Nothing Special   »   [go: up one dir, main page]

JP5880975B2 - Control apparatus and control method for refrigeration apparatus, and refrigeration apparatus including the control apparatus - Google Patents

Control apparatus and control method for refrigeration apparatus, and refrigeration apparatus including the control apparatus Download PDF

Info

Publication number
JP5880975B2
JP5880975B2 JP2013067639A JP2013067639A JP5880975B2 JP 5880975 B2 JP5880975 B2 JP 5880975B2 JP 2013067639 A JP2013067639 A JP 2013067639A JP 2013067639 A JP2013067639 A JP 2013067639A JP 5880975 B2 JP5880975 B2 JP 5880975B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
superheat degree
set value
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013067639A
Other languages
Japanese (ja)
Other versions
JP2014190637A (en
Inventor
達 二宮
達 二宮
Original Assignee
三菱重工冷熱株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工冷熱株式会社 filed Critical 三菱重工冷熱株式会社
Priority to JP2013067639A priority Critical patent/JP5880975B2/en
Publication of JP2014190637A publication Critical patent/JP2014190637A/en
Application granted granted Critical
Publication of JP5880975B2 publication Critical patent/JP5880975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、冷凍装置の制御装置および制御方法、並びに該制御装置を具備する冷凍装置に関し、より詳細には、冷間始動の際、迅速に円滑な始動を可能にする冷凍装置の制御装置および制御方法、並びに該制御装置を具備する冷凍装置に関する。   The present invention relates to a control apparatus and control method for a refrigeration apparatus, and a refrigeration apparatus including the control apparatus, and more particularly, a control apparatus for a refrigeration apparatus that enables a quick and smooth start during a cold start, and The present invention relates to a control method and a refrigeration apparatus including the control device.

従来から、冷凍装置の応用として、排熱回収式ヒートポンプが用いられている。
この排熱回収式ヒートポンプは、圧縮機と、凝縮器と、検出過熱度が過熱度設定値となるように開度調整される電子膨張弁と、蒸発器とがこの順に接続されて構成され、冷媒が循環する冷媒回路を備えた冷凍装置であり、特に、蒸発器において、熱源流体を用いて、熱源流体からの排熱を回収することにより冷媒を蒸発させており、熱源温度が高温であることからそれに伴い、蒸発温度も高温となる点が特徴である。
Conventionally, an exhaust heat recovery type heat pump has been used as an application of a refrigeration apparatus.
This exhaust heat recovery type heat pump is configured by connecting a compressor, a condenser, an electronic expansion valve whose opening degree is adjusted so that a detected superheat degree becomes a superheat degree set value, and an evaporator in this order, This is a refrigeration apparatus having a refrigerant circuit in which the refrigerant circulates. In particular, in the evaporator, the refrigerant is evaporated by recovering exhaust heat from the heat source fluid using the heat source fluid, and the heat source temperature is high. In connection with this, the evaporation temperature is also high.

この場合、通常、圧縮機への吸入配管は、保温加工されており、吸入ガス冷媒の流量および熱容量も十分に大きいことから、定常運転においては、圧縮機に吸入される冷媒が再凝縮を生じる恐れはない。
しかしながら、たとえば、冬場における冷間始動の際、圧縮機への吸入配管および保温材自体が外気温度と平衡しており、かつ、圧縮機への吸入冷媒ガスの流量(熱容量)も当初小さいことから、蒸発器において蒸発した冷媒ガスが、冷却されたり、あるいは圧縮機内の油温により冷却されることにより、再凝縮し、圧縮機に対して液バックが引き起こされ、運転停止、場合により、圧縮機の損傷を生じることがある。
In this case, the suction pipe to the compressor is normally heat-insulated, and the flow rate and heat capacity of the suction gas refrigerant are sufficiently large, so that the refrigerant sucked into the compressor undergoes recondensation in steady operation. There is no fear.
However, for example, during cold start in winter, the suction pipe to the compressor and the heat insulating material itself are in equilibrium with the outside air temperature, and the flow rate (heat capacity) of the suction refrigerant gas to the compressor is initially small. The refrigerant gas evaporated in the evaporator is cooled or cooled by the oil temperature in the compressor to re-condense, causing a liquid back to the compressor, shutting down the operation, and in some cases, the compressor May cause damage.

このような冷媒の再凝縮に伴う技術問題点を解決するヒートポンプ式熱回収装置が、たとえば、特許文献1に開示されている。
このヒートポンプ式熱回収装置は、装置起動時に蒸発器に供給する排熱の熱量を制御する熱量制御手段を設ける構成としており、より具体的には、熱量制御手段が、蒸発器入口の排温水供給回路に設けられ、外部から供給される排温水と、排温水出口回路からの蒸発器通過後の排水とを所要の割合で混合する三方弁で構成し、この三方弁の開度制御によって蒸発器への供給排温水の温度を制御するようにしている。
For example, Patent Document 1 discloses a heat pump heat recovery apparatus that solves the technical problem associated with such recondensation of refrigerant.
This heat pump type heat recovery device is configured to include a heat quantity control means for controlling the heat quantity of exhaust heat supplied to the evaporator at the time of starting the apparatus. More specifically, the heat quantity control means supplies the exhaust hot water at the inlet of the evaporator. The circuit consists of a three-way valve that mixes waste water supplied from the outside and waste water that has passed through the evaporator from the waste water outlet circuit at a required ratio. The temperature of the supplied waste water is controlled.

このような構成によれば、運転スタート後のヒートポンプによる熱回収運転に入る前に、冷媒の蒸発温度を冷媒吸入管温度等あるいは圧縮機内油温より低く制御し、熱回収用熱交換器で蒸発し過熱した冷媒蒸気によって冷媒吸入管の温度を上昇させていく予熱運転を設定したため、熱回収運転起動後に前記熱回収用熱交換器から圧縮機吸入口の間で冷媒が急速に冷却され凝縮液化する、あるいは圧縮機内部で冷媒が油により凝縮液化し不具合を生じるという危険性が無く熱回収運転を立ち上げることができる。 According to such a configuration, before starting the heat recovery operation by the heat pump after the start of operation, the refrigerant evaporation temperature is controlled to be lower than the refrigerant suction pipe temperature or the like or the oil temperature in the compressor, and evaporated by the heat recovery heat exchanger. Since the preheating operation is set to raise the temperature of the refrigerant suction pipe with the overheated refrigerant vapor, the refrigerant is rapidly cooled between the heat recovery heat exchanger and the compressor inlet after the heat recovery operation is started. The heat recovery operation can be started up without the danger that the refrigerant condenses and condenses with oil inside the compressor.

しかしながら、このようなヒートポンプ式熱回収装置には、始動の際、熱源側流体の蒸発器入口温度を下げていることに起因して、以下のような技術的問題点が存する。
すなわち、ヒートポンプ式熱回収装置を迅速かつ円滑に始動するのが困難となる点である。
より詳細には、熱源側流体の蒸発器入口温度を下げると、冷媒ガスの蒸発温度は低下するものの、冷媒の蒸発器出口温度が熱源側流体の蒸発器入口温度に引っ張られて近づいていくので、熱源側流体の蒸発器入口温度と同様に、冷媒ガスの蒸発器出口温度も低下してしまう。
この点、蒸発器から流出する冷媒ガスが、外気により冷やされた吸入配管を内側から加熱する役割を果たすところ、冷媒ガスの蒸発器出口温度が低下したのでは、吸入配管を加熱するのに相当な時間を要する。
However, such a heat pump type heat recovery apparatus has the following technical problems due to the fact that the evaporator inlet temperature of the heat source side fluid is lowered at the time of starting.
That is, it is difficult to start the heat pump heat recovery device quickly and smoothly.
More specifically, when the evaporator inlet temperature of the heat source side fluid is lowered, the evaporation temperature of the refrigerant gas is lowered, but the refrigerant outlet temperature of the refrigerant is pulled closer to the evaporator inlet temperature of the heat source side fluid. Similarly to the evaporator inlet temperature of the heat source side fluid, the evaporator outlet temperature of the refrigerant gas also decreases.
In this respect, the refrigerant gas flowing out from the evaporator plays a role of heating the suction pipe cooled by the outside air from the inside. When the refrigerant gas evaporator outlet temperature is lowered, it corresponds to heating the suction pipe. Takes a lot of time.

なお、このような技術的問題点は、ヒートポンプ式熱回収装置に固有の問題ではなく、一般に、冷間始動、たとえば冬場の始動の際に、冷媒の蒸発温度が外気温度より高い冷凍設備に起こり得る問題である。
特開2008−8595号公報
Such a technical problem is not a problem inherent to the heat pump heat recovery device, but generally occurs in a refrigeration facility in which the evaporation temperature of the refrigerant is higher than the outside air temperature during a cold start, for example, a start in winter. It is a problem to get.
JP 2008-8595 A

以上の技術的問題点に鑑み、本発明の目的は、冷間始動の際、迅速に円滑な始動を可能にする冷凍装置の制御装置および制御方法、並びに該制御装置を具備する冷凍装置を提供することにある。   In view of the above technical problems, an object of the present invention is to provide a control device and a control method for a refrigeration apparatus that enables quick and smooth start at the time of cold start, and a refrigeration apparatus including the control device. There is to do.

上記課題を達成するために、本発明の冷凍装置の制御装置は、
圧縮機と、凝縮器と、検出過熱度が過熱度設定値となるように開度調整される電子膨張弁と、蒸発器とがこの順に接続されて構成され、冷媒が循環する冷媒回路を備えた冷凍装置の制御装置において、
該冷凍装置の始動の際、前記蒸発器における冷媒の蒸発温度が、前記圧縮機への冷媒吸入配管の温度より低くなるように、前記電子膨張弁に対する過熱度設定値を調整する過熱度設定値調整手段を有する、構成としている。
In order to achieve the above object, a control device for a refrigeration apparatus of the present invention comprises:
A compressor, a condenser, an electronic expansion valve whose opening degree is adjusted so that the detected superheat degree becomes a superheat degree set value, and an evaporator are connected in this order, and a refrigerant circuit in which the refrigerant circulates is provided. In the control device of the freezing device,
A superheat setting value for adjusting the superheat setting value for the electronic expansion valve so that the evaporation temperature of the refrigerant in the evaporator is lower than the temperature of the refrigerant suction pipe to the compressor when the refrigeration apparatus is started. It has a configuration having adjustment means.

上記構成の冷凍装置の制御装置によれば、冷凍装置の始動の際、過熱度設定値調整手段により、蒸発器における冷媒の蒸発温度が、圧縮機への冷媒吸入配管の温度より低くなるように、電子膨張弁に対する過熱度設定値を調整することにより、たとえば冬場において、外気により冷やされて冷媒吸入配管の温度が低い場合であっても、冷媒の蒸発温度がこのような冷媒吸入配管の温度より低くなるようにして、始動の際、冷媒吸入配管を別途加熱する必要なしに、冷媒の再凝縮による圧縮機への液バックを防止することが可能であり、一方、冷凍装置の運転継続とともに、冷媒ガスにより冷媒吸入配管が徐々に加熱されるのに応じて、過熱度設定値調整手段により過熱度設定値を低減させることを通じて、冷凍装置を適切な効率で運用することが可能である。 According to the control device for a refrigeration apparatus having the above-described configuration, when the refrigeration apparatus is started, the superheat degree set value adjusting means causes the refrigerant evaporation temperature in the evaporator to be lower than the temperature of the refrigerant suction pipe to the compressor. By adjusting the superheat setting value for the electronic expansion valve, for example, in the winter, even if the refrigerant suction pipe is cooled by the outside air and the temperature of the refrigerant suction pipe is low, the refrigerant evaporation temperature is It is possible to prevent the liquid back to the compressor due to recondensing of the refrigerant without the need to heat the refrigerant suction pipe separately at the time of start-up, while the operation of the refrigeration apparatus continues. As the refrigerant suction pipe is gradually heated by the refrigerant gas, the refrigeration apparatus is operated with appropriate efficiency by reducing the superheat setting value by the superheat setting value adjusting means. It is possible.

また、前記過熱度設定値調整手段は、前記蒸発器における熱源流体の入口温度を検出する熱源流体入口温度検出手段と、
前記蒸発器における冷媒ガスの出口温度を検出する冷媒ガス出口温度検出手段と、
前記熱源流体入口温度検出手段により検出される熱源流体の入口温度と、前記冷媒ガス出口温度検出手段により検出される蒸発器における冷媒ガスの出口温度との温度差を設定する温度差設定手段と、
前記冷媒吸入配管の温度を検出する冷媒吸入配管温度検出手段と、
前記蒸発器から流出した冷媒ガスの凝縮を防止するのに必要な温度マージンを設定する凝縮防止温度マージン設定手段と、
前記冷媒吸入配管温度検出手段により検出された冷媒吸入配管の温度から、前記凝縮防止温度マージン設定手段により設定された凝縮防止温度マージンを減じることにより、冷媒の安全蒸発温度を演算する安全蒸発温度演算手段と、
前記熱源流体入口温度検出手段により検出された熱源流体の入口温度から、前記安全蒸発温度演算手段により演算された安全蒸発温度および前記温度差設定手段により設定された温度差を減じることにより、過熱度設定値を演算する過熱度設定値演算手段とを、有するのがよい。
The superheat degree set value adjusting means includes heat source fluid inlet temperature detecting means for detecting an inlet temperature of the heat source fluid in the evaporator,
Refrigerant gas outlet temperature detection means for detecting the outlet temperature of the refrigerant gas in the evaporator;
A temperature difference setting means for setting a temperature difference between the inlet temperature of the heat source fluid detected by the heat source fluid inlet temperature detector and the outlet temperature of the refrigerant gas in the evaporator detected by the refrigerant gas outlet temperature detector;
Refrigerant inlet pipe temperature detecting means for detecting the temperature of the refrigerant inlet pipe;
Anti-condensation temperature margin setting means for setting a temperature margin necessary to prevent condensation of the refrigerant gas flowing out of the evaporator;
Safe evaporation temperature calculation for calculating the safe evaporation temperature of the refrigerant by subtracting the condensation prevention temperature margin set by the condensation prevention temperature margin setting means from the temperature of the refrigerant suction pipe detected by the refrigerant suction pipe temperature detection means Means,
By subtracting the safe evaporation temperature calculated by the safe evaporation temperature calculation means and the temperature difference set by the temperature difference setting means from the inlet temperature of the heat source fluid detected by the heat source fluid inlet temperature detection means, the degree of superheat It is preferable to have superheat degree set value calculating means for calculating the set value.

さらに、前記過熱度設定値演算手段により演算した過熱度設定値を前記電子膨張弁の過熱度コントローラに送信する過熱度設定値送信手段を有するのがよい。
加えて、標準過熱度設定値を設定する標準過熱度設定値設定手段をさらに有し、過熱度設定値が標準過熱度設定値に達した時点で、前記過熱度設定値調整手段による過熱度設定値の調整を解除する過熱度設定値調整解除手段を有するのでもよい。
さらにまた、前記冷凍装置は、前記凝縮器に外部から供給される水を同凝縮器における冷媒の凝縮潜熱により加熱して蒸気・高温水を供給するとともに、前記蒸発器に外部から供給される排熱を熱源として同蒸発器における冷媒を蒸発させる構成のヒートポンプ式熱回収装置でもよい。
Furthermore, it is preferable to have a superheat degree set value transmitting means for transmitting the superheat degree set value calculated by the superheat degree set value calculating means to the superheat degree controller of the electronic expansion valve.
In addition, there is further provided a standard superheat degree set value setting means for setting a standard superheat degree set value, and when the superheat degree set value reaches the standard superheat degree set value, the superheat degree setting by the superheat degree set value adjusting means is performed. You may have a superheat degree set value adjustment cancellation | release means to cancel | release adjustment of a value.
Furthermore, the refrigeration apparatus heats water supplied from the outside to the condenser with the latent heat of condensation of the refrigerant in the condenser to supply steam and high-temperature water, and discharges the water supplied from the outside to the evaporator. A heat pump heat recovery apparatus configured to evaporate the refrigerant in the evaporator using heat as a heat source may be used.

さらに、前記圧縮機は、内部に油溜めを有しないスクロール型でもよい。
また、前記冷媒吸入配管温度検出手段は、前記冷媒吸入配管の前記圧縮機の上流側近傍において、前記冷媒吸入配管の外壁温度を検出するのでもよい。
Further, the compressor may be a scroll type having no oil sump inside.
The refrigerant suction pipe temperature detecting means may detect an outer wall temperature of the refrigerant suction pipe in the vicinity of the refrigerant suction pipe on the upstream side of the compressor.

上記課題を達成するために、本発明の冷凍装置は、請求項1ないし請求項7のいずれか1項に記載の冷凍装置の制御装置を具備する構成としている。   In order to achieve the above object, a refrigeration apparatus of the present invention is configured to include the control device for a refrigeration apparatus according to any one of claims 1 to 7.

上記課題を達成するために、本発明の冷凍装置の制御方法は、
圧縮機と、凝縮器と、検出過熱度が過熱度設定値となるように開度調整される電子膨張弁と、蒸発器とがこの順に接続されて構成され、冷媒が循環する冷媒回路を備えた冷凍装置の制御方法において、
蒸発器における熱源流体の入口温度と冷媒ガスの出口温度との温度差を設定するとともに、蒸発器から流出した冷媒ガスの凝縮を防止するのに必要な温度マージンを設定する段階と、
蒸発器における熱源流体の入口温度、および冷媒ガスの出口温度を検出するとともに、圧縮機への冷媒吸入配管の温度を検出する段階と、
検出された冷媒吸入配管の温度から設定された凝縮防止温度マージンを減じることにより、冷媒の安全蒸発温度を演算する段階と、
検出された熱源流体の入口温度から、演算された安全蒸発温度および設定された温度差を減じることにより、過熱度設定値を演算する段階とを、有し、
それにより、冷凍装置の始動の際、蒸発器における冷媒の蒸発温度が、圧縮機への冷媒吸入配管の温度より低くなるように、電子膨張弁に対する過熱度設定値を調整する、構成としている。
In order to achieve the above object, a control method for a refrigeration apparatus of the present invention includes:
A compressor, a condenser, an electronic expansion valve whose opening degree is adjusted so that the detected superheat degree becomes a superheat degree set value, and an evaporator are connected in this order, and a refrigerant circuit in which the refrigerant circulates is provided. In the control method of the freezing device,
Setting a temperature difference between the inlet temperature of the heat source fluid and the outlet temperature of the refrigerant gas in the evaporator, and setting a temperature margin necessary to prevent condensation of the refrigerant gas flowing out of the evaporator;
Detecting the inlet temperature of the heat source fluid in the evaporator and the outlet temperature of the refrigerant gas, and detecting the temperature of the refrigerant suction pipe to the compressor;
Calculating a safe evaporation temperature of the refrigerant by subtracting the set condensation prevention temperature margin from the detected temperature of the refrigerant suction pipe; and
Calculating a superheat setting value by subtracting the calculated safe evaporation temperature and the set temperature difference from the detected inlet temperature of the heat source fluid; and
Thereby, when the refrigeration apparatus is started, the superheat degree set value for the electronic expansion valve is adjusted so that the evaporation temperature of the refrigerant in the evaporator is lower than the temperature of the refrigerant suction pipe to the compressor.

また、前記過熱度設定値の調整段階は、冷媒吸入配管温度の上昇に応じて、過熱度設定値を漸次低減する段階を有するのでもよい。
さらに、前記温度マージン設定段階は、冷媒吸入配管温度の上昇傾きの低減に応じて、温度マージンを漸次低減する段階を有するのでもよい。
The adjusting step of the superheat setting value may include a step of gradually reducing the superheat setting value in accordance with an increase in the refrigerant suction pipe temperature.
Further, the temperature margin setting step may include a step of gradually reducing the temperature margin in accordance with a decrease in the rising slope of the refrigerant suction pipe temperature.

本発明に係る冷凍装置の制御装置および制御方法の実施形態を図面を参照しながら、以下に詳細に説明する。
図1において、冷凍装置12は、概略的には、圧縮機18の吐出側に一端が接続された冷媒往管20の他端が、凝縮器22、電子膨張弁24を介して蒸発器16の1次側流路入口に接続され、1次側流路出口に一端が接続された冷媒復管26の他端が、圧縮機18の吸入側に接続され、冷媒回路を構成している。冷媒については、たとえば、フロン系として、R22およびR23、非フロン系として、アンモニア冷媒および二酸化炭素冷媒を用いてもよい。
Embodiments of a control device and a control method for a refrigeration apparatus according to the present invention will be described below in detail with reference to the drawings.
In FIG. 1, the refrigeration apparatus 12 schematically includes the refrigerant outlet pipe 20 having one end connected to the discharge side of the compressor 18, and the other end of the evaporator 16 via a condenser 22 and an electronic expansion valve 24. The other end of the refrigerant return pipe 26 connected to the primary side flow path inlet and connected to one end of the primary side flow path outlet is connected to the suction side of the compressor 18 to constitute a refrigerant circuit. As for the refrigerant, for example, R22 and R23 may be used as chlorofluorocarbons, and ammonia refrigerant and carbon dioxide refrigerant may be used as non-fluorocarbons.

蒸発器16は、乾式の蒸発器として構成され、蒸発器16の内部に冷媒回路12と接続された熱交換管(図示せず)が配設され、胴側に冷媒ガスが充満するようにして、排水の熱回収をすることにより、冷媒を加熱している。
より詳細には、冷媒と管外の排水とが熱交換し、排水が冷媒液を加熱することにより、蒸発器16の出口で冷媒が乾きガスとなって圧縮機18に吸引されるようにしてある。
The evaporator 16 is configured as a dry evaporator, and a heat exchange pipe (not shown) connected to the refrigerant circuit 12 is disposed inside the evaporator 16 so that the trunk side is filled with refrigerant gas. The refrigerant is heated by heat recovery of the waste water.
More specifically, the refrigerant exchanges heat with the waste water outside the pipe, and the waste water heats the refrigerant liquid so that the refrigerant is dried at the outlet of the evaporator 16 and sucked into the compressor 18. is there.

圧縮機18は、たとえば、容量制御式の往復圧縮機または回転あるいは遠心圧縮機が用いられる。特に、往復式圧縮機であれば、潤滑剤をクランク室等の低圧チャンバーに戻し、スクリュー圧縮機であれば、圧縮機ケーシングの低圧域又は中間圧域に戻すようにする。冷媒回路12における圧縮機18の駆動用モータ38には、インバータ装置40を設けて駆動用モータ38を回転数制御できるようにしてある。
この場合、後に説明するように、圧縮機18内の油温を測定する代わりに、圧縮機18上流側の冷媒吸入配管である冷媒復管26の温度を測定し、この冷媒吸入配管温度を用いて、電子膨張弁24の開度を調整するようにしており、これは、たとえば、内部に油溜めを有しないスクロ―ル型の圧縮機にも有利である。
As the compressor 18, for example, a capacity-controlled reciprocating compressor or a rotary or centrifugal compressor is used. Particularly, in the case of a reciprocating compressor, the lubricant is returned to a low pressure chamber such as a crank chamber, and in the case of a screw compressor, the lubricant is returned to a low pressure region or an intermediate pressure region of the compressor casing. The drive motor 38 of the compressor 18 in the refrigerant circuit 12 is provided with an inverter device 40 so that the rotational speed of the drive motor 38 can be controlled.
In this case, as described later, instead of measuring the oil temperature in the compressor 18, the temperature of the refrigerant return pipe 26, which is the refrigerant suction pipe upstream of the compressor 18, is measured, and this refrigerant suction pipe temperature is used. Thus, the opening degree of the electronic expansion valve 24 is adjusted, which is advantageous for a scroll type compressor having no oil sump inside, for example.

圧縮機18の下流側には油分離器42が設けられ、油分離器42で分離された潤滑剤は圧縮機18に戻される。油分離器42の下流側には、順に凝縮器22及び受液器44が設けられ、受液器44の下流側には、運転の開始時又は停止時に冷媒回路12の開閉を行なう電磁弁(図示せず)と、膨張弁24とが設けられている。凝縮器22は、蒸発式、水冷式又は空冷式でもよい。圧縮機18の上流側の冷媒復管26には、冷媒ガス温度を検出する温度センサ(図示せず)と冷媒ガス圧力を検出する圧力センサ(図示せず)が設けられている。
電子膨張弁24には、従来既知の過熱度コントローラ25が付設され、後に説明するように、運転中に検出される検出過熱度が、過熱度設定値調整手段100により調整された過熱度設定値(目標過熱度)となるように、過熱度コントローラ25が、たとえばPID制御により、電子膨張弁24の開度を調整するようにしてある。
An oil separator 42 is provided on the downstream side of the compressor 18, and the lubricant separated by the oil separator 42 is returned to the compressor 18. A condenser 22 and a liquid receiver 44 are sequentially provided on the downstream side of the oil separator 42, and an electromagnetic valve (opening / closing the refrigerant circuit 12 at the start or stop of operation) is provided on the downstream side of the liquid receiver 44. (Not shown) and an expansion valve 24 are provided. The condenser 22 may be an evaporation type, a water cooling type, or an air cooling type. The refrigerant return pipe 26 upstream of the compressor 18 is provided with a temperature sensor (not shown) for detecting the refrigerant gas temperature and a pressure sensor (not shown) for detecting the refrigerant gas pressure.
A conventionally known superheat degree controller 25 is attached to the electronic expansion valve 24, and the superheat degree set value in which the detected superheat degree detected during operation is adjusted by the superheat degree set value adjusting means 100 as will be described later. The superheat degree controller 25 adjusts the opening degree of the electronic expansion valve 24 by, for example, PID control so as to be (target superheat degree).

図2に示すように、過熱度設定値調整手段100は、蒸発器16における熱源流体の入口温度を検出する熱源流体入口温度検出手段102と、蒸発器における冷媒ガスの出口温度を検出する冷媒ガス出口温度検出手段104と、熱源流体入口温度検出手段102により検出される熱源流体の入口温度と、冷媒ガス出口温度検出手段104により検出される蒸発器16における冷媒ガスの出口温度との温度差を設定する温度差設定手段106と、冷媒吸入配管の温度を検出する冷媒吸入配管温度検出手段108と、蒸発器16から流出した冷媒ガスの凝縮を防止するのに必要な温度マージンを設定する凝縮防止温度マージン設定手段110と、冷媒吸入配管温度検出手段108により検出された冷媒吸入配管の温度から、凝縮防止温度マージン設定手段110により設定された凝縮防止温度マージンを減じることにより、冷媒の安全蒸発温度を演算する安全蒸発温度演算手段112と、熱源流体入口温度検出手段108により検出された熱源流体の入口温度から、安全蒸発温度演算手段112により演算された安全蒸発温度および温度差設定手段により設定された温度差を減じることにより、過熱度設定値を演算する過熱度設定値演算手段114とを、有する。
なお、熱源流体入口温度検出手段108は、圧縮機18近傍の温度が最も上がりにくい位置に設置するのが好ましい。
さらに、過熱度設定値演算手段114により演算した過熱度設定値を電子膨張弁の過熱度コントローラ25に送信する過熱度設定値送信手段116を有する。
さらに、標準過熱度設定値を設定する標準過熱度設定値設定手段118を有し、過熱度設定値が標準過熱度設定値に達した時点で、過熱度設定値調整手段100による過熱度設定値の調整を解除する過熱度設定値調整解除手段120を有する。
過熱度設定値調整解除手段120による解除信号は、図2に示すように、過熱度コントローラ25に直接送信されてもよいし、過熱度設定値送信手段116に送信してもよい。
As shown in FIG. 2, the superheat setting value adjusting means 100 includes a heat source fluid inlet temperature detecting means 102 that detects the inlet temperature of the heat source fluid in the evaporator 16, and a refrigerant gas that detects the outlet temperature of the refrigerant gas in the evaporator. The temperature difference between the inlet temperature of the heat source fluid detected by the outlet temperature detection means 104, the heat source fluid inlet temperature detection means 102, and the outlet temperature of the refrigerant gas in the evaporator 16 detected by the refrigerant gas outlet temperature detection means 104 is calculated. The temperature difference setting means 106 to be set, the refrigerant suction pipe temperature detection means 108 for detecting the temperature of the refrigerant suction pipe, and the condensation prevention for setting a temperature margin necessary for preventing condensation of the refrigerant gas flowing out from the evaporator 16 From the temperature of the refrigerant suction pipe detected by the temperature margin setting means 110 and the refrigerant suction pipe temperature detection means 108, a condensation prevention temperature margin is obtained. By reducing the condensation prevention temperature margin set by the fixing means 110, the safe evaporation temperature calculating means 112 for calculating the safe evaporation temperature of the refrigerant, and the inlet temperature of the heat source fluid detected by the heat source fluid inlet temperature detecting means 108, And a superheat degree set value calculating means 114 for calculating a superheat degree set value by subtracting the temperature difference set by the safe evaporation temperature calculated by the safe evaporation temperature calculating means 112 and the temperature difference setting means.
The heat source fluid inlet temperature detection means 108 is preferably installed at a position where the temperature in the vicinity of the compressor 18 is most unlikely to rise.
Furthermore, it has the superheat degree set value transmission means 116 which transmits the superheat degree set value calculated by the superheat degree set value calculation means 114 to the superheat degree controller 25 of the electronic expansion valve.
Furthermore, it has a standard superheat degree set value setting means 118 for setting a standard superheat degree set value, and when the superheat degree set value reaches the standard superheat degree set value, the superheat degree set value by the superheat degree set value adjusting means 100 is set. The superheat degree set value adjustment release means 120 for releasing the adjustment is provided.
As shown in FIG. 2, the release signal from the superheat degree set value adjustment release means 120 may be transmitted directly to the superheat degree controller 25 or may be sent to the superheat degree set value transmission means 116.

蒸発器16で、冷媒液は熱源流体と熱交換されて気化し、冷媒復管26を経て圧縮機18に吸入されるが、その際、液圧縮防止の観点から、運転状態の過熱度(検出過熱度)が目標過熱度になるように調整している。以下、冷媒回路12の過熱度の調整について説明する。
図3に示すように、圧縮機18の吸入側における冷媒圧力PLおよび冷媒温度T1が検出され、PLは飽和蒸気温度T2に変換されて、過熱度SHがT1−T2により計算され、この過熱度が目標過熱度SHとなるように、電子膨張弁24を制御する。
より具体的には、過熱度SHは次の算式で求められる。
過熱度SH=(冷媒の蒸発器出口冷媒ガス温度T1)−(冷媒の蒸発圧力相当飽和温度T2)
算式中、冷媒の蒸発器出口冷媒ガス温度T1は、温度センサで検出される。蒸発器16での冷媒の蒸発圧力相当飽和温度T2は、圧力センサで検出された冷媒の蒸発圧力PLからコントローラで換算され、コントローラで算式を演算して、冷媒の過熱度SHが求められる。
In the evaporator 16, the refrigerant liquid is vaporized by heat exchange with the heat source fluid, and is sucked into the compressor 18 through the refrigerant return pipe 26. At this time, from the viewpoint of preventing liquid compression, the degree of superheat (detection of the operating state) is detected. (Superheat degree) is adjusted to the target superheat degree. Hereinafter, adjustment of the degree of superheat of the refrigerant circuit 12 will be described.
As shown in FIG. 3, the refrigerant pressure PL and the refrigerant temperature T1 on the suction side of the compressor 18 are detected, PL is converted into a saturated steam temperature T2, and the superheat degree SH is calculated by T1-T2, and this superheat degree is calculated. The electronic expansion valve 24 is controlled so that becomes the target superheat degree SH.
More specifically, the superheat degree SH is obtained by the following formula.
Superheat degree SH = (refrigerant outlet refrigerant gas temperature T1) − (refrigerant evaporation pressure equivalent saturation temperature T2)
In the formula, the refrigerant outlet refrigerant gas temperature T1 of the refrigerant is detected by a temperature sensor. The saturation temperature T2 corresponding to the evaporation pressure of the refrigerant in the evaporator 16 is converted by the controller from the evaporation pressure PL of the refrigerant detected by the pressure sensor, and the equation is calculated by the controller to obtain the superheat degree SH of the refrigerant.

運転が開始されると、冷媒回路12に冷媒が回路内で循環し始め、この状態で電子膨張弁24の開度は0%とする。次に、コントローラで膨張弁24の開方向への操作量を演算する。膨張弁24の動作はコントローラにより、たとえばPID制御される。冷媒SHの目標値は、たとえば、SV=6℃に設定される。 When the operation is started, the refrigerant starts to circulate in the refrigerant circuit 12 in the circuit, and the opening degree of the electronic expansion valve 24 is set to 0% in this state. Next, an operation amount in the opening direction of the expansion valve 24 is calculated by the controller. The operation of the expansion valve 24 is, for example, PID controlled by a controller. The target value of the refrigerant SH is set to SV = 6 ° C., for example.

選択された操作量となるように、コントローラでMV=0〜100%の範囲で膨張弁24をPID制御により操作する。
以上は、電子膨張弁24が動作方向正(開方向)に動作する場合であるが、膨張弁24が動作方向負(閉方向)に動作する場合であっても同様の制御を行なう。
なお、コントローラにおいて、電子膨張弁24の開度を調整するのに電気信号を膨張弁24に送信するようにしている。この場合、たとえば電気信号の0ないし20mAを過熱度0ないし30Kに線形に対応させるようにしておく。
The expansion valve 24 is operated by the PID control in the range of MV = 0 to 100% by the controller so that the selected operation amount is obtained.
The above is the case where the electronic expansion valve 24 operates in the positive direction of operation (opening direction), but the same control is performed even when the expansion valve 24 operates in the negative direction of operation (closed direction).
In the controller, an electric signal is transmitted to the expansion valve 24 in order to adjust the opening degree of the electronic expansion valve 24. In this case, for example, an electric signal of 0 to 20 mA is linearly associated with a superheat degree of 0 to 30K.

以上の構成を有する冷凍装置の制御装置について、図4を参照しながらその作用を説明する。
図4に示すように、熱源側温度勾配曲線が蒸発器入口温度から蒸発器出口温度に向かって減少する一方、冷媒側温度勾配曲線が蒸発器入口温度から蒸発器出口温度に向かって増大する場合に、熱源側蒸発器入口温度Aと冷媒側蒸発器出口温度との差を基準アプローチBとして設定するとともに、圧縮機への液バックを防止する観点から、吸入配管温度Cに対して凝縮防止温度差E(温度マージン)を設定し、これにより、安全蒸発温度DをD=C−Eで算出する。
次いで、過熱度設定値Fを以下の計算式(a)により算出する。
F=A−D−B=A−(C−E)−B (a)

(a)式に基づいて、過熱度設定値Fを算出し、検出過熱度が過熱度設定値Fとなるように、過熱度設定値Fを過熱度コントローラ25に送信する。
The operation of the control apparatus for the refrigeration apparatus having the above configuration will be described with reference to FIG.
As shown in FIG. 4, when the heat source side temperature gradient curve decreases from the evaporator inlet temperature toward the evaporator outlet temperature, the refrigerant side temperature gradient curve increases from the evaporator inlet temperature toward the evaporator outlet temperature. In addition, the difference between the heat source side evaporator inlet temperature A and the refrigerant side evaporator outlet temperature is set as the reference approach B, and from the viewpoint of preventing liquid back to the compressor, the condensation prevention temperature with respect to the suction pipe temperature C A difference E (temperature margin) is set, whereby the safe evaporation temperature D is calculated as D = CE.
Next, the superheat setting value F is calculated by the following calculation formula (a).
F = A-D-B = A- (CE) -B (a)

Based on the equation (a), the superheat degree set value F is calculated, and the superheat degree set value F is transmitted to the superheat degree controller 25 so that the detected superheat degree becomes the superheat degree set value F.

この場合、(a)式において、冷却運転中に測定される熱源側蒸発器入口温度Aおよび吸入配管温度Cに基づいて、設定した基準アプローチBおよび凝縮防止温度差Eを利用して、過熱度設定値Fを算出することから、検出過熱度が過熱度設定値Fとなるように制御することにより、凝縮防止温度差Eが確保される。
(a)式に基づいて算出された過熱度設定値Fが過熱度コントローラ25に送信されて、過熱度コントローラ25において、検出過熱度が過熱度設定値Fとなるように電子膨張弁の開度を調整する。
特に、冷凍装置の始動の際、検出過熱度が過熱度設定値Fとなるように制御すれば、
たとえば、冬場において吸入配管温度Cが低い場合であっても、安全蒸発温度Dは吸入配管温度Cよりも凝縮防止温度差Eだけ低く設定されるので、冷媒の再凝縮による圧縮機への液バックを防止することが可能である。
基準アプローチBおよび凝縮防止温度差Eそれぞれの設定値について、たとえば、冷凍装置の試運転結果に基づいて、設定してもよい。
特に、凝縮防止温度差Eは、大きいほど、すなわち過熱度設定値Fが大きいほど、圧縮機への液バックを確実に防止することが可能である反面、冷媒の流量が絞られるので、冷凍装置の冷凍能力が小さくなり、冷凍効率が低くなるのに対して、凝縮防止温度差Eは、小さいほど、すなわち過熱度設定値Fが小さいほど、冷媒の流量が増大するので、冷凍装置の冷凍能力が大きくなり、冷凍効率が高くなる反面、圧縮機への液バックの危険性が高まることから、圧縮機への液バック防止と冷凍装置の冷凍能力とを考慮して、決定すればよい。
In this case, in equation (a), based on the heat source side evaporator inlet temperature A and the suction pipe temperature C measured during the cooling operation, using the set reference approach B and the condensation prevention temperature difference E, the degree of superheat Since the set value F is calculated, the condensation prevention temperature difference E is ensured by controlling the detected superheat degree to be the superheat degree set value F.
The superheat degree set value F calculated based on the equation (a) is transmitted to the superheat degree controller 25, and the degree of opening of the electronic expansion valve is set so that the detected superheat degree becomes the superheat degree set value F in the superheat degree controller 25. Adjust.
In particular, when the refrigeration apparatus is started, if the detected superheat degree is controlled to be the superheat degree set value F,
For example, even if the suction pipe temperature C is low in winter, the safe evaporation temperature D is set lower than the suction pipe temperature C by the condensation prevention temperature difference E. Therefore, the liquid back to the compressor is obtained by recondensing the refrigerant. Can be prevented.
The set values of the reference approach B and the condensation prevention temperature difference E may be set, for example, based on the test operation result of the refrigeration apparatus.
In particular, the larger the anti-condensation temperature difference E is, that is, the larger the superheat setting value F is, the more reliably the liquid back to the compressor can be prevented, but the flow rate of the refrigerant is reduced. Refrigeration capacity of the refrigeration apparatus increases because the refrigerant flow rate increases as the anti-condensation temperature difference E decreases, that is, as the superheat setting value F decreases. However, since the risk of liquid back to the compressor increases, the determination may be made in consideration of prevention of liquid back to the compressor and the refrigerating capacity of the refrigeration apparatus.

図5は、冷凍装置の制御装置により制御した過熱度設定値の時間変化の一例を示す図である。
図5に示すように、たとえば冬場での冷凍装置の運転のように、冷媒吸入配管温度は運転始動直後は低く、運転継続により時間経過とともに漸次上昇し、時間T1以降は略一定となる一方、それとは逆に、過熱度設定値は、冷凍装置の始動直後は大きく、時間経過とともに漸次低減し、時間T1以降は略一定となっている。
時間T1以降において、式(a)が示すように、過熱度設定値は、熱源側蒸発器入口温度Aが一定となる限り、一定に維持されるのであり、この場合、標準過熱度設定値設定手段118により予め標準過熱度設定値を設定しておき、過熱度設定値が標準過熱度設定値に達した時点で、過熱度設定値調整解除手段120により、過熱度設定値調整手段100による過熱度設定値の調整を解除してもよい。
その際、標準過熱度設定値は、たとえば、試運転により試行錯誤により決定すればよく、時間T1時点での過熱度設定値に設定してもよい。
さらに、変形例として、冷媒吸入配管温度の上昇曲線の上昇傾きが時間経過とともに緩やかとなる場合には、冷媒吸入配管温度の上昇傾きの低減に応じて、凝縮防止温度差E(温度マージン)を漸次低減するようにしてもよい。
これにより、時間T1までの運転において、圧縮機への液バック防止を達成するとともに、凝縮防止温度差E(温度マージン)を漸次低減することにより、凝縮防止温度差E(温度マージン)を一定とする場合に比して、過熱度設定値の低減を早めて、冷凍装置の冷凍能力を有効に活用することも可能である。
FIG. 5 is a diagram illustrating an example of a temporal change in the superheat degree set value controlled by the control device of the refrigeration apparatus.
As shown in FIG. 5, for example, the refrigerant intake pipe temperature is low immediately after the start of operation as in the operation of the refrigeration apparatus in winter, and gradually increases with the lapse of time as the operation continues, and becomes substantially constant after time T1. On the contrary, the superheat setting value is large immediately after the start of the refrigeration apparatus, gradually decreases with time, and is substantially constant after time T1.
After time T1, as shown by the equation (a), the superheat setting value is maintained constant as long as the heat source side evaporator inlet temperature A is constant. In this case, the standard superheat setting value setting is set. A standard superheat degree set value is set in advance by means 118, and when the superheat degree set value reaches the standard superheat degree set value, superheat by the superheat degree set value adjustment means 100 is overheated by the superheat degree set value adjustment release means 120. The adjustment of the degree setting value may be canceled.
At that time, the standard superheat degree set value may be determined by trial and error by trial operation, for example, and may be set to the superheat degree set value at time T1.
Further, as a modification, when the rising slope of the rising curve of the refrigerant suction pipe temperature becomes gentle with time, the condensation prevention temperature difference E (temperature margin) is set according to the reduction of the rising slope of the refrigerant suction pipe temperature. You may make it reduce gradually.
As a result, in the operation up to time T1, liquid back prevention to the compressor is achieved, and the condensation prevention temperature difference E (temperature margin) is gradually reduced, thereby making the condensation prevention temperature difference E (temperature margin) constant. Compared with the case where it does, it is also possible to accelerate | stimulate reduction of a superheat degree setting value and to utilize the freezing capacity of a freezing apparatus effectively.

上記構成の冷凍装置10の制御装置によれば、冷凍装置10の始動の際、過熱度設定値調整手段100により、蒸発器16における冷媒の蒸発温度が、圧縮機18への冷媒吸入配管の温度より低くなるように、電子膨張弁24に対する過熱度設定値を調整することにより、たとえば冬場において、外気により冷やされて冷媒吸入配管の温度が低い場合であっても、冷媒の蒸発温度がこのような冷媒吸入配管の温度より低くなるようにして、始動の際、冷媒吸入配管を別途加熱する必要なしに、冷媒の再凝縮による圧縮機18への液バックを防止することが可能であり、一方、冷凍装置10の運転継続とともに冷媒吸入配管が徐々に加熱されるのに応じて、過熱度設定値調整手段100により過熱度設定値を低減させることを通じて、冷凍装置10を適切な効率で運用することが可能である。 According to the control device of the refrigeration apparatus 10 having the above-described configuration, when the refrigeration apparatus 10 is started, the superheat degree setting value adjusting unit 100 causes the evaporation temperature of the refrigerant in the evaporator 16 to be the temperature of the refrigerant suction pipe to the compressor 18. By adjusting the superheat setting value for the electronic expansion valve 24 so as to be lower, the evaporating temperature of the refrigerant is in this way even in the winter, even when the temperature of the refrigerant suction pipe is low due to cooling by the outside air. It is possible to prevent the liquid back to the compressor 18 due to recondensation of the refrigerant without the need to heat the refrigerant suction pipe separately at the time of starting so that the temperature of the refrigerant suction pipe becomes lower. As the refrigerant suction pipe is gradually heated as the operation of the refrigeration apparatus 10 is continued, the refrigeration apparatus is configured to reduce the superheat degree setting value by the superheat degree setting value adjusting means 100. 0 it is possible to operate with the appropriate efficiency.

以上、本発明の実施形態を詳細に説明したが、本発明の範囲から逸脱しない範囲内において、当業者であれば、種々の修正あるいは変更が可能である。
たとえば、本実施形態において、ヒートポンプ式熱回収装置に対する制御装置あるいは制御方法として説明したが、それに限定されるものでなく、冷間始動、たとえば冬場の始動の際に、冷媒の蒸発温度が周囲温度より高い冷凍設備一般に適用可能である。
また、たとえば、本実施形態において、冷媒吸入配管温度が変動する場合に過熱度設定値を調整する場合を説明したが、それに限定されるものでなく、冷媒吸入配管温度が略一定のもとで、熱源側蒸発器入口温度が変動する場合にも、適用可能である。
The embodiments of the present invention have been described in detail above, but various modifications or changes can be made by those skilled in the art without departing from the scope of the present invention.
For example, in the present embodiment, the control device or the control method for the heat pump heat recovery device has been described. However, the present invention is not limited to this, and during cold start, for example, start in winter, the evaporation temperature of the refrigerant is the ambient temperature. Applicable to higher refrigeration facilities in general.
Further, for example, in the present embodiment, the case where the superheat setting value is adjusted when the refrigerant suction pipe temperature fluctuates has been described. However, the present invention is not limited to this, and the refrigerant suction pipe temperature is substantially constant. It is also applicable when the heat source side evaporator inlet temperature fluctuates.

本発明の実施形態に係る冷凍装置の全体構成図である。1 is an overall configuration diagram of a refrigeration apparatus according to an embodiment of the present invention. 本発明の実施形態に係る冷凍装置の過熱度の制御部の構成図である。It is a block diagram of the control part of the superheat degree of the freezing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る冷凍装置の過熱度の検出に係る部分の概略図である。It is the schematic of the part which concerns on the detection of the superheat degree of the freezing apparatus which concerns on embodiment of this invention. 本発明の実施施形態に係る冷凍装置の過熱度の制御の概念を示す温度勾配曲線図である。It is a temperature gradient curve figure which shows the concept of control of the superheat degree of the freezing apparatus which concerns on embodiment of this invention. 本発明の実施施形態に係る冷凍装置の制御装置により制御された過熱度設定値の時間変化の一例を示す図である。It is a figure which shows an example of the time change of the superheat degree setting value controlled by the control apparatus of the freezing apparatus which concerns on embodiment of this invention.

10 冷凍装置
12 冷媒回路
16 蒸発器
18 圧縮機
20 冷媒往管
22 凝縮器
24 電子膨張弁
26 冷媒復管
38 駆動用モータ
40 インバータ装置
42 油分離器
44 受液器
47 アキュムレータ
52 制御部
100 過熱度設定値調整手段
102 熱源流体入口温度検出手段
104 冷媒ガス出口温度検出手段
106 温度差設定手段
108 冷媒吸入配管温度検出手段
110 凝縮防止温度マージン設定手段
112 安全蒸発温度演算手段
114 過熱度設定値演算手段
116 過熱度設定値送信手段
118 標準過熱度設定値設定手段
120 過熱度設定値調整解除手段
DESCRIPTION OF SYMBOLS 10 Refrigeration apparatus 12 Refrigerant circuit 16 Evaporator 18 Compressor 20 Refrigerant outbound pipe 22 Condenser 24 Electronic expansion valve 26 Refrigerant return pipe 38 Driving motor 40 Inverter apparatus 42 Oil separator 44 Liquid receiver 47 Accumulator 52 Control part 100 Superheat degree Set value adjusting means 102 Heat source fluid inlet temperature detecting means 104 Refrigerant gas outlet temperature detecting means 106 Temperature difference setting means 108 Refrigerant intake pipe temperature detecting means 110 Condensation prevention temperature margin setting means 112 Safe evaporation temperature calculating means 114 Superheat setting value calculating means 116 Superheat setting value transmitting means 118 Standard superheat setting value setting means 120 Superheat setting value adjustment canceling means

Claims (10)

圧縮機と、凝縮器と、検出過熱度が過熱度設定値となるように開度調整される電子膨張弁
と、蒸発器とがこの順に接続されて構成され、冷媒が循環する冷媒回路を備えた冷凍装置
の制御装置において、前記圧縮機への冷媒吸入配管の外壁温度を検出する冷媒吸入配管温度検出手段が、前記圧縮機の上流側近傍に設けられ、該冷凍装置の始動の際、前記蒸発器における冷媒の蒸発温度が、冷媒吸入配管の温度より低くなるように過熱度を設定し、前記冷媒吸入配管温度検出手段により検出される冷媒ガスによる冷媒吸入配管の加熱程度に応じて、設定した過熱度を低減させる、前記電子膨張弁に対する過熱度設定
値を調整する過熱度設定値調整手段を有する、ことを特徴とする冷凍装置の制御装置。
A compressor, a condenser, an electronic expansion valve whose opening degree is adjusted so that the detected superheat degree becomes a superheat degree set value, and an evaporator are connected in this order, and a refrigerant circuit in which the refrigerant circulates is provided. In the control device for the refrigeration apparatus, a refrigerant suction pipe temperature detecting means for detecting an outer wall temperature of the refrigerant suction pipe to the compressor is provided in the vicinity of the upstream side of the compressor, and when the refrigeration apparatus is started, The degree of superheat is set so that the evaporation temperature of the refrigerant in the evaporator is lower than the temperature of the refrigerant suction pipe, and is set according to the degree of heating of the refrigerant suction pipe by the refrigerant gas detected by the refrigerant suction pipe temperature detecting means A control device for a refrigeration apparatus, comprising: a superheat degree set value adjusting means for adjusting a superheat degree set value for the electronic expansion valve that reduces the degree of superheat .
前記過熱度設定値調整手段は、前記蒸発器における熱源流体の入口温度を検出する熱源流
体入口温度検出手段と、
前記蒸発器における冷媒ガスの出口温度を検出する冷媒ガス出口温度検出手段と、
前記熱源流体入口温度検出手段により検出される熱源流体の入口温度と、前記冷媒ガス出
口温度検出手段により検出される蒸発器における冷媒ガスの出口温度との温度差を設定す
る温度差設定手段と、
前記蒸発器から流出した冷媒ガスの凝縮を防止するのに必要な温度マージンを設定する凝
縮防止温度マージン設定手段と、
前記冷媒吸入配管温度検出手段により検出された冷媒吸入配管の温度から、前記凝縮防止
温度マージン設定手段により設定された凝縮防止温度マージンを減じることにより、冷媒
の安全蒸発温度を演算する安全蒸発温度演算手段と、
前記熱源流体入口温度検出手段により検出された熱源流体の入口温度から、前記安全蒸発
温度演算手段により演算された安全蒸発温度および前記温度差設定手段により設定された
温度差を減じることにより、過熱度設定値を演算する過熱度設定値演算手段とを、有する
請求項1に記載の冷凍装置の制御装置。
The superheat degree set value adjusting means includes heat source fluid inlet temperature detecting means for detecting the inlet temperature of the heat source fluid in the evaporator,
Refrigerant gas outlet temperature detection means for detecting the outlet temperature of the refrigerant gas in the evaporator;
A temperature difference setting means for setting a temperature difference between the inlet temperature of the heat source fluid detected by the heat source fluid inlet temperature detector and the outlet temperature of the refrigerant gas in the evaporator detected by the refrigerant gas outlet temperature detector;
Anti-condensation temperature margin setting means for setting a temperature margin necessary to prevent condensation of the refrigerant gas flowing out of the evaporator;
Safe evaporation temperature calculation for calculating the safe evaporation temperature of the refrigerant by subtracting the condensation prevention temperature margin set by the condensation prevention temperature margin setting means from the temperature of the refrigerant suction pipe detected by the refrigerant suction pipe temperature detection means Means,
By subtracting the safe evaporation temperature calculated by the safe evaporation temperature calculation means and the temperature difference set by the temperature difference setting means from the inlet temperature of the heat source fluid detected by the heat source fluid inlet temperature detection means, the degree of superheat The control device for a refrigeration apparatus according to claim 1, further comprising a superheat degree set value calculation means for calculating a set value.
さらに、前記過熱度設定値演算手段により演算した過熱度設定値を前記電子膨張弁の過熱
度コントローラに送信する過熱度設定値送信手段を有する、請求項2に記載の冷凍装置の
制御装置。
Furthermore, the control apparatus of the refrigerating apparatus of Claim 2 which has a superheat degree setting value transmission means which transmits the superheat degree setting value calculated by the said superheat degree setting value calculation means to the superheat degree controller of the said electronic expansion valve.
さらに、標準過熱度設定値を設定する標準過熱度設定値設定手段を有し、過熱度設定値が
標準過熱度設定値に達した時点で、前記過熱度設定値調整手段による過熱度設定値の調整
を解除する過熱度設定値調整解除手段を有する、請求項2または請求項3に記載の冷凍装
置の制御装置。
Furthermore, it has a standard superheat degree set value setting means for setting a standard superheat degree set value, and when the superheat degree set value reaches the standard superheat degree set value, the superheat degree set value by the superheat degree set value adjusting means The control device for a refrigeration apparatus according to claim 2 or 3, further comprising a superheat degree set value adjustment release means for releasing the adjustment.
前記冷凍装置は、前記凝縮器に外部から供給される水を同凝縮器における冷媒の凝縮潜
熱により加熱して蒸気・高温水を供給するとともに、前記蒸発器に外部から供給される排
熱を熱源として同蒸発器における冷媒を蒸発させる構成のヒートポンプ式熱回収装置であ
る、請求項1ないし請求項4のいずれか1項に記載の冷凍装置の制御装置。
The refrigeration apparatus heats water supplied from the outside to the condenser by condensation latent heat of the refrigerant in the condenser to supply steam / high-temperature water, and exhaust heat supplied from the outside to the evaporator as a heat source The control device for a refrigeration apparatus according to any one of claims 1 to 4, which is a heat pump heat recovery device configured to evaporate a refrigerant in the evaporator.
前記圧縮機は、内部に油溜めを有しないスクロール型である、請求項1に記載の冷凍装置の制御装置。 The control device for a refrigerating apparatus according to claim 1, wherein the compressor is a scroll type having no oil sump inside. 請求項1ないし請求項6のいずれか1項に記載の冷凍装置の制御装置を具備する冷凍装置
A refrigeration apparatus comprising the control device for a refrigeration apparatus according to any one of claims 1 to 6.
圧縮機と、凝縮器と、検出過熱度が過熱度設定値となるように開度調整される電子膨張弁
と、蒸発器とがこの順に接続されて構成され、冷媒が循環する冷媒回路を備えた冷凍装置
の制御方法において、
蒸発器における熱源流体の入口温度と冷媒ガスの出口温度との温度差を設定するとともに
、蒸発器から流出した冷媒ガスの凝縮を防止するのに必要な温度マージンを設定する段階
と、
蒸発器における熱源流体の入口温度、および冷媒ガスの出口温度を検出するとともに、圧
縮機への冷媒吸入配管の温度を検出する段階と、
検出された冷媒吸入配管の温度から設定された凝縮防止温度マージンを減じることにより
、冷媒の安全蒸発温度を演算する段階と、
検出された熱源流体の入口温度から、演算された安全蒸発温度および設定された温度差を
減じることにより、過熱度設定値を演算する段階とを、有し、
それにより、冷凍装置の始動の際、蒸発器における冷媒の蒸発温度が、圧縮機への冷媒吸
入配管の温度より低くなるように、電子膨張弁に対する過熱度設定値を調整する
ことを特徴とする冷凍装置の制御方法。
A compressor, a condenser, an electronic expansion valve whose opening degree is adjusted so that the detected superheat degree becomes a superheat degree set value, and an evaporator are connected in this order, and a refrigerant circuit in which the refrigerant circulates is provided. In the control method of the freezing device,
Setting a temperature difference between the inlet temperature of the heat source fluid and the outlet temperature of the refrigerant gas in the evaporator, and setting a temperature margin necessary to prevent condensation of the refrigerant gas flowing out of the evaporator;
Detecting the inlet temperature of the heat source fluid in the evaporator and the outlet temperature of the refrigerant gas, and detecting the temperature of the refrigerant suction pipe to the compressor;
Calculating a safe evaporation temperature of the refrigerant by subtracting the set condensation prevention temperature margin from the detected temperature of the refrigerant suction pipe; and
Calculating a superheat setting value by subtracting the calculated safe evaporation temperature and the set temperature difference from the detected inlet temperature of the heat source fluid; and
Thereby, when starting the refrigeration system, the superheat degree setting value for the electronic expansion valve is adjusted so that the evaporation temperature of the refrigerant in the evaporator is lower than the temperature of the refrigerant suction pipe to the compressor. Control method of refrigeration equipment.
前記過熱度設定値の調整段階は、冷媒吸入配管温度の上昇に応じて、過熱度設定値を漸
次低減する段階を有する、請求項8に記載の冷凍装置の制御方法。
The method of controlling a refrigeration apparatus according to claim 8, wherein the adjustment step of the superheat degree set value includes a step of gradually reducing the superheat degree set value in accordance with an increase in the refrigerant suction pipe temperature.
前記温度マージン設定段階は、冷媒吸入配管温度の上昇傾きの低減に応じて、温度マー
ジンを漸次低減する段階を有する、請求項8に記載の冷凍装置の制御方法。
The method of controlling a refrigeration apparatus according to claim 8, wherein the temperature margin setting step includes a step of gradually reducing the temperature margin in accordance with a decrease in the rising slope of the refrigerant suction pipe temperature.
JP2013067639A 2013-03-27 2013-03-27 Control apparatus and control method for refrigeration apparatus, and refrigeration apparatus including the control apparatus Active JP5880975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013067639A JP5880975B2 (en) 2013-03-27 2013-03-27 Control apparatus and control method for refrigeration apparatus, and refrigeration apparatus including the control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013067639A JP5880975B2 (en) 2013-03-27 2013-03-27 Control apparatus and control method for refrigeration apparatus, and refrigeration apparatus including the control apparatus

Publications (2)

Publication Number Publication Date
JP2014190637A JP2014190637A (en) 2014-10-06
JP5880975B2 true JP5880975B2 (en) 2016-03-09

Family

ID=51837058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013067639A Active JP5880975B2 (en) 2013-03-27 2013-03-27 Control apparatus and control method for refrigeration apparatus, and refrigeration apparatus including the control apparatus

Country Status (1)

Country Link
JP (1) JP5880975B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477415B2 (en) * 2015-10-26 2019-03-06 富士電機株式会社 Heat pump type steam generator and method for starting heat pump type steam generator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295550A (en) * 1991-03-22 1992-10-20 Toshiba Corp Refrigerating cycle apparatus
JP3758074B2 (en) * 1999-12-08 2006-03-22 富士電機リテイルシステムズ株式会社 Electronic equipment cooling system
JP5165391B2 (en) * 2008-01-07 2013-03-21 ホシザキ電機株式会社 Cooling storage
JP5411209B2 (en) * 2011-06-17 2014-02-12 株式会社鷺宮製作所 Electronic expansion valve controller
JP5812726B2 (en) * 2011-07-12 2015-11-17 三菱重工業株式会社 Heat pump water heater

Also Published As

Publication number Publication date
JP2014190637A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
TWI558962B (en) Constant temperature liquid circulation device and its operation method
RU2480684C2 (en) Method and device for defrosting with hot steam
KR102098164B1 (en) Refrigeration cycle device and control method of refrigeration cycle device
JP6781034B2 (en) Refrigerant circuit system and control method of refrigerant circuit system
JP2011102674A (en) Air conditioning machine
US20120167604A1 (en) Refrigeration cycle apparatus
JP5370551B1 (en) Container refrigeration equipment
JPWO2012059957A1 (en) Air conditioner
JP2002327964A (en) Refrigerator
JP5880975B2 (en) Control apparatus and control method for refrigeration apparatus, and refrigeration apparatus including the control apparatus
JP5787106B2 (en) Control apparatus and control method for refrigeration apparatus, and refrigeration apparatus including the control apparatus
JP2016161248A (en) Heat pump type steam generator and operation method of heat pump type steam generator
JP5573526B2 (en) Refrigeration cycle equipment
JP2005147437A (en) Heat pump device
JP5843642B2 (en) Heat pump type liquid heating device
JP2008249240A (en) Condensing unit and refrigerating device comprising the same
JP5818601B2 (en) Heat pump heat source machine
KR20120087385A (en) Air heat source water heater and its operation control method
JP7056253B2 (en) Rankine cycle system and control method of Rankine cycle system
US12061026B2 (en) Method for managing a heat pump operating with a low environmental impact operating fluid
JPH07305903A (en) Controller for freezer
JP5753977B2 (en) Refrigeration cycle equipment
JP2008107880A (en) Automatic vending machine
JPH0135261B2 (en)
JP2015200459A (en) fluid heating device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141211

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150701

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150804

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160120

R150 Certificate of patent or registration of utility model

Ref document number: 5880975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250