JP5898944B2/en
Priority to PCT/JP2012/082489 priority patent/WO2013089229A1/en
Publication of JP2013124312A publication Critical patent/JP2013124312A/en
Application granted granted Critical
Publication of JP5898944B2 publication Critical patent/JP5898944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/02Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
    • C09D1/04Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates with organic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2248Oxides; Hydroxides of metals of copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、光触媒コーティング液および光触媒機能を有する無機材料に関する。   The present invention relates to a photocatalyst coating liquid and an inorganic material having a photocatalytic function.

酸化チタンなどの光触媒が、近年広く利用されている。光エネルギーを利用して、光触媒に、抗菌、抗ウイルス、防カビ、防藻等の機能を発揮させることができる。   Photocatalysts such as titanium oxide have been widely used in recent years. Utilizing light energy, the photocatalyst can exhibit functions such as antibacterial, antiviral, antifungal and antialgal.

従来より、光触媒を用いた抗菌技術について種々の提案がある(例えば、特開平11−349423号公報(特許文献1)、特開2002−68915号公報(特許文献2)、特開2008−260684号公報(特許文献3)、国際公開第00/06300号パンフレット(特許文献4)など)。   Conventionally, various proposals have been made regarding antibacterial technology using a photocatalyst (for example, JP-A-11-349423 (Patent Document 1), JP-A-2002-68915 (Patent Document 2), and JP-A-2008-260684. Publication (Patent Document 3), International Publication No. 00/06300 Pamphlet (Patent Document 4), etc.).

特開平11−349423号公報(特許文献1)には、サブミクロンサイズの酸化チタン粒子に、ナノメートルオーダーの金属銀および金属銅のうちから選ばれる1種または2種の金属粒子を分散付着させてなることを特徴とする抗菌・脱臭材料が開示されている。上記抗菌・脱臭材料は、次のような方法で得られるとされている。すなわち、まず、平均粒径が0.01μmのアナターゼ型酸化チタン粒子を用意し、この酸化チタン粒子98gを純水300mlに添加・攪拌し、上記硝酸銀と硝酸銅のアンモニア錯体の溶液を加えた後さらに攪拌・分散させた。次に、この分散液に還元剤としてヒドラジン水溶液20mlを添加したのち30〜50℃に加熱して1時間攪拌し、酸化チタン粒子の表面に金属銀と金属銅をそれぞれ析出させる。   In JP-A-11-349423 (Patent Document 1), one or two metal particles selected from nanometer-order metal silver and metal copper are dispersed and attached to submicron-sized titanium oxide particles. An antibacterial / deodorizing material is disclosed. It is said that the antibacterial / deodorizing material is obtained by the following method. That is, first, anatase-type titanium oxide particles having an average particle diameter of 0.01 μm were prepared, 98 g of the titanium oxide particles were added to and stirred with 300 ml of pure water, and the ammonia complex solution of silver nitrate and copper nitrate was added. Further, the mixture was stirred and dispersed. Next, after adding 20 ml of hydrazine aqueous solution as a reducing agent to this dispersion, the mixture is heated to 30 to 50 ° C. and stirred for 1 hour to deposit metallic silver and metallic copper on the surface of the titanium oxide particles.

特開2002−68915号公報(特許文献2)には、主成分として結晶質酸化チタンと銅化合物とアルカノールアミンとを含有したゾルが開示されている。そして、このゾルに関し以下の記載がある。すなわち、「特に抗菌性が要求される材料、用途に有用であり、合成繊維、天然繊維、プラスティツク、ゴム、セラミック、タイルなど窯業製品、ガラス、鏡、金属、木材等の板状物、球状物、粒状物等の各種形状物に塗布し、あるいはこれらをゾルに浸漬することにより利用することができる。また、耐熱性材料に対しては、塗布後、材料との密着性を更に良くするため、焼成することもできる。焼成温度は高い程望ましい。
また、加熱、焼成が困難な材料に対しては、フッ素樹脂、シリカゾルなどで予め材料を処理した後、本発明ゾルを適用して材料との密着性を向上させることもできる。」
Japanese Patent Application Laid-Open No. 2002-69915 (Patent Document 2) discloses a sol containing crystalline titanium oxide, a copper compound, and an alkanolamine as main components. And there is the following description about this sol. That is, “useful for materials and applications that require antibacterial properties in particular, ceramic products such as synthetic fibers, natural fibers, plastics, rubber, ceramics, tiles, plates, spheres, such as glass, mirrors, metals, and wood. It can be used by applying to various shapes such as granular materials, or by immersing them in a sol, and for heat-resistant materials, to further improve the adhesion to the materials after application. A higher baking temperature is desirable.
In addition, for materials that are difficult to heat and fire, the material sol can be treated with a fluororesin or silica sol in advance, and then the sol of the present invention can be applied to improve the adhesion to the material. "

特開2008−260684号公報(特許文献3)には、銀および銅並びに水酸化第四アンモニウムを含有する光触媒酸化チタンゾルが開示されており、ここで、銀が酸化チタンに対してAgO/TiOとして0.1〜5質量%であり、銀に対する銅の割合がCuO/AgO(質量比)として1〜30であるのが好ましいとされている。 Japanese Patent Application Laid-Open No. 2008-260684 (Patent Document 3) discloses a photocatalytic titanium oxide sol containing silver and copper and quaternary ammonium hydroxide, in which silver is Ag 2 O / a 0.1 to 5% by mass as TiO 2, the ratio of copper to silver is preferable that 1 to 30 as a CuO / Ag 2 O (mass ratio).

国際公開第00/06300号パンフレット(特許文献4)には、光触媒機能を有する機能材の製造方法であって、基材表面に、光触媒性金属酸化物および/またはその前駆体を含む光触媒コーティング組成物を塗布し、前記基材表面を急速加熱して、前記光触媒性金属酸化物を前記基材表面に固定させることを含んでなり、前記急速加熱を、単位面積当たりの発熱量が120MJ/m・h以上である発熱体を備えた発熱手段により行い、該発熱体から前記基材の表面までの距離を5mm〜300mmの範囲とし、かつ前記急速加熱を2〜60秒間行うことを特徴とする方法が開示されている。さらに、その実施例として、以下の製造方法が開示されている。「予備加熱装置にてタイルの表面温度を200℃に加熱した後、銅をドーピングした酸化チタンゾル、アルカリ珪酸塩を混合しTiOが0.08%、CuOが0.004%、SiOが0.3%、LiOが0.025%、NaOが0.04%、Bが0.005%の濃度となるようした調整した水溶液を基材表面1cmあたり2〜3μgスプレー塗布した。水分は直ちに蒸発し、固形分がタイル表面に固定化された。次に、乾燥装置12に連続的に配設された急速加熱装置9にて炉内温度約750℃、熱量1200MJ/m・h、加熱面積0.6mで焼成した」 International Publication No. 00/06300 (Patent Document 4) discloses a method for producing a functional material having a photocatalytic function, which comprises a photocatalytic metal oxide and / or a precursor thereof on a substrate surface. Coating the substrate, rapidly heating the surface of the base material, and fixing the photocatalytic metal oxide to the surface of the base material, wherein the rapid heating is performed at a heating value of 120 MJ / m per unit area. It is performed by a heating means including a heating element that is 2 · h or more, the distance from the heating element to the surface of the base material is in a range of 5 mm to 300 mm, and the rapid heating is performed for 2 to 60 seconds, A method is disclosed. Furthermore, the following manufacturing methods are disclosed as an example. “After heating the surface temperature of the tile to 200 ° C. with a preheating device, a titanium oxide sol doped with copper and an alkali silicate were mixed, and TiO 2 was 0.08%, CuO was 0.004%, and SiO 2 was 0. .3%, Li 2 O is 0.025%, Na 2 O is 0.04%, B 2 O 3 is 0.005% concentration so as the adjusted aqueous solution 2~3μg per substrate surface 1 cm 2 The water was immediately evaporated and the solid content was fixed on the tile surface, and then the furnace temperature was about 750 ° C. and the heat amount was 1200 MJ in the rapid heating device 9 continuously provided in the drying device 12. / M 2 · h, fired at a heating area of 0.6 m 2

上記先行技術が存在するが、より優れた抗菌活性を有する光触媒機能材料が依然として求められている。特に、水と接触する環境において、より優れた抗菌活性を有する光触媒機能材料が求められている。   Although the above prior art exists, a photocatalytic functional material having better antibacterial activity is still desired. In particular, there is a demand for a photocatalytic functional material having superior antibacterial activity in an environment that comes into contact with water.

特開平11−349423号公報Japanese Patent Laid-Open No. 11-349423 特開2002−68915号公報JP 2002-69915 A 特開2008−260684号公報JP 2008-260684 A 国際公開第00/06300号パンフレットInternational Publication No. 00/06300 Pamphlet

本発明者らは、今般、アルカリシリケートと、銅と、アルカノールアミン及び/又は第四級アンモニウムとを含有する光触媒コーティング液を基材に適用後焼成することで、銀を実質的に含まなくとも、またその量が極めて少量であっても、水が接触する環境下で使用する際に、充分な抗菌活性を有する光触媒機能材料が得られることを見出した。   The present inventors have recently applied a photocatalyst coating solution containing an alkali silicate, copper, alkanolamine and / or quaternary ammonium to a substrate and then calcining it, so that it can be substantially free of silver. In addition, it has been found that even when the amount is extremely small, a photocatalytic functional material having sufficient antibacterial activity can be obtained when used in an environment in contact with water.

したがって、本発明は、基材に適用後焼成して用いると、水が接触する環境下で使用する際に、優れた抗菌機能を有する光触媒コーティング液の提供をその目的としている。   Accordingly, an object of the present invention is to provide a photocatalyst coating solution having an excellent antibacterial function when used in an environment where water comes into contact when used after being applied to a substrate.

そして、本発明の一つの態様による光触媒コーティング液は、光触媒性酸化チタン粒子と、アルカリシリケートと、銅と、アルカノールアミン及び/又は第四級アンモニウムを含有する、基材に適用後焼成して用いる光触媒コーティング液であって、前記銅の含有量が、前記光触媒性酸化チタン粒子に対して、CuO換算質量比で0.03<CuO/TiO<0.3であり、任意成分として銀を含む場合には、その含有量は、AgO換算質量比でAgO/TiO<0.001であることを特徴とするものである。 The photocatalyst coating liquid according to one embodiment of the present invention is used after being applied to a substrate containing photocatalytic titanium oxide particles, alkali silicate, copper, alkanolamine and / or quaternary ammonium, and firing. a photocatalyst coating liquid, the content of the copper, to the photocatalytic titanium oxide particles, a 0.03 <CuO / TiO 2 <0.3 in terms of CuO mass ratio, containing silver as an optional component In the case, the content is Ag 2 O / TiO 2 <0.001 in terms of Ag 2 O converted mass ratio.

また、本発明の別の態様による光触媒コーティング液は、光触媒性酸化チタン粒子と、アルカリシリケートと、銅と、アルカノールアミンを含有する、基材に適用後焼成して用いる光触媒コーティング液であって、前記銅の含有量が、前記光触媒性酸化チタン粒子に対して、CuO換算質量比で0.03<CuO/TiO<0.3であり、任意成分として銀を含む場合には、その含有量は、AgO換算質量比でAgO/TiO<0.001であることを特徴とするものである。 Moreover, the photocatalyst coating liquid according to another aspect of the present invention is a photocatalyst coating liquid containing photocatalytic titanium oxide particles, alkali silicate, copper, and alkanolamine, which is used after firing on a substrate, When the copper content is 0.03 <CuO / TiO 2 <0.3 in terms of CuO with respect to the photocatalytic titanium oxide particles and contains silver as an optional component, the content thereof Is characterized by Ag 2 O / TiO 2 <0.001 in terms of Ag 2 O equivalent mass ratio.

光触媒コーティング液
本発明による光触媒コーティング液は、基材に適用後焼成して用いられる。こうして得られた光触媒機能材料は、水が接触する環境下で使用する際に、優れた抗菌機能を有する。本発明においてこの抗菌機能は銅成分自体の抗菌性能と光触媒効果による抗菌性能の両方による。本発明によれば、銀を含まなくとも銅のみで優れた抗菌活性が発現されるが、その機序は定かではない。しかし、以下のように考えられる。アルカリシリケートと組み合わされた第四級アンモニウムは、銅を溶解する能力が高くないことから、銅成分は光触媒コーティング液中において、酸化チタン上に担持された極微小な粒子として存在していると考えられる。そしてそのようなコーティング液から焼成により得られた光触媒膜中においても銅は、依然微小粒子として存在していると推測される。その結果、銅は比較的ゆっくりであるが確実に放出され、銀を実質的に含まなくとも、またその量が極めて少量であっても、良好な抗菌活性が得られると考えられる。また、アルカリシリケートと組み合わされたアルカノールアミンは、第四級アンモニウムの場合と同様に銅の微小粒子を光触媒膜中に作るが、第四級アンモニウムと比較してさらに微細な銅粒子を作ると推測される。その結果、銅がより容易に放出されるために、第四級アンモニウムを使用した場合と比較して、より初期の抗菌性能が向上するものと考えられる。しかし以上の理論はあくまで仮定であって、本発明がこの理論により限定されることを意図するものではない。
Photocatalyst coating liquid The photocatalyst coating liquid according to the present invention is used after being applied to a substrate and calcined. The photocatalytic functional material thus obtained has an excellent antibacterial function when used in an environment in contact with water. In the present invention, this antibacterial function depends on both the antibacterial performance of the copper component itself and the antibacterial performance by the photocatalytic effect. According to the present invention, excellent antibacterial activity is expressed only with copper without containing silver, but the mechanism is not clear. However, it is considered as follows. Since quaternary ammonium combined with alkali silicate does not have a high ability to dissolve copper, it is considered that the copper component exists as ultrafine particles supported on titanium oxide in the photocatalytic coating solution. It is done. And it is estimated that copper is still present as fine particles in the photocatalytic film obtained by firing from such a coating solution. As a result, it is believed that copper is released relatively slowly but reliably, and good antibacterial activity can be obtained even if it is substantially free of silver and even in very small amounts. In addition, alkanolamine combined with alkali silicate produces copper microparticles in the photocatalyst film as in the case of quaternary ammonium, but it is estimated that it produces finer copper particles than quaternary ammonium. Is done. As a result, since copper is more easily released, it is considered that the initial antibacterial performance is improved as compared with the case where quaternary ammonium is used. However, the above theory is only an assumption and is not intended to limit the present invention.

本発明の好ましい態様によれば、アルカノールアミンと第四級アンモニウムとはそれぞれ単独で用いられても、また混合されて用いられてもよい。いずれかを選択し、またはこれらを共存させることによって、種々の抗菌性能および塗膜物性(硬度、密着性、緻密さ等)を有する光触媒性機能を有する無機材料が得られる。   According to a preferred embodiment of the present invention, the alkanolamine and the quaternary ammonium may be used alone or in combination. By selecting any of these or coexisting them, an inorganic material having a photocatalytic function having various antibacterial properties and coating properties (hardness, adhesion, density, etc.) can be obtained.

本発明による光触媒コーティング液中の銅の含有量はCuO換算質量比で0.03<CuO/TiO<0.3である。0.03を上回ることにより銅成分による抗菌性能が十分に得られるようになり、0.3を下回ると銅成分により光触媒性酸化チタン粒子の活性点が過剰な銅に覆われ、光触媒効果による抗菌性が低下するのを好適に抑制することができる。 The content of copper in the photocatalyst coating liquid according to the present invention is 0.03 <CuO / TiO 2 <0.3 in terms of CuO mass ratio. If it exceeds 0.03, the antibacterial performance due to the copper component can be sufficiently obtained, and if it is less than 0.3, the active site of the photocatalytic titanium oxide particles is covered with excess copper due to the copper component, and the antibacterial effect due to the photocatalytic effect It can suppress suitably that property falls.

本発明による光触媒コーティング液は、銀を実質的に含まず、また含んでいたとしてもその量が極めて少量である。具体的には、任意成分としての銀は、AgO換算質量比でAgO/TiO<0.001の量である。銀の含有量をこの範囲におくことで、光触媒コーティング液保存中に起きる銀イオンの還元による変色や沈殿を防ぐことができるとの利点も得られる。 The photocatalyst coating liquid according to the present invention does not substantially contain silver, and if present, the amount thereof is extremely small. Specifically, silver as an arbitrary component is an amount of Ag 2 O / TiO 2 <0.001 in terms of Ag 2 O-converted mass ratio. By setting the silver content within this range, there is also an advantage that discoloration and precipitation due to reduction of silver ions occurring during storage of the photocatalytic coating solution can be prevented.

本発明に用いられるアルカリシリケートとしては、リチウムシリケート、ナトリウムシリケート、カリウムシリケート、およびそれらの混合物が挙げられる。特にリチウムシリケートが好ましく、さらにリチウムシリケートとカリウムシリケートとの混合物がより好ましい。   Examples of the alkali silicate used in the present invention include lithium silicate, sodium silicate, potassium silicate, and mixtures thereof. In particular, lithium silicate is preferable, and a mixture of lithium silicate and potassium silicate is more preferable.

本発明の好ましい形態において、本発明による光触媒コーティング液は、アルカリシリケートを、光触媒性酸化チタン粒子に対して、質量比で2以上5以下含有し、かつアルカリシリケートはアルカリ成分としてリチウムを含むものであり、前記リチウムの含有量は、前記銅に対して、LiO換算質量比で0<LiO/CuO<2である。本発明において、光触媒機能による抗菌性の良好な発現のためには、光触媒性酸化チタン表面の光触媒活性点をできるだけ塗膜表面に露出させることが重要である。そのため、バインダーであるアルカリシリケートを多量に含有すると光触媒性酸化チタンが埋没し、光触媒機能による抗菌性が低下する傾向がある。一方、アルカリシリケートの含有量が少なすぎると十分な塗膜密着性が得られない。アルカリシリケートの光触媒に対する量が上記範囲にあることで、塗膜密着性と光触媒機能による抗菌性能が好ましく両立できるものと考えられる。また、アルカリシリケートのアルカリ金属としてリチウムを含むことで抗菌性能が向上する。極少量の添加で非常に効果的に抗菌性能を向上させることができるが、一方で多量添加すると抗菌性能が低下する傾向が見られる。リチウムの含有量が前記銅に対して、質量比で0<LiO/CuO<2においてより高い抗菌性能が得られる。このようにリチウムが抗菌性能向上の補助剤として働く理由は定かではないが、銅の水中への溶出量がリチウムにより適度に制御されていることがその理由として考えられる。 In a preferred embodiment of the present invention, the photocatalytic coating liquid according to the present invention contains an alkali silicate in a mass ratio of 2 to 5 with respect to the photocatalytic titanium oxide particles, and the alkali silicate contains lithium as an alkali component. There, the content of the lithium relative to the copper, in Li 2 O in terms of mass ratio is 0 <Li 2 O / CuO < 2. In the present invention, it is important to expose the photocatalytic active sites on the surface of the photocatalytic titanium oxide as much as possible on the surface of the coating film in order to achieve good antibacterial properties due to the photocatalytic function. Therefore, when a large amount of alkali silicate as a binder is contained, the photocatalytic titanium oxide is buried, and the antibacterial property due to the photocatalytic function tends to be lowered. On the other hand, if the content of the alkali silicate is too small, sufficient coating film adhesion cannot be obtained. When the amount of the alkali silicate with respect to the photocatalyst is in the above range, it is considered that the coating film adhesion and the antibacterial performance due to the photocatalytic function are preferably compatible. Moreover, antibacterial performance improves by including lithium as an alkali metal of an alkali silicate. Although the antibacterial performance can be improved very effectively by adding a very small amount, the antibacterial performance tends to decrease when added in a large amount. Higher antibacterial performance is obtained when the lithium content is 0 <Li 2 O / CuO <2 by mass ratio with respect to the copper. The reason why lithium works as an auxiliary agent for improving antibacterial performance is not clear, but it is considered that the amount of copper eluted into water is appropriately controlled by lithium.

本発明の好ましい形態において、アルカリシリケートには、アルカリ成分としてリチウムに加えカリウムをさらに含み、このカリウムの含有量が、リチウムに対して、KO換算質量比で5<KO/LiO<50とされる。本発明においてカリウムは抗菌活性を向上させ、さらに塗膜密着性を向上させるとの利点が得られる。 In a preferred embodiment of the present invention, the alkali silicate further contains potassium as an alkali component in addition to lithium, and the content of potassium is 5 <K 2 O / Li 2 in terms of K 2 O-converted mass ratio with respect to lithium. O <50. In the present invention, potassium improves the antibacterial activity, and further has the advantage of improving the coating film adhesion.

本発明において、光触媒性酸化チタン粒子は、光触媒活性を有する粒子であれば特に限定されないが、好ましい例としては、アナターゼ型酸化チタン粒子、ルチル型酸化チタン粒子、ブルッカイト型酸化チタン粒子が挙げられ、より好ましくはアナターゼ型酸化チタン粒子である。   In the present invention, the photocatalytic titanium oxide particles are not particularly limited as long as they are particles having photocatalytic activity, but preferred examples include anatase-type titanium oxide particles, rutile-type titanium oxide particles, and brookite-type titanium oxide particles. More preferred are anatase type titanium oxide particles.

光触媒性酸化チタン粒子は、光触媒コーティング液中で、10nm以上100nm以下の平均粒径を有するのが好ましく、より好ましくは10nm以上60nm以下である。この範囲であれば平滑で密着性の良い薄膜が得られる。   The photocatalytic titanium oxide particles preferably have an average particle size of 10 nm or more and 100 nm or less, more preferably 10 nm or more and 60 nm or less in the photocatalytic coating solution. Within this range, a thin film with good adhesion can be obtained.

本発明に用いられるアルカノールアミンは、水素または低級アルキル基(好ましくはC1−6アルキル)を有するアルカノールアミンであり、その具体例としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、2-ジエチルアミノエタノール、N-メチルジエタノールアミン、N,N-ジメチルエタノールアミン、2-アミノ-2-メチルプロパノール、2-エチルアミノエタノール、N-エチルジエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、さらにはそれらの混合物が挙げられる。特に、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミンが、銅の溶解性と酸化チタンゾルの分散性のバランスが良く、光触媒コーティング液を長期にわたって安定化することができるので好ましい。 The alkanolamine used in the present invention is an alkanolamine having hydrogen or a lower alkyl group (preferably C 1-6 alkyl). Specific examples thereof include monoethanolamine, diethanolamine, triethanolamine, 2-diethylaminoethanol. , N-methyldiethanolamine, N, N-dimethylethanolamine, 2-amino-2-methylpropanol, 2-ethylaminoethanol, N-ethyldiethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, and even those A mixture is mentioned. In particular, monoisopropanolamine, diisopropanolamine, and triisopropanolamine are preferable because they have a good balance between the solubility of copper and the dispersibility of the titanium oxide sol, and can stabilize the photocatalytic coating solution over a long period of time.

本発明に用いられる第四級アンモニウムとしては、水酸化第四アンモニウムが好ましく、具体的には、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、コリンが挙げられる。特に水酸化テトラメチルアンモニウムは、少量で酸化チタンゾルを安定化させることが可能であり、また容易に入手できることから好ましい。   The quaternary ammonium used in the present invention is preferably quaternary ammonium hydroxide, and specifically includes tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, and choline. In particular, tetramethylammonium hydroxide is preferable because it can stabilize the titanium oxide sol in a small amount and is easily available.

本発明による光触媒コーティング液は、上記成分を適宜混合して調製されてよいが、本発明の好ましい態様によれば、光触媒性酸化チタンと、銅と、アルカノールアミン及び/又は第四級アンモニウムを含有するゾルを作成した後、これにアルカリシリケートを添加する方法が、光触媒コーティング液の安定性の観点から好ましい。   The photocatalyst coating liquid according to the present invention may be prepared by appropriately mixing the above components, but according to a preferred embodiment of the present invention, it contains photocatalytic titanium oxide, copper, alkanolamine and / or quaternary ammonium. A method of adding an alkali silicate to the sol to be prepared is preferable from the viewpoint of the stability of the photocatalyst coating solution.

本発明による光触媒コーティング液の好ましい製造方法を例示すれば以下の(1)〜(4)が挙げられる。(1)光触媒性酸化チタンのゾルに水酸化銅と、アルカノールアミン及び/又は第四級アンモニウムを添加し、溶解させた後、アルカリシリケートを添加する。前記光触媒性酸化チタンのゾルとしては、市販品、例えば商品名「タイノック」(多木化学株式会社製)を利用することもでき、また特公平2−62499号公報に記載のように、塩化チタン、硫酸チタンのような水溶性チタンにアルカリ金属の水酸化物、アンモニウム化合物などのアルカリ性化合物を加え、チタンのゲルを生成し、100℃以上で水熱処理することにより容易に製造することができる。また、酸化チタン粉末を湿式粉砕することによっても容易に製造することができる。(2)前記のチタンのゲルにアルカノールアミン及び/又は第四級アンモニウムを添加し、水熱処理することでゾル化させた後に銅の酸化物または水酸化物を添加、溶解させ、さらにアルカリシリケートを添加する。(3)前記のチタンのゲルに銅の酸化物または水酸化物、アルカノールアミン及び/又は第四級アンモニウムを添加し、水熱処理することでゾル化させた後にアルカリシリケートを添加する。(4)光触媒性酸化チタンのゾルに、予めアルカノールアミンで溶解させた銅の酸化物または水酸化物を添加した後、アルカリシリケートを添加する。   The following (1) to (4) may be mentioned as a preferred production method of the photocatalyst coating liquid according to the present invention. (1) Copper hydroxide and alkanolamine and / or quaternary ammonium are added to a photocatalytic titanium oxide sol and dissolved, and then alkali silicate is added. As the sol of the photocatalytic titanium oxide, a commercially available product, for example, a trade name “Tynoch” (manufactured by Taki Chemical Co., Ltd.) can be used, and as described in JP-B-2-62499, titanium chloride. It can be easily produced by adding an alkaline compound such as an alkali metal hydroxide or an ammonium compound to water-soluble titanium such as titanium sulfate to form a titanium gel and hydrothermally treating at 100 ° C. or higher. It can also be easily produced by wet grinding the titanium oxide powder. (2) An alkanolamine and / or quaternary ammonium is added to the titanium gel, and after hydrosolation, the oxide or hydroxide of copper is added and dissolved, and further an alkali silicate is added. Added. (3) Copper oxide or hydroxide, alkanolamine and / or quaternary ammonium are added to the titanium gel, and the mixture is hydrothermally treated to form a sol, and then alkali silicate is added. (4) A copper oxide or hydroxide previously dissolved with alkanolamine is added to the photocatalytic titanium oxide sol, and then an alkali silicate is added.

光触媒コーティング液におけるアルカリシリケートの含有量は本発明による効果が得られる範囲で特に限定されないが、光触媒コーティング液の乾燥重量に対するSiO換算で30質量%以上95質量%未満とされることが好ましく、より好ましくは50質量%以上90質量%未満、最も好ましくは60質量%以上80質量%未満である。 The content of alkali silicate in the photocatalyst coating liquid is not particularly limited as long as the effect of the present invention is obtained, but is preferably 30% by mass or more and less than 95% by mass in terms of SiO 2 with respect to the dry weight of the photocatalyst coating liquid, More preferably, it is 50 mass% or more and less than 90 mass%, Most preferably, it is 60 mass% or more and less than 80 mass%.

本発明の好ましい態様によれば、光触媒コーティング液において、アルカノールアミン/銅化合物(CuO)のモル比を0.5〜5.8の範囲に置くことが好ましい。アルカノールアミン/銅化合物(CuO)モル比が0.5以上であることにより、銅がイオンとして存在しやすくなる。また、モル比が5.8以下であることにより光触媒コーティング液の長期貯蔵性が増すとともに、より緻密な光触媒コーティング膜が得られやすくなる傾向があるからである。   According to a preferred embodiment of the present invention, in the photocatalyst coating liquid, it is preferable to place the alkanolamine / copper compound (CuO) molar ratio in the range of 0.5 to 5.8. When the alkanolamine / copper compound (CuO) molar ratio is 0.5 or more, copper tends to exist as ions. Moreover, when the molar ratio is 5.8 or less, the long-term storage property of the photocatalyst coating liquid is increased, and a denser photocatalyst coating film tends to be easily obtained.

本発明の好ましい態様によれば、光触媒コーティング液において、第四級アンモニウムを、光触媒性酸化チタン1モルに対して0.01〜0.1モルの範囲で含むことが好ましい。第四級アンモニウムは上記範囲の下限以上であれば酸化チタンゾルを安定化させることができる。一方上記範囲の上限を超えて添加しても、それ以上光触媒コーティング液の安定性向上効果は得られないので、あえて上限を超えて添加する必要性は薄い。   According to a preferred embodiment of the present invention, the photocatalyst coating liquid preferably contains quaternary ammonium in a range of 0.01 to 0.1 mol with respect to 1 mol of photocatalytic titanium oxide. Quaternary ammonium can stabilize the titanium oxide sol as long as it is at least the lower limit of the above range. On the other hand, even if the addition exceeds the upper limit of the above range, the effect of improving the stability of the photocatalyst coating liquid cannot be obtained any more, so there is little need to add beyond the upper limit.

本発明による光触媒コーティング液は、上記成分に加えて他の成分を含んでいてもよい。その添加により、付加機能を持たせることが可能となる。添加が可能な成分としては、光触媒コーティング組成物に着色するための顔料成分、塗膜に親水性能を付与するためのシリカ成分、光触媒コーティング組成物の保存安定性や作業性を良好に保つための増粘剤、消泡剤、分散剤等が挙げられる。   The photocatalyst coating liquid according to the present invention may contain other components in addition to the above components. By the addition, an additional function can be provided. The components that can be added include a pigment component for coloring the photocatalyst coating composition, a silica component for imparting hydrophilic performance to the coating film, and maintaining the storage stability and workability of the photocatalyst coating composition. A thickener, an antifoamer, a dispersing agent etc. are mentioned.

本発明の一つの態様によれば、光触媒コーティング液はアルカリ性である。アルカリ性とされることで、光触媒コーティング液はより安定となる。特に長期にわたり安定性を維持するためにはpHは7.5〜10であることが好ましい。   According to one embodiment of the present invention, the photocatalytic coating liquid is alkaline. By making it alkaline, the photocatalyst coating liquid becomes more stable. In particular, in order to maintain stability over a long period of time, the pH is preferably 7.5 to 10.

また、本発明の一つの態様によれば、光触媒コーティング液中の光触媒性酸化チタンの濃度は、TiOとして0.01〜1質量%であることが好ましく、より好ましくは0.05〜0.5質量%である。 Moreover, according to one aspect of the present invention, the concentration of the photocatalytic titanium oxide in the photocatalytic coating liquid is preferably 0.01 to 1% by mass as TiO 2 , more preferably 0.05 to 0.00%. 5% by mass.

また、本発明による光触媒コーティング液は、水を溶媒したものであってよいが、別の態様によれば、水と有機溶媒(例えば、エタノール)との混合溶媒であってもよい。   In addition, the photocatalyst coating liquid according to the present invention may be a solvent of water, but according to another aspect, a mixed solvent of water and an organic solvent (for example, ethanol) may be used.

本発明による光触媒コーティング液の固形分濃度は特に限定されないが、0.01〜10質量%、より好ましくは0.1〜5質量%とするのが塗布し易さにおいて好ましい。なお、光触媒コーティング液中の構成成分の分析は、光触媒コーティング液を限外ろ過によって粒子成分と濾液に分離し、それぞれを赤外分光分析、ゲルパーミエーションクロマトグラフィー、蛍光X線分光分析などで分析し、スペクトルを解析することによって評価することができる。   Although the solid content concentration of the photocatalyst coating liquid according to the present invention is not particularly limited, it is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass in terms of ease of application. The components in the photocatalyst coating liquid are analyzed by separating the photocatalyst coating liquid into particle components and a filtrate by ultrafiltration, and analyzing each by infrared spectroscopic analysis, gel permeation chromatography, fluorescent X-ray spectroscopic analysis, etc. It can be evaluated by analyzing the spectrum.

光触媒コーティング液の用途
本発明による光触媒コーティング液は、基材に適用して、その後焼成して光触媒層を形成し、光触媒機能を有する無機材料の製造に用いられる。
Use of Photocatalyst Coating Liquid The photocatalyst coating liquid according to the present invention is applied to a substrate and then baked to form a photocatalyst layer, which is used for producing an inorganic material having a photocatalytic function.

本発明において、基材は無機材料からなるものが好ましい。その例としては、タイル、大型陶磁器パネル等の陶磁器、天然石、琺瑯、セラミック、ガラス、およびコンクリートからなる群から選ばれる1種が好適に利用できる。陶磁器基材としては、陶器質基材、せっ器質基材、磁器質基材のいずれでもよく、また、施釉品でも無釉品でも利用できる。また、形状等も特に限定されるものではなく、建材、インテリア、エクステリア、窓、便器、洗面器、流し台、システムキッチン、墓石、橋桁、橋梁、碍子、陶磁器プラグ等に好適に利用できる。   In the present invention, the substrate is preferably made of an inorganic material. As an example, one kind selected from the group consisting of ceramics such as tiles, large ceramic panels, natural stones, glazing, ceramics, glass, and concrete can be suitably used. As the ceramic base material, any of a ceramic base material, a stone base material, and a porcelain base material may be used. Also, the shape and the like are not particularly limited, and can be suitably used for building materials, interiors, exteriors, windows, toilets, washbasins, sinks, system kitchens, tombstones, bridge girders, bridges, insulators, ceramic plugs, and the like.

本発明による光触媒コーティング液によって得られた光触媒性機能材料は水と接触する環境において用いられる。本発明において、「水と接触する環境」とは、常にまたは時々水がかかるまたは水と接触する状態を意味する。従って、得られた光触媒性機能材料は、例えば、水と接触する環境にある物として、流水が常にかかる場所、時折雨に曝される場所、水がしばしばかかる場所、水がかけられてまたは水を含んだ物により清掃される場所などにおいて用いられる、抗菌性が求められる物品、構造物として用いられる。水との接触によって、光触媒性機能材料の光触媒層から銅が溶出して、抗菌活性が発揮される。なお、水が接触しない場合または時間の間は、光触媒効果による抗菌性能が主に発揮される。   The photocatalytic functional material obtained by the photocatalyst coating liquid according to the present invention is used in an environment in contact with water. In the present invention, the “environment in contact with water” means a state in which water is constantly or sometimes in contact with water. Therefore, the obtained photocatalytic functional material is, for example, in an environment where it comes into contact with water, where it is constantly exposed to running water, where it is exposed to occasional rain, where it is often exposed to water, It is used as an article or structure that requires antibacterial properties and is used in a place where it is cleaned with an object containing selenium. By contact with water, copper is eluted from the photocatalytic layer of the photocatalytic functional material, and antibacterial activity is exhibited. In addition, when water does not contact or during time, the antibacterial performance by a photocatalytic effect is mainly exhibited.

本発明において、無機材料基材上には、上記光触媒コーティング液を適用後焼成することで光触媒層が形成される。ここで光触媒層は、基材表面に光触媒粒子が存在すれば、完全な膜状に加え、例えば部分的に膜状になっている状態も包含する。また、基材表面上に島状に離散して存在していても良い。   In the present invention, a photocatalyst layer is formed on the inorganic material substrate by firing after applying the photocatalyst coating liquid. Here, if the photocatalyst particles are present on the surface of the base material, the photocatalyst layer includes not only a complete film shape but also a partially filmed state, for example. Moreover, it may exist discretely in the shape of islands on the substrate surface.

本発明による光触媒コーティング液は、焼成により基材に望まれる強度をもって密着する。これにより光触媒層は耐摩耗性を有するものとなる。焼成は光触媒層と無機材料基材との界面に充分に熱が行きわたる方法であればいずれの方法も利用可能である。すなわち、光触媒層を備えた無機材料全体を加熱しても、光触媒層が形成された無機材料基材表面を部分的に加熱してもよい。   The photocatalyst coating liquid according to the present invention adheres to the substrate with the desired strength by firing. As a result, the photocatalyst layer has wear resistance. Any method can be used for firing as long as heat is sufficiently transmitted to the interface between the photocatalyst layer and the inorganic material substrate. That is, even if the whole inorganic material provided with the photocatalyst layer is heated, the surface of the inorganic material substrate on which the photocatalyst layer is formed may be partially heated.

本発明において、形成される光触媒層の膜厚は0.05μm以上1μm以下であるのが好ましい。それにより無機材料基材の有する意匠、質感を維持しつつ、充分な耐摩耗性を維持しつつ優れた光触媒抗菌機能を発揮できる。   In the present invention, the film thickness of the formed photocatalyst layer is preferably 0.05 μm or more and 1 μm or less. Thereby, an excellent photocatalytic antibacterial function can be exhibited while maintaining sufficient wear resistance while maintaining the design and texture of the inorganic material substrate.

本発明における光触媒コーティング液の基材への適用方法は、刷毛塗り、ローラー、スプレー、ロールコーター、フローコーター、ディップコート、流し塗り、スクリーン印刷等、一般に広く行われている方法を利用できる。   As a method for applying the photocatalyst coating liquid to the substrate in the present invention, generally used methods such as brush coating, roller, spray, roll coater, flow coater, dip coating, flow coating, and screen printing can be used.

光触媒コーティング液の基材への適用後の焼成は、その適用面の温度が300℃以上800℃未満、好ましくは300℃以上600℃以下となるように行われることが好ましい。ここで、光触媒コーティング液を適用した表面の温度を上記温度とする方法としては、電気炉、ガス炉による加熱が挙げられ、徐々に昇温して上記温度に達するようにしてよい。また、高エネルギーを1秒〜1分程度の短時間に基材表面に照射して、表面付近のみ、より好ましくは無機材料表面から無機材料基材と光触媒層との界面にかけて上記温度に加熱してもよい。この手法は、基材の耐熱性が比較的低い無機材料基材、例えば、天然石、コンクリートなどの場合に好ましく適用できる。   Firing after application of the photocatalyst coating liquid to the substrate is preferably performed such that the temperature of the application surface is 300 ° C. or higher and lower than 800 ° C., preferably 300 ° C. or higher and 600 ° C. or lower. Here, as a method of setting the temperature of the surface to which the photocatalyst coating liquid is applied to the above temperature, heating by an electric furnace or a gas furnace may be mentioned, and the temperature may be gradually raised to reach the above temperature. In addition, the substrate surface is irradiated with high energy in a short time of about 1 second to 1 minute and heated to the above temperature only near the surface, more preferably from the surface of the inorganic material to the interface between the inorganic material substrate and the photocatalyst layer. May be. This technique can be preferably applied to an inorganic material substrate whose heat resistance of the substrate is relatively low, such as natural stone or concrete.

本発明の一つの態様によれば、光触媒コーティング液の基材への適用の前に、基材表面を予備加熱してもよい。予備加熱は、基材の表面を20℃〜200℃に加熱することにより行われる。加熱された基材表面に塗布された光触媒コーティングは、均一に広がり、むらのない塗膜が得られるので有利である。   According to one embodiment of the present invention, the surface of the substrate may be preheated before application of the photocatalytic coating liquid to the substrate. Preheating is performed by heating the surface of the substrate to 20 ° C to 200 ° C. The photocatalytic coating applied to the heated substrate surface is advantageous because it provides a uniform coating and a uniform coating.

以下に本発明の実施例を掲げて更に説明する。尚、特に断らない限り%は全て質量%を示す。   Hereinafter, the present invention will be further described by way of examples. In addition, unless otherwise indicated, all% shows the mass%.

(銅入りアナターゼ型酸化チタンゾルの調製例1)
四塩化チタン水溶液(TiO2=0.5%)にアンモニア水(NH3=3.0%)を攪拌下で添加し、チタンゲルを生成させた。これをろ液中の塩素イオンがチタンゲル(TiO2)に対して100ppm以下になるまでろ過水洗し、TiO2=6.2%のチタンゲルからなるスラリーを得た。このスラリー200gにSiO2及び銅がCuO換算で酸化チタン(TiO2)に対して質量比でそれぞれ0.05となるようにコロイダルシリカと水酸化銅を添加した。さらに、酸化チタン(TiO2)1モルに対して0.03モルとなる水酸化テトラメチルアンモニウム25%水溶液を添加してよく攪拌した後、これをオートクレーブに入れ、130℃で10時間の水熱処理を行い、銅を含有する酸化チタンゾル(TiO2=6. 1%、SiO2=0.33%、銅のCuO換算量=0.33%、水酸化テトラメチルアンモニウム=0.2%)を得た。このゾルを100℃で乾燥させて得られる粉を粉末X線回折法により測定したところ、アナターゼ型の酸化チタンのピークが認められた。
(Preparation example 1 of copper-containing anatase-type titanium oxide sol)
Ammonia water (NH 3 = 3.0%) was added to a titanium tetrachloride aqueous solution (TiO 2 = 0.5%) with stirring to form a titanium gel. This was washed with filtered water until the chlorine ions in the filtrate were 100 ppm or less with respect to the titanium gel (TiO 2 ) to obtain a slurry made of titanium gel with TiO 2 = 6.2%. Colloidal silica and copper hydroxide were added to 200 g of this slurry so that SiO 2 and copper were each 0.05 by mass ratio with respect to titanium oxide (TiO 2 ) in terms of CuO. Furthermore, after adding a 25% aqueous solution of tetramethylammonium hydroxide at 0.03 mol to 1 mol of titanium oxide (TiO 2 ) and stirring well, this was placed in an autoclave and hydrothermally treated at 130 ° C. for 10 hours. Thus, a titanium oxide sol containing copper (TiO 2 = 6.1%, SiO2 = 0.3%, CuCuO equivalent amount = 0.33%, tetramethylammonium hydroxide = 0.2%) was obtained. When the powder obtained by drying this sol at 100 ° C. was measured by a powder X-ray diffraction method, a peak of anatase-type titanium oxide was observed.

(銅入りアナターゼ型酸化チタンゾルの調製例2)
四塩化チタン水溶液(TiO2=0.5%)にアンモニア水(NH3=3.0%)を攪拌下で添加し、チタンゲルを生成させた。これをろ液中の塩素イオンがチタンゲル(TiO2)に対して100ppm以下になるまでろ過水洗し、TiO2=6.2%のチタンゲルからなるスラリーを得た。このスラリー200gにSiO2が酸化チタン(TiO2)に対して質量比で0.05、銅がCuO換算で酸化チタン(TiO2)に対して質量比で0.075となるようにコロイダルシリカと水酸化銅を添加した。さらに、酸化チタン(TiO2)1モルに対して0.03モルとなる水酸化テトラメチルアンモニウム25%水溶液を添加してよく攪拌した後、これをオートクレーブに入れ、130℃で10時間の水熱処理を行い、銅を含有する酸化チタンゾル(TiO2=6. 2%、SiO2=0.33%、銅のCuO換算量=0.47%、水酸化テトラメチルアンモニウム=0.2%)を得た。このゾルを100℃で乾燥させて得られる粉を粉末X線回折法により測定したところ、アナターゼ型の酸化チタンのピークが認められた。
(Preparation example 2 of copper-containing anatase-type titanium oxide sol)
Ammonia water (NH 3 = 3.0%) was added to a titanium tetrachloride aqueous solution (TiO 2 = 0.5%) with stirring to form a titanium gel. This was washed with filtered water until the chlorine ions in the filtrate were 100 ppm or less with respect to the titanium gel (TiO 2 ) to obtain a slurry made of titanium gel with TiO 2 = 6.2%. Colloidal silica and copper hydroxide were added to 200 g of this slurry so that SiO 2 was 0.05 by mass ratio with respect to titanium oxide (TiO 2 ) and copper was 0.075 by mass ratio with respect to titanium oxide (TiO 2 ) in terms of CuO. Added. Furthermore, after adding a 25% aqueous solution of tetramethylammonium hydroxide at 0.03 mol to 1 mol of titanium oxide (TiO 2 ) and stirring well, this was placed in an autoclave and hydrothermally treated at 130 ° C. for 10 hours. Then, a titanium oxide sol containing copper (TiO 2 = 6.2%, SiO 2 = 0.33%, CuO equivalent amount of copper = 0.47%, tetramethylammonium hydroxide = 0.2%) was obtained. When the powder obtained by drying this sol at 100 ° C. was measured by a powder X-ray diffraction method, a peak of anatase-type titanium oxide was observed.

(銅入りアナターゼ型酸化チタンゾルの調製例3)
四塩化チタン水溶液(TiO2=0.5%)にアンモニア水(NH3=3.0%)を攪拌下で添加し、チタンゲルを生成させた。これをろ液中の塩素イオンがチタンゲル(TiO2)に対して100ppm以下になるまでろ過水洗し、TiO2=6.2%のチタンゲルからなるスラリーを得た。このスラリー200gに銀及び銅がAg2O+CuO換算で酸化チタン(TiO2)に対して5%、銀に対する銅の割合がCuO/Ag2O(質量比)で5となるように酸化銀(Ag2O)0.1 gと水酸化銅(Cu(OH)2) 0.75gを添加した。さらに、酸化チタン(TiO2)1モルに対して0.03モルとなる水酸化テトラメチルアンモニウム25%水溶液1.7gを添加してよく攪拌した後、これをオートクレーブに入れ、130℃で10時間の水熱処理を行い、銅を含有する酸化チタンゾル(TiO2=6.10%、銀のAg2O換算量=0.05%、銅のCuO換算量=0.31%、水酸化テトラメチルアンモニウム=0.2%)を得た。このゾルを100℃で乾燥させて得られる粉を粉末X線回折法により測定したところ、アナターゼ型の酸化チタンのピークが認められた。
(Preparation example 3 of copper-containing anatase-type titanium oxide sol)
Ammonia water (NH 3 = 3.0%) was added to a titanium tetrachloride aqueous solution (TiO 2 = 0.5%) with stirring to form a titanium gel. This was washed with filtered water until the chlorine ions in the filtrate were 100 ppm or less with respect to the titanium gel (TiO 2 ) to obtain a slurry made of titanium gel with TiO 2 = 6.2%. In 200 g of this slurry, silver oxide (Ag) so that silver and copper are 5% in terms of Ag 2 O + CuO with respect to titanium oxide (TiO 2 ) and the ratio of copper to silver is 5 in CuO / Ag 2 O (mass ratio). 2 O) 0.1 g and copper hydroxide (Cu (OH) 2 ) 0.75 g were added. Furthermore, after adding 1.7 g of 25% aqueous solution of tetramethylammonium hydroxide to 0.03 mol per 1 mol of titanium oxide (TiO 2 ) and stirring well, this was placed in an autoclave and hydrothermally treated at 130 ° C. for 10 hours. Then, a titanium oxide sol containing TiO 2 (TiO 2 = 6.10%, silver Ag 2 O equivalent = 0.05%, copper CuO equivalent = 0.31%, tetramethylammonium hydroxide = 0.2%) was obtained. When the powder obtained by drying this sol at 100 ° C. was measured by a powder X-ray diffraction method, a peak of anatase-type titanium oxide was observed.

(銅入りアナターゼ型酸化チタンゾルの調製例4)
四塩化チタン水溶液(TiO2=0.5%)にアンモニア水(NH3=3.0%)を攪拌下で添加し、チタンゲルを生成させた。これをろ液中の塩素イオンがチタンゲル(TiO2)に対して100ppm以下になるまでろ過水洗し、TiO2=6.2%のチタンゲルからなるスラリーを得た。このスラリーをオートクレーブに入れ、130℃で10時間の水熱処理を行い、酸化チタンゾル(TiO2=6.2%)を得た。このゾル200gに対し、モノエタノールアミン32gと純水49gと水酸化銅19gを混合し溶解させた溶液4gと水酸化テトラメチルアンモニウム25%水溶液1.7gを添加することで、銅を含有する酸化チタンゾル(TiO2=6.1%、銅のCuO換算量=0.32%、水酸化テトラメチルアンモニウム=0.21%、モノエタノールアミン=0.47%)を得た。このゾルを100℃で乾燥させて得られる粉を粉末X線回折法により測定したところ、アナターゼ型の酸化チタンのピークが認められた。
(Preparation example 4 of copper-containing anatase-type titanium oxide sol)
Ammonia water (NH 3 = 3.0%) was added to a titanium tetrachloride aqueous solution (TiO 2 = 0.5%) with stirring to form a titanium gel. This was washed with filtered water until the chlorine ions in the filtrate were 100 ppm or less with respect to the titanium gel (TiO 2 ) to obtain a slurry made of titanium gel with TiO 2 = 6.2%. This slurry was put in an autoclave and hydrothermally treated at 130 ° C. for 10 hours to obtain a titanium oxide sol (TiO 2 = 6.2%). By adding 4 g of a solution obtained by mixing and dissolving 32 g of monoethanolamine, 49 g of pure water and 19 g of copper hydroxide, and 1.7 g of a 25% aqueous solution of tetramethylammonium hydroxide to 200 g of this sol, the titanium oxide sol containing copper (TiO 2 = 6.1%, copper CuO equivalent = 0.32%, tetramethylammonium hydroxide = 0.21%, monoethanolamine = 0.47%). When the powder obtained by drying this sol at 100 ° C. was measured by a powder X-ray diffraction method, a peak of anatase-type titanium oxide was observed.

(銅入りアナターゼ型酸化チタンゾルの調製例5)
四塩化チタン水溶液(TiO2=0.5%)にアンモニア水(NH3=3.0%)を攪拌下で添加し、チタンゲルを生成させた。これをろ液中の塩素イオンがチタンゲル(TiO2)に対して100ppm以下になるまでろ過水洗し、TiO2=6.2%のチタンゲルからなるスラリーを得た。このスラリーをオートクレーブに入れ、130℃で10時間の水熱処理を行い、酸化チタンゾル(TiO2=6.2%)を得た。この酸化チタンゾルに酸化チタン(TiO2)1モルに対して0.1モルとなるモノイソプロパノールアミンと、銅がCuO換算で酸化チタン(TiO2)に対して質量比で0.05となるように水酸化銅を添加し、撹拌することで銅を含有する酸化チタンゾル(TiO2=6.1%、銅のCuO換算量=0.33%、モノイソプロパノールアミン=0.57%)を得た。このゾルを100℃で乾燥させて得られる粉を粉末X線回折法により測定したところ、アナターゼ型の酸化チタンのピークが認められた。
(Preparation example 5 of copper-containing anatase-type titanium oxide sol)
Ammonia water (NH 3 = 3.0%) was added to a titanium tetrachloride aqueous solution (TiO 2 = 0.5%) with stirring to form a titanium gel. This was washed with filtered water until the chlorine ions in the filtrate were 100 ppm or less with respect to the titanium gel (TiO 2 ) to obtain a slurry made of titanium gel with TiO 2 = 6.2%. This slurry was put in an autoclave and hydrothermally treated at 130 ° C. for 10 hours to obtain a titanium oxide sol (TiO 2 = 6.2%). And monoisopropanolamine this titanium oxide sol of titanium oxide (TiO 2) of 0.1 moles per mole of copper hydroxide so copper of 0.05 at a mass ratio relative to titanium oxide in terms of CuO (TiO 2) By adding and stirring, a titanium oxide sol containing copper (TiO 2 = 6.1%, copper CuO equivalent = 0.33%, monoisopropanolamine = 0.57%) was obtained. When the powder obtained by drying this sol at 100 ° C. was measured by a powder X-ray diffraction method, a peak of anatase-type titanium oxide was observed.

(銅入りアナターゼ型酸化チタンゾルの調製例6)
四塩化チタン水溶液(TiO2=0.5%)にアンモニア水(NH3=3.0%)を攪拌下で添加し、チタンゲルを生成させた。これをろ液中の塩素イオンがチタンゲル(TiO2)に対して100ppm以下になるまでろ過水洗し、TiO2=6.2%のチタンゲルからなるスラリーを得た。このスラリーをオートクレーブに入れ、130℃で10時間の水熱処理を行い、酸化チタンゾル(TiO2=6.2%)を得た。この酸化チタンゾルに酸化チタン(TiO2)1モルに対して0.1モルとなるトリイソプロパノールアミンと、銅がCuO換算で酸化チタン(TiO2)に対して質量比で0.05となるように水酸化銅を添加し、攪拌することで銅を含有する酸化チタンゾル(TiO2=6. 1%、銅のCuO換算量=0.33%、トリイソプロパノールアミン=1.46%)を得た。このゾルを100℃で乾燥させて得られる粉を粉末X線回折法により測定したところ、アナターゼ型の酸化チタンのピークが認められた。
(Preparation example 6 of copper-containing anatase-type titanium oxide sol)
Ammonia water (NH 3 = 3.0%) was added to a titanium tetrachloride aqueous solution (TiO 2 = 0.5%) with stirring to form a titanium gel. This was washed with filtered water until the chlorine ions in the filtrate were 100 ppm or less with respect to the titanium gel (TiO 2 ) to obtain a slurry made of titanium gel with TiO 2 = 6.2%. This slurry was put in an autoclave and hydrothermally treated at 130 ° C. for 10 hours to obtain a titanium oxide sol (TiO 2 = 6.2%). And triisopropanolamine as the oxide sol of titanium oxide (TiO 2) 0.1 mol based on 1 mol of copper hydroxide so copper of 0.05 at a mass ratio relative to titanium oxide in terms of CuO (TiO 2) By adding and stirring, a titanium oxide sol containing copper (TiO 2 = 6.1%, copper CuO equivalent = 0.3%, triisopropanolamine = 1.46%) was obtained. When the powder obtained by drying this sol at 100 ° C. was measured by a powder X-ray diffraction method, a peak of anatase-type titanium oxide was observed.

(銅入りアナターゼ型酸化チタンゾルの調製例7)
四塩化チタン水溶液(TiO2=0.5%)にアンモニア水(NH3=3.0%)を攪拌下で添加し、チタンゲルを生成させた。これをろ液中の塩素イオンがチタンゲル(TiO2)に対して100ppm以下になるまでろ過水洗し、TiO2=6.2%のチタンゲルからなるスラリーを得た。このスラリー200gに酸化チタン(TiO2)1モルに対して0.1モルとなるジイソプロパノールアミンを添加してよく攪拌した後、これをオートクレーブに入れ、110℃で15時間の水熱処理を行い、酸化チタンゾル(TiO2=6.1%、ジイソプロパノールアミン=1.0%)を得た。このゾル200gに対し、銅がCuO換算で酸化チタン(TiO2)に対して質量比で0.05となるように水酸化銅を添加することで、銅を含有する酸化チタンゾル(TiO2=6.1%、銅のCuO換算量=0.32%、ジイソプロパノールアミン=1.02%)を得た。このゾルを100℃で乾燥させて得られる粉を粉末X線回折法により測定したところ、アナターゼ型の酸化チタンのピークが認められた。
(Preparation example 7 of copper-containing anatase-type titanium oxide sol)
Ammonia water (NH 3 = 3.0%) was added to a titanium tetrachloride aqueous solution (TiO 2 = 0.5%) with stirring to form a titanium gel. This was washed with filtered water until the chlorine ions in the filtrate were 100 ppm or less with respect to the titanium gel (TiO 2 ) to obtain a slurry made of titanium gel with TiO 2 = 6.2%. After adding 200 mol of this slurry and adding 0.1 mol of diisopropanolamine to 1 mol of titanium oxide (TiO 2 ), this was put in an autoclave and hydrothermally treated at 110 ° C. for 15 hours to produce a titanium oxide sol (TiO 2 = 6.1%, diisopropanolamine = 1.0%) was obtained. By adding copper hydroxide so that copper is 0.05 by mass ratio with respect to titanium oxide (TiO 2 ) in terms of CuO with respect to 200 g of this sol, titanium oxide sol containing copper (TiO 2 = 6.1%, CuO equivalent amount of copper = 0.32%, diisopropanolamine = 1.02%). When the powder obtained by drying this sol at 100 ° C. was measured by a powder X-ray diffraction method, a peak of anatase-type titanium oxide was observed.

(銅入りアナターゼ型酸化チタンゾルの調製例8)
四塩化チタン水溶液(TiO2=0.5%)にアンモニア水(NH3=3.0%)を攪拌下で添加し、チタンゲルを生成させた。これをろ液中の塩素イオンがチタンゲル(TiO2)に対して100ppm以下になるまでろ過水洗し、TiO2=5.3%のチタンゲルからなるスラリーを得た。このスラリー200gに酸化チタン(TiO2)1モルに対して0.04モルとなるトリイソプロパノールアミンを添加してよく攪拌した後、これをオートクレーブに入れ、110℃で15時間の水熱処理を行い、酸化チタンゾル(TiO2=5.2%、トリイソプロパノールアミン=0.50%)を得た。このゾル200gに酸化チタン(TiO2)1モルに対して0.07モルとなるモノイソプロパノールアミンを添加してよく攪拌した後、銅がCuO換算で酸化チタン(TiO2)に対して質量比で0.05となるように水酸化銅を添加することで、銅を含有する酸化チタンゾル(TiO2=5.2%、銅のCuO換算量=0.26%、トリイソプロパノールアミン=0.50%、モノイソプロパノールアミン=0.34%)を得た。このゾルを100℃で乾燥させて得られる粉を粉末X線回折法により測定したところ、アナターゼ型の酸化チタンのピークが認められた。
(Preparation example 8 of copper-containing anatase-type titanium oxide sol)
Ammonia water (NH 3 = 3.0%) was added to a titanium tetrachloride aqueous solution (TiO 2 = 0.5%) with stirring to form a titanium gel. This was washed with filtered water until the chlorine ions in the filtrate became 100 ppm or less with respect to the titanium gel (TiO 2 ) to obtain a slurry made of titanium gel with TiO 2 = 5.3%. After adding 0.04 mol of triisopropanolamine to 1 mol of titanium oxide (TiO 2 ) to 200 g of this slurry and stirring well, this was placed in an autoclave and subjected to hydrothermal treatment at 110 ° C. for 15 hours to produce a titanium oxide sol (TiO 2 = 5.2%, triisopropanolamine = 0.50%) was obtained. After adding monoisopropanolamine which becomes 0.07 mol with respect to 1 mol of titanium oxide (TiO 2 ) to 200 g of this sol and stirring well, copper is 0.05 by mass ratio with respect to titanium oxide (TiO 2 ) in terms of CuO. By adding copper hydroxide, the titanium oxide sol containing copper (TiO 2 = 5.2%, CuOO equivalent amount of copper = 0.26%, triisopropanolamine = 0.50%, monoisopropanolamine = 0.34%) is obtained. It was. When the powder obtained by drying this sol at 100 ° C. was measured by a powder X-ray diffraction method, a peak of anatase-type titanium oxide was observed.

(銅入りアナターゼ型酸化チタンゾルの調製例9)
四塩化チタン水溶液(TiO2=0.5%)にアンモニア水(NH3=3.0%)を攪拌下で添加し、チタンゲルを生成させた。これをろ液中の塩素イオンがチタンゲル(TiO2)に対して100ppm以下になるまでろ過水洗し、TiO2=5.3%のチタンゲルからなるスラリーを得た。このスラリー200gに酸化チタン(TiO2)1モルに対して0.05モルとなるトリイソプロパノールアミンと酸化チタン(TiO2)1モルに対して0.04モルとなる水酸化カリウムを添加してよく攪拌した後、これをオートクレーブに入れ、110℃で15時間の水熱処理を行い、酸化チタンゾル(TiO2=5.2%、トリイソプロパノールアミン=0.62%、K2O換算量=0.12%)を得た。このゾル200gに対し、銅がCuO換算で酸化チタン(TiO2)に対して質量比で0.05となるように水酸化銅を添加することで、銅を含有する酸化チタンゾル(TiO2=5.2%、銅のCuO換算量=0.26%、トリイソプロパノールアミン=0.62%、K2O=0.12%)を得た。このゾルを100℃で乾燥させて得られる粉を粉末X線回折法により測定したところ、アナターゼ型の酸化チタンのピークが認められた。
(Preparation example 9 of copper-containing anatase-type titanium oxide sol)
Ammonia water (NH 3 = 3.0%) was added to a titanium tetrachloride aqueous solution (TiO 2 = 0.5%) with stirring to form a titanium gel. This was washed with filtered water until the chlorine ions in the filtrate became 100 ppm or less with respect to the titanium gel (TiO 2 ) to obtain a slurry made of titanium gel with TiO 2 = 5.3%. After thorough stirring by addition of potassium hydroxide to be 0.04 mol with respect to the slurry 200g of titanium oxide (TiO 2) triisopropanolamine and titanium oxide of 0.05 mol relative to 1 mol of (TiO 2) 1 mol, This was put into an autoclave and hydrothermally treated at 110 ° C. for 15 hours to obtain a titanium oxide sol (TiO 2 = 5.2%, triisopropanolamine = 0.62%, K 2 O equivalent = 0.12%). By adding copper hydroxide so that the mass ratio of copper is 0.05 with respect to titanium oxide (TiO 2 ) in terms of CuO with respect to 200 g of this sol, titanium oxide sol containing copper (TiO 2 = 5.2%, CuO equivalent amount of copper = 0.26%, triisopropanolamine = 0.62%, K 2 O = 0.12%). When the powder obtained by drying this sol at 100 ° C. was measured by a powder X-ray diffraction method, a peak of anatase-type titanium oxide was observed.

(銅入りアナターゼ型酸化チタンゾルの調製10)
四塩化チタン水溶液(TiO2=0.5%)にアンモニア水(NH3=3.0%)を攪拌下で添加し、チタンゲルを生成させた。これをろ液中の塩素イオンがチタンゲル(TiO2)に対して100ppm以下になるまでろ過水洗し、TiO2=5.3%のチタンゲルからなるスラリーを得た。このスラリー200gに酸化チタン(TiO2)1モルに対して0.04モルとなるトリイソプロパノールアミンと酸化チタン(TiO2)1モルに対して0.04モルとなる水酸化カリウムを添加してよく攪拌した後、これをオートクレーブに入れ、110℃で15時間の水熱処理を行い、酸化チタンゾル(TiO2=5.2%、トリイソプロパノールアミン=0.50%、K2O換算量=0.12%)を得た。このゾル200gに酸化チタン(TiO2)1モルに対して0.05モルとなるモノイソプロパノールアミンを添加してよく攪拌した後、銅がCuO換算で酸化チタン(TiO2)に対して質量比で0.05となるように水酸化銅を添加することで、銅を含有する酸化チタンゾル(TiO2=5.2%、銅のCuO換算量=0.26%、トリイソプロパノールアミン=0.50%、モノイソプロパノールアミン=0.24%、K2O換算量=0.12%)を得た。このゾルを100℃で乾燥させて得られる粉を粉末X線回折法により測定したところ、アナターゼ型の酸化チタンのピークが認められた。
(Preparation of copper-containing anatase-type titanium oxide sol 10)
Ammonia water (NH 3 = 3.0%) was added to a titanium tetrachloride aqueous solution (TiO 2 = 0.5%) with stirring to form a titanium gel. This was washed with filtered water until the chlorine ions in the filtrate became 100 ppm or less with respect to the titanium gel (TiO 2 ) to obtain a slurry made of titanium gel with TiO 2 = 5.3%. After thorough stirring by addition of potassium hydroxide to be 0.04 mol with respect to the slurry 200g of titanium oxide (TiO 2) triisopropanolamine and the titanium oxide 0.04 moles per mole of (TiO 2) 1 mol, This was put into an autoclave and hydrothermally treated at 110 ° C. for 15 hours to obtain a titanium oxide sol (TiO 2 = 5.2%, triisopropanolamine = 0.50%, K 2 O equivalent = 0.12%). After adding monoisopropanolamine which becomes 0.05 mol with respect to 1 mol of titanium oxide (TiO 2 ) to 200 g of this sol and stirring well, copper is 0.05 by mass ratio with respect to titanium oxide (TiO 2 ) in terms of CuO. By adding copper hydroxide, the titanium oxide sol containing copper (TiO 2 = 5.2%, CuOO equivalent amount of copper = 0.26%, triisopropanolamine = 0.50%, monoisopropanolamine = 0.24%, K 2 O conversion amount = 0.12%) was obtained. When the powder obtained by drying this sol at 100 ° C. was measured by a powder X-ray diffraction method, a peak of anatase-type titanium oxide was observed.

(銅入りアナターゼ型酸化チタンゾルの調製例11)
四塩化チタン水溶液(TiO2=0.5%)にアンモニア水(NH3=3.0%)を攪拌下で添加し、チタンゲルを生成させた。これをろ液中の塩素イオンがチタンゲル(TiO2)に対して100ppm以下になるまでろ過水洗し、TiO2=5.3%のチタンゲルからなるスラリーを得た。このスラリー200gに酸化チタン(TiO2)1モルに対して0.04モルとなるトリイソプロパノールアミンと酸化チタン(TiO2)1モルに対して0.04モルとなる水酸化カリウムを添加してよく攪拌した後、これをオートクレーブに入れ、110℃で15時間の水熱処理を行い、酸化チタンゾル(TiO2=5.2%、トリイソプロパノールアミン=0.50%、K2O換算量=0.12%)を得た。このゾル200gに酸化チタン(TiO2)1モルに対して0.07モルとなるモノイソプロパノールアミンを添加してよく攪拌した後、銅がCuO換算で酸化チタン(TiO2)に対して質量比で0.05となるように水酸化銅を添加することで、銅を含有する酸化チタンゾル(TiO2=5.2%、銅のCuO換算量=0.32%、トリイソプロパノールアミン=0.50%、モノイソプロパノールアミン=0.26%、K2O換算量=0.12%)を得た。このゾルを100℃で乾燥させて得られる粉を粉末X線回折法により測定したところ、アナターゼ型の酸化チタンのピークが認められた。
(Preparation example 11 of copper-containing anatase-type titanium oxide sol)
Ammonia water (NH 3 = 3.0%) was added to a titanium tetrachloride aqueous solution (TiO 2 = 0.5%) with stirring to form a titanium gel. This was washed with filtered water until the chlorine ions in the filtrate became 100 ppm or less with respect to the titanium gel (TiO 2 ) to obtain a slurry made of titanium gel with TiO 2 = 5.3%. After thorough stirring by addition of potassium hydroxide to be 0.04 mol with respect to the slurry 200g of titanium oxide (TiO 2) triisopropanolamine and the titanium oxide 0.04 moles per mole of (TiO 2) 1 mol, This was put into an autoclave and hydrothermally treated at 110 ° C. for 15 hours to obtain a titanium oxide sol (TiO 2 = 5.2%, triisopropanolamine = 0.50%, K 2 O equivalent = 0.12%). After adding monoisopropanolamine which becomes 0.07 mol with respect to 1 mol of titanium oxide (TiO 2 ) to 200 g of this sol and stirring well, copper is 0.05 by mass ratio with respect to titanium oxide (TiO 2 ) in terms of CuO. By adding copper hydroxide so that the titanium oxide sol containing copper (TiO 2 = 5.2%, CuOO equivalent amount of copper = 0.32%, triisopropanolamine = 0.50%, monoisopropanolamine = 0.26%, K 2 O conversion amount = 0.12%) was obtained. When the powder obtained by drying this sol at 100 ° C. was measured by a powder X-ray diffraction method, a peak of anatase-type titanium oxide was observed.

(銅入りアナターゼ型酸化チタンゾルの調製例12)
四塩化チタン水溶液(TiO2=0.5%)にアンモニア水(NH3=3.0%)を攪拌下で添加し、チタンゲルを生成させた。これをろ液中の塩素イオンがチタンゲル(TiO2)に対して100ppm以下になるまでろ過水洗し、TiO2=5.3%のチタンゲルからなるスラリーを得た。このスラリー200gに酸化チタン(TiO2)1モルに対して0.04モルとなるトリイソプロパノールアミンと酸化チタン(TiO2)1モルに対して0.04モルとなる水酸化カリウムを添加してよく攪拌した後、これをオートクレーブに入れ、110℃で15時間の水熱処理を行い、酸化チタンゾル(TiO2=5.2%、トリイソプロパノールアミン=0.50%、K2O換算量=0.12%)を得た。このゾル200gに酸化チタン(TiO2)1モルに対して0.1モルとなるモノイソプロパノールアミンを添加してよく攪拌した後、銅がCuO換算で酸化チタン(TiO2)に対して質量比で0.05となるように水酸化銅を添加することで、銅を含有する酸化チタンゾル(TiO2=5.2%、銅のCuO換算量=0.26%、トリイソプロパノールアミン=0.50%、モノイソプロパノールアミン=0.48%、K2O換算量=0.12%)を得た。このゾルを100℃で乾燥させて得られる粉を粉末X線回折法により測定したところ、アナターゼ型の酸化チタンのピークが認められた。
(Preparation example 12 of copper-containing anatase-type titanium oxide sol)
Ammonia water (NH 3 = 3.0%) was added to a titanium tetrachloride aqueous solution (TiO 2 = 0.5%) with stirring to form a titanium gel. This was washed with filtered water until the chlorine ions in the filtrate became 100 ppm or less with respect to the titanium gel (TiO 2 ) to obtain a slurry made of titanium gel with TiO 2 = 5.3%. After thorough stirring by addition of potassium hydroxide to be 0.04 mol with respect to the slurry 200g of titanium oxide (TiO 2) triisopropanolamine and the titanium oxide 0.04 moles per mole of (TiO 2) 1 mol, This was put into an autoclave and hydrothermally treated at 110 ° C. for 15 hours to obtain a titanium oxide sol (TiO 2 = 5.2%, triisopropanolamine = 0.50%, K 2 O equivalent = 0.12%). After adding monoisopropanolamine which becomes 0.1 mol with respect to 1 mol of titanium oxide (TiO 2 ) to 200 g of this sol and stirring well, copper is 0.05 by mass ratio with respect to titanium oxide (TiO 2 ) in terms of CuO. By adding copper hydroxide so that the titanium oxide sol containing copper (TiO 2 = 5.2%, CuOO equivalent amount of copper = 0.26%, triisopropanolamine = 0.50%, monoisopropanolamine = 0.48%, K 2 O conversion amount = 0.12%) was obtained. When the powder obtained by drying this sol at 100 ° C. was measured by a powder X-ray diffraction method, a peak of anatase-type titanium oxide was observed.

(銅入りアナターゼ型酸化チタンゾルの調製例13)
四塩化チタン水溶液(TiO2=0.5%)にアンモニア水(NH3=3.0%)を攪拌下で添加し、チタンゲルを生成させた。これをろ液中の塩素イオンがチタンゲル(TiO2)に対して100ppm以下になるまでろ過水洗し、TiO2=5.3%のチタンゲルからなるスラリーを得た。このスラリー200gに酸化チタン(TiO2)1モルに対して0.04モルとなるトリイソプロパノールアミンと酸化チタン(TiO2)1モルに対して0.04モルとなる水酸化カリウムを添加してよく攪拌した後、これをオートクレーブに入れ、110℃で15時間の水熱処理を行い、酸化チタンゾル(TiO2=5.2%、トリイソプロパノールアミン=0.50%、K2O換算量=0.12%)を得た。このゾル200gに酸化チタン(TiO2)1モルに対して0.07モルとなるモノイソプロパノールアミンを添加してよく攪拌した後、銅がCuO換算で酸化チタン(TiO2)に対して質量比で0.075となるように水酸化銅を添加することで、銅を含有する酸化チタンゾル(TiO2=5.2%、銅のCuO換算量=0.38%、トリイソプロパノールアミン=0.50%、モノイソプロパノールアミン=0.34%、K2O換算量=0.12%)を得た。このゾルを100℃で乾燥させて得られる粉を粉末X線回折法により測定したところ、アナターゼ型の酸化チタンのピークが認められた。
(Preparation example 13 of copper-containing anatase-type titanium oxide sol)
Ammonia water (NH 3 = 3.0%) was added to a titanium tetrachloride aqueous solution (TiO 2 = 0.5%) with stirring to form a titanium gel. This was washed with filtered water until the chlorine ions in the filtrate became 100 ppm or less with respect to the titanium gel (TiO 2 ) to obtain a slurry made of titanium gel with TiO 2 = 5.3%. After thorough stirring by addition of potassium hydroxide to be 0.04 mol with respect to the slurry 200g of titanium oxide (TiO 2) triisopropanolamine and the titanium oxide 0.04 moles per mole of (TiO 2) 1 mol, This was put into an autoclave and hydrothermally treated at 110 ° C. for 15 hours to obtain a titanium oxide sol (TiO 2 = 5.2%, triisopropanolamine = 0.50%, K 2 O equivalent = 0.12%). After adding monoisopropanolamine which becomes 0.07 mol with respect to 1 mol of titanium oxide (TiO 2 ) to 200 g of this sol and stirring well, copper is 0.075 by mass ratio with respect to titanium oxide (TiO 2 ) in terms of CuO. By adding copper hydroxide so that the titanium oxide sol containing copper (TiO 2 = 5.2%, CuOO equivalent of copper = 0.38%, triisopropanolamine = 0.50%, monoisopropanolamine = 0.34%, K 2 O conversion amount = 0.12%) was obtained. When the powder obtained by drying this sol at 100 ° C. was measured by a powder X-ray diffraction method, a peak of anatase-type titanium oxide was observed.

(銅入りアナターゼ型酸化チタンゾルの調製例14)
四塩化チタン水溶液(TiO2=0.5%)にアンモニア水(NH3=3.0%)を攪拌下で添加し、チタンゲルを生成させた。これをろ液中の塩素イオンがチタンゲル(TiO2)に対して100ppm以下になるまでろ過水洗し、TiO2=5.3%のチタンゲルからなるスラリーを得た。このスラリー200gに酸化チタン(TiO2)1モルに対して0.04モルとなるトリイソプロパノールアミンと酸化チタン(TiO2)1モルに対して0.04モルとなる水酸化カリウムを添加してよく攪拌した後、これをオートクレーブに入れ、110℃で15時間の水熱処理を行い、酸化チタンゾル(TiO2=5.2%、トリイソプロパノールアミン=0.50%、K2O換算量=0.12%)を得た。このゾル200gに酸化チタン(TiO2)1モルに対して0.1モルとなるモノイソプロパノールアミンを添加してよく攪拌した後、銅がCuO換算で酸化チタン(TiO2)に対して質量比で0.1となるように水酸化銅を添加することで、銅を含有する酸化チタンゾル(TiO2=5.2%、銅のCuO換算量=0.50%、トリイソプロパノールアミン=0.50%、モノイソプロパノールアミン=0.48%、K2O換算量=0.12%)を得た。このゾルを100℃で乾燥させて得られる粉を粉末X線回折法により測定したところ、アナターゼ型の酸化チタンのピークが認められた。
(Preparation example 14 of copper-containing anatase-type titanium oxide sol)
Ammonia water (NH 3 = 3.0%) was added to a titanium tetrachloride aqueous solution (TiO 2 = 0.5%) with stirring to form a titanium gel. This was washed with filtered water until the chlorine ions in the filtrate became 100 ppm or less with respect to the titanium gel (TiO 2 ) to obtain a slurry made of titanium gel with TiO 2 = 5.3%. After thorough stirring by addition of potassium hydroxide to be 0.04 mol with respect to the slurry 200g of titanium oxide (TiO 2) triisopropanolamine and the titanium oxide 0.04 moles per mole of (TiO 2) 1 mol, This was put into an autoclave and hydrothermally treated at 110 ° C. for 15 hours to obtain a titanium oxide sol (TiO 2 = 5.2%, triisopropanolamine = 0.50%, K 2 O equivalent = 0.12%). After adding monoisopropanolamine which becomes 0.1 mol with respect to 1 mol of titanium oxide (TiO 2 ) to 200 g of this sol and stirring well, copper is 0.1 by mass ratio with respect to titanium oxide (TiO 2 ) in terms of CuO. By adding copper hydroxide so that the titanium oxide sol containing copper (TiO 2 = 5.2%, CuOO equivalent amount of copper = 0.50%, triisopropanolamine = 0.50%, monoisopropanolamine = 0.48%, K 2 O conversion amount = 0.12%) was obtained. When the powder obtained by drying this sol at 100 ° C. was measured by a powder X-ray diffraction method, a peak of anatase-type titanium oxide was observed.

(実施例1A:光触媒コーティング液の調製)
調製例1で得られた銅がCuO換算でTiO2に対して5.4%配合されたアナターゼ型酸化チタンゾルと、アルカリシリケート(固形分濃度20〜23%)とを、それぞれの固形分質量比が1:3となるように調製した後、水を配合し、固形分濃度0.4%の光触媒コーティング液を得た。ここで、アルカリシリケート中のアルカリ成分の量は、SiO2量を100質量部としたときに、Li2O換算のリチウム量が2.3質量部、K2O換算のカリウム量が33質量部、Na2O換算のナトリウム3.5質量部、とした。なお、ここで、リチウムの含有量は、前記銅に対して、質量比でLiO/CuO換算量で1.26であった。
(Example 1A: Preparation of photocatalyst coating solution)
Anatase-type titanium oxide sol in which the copper obtained in Preparation Example 1 is blended in an amount of 5.4% with respect to TiO 2 in terms of CuO, and an alkali silicate (solid content concentration: 20 to 23%), Was adjusted to 1: 3, and then water was added to obtain a photocatalyst coating solution having a solid content of 0.4%. Here, the amount of the alkali component in the alkali silicate is 2.3 parts by mass of Li 2 O converted lithium and 33 parts by mass of K 2 O converted potassium when the amount of SiO 2 is 100 parts by mass. And 3.5 parts by mass of sodium in terms of Na 2 O. Here, the content of lithium was 1.26 in terms of mass ratio with respect to the copper in terms of Li 2 O / CuO.

(実施例2A:光触媒コーティング液の調製)
調製例2で得られた銅がCuO換算でTiO2に対して7.5%配合されたアナターゼ型酸化チタンゾルと、アルカリシリケート(固形分濃度20〜23%)とを、それぞれの固形分質量比が1:3となるように調製した後、水を配合し、固形分濃度0.4%の光触媒コーティング液を得た。ここで、アルカリシリケート中のアルカリ成分の量は、SiO2量を100質量部としたときに、Li2O換算のリチウム量が2.3質量部、K2O換算のカリウム量が33質量部、Na2O換算のナトリウム3.5質量部、とした。なお、ここで、リチウムの含有量は、前記銅に対して、質量比でLiO/CuO換算量で0.91であった。
(Example 2A: Preparation of photocatalyst coating solution)
Anatase-type titanium oxide sol in which the copper obtained in Preparation Example 2 is mixed with 7.5% of TiO 2 in terms of CuO and an alkali silicate (solid content concentration: 20 to 23%) are each in a solid content mass ratio. Was adjusted to 1: 3, and then water was added to obtain a photocatalyst coating solution having a solid content of 0.4%. Here, the amount of the alkali component in the alkali silicate is 2.3 parts by mass of Li 2 O converted lithium and 33 parts by mass of K 2 O converted potassium when the amount of SiO 2 is 100 parts by mass. And 3.5 parts by mass of sodium in terms of Na 2 O. Here, the lithium content was 0.91 in terms of Li 2 O / CuO in terms of mass ratio with respect to the copper.

(実施例3A:光触媒コーティング液の調製)
調製例5で得られた銅がCuO換算でTiO2に対して5.4%配合されたアナターゼ型酸化チタンゾルと、アルカリシリケート(固形分濃度20〜23%)とを、それぞれの固形分質量比が1:3となるように調製した後、水を配合し、固形分濃度0.4%の光触媒コーティング液を得た。ここで、アルカリシリケート中のアルカリ成分の量は、SiO2量を100質量部としたときに、Li2O換算のリチウム量が2.3質量部、K2O換算のカリウム量が33質量部、Na2O換算のナトリウム3.5質量部、とした。なお、ここで、リチウムの含有量は、前記銅に対して、質量比でLiO/CuO換算量で1.26であった。
(Example 3A: Preparation of photocatalyst coating solution)
Anatase-type titanium oxide sol in which the copper obtained in Preparation Example 5 is blended in an amount of 5.4% with respect to TiO 2 in terms of CuO, and an alkali silicate (solid content concentration: 20 to 23%), Was adjusted to 1: 3, and then water was added to obtain a photocatalyst coating solution having a solid content of 0.4%. Here, the amount of the alkali component in the alkali silicate is 2.3 parts by mass of Li 2 O converted lithium and 33 parts by mass of K 2 O converted potassium when the amount of SiO 2 is 100 parts by mass. And 3.5 parts by mass of sodium in terms of Na 2 O. Here, the content of lithium was 1.26 in terms of mass ratio with respect to the copper in terms of Li 2 O / CuO.

(実施例4A:光触媒コーティング液の調製)
調製例8で得られた銅がCuO換算でTiO2に対して5.0%配合されたアナターゼ型酸化チタンゾルと、アルカリシリケート(固形分濃度20〜23%)とを、それぞれの固形分質量比が1:3となるように調製した後、水を配合し、固形分濃度0.4%の光触媒コーティング液を得た。ここで、アルカリシリケート中のアルカリ成分の量は、SiO2量を100質量部としたときに、Li2O換算のリチウム量が2.3質量部、K2O換算のカリウム量が33質量部、Na2O換算のナトリウム3.5質量部、とした。なお、ここで、リチウムの含有量は、前記銅に対して、質量比でLiO/CuO換算量で1.36であった。
(Example 4A: Preparation of photocatalyst coating solution)
Anatase-type titanium oxide sol in which the copper obtained in Preparation Example 8 is mixed with 5.0% of TiO 2 in terms of CuO and an alkali silicate (solid content concentration: 20 to 23%) are each in a solid content mass ratio. Was adjusted to 1: 3, and then water was added to obtain a photocatalyst coating solution having a solid content of 0.4%. Here, the amount of the alkali component in the alkali silicate is 2.3 parts by mass of Li 2 O converted lithium and 33 parts by mass of K 2 O converted potassium when the amount of SiO 2 is 100 parts by mass. And 3.5 parts by mass of sodium in terms of Na 2 O. Here, the lithium content was 1.36 in terms of mass ratio with respect to the copper in terms of Li 2 O / CuO.

(実施例5A:光触媒コーティング液の調製)
調製例9で得られた銅がCuO換算でTiO2に対して5.0%配合されたアナターゼ型酸化チタンゾルと、アルカリシリケート(固形分濃度20〜23%)とを、それぞれの固形分質量比が1:3となるように調製した後、水を配合し、固形分濃度0.4%の光触媒コーティング液を得た。ここで、アルカリシリケート中のアルカリ成分の量は、SiO2量を100質量部としたときに、Li2O換算のリチウム量が2.3質量部、K2O換算のカリウム量が33質量部、Na2O換算のナトリウム3.5質量部、とした。なお、ここで、リチウムの含有量は、前記銅に対して、質量比でLiO/CuO換算量で1.36であった。
(Example 5A: Preparation of photocatalyst coating solution)
Anatase-type titanium oxide sol in which the copper obtained in Preparation Example 9 is mixed with 5.0% of TiO 2 in terms of CuO and an alkali silicate (solid content concentration: 20 to 23%) are each in a solid content mass ratio. Was adjusted to 1: 3, and then water was added to obtain a photocatalyst coating solution having a solid content of 0.4%. Here, the amount of the alkali component in the alkali silicate is 2.3 parts by mass of Li 2 O converted lithium and 33 parts by mass of K 2 O converted potassium when the amount of SiO 2 is 100 parts by mass. And 3.5 parts by mass of sodium in terms of Na 2 O. Here, the lithium content was 1.36 in terms of mass ratio with respect to the copper in terms of Li 2 O / CuO.

(比較例6A:光触媒コーティング液の調製)
調製例3で得られた銀がAg2O換算でTiO2に対して0.8%、銅がCuO換算でTiO2に対して5.1%配合されたアナターゼ型酸化チタンゾルと、アルカリシリケート(固形分濃度20〜23%)とを、それぞれの固形分質量比が1:3となるように調製した後、水を配合し、固形分濃度0.4%の光触媒コーティング液を得た。ここで、アルカリシリケート中のアルカリ成分の量は、SiO2量を100質量部としたときに、Li2O換算のリチウム量が2.3質量部、K2O換算のカリウム量が33質量部、Na2O換算のナトリウム3.5質量部、とした。なお、ここで、リチウムの含有量は、前記銅に対して、質量比でLiO/CuO換算量で1.33であった。
(Comparative Example 6A: Preparation of photocatalyst coating solution)
Anatase-type titanium oxide sol in which silver obtained in Preparation Example 3 is mixed with 0.8% of TiO 2 in terms of Ag 2 O and copper is 5.1% of TiO 2 in terms of CuO, and an alkali silicate ( (Solid content concentration: 20 to 23%) was prepared so that the mass ratio of each solid content was 1: 3, and then water was blended to obtain a photocatalyst coating liquid having a solid content concentration of 0.4%. Here, the amount of the alkali component in the alkali silicate is 2.3 parts by mass of Li 2 O converted lithium and 33 parts by mass of K 2 O converted potassium when the amount of SiO 2 is 100 parts by mass. And 3.5 parts by mass of sodium in terms of Na 2 O. Here, the lithium content was 1.33 in terms of Li 2 O / CuO in terms of mass ratio with respect to the copper.

(実施例7A:光触媒コーティング液の調製)
調製例4で得られた銅がCuO換算でTiO2に対して5.2%配合されたアナターゼ型酸化チタンゾルと、アルカリシリケート(固形分濃度20〜23%)とを、それぞれの固形分質量比が1:3となるように調製した後、水を配合し、固形分濃度0.4%の光触媒コーティング液を得た。ここで、アルカリシリケート中のアルカリ成分の量は、SiO2量を100質量部としたときに、Li2O換算のリチウム量が2.3質量部、K2O換算のカリウム量が33質量部、Na2O換算のナトリウム3.5質量部、とした。なお、ここで、リチウムの含有量は、前記銅に対して、質量比でLiO/CuO換算量で1.31であった。
(Example 7A: Preparation of photocatalyst coating solution)
Anatase-type titanium oxide sol containing 5.2% of Cu obtained in Preparation Example 4 in terms of CuO with respect to TiO 2 and an alkali silicate (solid content concentration: 20 to 23%), respectively, Was adjusted to 1: 3, and then water was added to obtain a photocatalyst coating solution having a solid content of 0.4%. Here, the amount of the alkali component in the alkali silicate is 2.3 parts by mass of Li 2 O converted lithium and 33 parts by mass of K 2 O converted potassium when the amount of SiO 2 is 100 parts by mass. And 3.5 parts by mass of sodium in terms of Na 2 O. Here, the lithium content was 1.31 in terms of Li 2 O / CuO in mass ratio with respect to the copper.

(実施例8A:光触媒コーティング液の調製)
調製例6で得られた銅がCuO換算でTiO2に対して5.4%配合されたアナターゼ型酸化チタンゾルと、アルカリシリケート(固形分濃度20〜23%)とを、それぞれの固形分質量比が1:3となるように調製した後、水を配合し、固形分濃度0.4%の光触媒コーティング液を得た。ここで、アルカリシリケート中のアルカリ成分の量は、SiO2量を100質量部としたときに、Li2O換算のリチウム量が2.3質量部、K2O換算のカリウム量が33質量部、Na2O換算のナトリウム3.5質量部、とした。なお、ここで、リチウムの含有量は、前記銅に対して、質量比でLiO/CuO換算量で1.26であった。
(Example 8A: Preparation of photocatalyst coating solution)
Anatase-type titanium oxide sol in which the copper obtained in Preparation Example 6 is blended in an amount of 5.4% with respect to TiO 2 in terms of CuO, and an alkali silicate (solid content concentration: 20 to 23%), Was adjusted to 1: 3, and then water was added to obtain a photocatalyst coating solution having a solid content of 0.4%. Here, the amount of the alkali component in the alkali silicate is 2.3 parts by mass of Li 2 O converted lithium and 33 parts by mass of K 2 O converted potassium when the amount of SiO 2 is 100 parts by mass. And 3.5 parts by mass of sodium in terms of Na 2 O. Here, the content of lithium was 1.26 in terms of mass ratio with respect to the copper in terms of Li 2 O / CuO.

(実施例9A:光触媒コーティング液の調製)
調製例7で得られた銅がCuO換算でTiO2に対して5.2%配合されたアナターゼ型酸化チタンゾルと、アルカリシリケート(固形分濃度20〜23%)とを、それぞれの固形分質量比が1:3となるように調製した後、水を配合し、固形分濃度0.4%の光触媒コーティング液を得た。ここで、アルカリシリケート中のアルカリ成分の量は、SiO2量を100質量部としたときに、Li2O換算のリチウム量が2.3質量部、K2O換算のカリウム量が33質量部、Na2O換算のナトリウム3.5質量部、とした。なお、ここで、リチウムの含有量は、前記銅に対して、質量比でLiO/CuO換算量で1.31であった。
(Example 9A: Preparation of photocatalyst coating solution)
Anatase-type titanium oxide sol in which 5.2% of Cu obtained in Preparation Example 7 is mixed with respect to TiO 2 in terms of CuO, and alkali silicate (solid content concentration: 20 to 23%) are respectively mixed in a solid mass ratio. Was adjusted to 1: 3, and then water was added to obtain a photocatalyst coating solution having a solid content of 0.4%. Here, the amount of the alkali component in the alkali silicate is 2.3 parts by mass of Li 2 O converted lithium and 33 parts by mass of K 2 O converted potassium when the amount of SiO 2 is 100 parts by mass. And 3.5 parts by mass of sodium in terms of Na 2 O. Here, the lithium content was 1.31 in terms of Li 2 O / CuO in mass ratio with respect to the copper.

(実施例10A:光触媒コーティング液の調製)
調製例10で得られた銅がCuO換算でTiO2に対して5.0%配合されたアナターゼ型酸化チタンゾルと、アルカリシリケート(固形分濃度20〜23%)とを、それぞれの固形分質量比が1:3となるように調製した後、水を配合し、固形分濃度0.4%の光触媒コーティング液を得た。ここで、アルカリシリケート中のアルカリ成分の量は、SiO2量を100質量部としたときに、Li2O換算のリチウム量が2.3質量部、K2O換算のカリウム量が33質量部、Na2O換算のナトリウム3.5質量部、とした。なお、ここで、リチウムの含有量は、前記銅に対して、質量比でLiO/CuO換算量で1.36であった。
(Example 10A: Preparation of photocatalyst coating solution)
Anatase-type titanium oxide sol in which the copper obtained in Preparation Example 10 is blended in an amount of 5.0% with respect to TiO 2 in terms of CuO, and an alkali silicate (solid content concentration: 20 to 23%), Was adjusted to 1: 3, and then water was added to obtain a photocatalyst coating solution having a solid content of 0.4%. Here, the amount of the alkali component in the alkali silicate is 2.3 parts by mass of Li 2 O converted lithium and 33 parts by mass of K 2 O converted potassium when the amount of SiO 2 is 100 parts by mass. And 3.5 parts by mass of sodium in terms of Na 2 O. Here, the lithium content was 1.36 in terms of mass ratio with respect to the copper in terms of Li 2 O / CuO.

(実施例11A:光触媒コーティング液の調製)
調製例11で得られた銅がCuO換算でTiO2に対して6.2%配合されたアナターゼ型酸化チタンゾルと、アルカリシリケート(固形分濃度20〜23%)とを、それぞれの固形分質量比が1:3となるように調製した後、水を配合し、固形分濃度0.4%の光触媒コーティング液を得た。ここで、アルカリシリケート中のアルカリ成分の量は、SiO2量を100質量部としたときに、Li2O換算のリチウム量が2.3質量部、K2O換算のカリウム量が33質量部、Na2O換算のナトリウム3.5質量部、とした。なお、ここで、リチウムの含有量は、前記銅に対して、質量比でLiO/CuO換算量で1.36であった。
(Example 11A: Preparation of photocatalytic coating solution)
Anatase-type titanium oxide sol containing 6.2% of Cu obtained in Preparation Example 11 in terms of CuO with respect to TiO 2 and an alkali silicate (solid content concentration: 20 to 23%), respectively, Was adjusted to 1: 3, and then water was added to obtain a photocatalyst coating solution having a solid content of 0.4%. Here, the amount of the alkali component in the alkali silicate is 2.3 parts by mass of Li 2 O converted lithium and 33 parts by mass of K 2 O converted potassium when the amount of SiO 2 is 100 parts by mass. And 3.5 parts by mass of sodium in terms of Na 2 O. Here, the lithium content was 1.36 in terms of mass ratio with respect to the copper in terms of Li 2 O / CuO.

(実施例12A:光触媒コーティング液の調製)
調製例12で得られた銅がCuO換算でTiO2に対して5.0%配合されたアナターゼ型酸化チタンゾルと、アルカリシリケート(固形分濃度20〜23%)とを、それぞれの固形分質量比が1:3となるように調製した後、水を配合し、固形分濃度0.4%の光触媒コーティング液を得た。ここで、アルカリシリケート中のアルカリ成分の量は、SiO2量を100質量部としたときに、Li2O換算のリチウム量が2.3質量部、K2O換算のカリウム量が33質量部、Na2O換算のナトリウム3.5質量部、とした。なお、ここで、リチウムの含有量は、前記銅に対して、質量比でLiO/CuO換算量で1.36であった。
(Example 12A: Preparation of photocatalyst coating solution)
Anatase-type titanium oxide sol in which the copper obtained in Preparation Example 12 is mixed with 5.0% of TiO 2 in terms of CuO, and an alkali silicate (solid content concentration: 20 to 23%) are each in a solid content mass ratio. Was adjusted to 1: 3, and then water was added to obtain a photocatalyst coating solution having a solid content of 0.4%. Here, the amount of the alkali component in the alkali silicate is 2.3 parts by mass of Li 2 O converted lithium and 33 parts by mass of K 2 O converted potassium when the amount of SiO 2 is 100 parts by mass. And 3.5 parts by mass of sodium in terms of Na 2 O. Here, the lithium content was 1.36 in terms of mass ratio with respect to the copper in terms of Li 2 O / CuO.

(実施例13A:光触媒コーティング液の調製)
調製例13で得られた銅がCuO換算でTiO2に対して7.3%配合されたアナターゼ型酸化チタンゾルと、アルカリシリケート(固形分濃度20〜23%)とを、それぞれの固形分質量比が1:3となるように調製した後、水を配合し、固形分濃度0.4%の光触媒コーティング液を得た。ここで、アルカリシリケート中のアルカリ成分の量は、SiO2量を100質量部としたときに、Li2O換算のリチウム量が2.3質量部、K2O換算のカリウム量が33質量部、Na2O換算のナトリウム3.5質量部、とした。なお、ここで、リチウムの含有量は、前記銅に対して、質量比でLiO/CuO換算量で0.93であった。
(Example 13A: Preparation of photocatalyst coating solution)
Anatase-type titanium oxide sol in which the copper obtained in Preparation Example 13 was mixed with 7.3% of TiO 2 in terms of CuO and an alkali silicate (solid content concentration: 20 to 23%) were each in a solid mass ratio. Was adjusted to 1: 3, and then water was added to obtain a photocatalyst coating solution having a solid content of 0.4%. Here, the amount of the alkali component in the alkali silicate is 2.3 parts by mass of Li 2 O converted lithium and 33 parts by mass of K 2 O converted potassium when the amount of SiO 2 is 100 parts by mass. And 3.5 parts by mass of sodium in terms of Na 2 O. Here, the lithium content was 0.93 in terms of a mass ratio with respect to the copper in terms of Li 2 O / CuO.

(実施例14A:光触媒コーティング液の調製)
調製例14で得られた銅がCuO換算でTiO2に対して9.6%配合されたアナターゼ型酸化チタンゾルと、アルカリシリケート(固形分濃度20〜23%)とを、それぞれの固形分質量比が1:3となるように調製した後、水を配合し、固形分濃度0.4%の光触媒コーティング液を得た。ここで、アルカリシリケート中のアルカリ成分の量は、SiO2量を100質量部としたときに、Li2O換算のリチウム量が2.3質量部、K2O換算のカリウム量が33質量部、Na2O換算のナトリウム3.5質量部、とした。なお、ここで、リチウムの含有量は、前記銅に対して、質量比でLiO/CuO換算量で0.71であった。
(Example 14A: Preparation of photocatalyst coating solution)
Anatase-type titanium oxide sol in which copper obtained in Preparation Example 14 is blended in an amount of 9.6% in terms of CuO with respect to TiO 2 and an alkali silicate (solid content concentration: 20 to 23%), Was adjusted to 1: 3, and then water was added to obtain a photocatalyst coating solution having a solid content of 0.4%. Here, the amount of the alkali component in the alkali silicate is 2.3 parts by mass of Li 2 O converted lithium and 33 parts by mass of K 2 O converted potassium when the amount of SiO 2 is 100 parts by mass. And 3.5 parts by mass of sodium in terms of Na 2 O. Here, the content of lithium was 0.71 in terms of Li 2 O / CuO in terms of mass ratio with respect to the copper.

(実施例1B〜5B、比較例6B:光触媒機能を有するタイルの作製)
上記光触媒コーティング液1A、2A、3A、4A、5A、および6Aを、予め80〜150℃に予備加熱した施釉タイル上にスプレーコーティング法によりそれぞれ塗布した。次いで、炉内雰囲気温度800〜1100℃(熱電対はバーナー付近の直接炎が当らない位置に設置)、加熱を単位面積当りの発熱量が1000MJ/m・hである発熱体を用いて行い、該発熱体から前記コーティング液を塗布した表面までの距離を5mm〜300mmの範囲に設定して10〜20秒焼成した。その結果、タイル表面に光触媒層が形成された施釉タイル1B、2B、3B、4B、5B、および6Bを得た。なお、炉から搬出された直後の上記施釉タイルの表面温度は300〜400℃であった。
(Examples 1B to 5B, Comparative Example 6B: Production of tile having photocatalytic function)
The photocatalyst coating liquids 1A, 2A, 3A, 4A, 5A, and 6A were respectively applied to the glazed tile preheated to 80 to 150 ° C. by a spray coating method. Next, the furnace atmosphere temperature is 800 to 1100 ° C. (The thermocouple is installed in a position near the burner where no direct flame hits), and heating is performed using a heating element with a calorific value per unit area of 1000 MJ / m 2 · h. Then, the distance from the heating element to the surface on which the coating liquid was applied was set in the range of 5 mm to 300 mm and baked for 10 to 20 seconds. As a result, glazed tiles 1B, 2B, 3B, 4B, 5B, and 6B in which a photocatalytic layer was formed on the tile surface were obtained. In addition, the surface temperature of the said glazed tile immediately after carrying out from a furnace was 300-400 degreeC.

(評価実験)
上記のようにして得られた光触媒層が形成された施釉タイル1B、2B、3B、4B、5B、および6Bを50℃の温水に16時間浸漬後、JIS R1702:2006 スタンプ法(E−Coli、0.25mW/cm、接種4時間)にて抗菌活性値R(D)を評価した。その結果、1Bでは4.5、2Bでは5.0、3Bでは4.3、4Bでは5.0、5Bでは5.0と良好な結果が得られたが、6Bでは2.5と低かった。

(Evaluation experiment)
The glazed tiles 1B, 2B, 3B, 4B, 5B, and 6B on which the photocatalyst layer obtained as described above was formed were immersed in warm water at 50 ° C. for 16 hours, and then JIS R1702: 2006 stamp method (E-Coli, The antibacterial activity value R (D) was evaluated at 0.25 mW / cm 2 , inoculation 4 hours). As a result, 4.5 was obtained for 1B, 5.0 for 2B, 4.3 for 3B, 5.0 for 4B, 5.0 for 5B, and 5.0 for 5B, but it was as low as 2.5 for 6B. .

Claims (4)

光触媒性酸化チタン粒子と、アルカリシリケートと、銅と、アルカノールアミン及び/又は第四級アンモニウムを含有する、基材に適用後焼成して用いる光触媒コーティング液であって、
前記銅の含有量が、前記光触媒性酸化チタン粒子に対して、CuO換算質量比で0.03<CuO/TiO<0.3であり、
任意成分として銀を含む場合には、その含有量は、AgO換算質量比でAgO/TiO<0.001であって、
前記アルカリシリケートを、前記光触媒性酸化チタン粒子に対して、質量比で2以上5以下含有し、かつ、
前記アルカリシリケートがアルカリ成分としてリチウムを含むものであり、
前記リチウムの含有量が、前記銅に対して、Li O換算質量比で0<Li O/CuO<2であることを特徴とする、光触媒コーティング液。
A photocatalytic coating liquid containing photocatalytic titanium oxide particles, alkali silicate, copper, alkanolamine and / or quaternary ammonium, and used after firing on a substrate,
The copper content is 0.03 <CuO / TiO 2 <0.3 in terms of CuO mass ratio with respect to the photocatalytic titanium oxide particles,
When containing silver as an optional component, the content thereof is, I Ag 2 O / TiO 2 <0.001 der in Ag 2 O in terms of mass ratio,
The alkali silicate is contained in a mass ratio of 2 to 5 with respect to the photocatalytic titanium oxide particles, and
The alkali silicate contains lithium as an alkali component;
The content of the lithium relative to the copper, and wherein 0 <Li 2 O / CuO < 2 der Rukoto with Li 2 O in terms of weight ratio, photocatalytic coating liquid.
光触媒性酸化チタン粒子と、アルカリシリケートと、銅と、アルカノールアミンを含有する、基材に適用後焼成して用いる光触媒コーティング液であって、
前記銅の含有量が、前記光触媒性酸化チタン粒子に対して、CuO換算質量比で0.03<CuO/TiO<0.3であり、
任意成分として銀を含む場合には、その含有量は、AgO換算質量比でAgO/TiO<0.001であることを特徴とする、光触媒コーティング液。
A photocatalytic coating liquid containing photocatalytic titanium oxide particles, alkali silicate, copper, and alkanolamine, which is used after firing on a substrate,
The copper content is 0.03 <CuO / TiO 2 <0.3 in terms of CuO mass ratio with respect to the photocatalytic titanium oxide particles,
When silver is contained as an optional component, the content thereof is Ag 2 O / TiO 2 <0.001 in terms of Ag 2 O-converted mass ratio.
前記アルカリシリケートがアルカリ成分としてカリウムをさらに含んでなり、
前記カリウムの含有量が、前記リチウムに対して、KO換算質量比で5<KO/LiO<50である、請求項1または2に記載の光触媒コーティング液。
The alkali silicate further comprises potassium as an alkali component;
The content of the potassium, with respect to the lithium, 5 <K 2 O / Li 2 O <50 with K 2 O in terms of weight ratio, photocatalytic coating liquid according to claim 1 or 2.
前記アルカノールアミンが、モノイソプロパノールアミン、ジイソプロパノールアミン、およびトリイソプロパノールアミンからなる群から選択される少なくとも一種である、請求項1〜のいずれか一項に記載の光触媒コーティング液。
The photocatalyst coating liquid according to any one of claims 1 to 3 , wherein the alkanolamine is at least one selected from the group consisting of monoisopropanolamine, diisopropanolamine, and triisopropanolamine.
JP2011274259A 2011-12-15 2011-12-15 Photocatalyst coating liquid and inorganic material having photocatalytic function Active JP5898944B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011274259A JP5898944B2 (en) 2011-12-15 2011-12-15 Photocatalyst coating liquid and inorganic material having photocatalytic function
PCT/JP2012/082489 WO2013089229A1 (en) 2011-12-15 2012-12-14 Photocatalyst coating liquid and organic material having photocatalytic function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011274259A JP5898944B2 (en) 2011-12-15 2011-12-15 Photocatalyst coating liquid and inorganic material having photocatalytic function

Publications (2)

Publication Number Publication Date
JP2013124312A JP2013124312A (en) 2013-06-24
JP5898944B2 true JP5898944B2 (en) 2016-04-06

Family

ID=48612668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011274259A Active JP5898944B2 (en) 2011-12-15 2011-12-15 Photocatalyst coating liquid and inorganic material having photocatalytic function

Country Status (2)

Country Link
JP (1) JP5898944B2 (en)
WO (1) WO2013089229A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896034B2 (en) * 2012-09-19 2016-03-30 信越化学工業株式会社 Visible light responsive photocatalyst fine particle dispersion, method for producing the same, and member having photocatalytic thin film on surface
JP7049255B2 (en) * 2016-01-29 2022-04-06 コーニング インコーポレイテッド Colorless material with improved antibacterial performance
JP6283922B1 (en) * 2016-12-16 2018-02-28 パナソニックIpマネジメント株式会社 Photocatalyst material and photocatalyst coating composition
JP2020182918A (en) * 2019-05-09 2020-11-12 Dic株式会社 Method for producing titanium oxide composition
CN111266128A (en) * 2020-02-20 2020-06-12 郑州普利飞尔环保科技有限公司 Visible light excited composite photocatalytic antibacterial ceramic and preparation method thereof
CN113683910A (en) * 2020-05-18 2021-11-23 金百利科技(深圳)有限公司 Photocatalytic coating with efficient photocatalytic function and preparation method thereof
CN113004727B (en) * 2021-04-06 2022-07-15 上海淞叶新材料有限公司 Transparent inorganic coating and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979151B2 (en) * 1998-02-19 2012-07-18 アスカテック株式会社 Antibacterial / deodorizing material and method for producing the same
EP1118385B1 (en) * 1998-07-30 2015-01-21 Toto Ltd. Method for producing high-performance material having photocatalytic function and device therefor
JP4355835B2 (en) * 2000-08-25 2009-11-04 多木化学株式会社 Photocatalytic material
JP4055782B2 (en) * 2005-03-11 2008-03-05 株式会社グリーンケミー Room temperature curable inorganic vehicle composition and room temperature curable inorganic paint or coating agent using the same
JP4880410B2 (en) * 2006-09-28 2012-02-22 多木化学株式会社 Member coated with photocatalytic coating composition

Also Published As

Publication number Publication date
WO2013089229A1 (en) 2013-06-20
JP2013124312A (en) 2013-06-24

Similar Documents

Publication Publication Date Title
JP5898944B2 (en) Photocatalyst coating liquid and inorganic material having photocatalytic function
JP5711744B2 (en) INORGANIC MATERIAL HAVING PHOTOCATALYST LAYER, PROCESS FOR PRODUCING THE SAME, AND PHOTOCATALYST COATING LIQUID FOR INORGANIC MATERIAL
US8993471B2 (en) Photocatalytic coating
Pinho et al. Titania-silica nanocomposite photocatalysts with application in stone self-cleaning
Ke et al. Preparation of a photocatalytic TiO2/ZnTiO3 coating on glazed ceramic tiles
US20060078712A1 (en) Ceramic molded body comprising a photocatalytic coating and method for production the same
EP1833763B1 (en) Process for preparing dispersions of tio2 in the form of nanoparticles, and dispersions obtainable with this process and fuctionalization of surfaces by application of tio2 dispersions
JP6720615B2 (en) Photocatalytic coating composition
CN102821850A (en) Photocatalyst-coated body and photocatalyst coating liquid
JP5118067B2 (en) PHOTOCATALYST THIN FILM, PHOTOCATALYST THIN FILM FORMATION METHOD, AND PHOTOCATALYST THIN FILM COATED PRODUCT
EP2782885A1 (en) Method for treating a surface of a mineral substrate, and shaping object produced according to the method
EP2593220A2 (en) A doped material
US10029236B2 (en) Catalytic substrate surface
JP3794067B2 (en) Method for producing photocatalyst composition
CN100506702C (en) Titanium oxide sol, thin film, and processes for producing these
Palanisamy et al. Study on the Behavior of Self‐Cleaning Impregnated Photocatalyst (Tio2) with Cement Mortar
JP6695417B2 (en) Photocatalyst structure and manufacturing method thereof
WO2020084169A1 (en) Photocatalytic composition comprising titanium dioxide and a carrier
EP3277634B1 (en) Photocatalytic particles and process for the production thereof
JP2011104555A (en) Hydrophilic coating composition, method for preparing hydrophilic coating composition, hydrophilic coated film layer and building material
JP2012107376A (en) Photocatalyst tile
JP5433093B2 (en) Hydrophilic coating composition, hydrophilic coating layer and building material
JP5849698B2 (en) Composite and coating composition
TW406031B (en) Multi-functional material having photo-catalytic function and production method therefor
JPWO2020050147A1 (en) Photocatalyst-supported structure and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5898944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250