JP5879804B2 - LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AUTHENTICATION DEVICE, AND ELECTRONIC DEVICE - Google Patents
LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AUTHENTICATION DEVICE, AND ELECTRONIC DEVICE Download PDFInfo
- Publication number
- JP5879804B2 JP5879804B2 JP2011173662A JP2011173662A JP5879804B2 JP 5879804 B2 JP5879804 B2 JP 5879804B2 JP 2011173662 A JP2011173662 A JP 2011173662A JP 2011173662 A JP2011173662 A JP 2011173662A JP 5879804 B2 JP5879804 B2 JP 5879804B2
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- light
- layer
- electron transport
- electron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 claims description 231
- 150000001875 compounds Chemical class 0.000 claims description 127
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 claims description 31
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 claims description 31
- 125000005577 anthracene group Chemical group 0.000 claims description 23
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 14
- 125000001424 substituent group Chemical group 0.000 claims description 12
- 125000000217 alkyl group Chemical group 0.000 claims description 10
- 125000003118 aryl group Chemical group 0.000 claims description 10
- 125000001769 aryl amino group Chemical group 0.000 claims description 7
- 125000005259 triarylamine group Chemical group 0.000 claims description 4
- 150000004696 coordination complex Chemical class 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 239000010410 layer Substances 0.000 description 241
- 230000015572 biosynthetic process Effects 0.000 description 80
- 238000003786 synthesis reaction Methods 0.000 description 78
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 69
- 238000002347 injection Methods 0.000 description 56
- 239000007924 injection Substances 0.000 description 56
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical group C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 33
- 239000000758 substrate Substances 0.000 description 29
- 239000007787 solid Substances 0.000 description 28
- 238000000034 method Methods 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 230000005525 hole transport Effects 0.000 description 24
- -1 thiadiazole compound Chemical class 0.000 description 24
- 229910052757 nitrogen Inorganic materials 0.000 description 21
- 102100022653 Histone H1.5 Human genes 0.000 description 20
- 101000899879 Homo sapiens Histone H1.5 Proteins 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 18
- 239000000470 constituent Substances 0.000 description 17
- 229920003026 Acene Polymers 0.000 description 16
- 229910004298 SiO 2 Inorganic materials 0.000 description 16
- 239000012153 distilled water Substances 0.000 description 16
- 229910002027 silica gel Inorganic materials 0.000 description 16
- 239000000741 silica gel Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 15
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 15
- 238000007789 sealing Methods 0.000 description 14
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 12
- 238000001771 vacuum deposition Methods 0.000 description 11
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 9
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 9
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 9
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- 125000004433 nitrogen atom Chemical group N* 0.000 description 7
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 7
- 238000009832 plasma treatment Methods 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- 229910000029 sodium carbonate Inorganic materials 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 6
- 239000006059 cover glass Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000012808 vapor phase Substances 0.000 description 6
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical class C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000002612 dispersion medium Substances 0.000 description 5
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- FKIFDWYMWOJKTQ-UHFFFAOYSA-N 9-bromo-10-naphthalen-2-ylanthracene Chemical compound C12=CC=CC=C2C(Br)=C(C=CC=C2)C2=C1C1=CC=C(C=CC=C2)C2=C1 FKIFDWYMWOJKTQ-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 150000002009 diols Chemical class 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 4
- 0 *C1CC([C@]2C3=CC*N(C4)C4C*C3C(C3=C*CCC=C3)=C(CC=*=C3c4ccccc4C4C=CC=C[C@@]4C3=C3)C2C3=C)=CC=CC1 Chemical compound *C1CC([C@]2C3=CC*N(C4)C4C*C3C(C3=C*CCC=C3)=C(CC=*=C3c4ccccc4C4C=CC=C[C@@]4C3=C3)C2C3=C)=CC=CC1 0.000 description 3
- BRUOAURMAFDGLP-UHFFFAOYSA-N 9,10-dibromoanthracene Chemical compound C1=CC=C2C(Br)=C(C=CC=C3)C3=C(Br)C2=C1 BRUOAURMAFDGLP-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 229910001508 alkali metal halide Inorganic materials 0.000 description 3
- 150000008045 alkali metal halides Chemical class 0.000 description 3
- 150000001454 anthracenes Chemical class 0.000 description 3
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000013065 commercial product Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 3
- KPTRDYONBVUWPD-UHFFFAOYSA-N naphthalen-2-ylboronic acid Chemical compound C1=CC=CC2=CC(B(O)O)=CC=C21 KPTRDYONBVUWPD-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 150000003518 tetracenes Chemical class 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- NHDIQVFFNDKAQU-UHFFFAOYSA-N tripropan-2-yl borate Chemical compound CC(C)OB(OC(C)C)OC(C)C NHDIQVFFNDKAQU-UHFFFAOYSA-N 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- UHXOHPVVEHBKKT-UHFFFAOYSA-N 1-(2,2-diphenylethenyl)-4-[4-(2,2-diphenylethenyl)phenyl]benzene Chemical group C=1C=C(C=2C=CC(C=C(C=3C=CC=CC=3)C=3C=CC=CC=3)=CC=2)C=CC=1C=C(C=1C=CC=CC=1)C1=CC=CC=C1 UHXOHPVVEHBKKT-UHFFFAOYSA-N 0.000 description 2
- PKJBWOWQJHHAHG-UHFFFAOYSA-N 1-bromo-4-phenylbenzene Chemical group C1=CC(Br)=CC=C1C1=CC=CC=C1 PKJBWOWQJHHAHG-UHFFFAOYSA-N 0.000 description 2
- SAODOTSIOILVSO-UHFFFAOYSA-N 2-(4-bromophenyl)naphthalene Chemical compound C1=CC(Br)=CC=C1C1=CC=C(C=CC=C2)C2=C1 SAODOTSIOILVSO-UHFFFAOYSA-N 0.000 description 2
- ICSNLGPSRYBMBD-UHFFFAOYSA-N 2-aminopyridine Chemical compound NC1=CC=CC=N1 ICSNLGPSRYBMBD-UHFFFAOYSA-N 0.000 description 2
- OBAJPWYDYFEBTF-UHFFFAOYSA-N 2-tert-butyl-9,10-dinaphthalen-2-ylanthracene Chemical compound C1=CC=CC2=CC(C3=C4C=CC=CC4=C(C=4C=C5C=CC=CC5=CC=4)C4=CC=C(C=C43)C(C)(C)C)=CC=C21 OBAJPWYDYFEBTF-UHFFFAOYSA-N 0.000 description 2
- VFUDMQLBKNMONU-UHFFFAOYSA-N 9-[4-(4-carbazol-9-ylphenyl)phenyl]carbazole Chemical group C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 VFUDMQLBKNMONU-UHFFFAOYSA-N 0.000 description 2
- WHGGVVHVBFMGSG-UHFFFAOYSA-N 9-bromo-10-phenylanthracene Chemical compound C12=CC=CC=C2C(Br)=C2C=CC=CC2=C1C1=CC=CC=C1 WHGGVVHVBFMGSG-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 102100039855 Histone H1.2 Human genes 0.000 description 2
- 101001035375 Homo sapiens Histone H1.2 Proteins 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 229910001615 alkaline earth metal halide Inorganic materials 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- 125000005620 boronic acid group Chemical group 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000010898 silica gel chromatography Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- LZPBKINTWROMEA-UHFFFAOYSA-N tetracene-5,12-dione Chemical compound C1=CC=C2C=C3C(=O)C4=CC=CC=C4C(=O)C3=CC2=C1 LZPBKINTWROMEA-UHFFFAOYSA-N 0.000 description 2
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 2
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 2
- BWHDROKFUHTORW-UHFFFAOYSA-N tritert-butylphosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- ZKRVXVDQQOVOIM-UHFFFAOYSA-N (2-boronophenyl)boronic acid Chemical compound OB(O)C1=CC=CC=C1B(O)O ZKRVXVDQQOVOIM-UHFFFAOYSA-N 0.000 description 1
- NGQSLSMAEVWNPU-YTEMWHBBSA-N 1,2-bis[(e)-2-phenylethenyl]benzene Chemical class C=1C=CC=CC=1/C=C/C1=CC=CC=C1\C=C\C1=CC=CC=C1 NGQSLSMAEVWNPU-YTEMWHBBSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical class NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical class C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- ZKSVYBRJSMBDMV-UHFFFAOYSA-N 1,3-diphenyl-2-benzofuran Chemical compound C1=CC=CC=C1C1=C2C=CC=CC2=C(C=2C=CC=CC=2)O1 ZKSVYBRJSMBDMV-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- GRZUOGFRIHABDK-UHFFFAOYSA-N 2-(4-bromophenyl)imidazo[1,2-a]pyridine Chemical compound C1=CC(Br)=CC=C1C1=CN(C=CC=C2)C2=N1 GRZUOGFRIHABDK-UHFFFAOYSA-N 0.000 description 1
- FKJSFKCZZIXQIP-UHFFFAOYSA-N 2-bromo-1-(4-bromophenyl)ethanone Chemical compound BrCC(=O)C1=CC=C(Br)C=C1 FKJSFKCZZIXQIP-UHFFFAOYSA-N 0.000 description 1
- KLIKMNZDOIVART-UHFFFAOYSA-N 3-benzo[a]anthracen-1-yl-1h-2,1,3-benzothiadiazole Chemical compound C1=CC=CC2=CC3=C4C(N5SNC6=CC=CC=C65)=CC=CC4=CC=C3C=C21 KLIKMNZDOIVART-UHFFFAOYSA-N 0.000 description 1
- ZNFMFLLMYATRMY-UHFFFAOYSA-N 4,5-dibromo-1,2,3-benzothiadiazole Chemical compound BrC1=CC=C2SN=NC2=C1Br ZNFMFLLMYATRMY-UHFFFAOYSA-N 0.000 description 1
- XEVOZPRNEPMHAF-UHFFFAOYSA-N 4,7-dibromo-5,6-dinitro-2,1,3-benzothiadiazole Chemical compound BrC1=C([N+]([O-])=O)C([N+](=O)[O-])=C(Br)C2=NSN=C21 XEVOZPRNEPMHAF-UHFFFAOYSA-N 0.000 description 1
- SQTLUXJWUCHKMT-UHFFFAOYSA-N 4-bromo-n,n-diphenylaniline Chemical compound C1=CC(Br)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 SQTLUXJWUCHKMT-UHFFFAOYSA-N 0.000 description 1
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 1
- PHRMPCJUZORKPS-UHFFFAOYSA-N 5,12-bis(4-phenylphenyl)tetracene-5,12-diol Chemical compound C12=CC=CC=C2C(O)(C=2C=CC(=CC=2)C=2C=CC=CC=2)C2=CC3=CC=CC=C3C=C2C1(O)C(C=C1)=CC=C1C1=CC=CC=C1 PHRMPCJUZORKPS-UHFFFAOYSA-N 0.000 description 1
- JXQYWMRMLVKOPB-UHFFFAOYSA-N 5,6-dinitro-4,7-diphenyl-2,1,3-benzothiadiazole Chemical compound C12=NSN=C2C(C=2C=CC=CC=2)=C([N+](=O)[O-])C([N+]([O-])=O)=C1C1=CC=CC=C1 JXQYWMRMLVKOPB-UHFFFAOYSA-N 0.000 description 1
- SQACYZRFHSFLDB-UHFFFAOYSA-N 6,11-diphenyl-5,12-bis(4-phenylphenyl)tetracene-5,12-diol Chemical compound C12=CC=CC=C2C(O)(C=2C=CC(=CC=2)C=2C=CC=CC=2)C2=C(C=3C=CC=CC=3)C3=CC=CC=C3C(C=3C=CC=CC=3)=C2C1(O)C(C=C1)=CC=C1C1=CC=CC=C1 SQACYZRFHSFLDB-UHFFFAOYSA-N 0.000 description 1
- MPWSEFCWTSXXDI-UHFFFAOYSA-N 6,11-diphenyltetracene-5,12-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C(C(=C2C=CC=CC2=2)C=3C=CC=CC=3)=C1C=2C1=CC=CC=C1 MPWSEFCWTSXXDI-UHFFFAOYSA-N 0.000 description 1
- YYVYAPXYZVYDHN-UHFFFAOYSA-N 9,10-phenanthroquinone Chemical compound C1=CC=C2C(=O)C(=O)C3=CC=CC=C3C2=C1 YYVYAPXYZVYDHN-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 229910017073 AlLi Inorganic materials 0.000 description 1
- 229910016036 BaF 2 Inorganic materials 0.000 description 1
- SDVRIJWZMRTZKY-UHFFFAOYSA-N C(C1)C=CC(C2)C1=CCC2C(C1C(C2)=CC=CC1)=C(C=CC=C1)C1=C2c1ccc(C=CCC2)c2c1 Chemical compound C(C1)C=CC(C2)C1=CCC2C(C1C(C2)=CC=CC1)=C(C=CC=C1)C1=C2c1ccc(C=CCC2)c2c1 SDVRIJWZMRTZKY-UHFFFAOYSA-N 0.000 description 1
- AFHWXSDUKMIEFV-UHFFFAOYSA-N CC(C1C=CC=CC1C1)C=C1C(C1)=C(C=C(C)C(CI)=C2)C2=C(C2=CC=C3C=CC=CC3C2)c2c1cccc2 Chemical compound CC(C1C=CC=CC1C1)C=C1C(C1)=C(C=C(C)C(CI)=C2)C2=C(C2=CC=C3C=CC=CC3C2)c2c1cccc2 AFHWXSDUKMIEFV-UHFFFAOYSA-N 0.000 description 1
- KSSJBGNOJJETTC-UHFFFAOYSA-N COC1=C(C=CC=C1)N(C1=CC=2C3(C4=CC(=CC=C4C=2C=C1)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC(=CC=C1C=1C=CC(=CC=13)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC=C(C=C1)OC Chemical compound COC1=C(C=CC=C1)N(C1=CC=2C3(C4=CC(=CC=C4C=2C=C1)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC(=CC=C1C=1C=CC(=CC=13)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC=C(C=C1)OC KSSJBGNOJJETTC-UHFFFAOYSA-N 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102100039856 Histone H1.1 Human genes 0.000 description 1
- 101001035402 Homo sapiens Histone H1.1 Proteins 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 229930192627 Naphthoquinone Natural products 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229940027991 antiseptic and disinfectant quinoline derivative Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 150000001562 benzopyrans Chemical class 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical class C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- UFVXQDWNSAGPHN-UHFFFAOYSA-K bis[(2-methylquinolin-8-yl)oxy]-(4-phenylphenoxy)alumane Chemical compound [Al+3].C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC([O-])=CC=C1C1=CC=CC=C1 UFVXQDWNSAGPHN-UHFFFAOYSA-K 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- OPHUWKNKFYBPDR-UHFFFAOYSA-N copper lithium Chemical compound [Li].[Cu] OPHUWKNKFYBPDR-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229940071870 hydroiodic acid Drugs 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 150000005232 imidazopyridines Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 150000002791 naphthoquinones Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 150000002964 pentacenes Chemical class 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- NHKJPPKXDNZFBJ-UHFFFAOYSA-N phenyllithium Chemical compound [Li]C1=CC=CC=C1 NHKJPPKXDNZFBJ-UHFFFAOYSA-N 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 150000004771 selenides Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 150000003967 siloles Chemical class 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 150000004772 tellurides Chemical class 0.000 description 1
- 125000005579 tetracene group Chemical group 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Electroluminescent Light Sources (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は、発光素子、発光装置、認証装置および電子機器に関するものである。 The present invention relates to a light emitting element, a light emitting device, an authentication device, and an electronic device.
有機エレクトロルミネッセンス素子(いわゆる有機EL素子)は、陽極と陰極との間に少なくとも1層の発光性有機層を介挿した構造を有する発光素子である。このような発光素子では、陰極と陽極との間に電界を印加することにより、発光層に陰極側から電子が注入されるとともに陽極側から正孔が注入され、発光層中で電子と正孔が再結合することにより励起子が生成し、この励起子が基底状態に戻る際に、そのエネルギー分が光として放出される。
このような発光素子としては、700nmを超える長波長域で発光するものが知られている(例えば、特許文献1、2参照)。
An organic electroluminescence element (so-called organic EL element) is a light emitting element having a structure in which at least one light emitting organic layer is interposed between an anode and a cathode. In such a light emitting device, by applying an electric field between the cathode and the anode, electrons are injected into the light emitting layer from the cathode side and holes are injected from the anode side, and electrons and holes are injected into the light emitting layer. Recombination generates excitons, and when the excitons return to the ground state, the energy is emitted as light.
As such a light emitting element, one emitting light in a long wavelength region exceeding 700 nm is known (for example, see
例えば、特許文献1、2に記載の発光素子では、分子内に官能基として電子供与体であるアミンと電子受容体であるニトリル基を共存させた材料を発光層のドーパントとして用いることにより、発光波長を長波長化している。
しかし、従来では、近赤外域で発光する高効率かつ長寿命な素子を実現することはできなかった。
また、近赤外域で面発光する高効率かつ長寿命な発光素子は、例えば、静脈、指紋等の生体情報を用いて個人を認証する生体認証用の光源として、その実現が望まれている。
For example, in the light-emitting element described in
However, conventionally, it has not been possible to realize a highly efficient and long-life device that emits light in the near infrared region.
In addition, a highly efficient and long-life light emitting element that emits light in the near infrared region is desired to be realized as a light source for biometric authentication that authenticates an individual using biometric information such as veins and fingerprints.
本発明の目的は、近赤外域で発光する高効率かつ長寿命な発光素子、この発光素子を備える発光装置、認証装置および電子機器を提供することにある。 An object of the present invention is to provide a high-efficiency and long-life light-emitting element that emits light in the near-infrared region, a light-emitting device including the light-emitting element, an authentication device, and an electronic apparatus.
このような目的は、下記の本発明により達成される。
本発明の発光素子は、陽極と、
陰極と、
前記陽極と前記陰極との間に設けられ、前記陽極と前記陰極との間に通電することにより発光する発光層と、
前記陰極と前記発光層との間に前記発光層に接して設けられ、電子輸送性を有する電子輸送層とを有し、
前記発光層は、下記式(1)で表わされる化合物を発光材料として含むとともに、前記発光材料を保持するホスト材料としてテトラセン系材料を含んで構成され、
前記電子輸送層は、アザインドリジン骨格およびアントラセン骨格を分子内に有する化合物を電子輸送性材料として含んで構成されていることを特徴とする。
The light emitting device of the present invention comprises an anode,
A cathode,
A light emitting layer that is provided between the anode and the cathode, and emits light when energized between the anode and the cathode;
An electron transport layer provided between and in contact with the light emitting layer between the cathode and the light emitting layer, and having an electron transporting property;
The light-emitting layer containing Mutotomoni a compound represented by the following formula (1) as a luminescent material, a tetracene-based material is constituted Nde containing as a host material for holding the light emitting material,
The electron transport layer includes a compound having an azaindolizine skeleton and an anthracene skeleton in the molecule as an electron transport material.
このように構成された発光素子によれば、発光材料として前記式(1)で表わされる化合物を用いているので、700nm以上の波長域(近赤外域)での発光を得ることができる。
また、発光層に隣接する電子輸送層の電子輸送性材料としてアザインドリジン骨格およびアントラセン骨格を分子内に有する化合物を用いているので、電子輸送層から発光層へ電子を効率的に輸送することができる。そのため、発光素子の発光効率を優れたものとすることができる。
ここで、ホスト材料が、正孔と電子とを再結合して励起子を生成するとともに、その励起子のエネルギーを発光材料に移動させて、発光材料を励起することができる。そのため、この点でも、発光素子の発光効率を高めることができる。しかも、発光層のホスト材料としてアセン系材料であるテトラセン系材料を用いることにより、電子輸送層中の電子輸送性材料のアントラセン骨格部分から発光層中のテトラセン系材料へ電子を効率的に受け渡すことができる。
According to the light emitting element configured as described above, since the compound represented by the formula (1) is used as the light emitting material, it is possible to obtain light emission in a wavelength region (near infrared region) of 700 nm or more.
In addition, since a compound having an azaindolizine skeleton and an anthracene skeleton in the molecule is used as the electron transport material of the electron transport layer adjacent to the light emitting layer, it is possible to efficiently transport electrons from the electron transport layer to the light emitting layer. Can do. Therefore, the light emission efficiency of the light emitting element can be improved.
Here, the host material can recombine holes and electrons to generate excitons, and the energy of the excitons can be transferred to the light emitting material to excite the light emitting material. Therefore, also in this respect, the light emission efficiency of the light emitting element can be increased. In addition, by using a tetracene-based material that is an acene-based material as the host material of the light-emitting layer, electrons are efficiently transferred from the anthracene skeleton portion of the electron-transporting material in the electron-transporting layer to the tetracene-based material in the light-emitting layer. be able to.
また、電子輸送層から発光層への電子輸送を効率的に行えることから、発光素子の駆動電圧を低電圧化することができ、それに伴って、発光素子の長寿命化を図ることができる。
さらに、アザインドリジン骨格およびアントラセン骨格を分子内に有する化合物は電子およびホールに対する安定性(耐性)に優れるため、この点でも、発光素子の長寿命化を図ることができる。
In addition, since the electron transport from the electron transport layer to the light emitting layer can be efficiently performed, the driving voltage of the light emitting element can be lowered, and accordingly, the life of the light emitting element can be extended.
Furthermore, since a compound having an azaindolizine skeleton and an anthracene skeleton in a molecule is excellent in stability (resistance) against electrons and holes, the life of the light-emitting element can also be extended in this respect.
本発明の発光素子では、前記式(1)で表される化合物は、下記式(2)〜(4)のいずれかで表される化合物であることが好ましい。
これにより、発光素子の高効率化および長寿命化を図ることができる。
In the light emitting device of the present invention, the compound represented by the formula (1) is preferably a compound represented by any one of the following formulas (2) to (4).
Thereby, high efficiency and long life of the light emitting element can be achieved.
本発明の発光素子では、前記電子輸送性材料は、1つの分子内に含まれるアザインドリジン骨格およびアントラセン骨格の数がそれぞれ1つまたは2つであることが好ましい。
これにより、電子輸送層の電子輸送性および電子注入性を優れたものとすることができる。
In the light emitting device of the present invention, the electron transporting material preferably has one or two azaindolizine skeletons and anthracene skeletons in one molecule.
Thereby, the electron transport property and the electron injection property of the electron transport layer can be made excellent .
本発明の発光素子では、前記テトラセン系材料は、炭素原子および水素原子で構成されていることが好ましい。
これにより、ホスト材料と発光材料との不本意な相互作用が生じるのを防止することができる。そのため、発光素子の発光効率を高めることができる。また、電位および正孔に対するホスト材料の耐性を高めることができる。そのため、発光素子の長寿命化を図ることができる。
In the light emitting device of the present invention, the tetracene material is preferably composed of carbon atoms and hydrogen atoms.
Thereby, it is possible to prevent unintended interaction between the host material and the light emitting material. Therefore, the light emission efficiency of the light emitting element can be increased. In addition, the resistance of the host material to potential and holes can be increased. Therefore, the lifetime of the light emitting element can be extended.
本発明の発光素子では、前記ホスト材料は、キノリノラト系金属錯体を含んで構成されていることが好ましい。
これにより、キノリノラト系金属錯体が、正孔と電子とを再結合して励起子を生成するとともに、その励起子のエネルギーを発光材料に移動させて、発光材料を励起することができる。
In the light emitting device of the present invention, the host material preferably includes a quinolinolato metal complex.
Accordingly, the quinolinolato-based metal complex can recombine holes and electrons to generate excitons, and can excite the light emitting material by transferring the energy of the excitons to the light emitting material.
本発明の発光素子では、前記電子輸送層は、アザインドリジン骨格およびアントラセン骨格を分子内に有する前記化合物を第1の電子輸送性材料として含んで構成された第1の電子輸送層と、前記第1の電子輸送層と前記発光層との間にこれらの両層に接して設けられ、前記第1の電子輸送性材料とは異なる第2の電子輸送性材料を含んで構成された第2の電子輸送層とを備えることが好ましい。
これにより、発光素子の長寿命化を図ることができる。
In the light-emitting device of the present invention, the electron transport layer includes a first electron transport layer configured to include the compound having an azaindolizine skeleton and an anthracene skeleton in a molecule as a first electron transport material; A second electron transporting material is provided between the first electron transporting layer and the light emitting layer so as to be in contact with both layers, and includes a second electron transporting material different from the first electron transporting material. It is preferable to provide an electron transport layer.
Thereby, the lifetime of the light emitting element can be extended.
本発明の発光装置は、本発明の発光素子を備えることを特徴とする。
このような発光装置は、近赤外域での発光が可能である。また、高効率および長寿命な発光素子を備えるので、信頼性に優れる。
本発明の認証装置は、本発明の発光素子を備えることを特徴とする。
このような認証装置は、近赤外光を用いて生体認証を行うことができる。また、高効率および長寿命な発光素子を備えるので、信頼性に優れる。
本発明の電子機器は、本発明の発光素子を備えることを特徴とする。
このような電子機器は、高効率および長寿命な発光素子を備えるので、信頼性に優れる。
The light-emitting device of the present invention includes the light-emitting element of the present invention.
Such a light emitting device can emit light in the near infrared region. Further, since the light-emitting element with high efficiency and long life is provided, the reliability is excellent.
The authentication apparatus of the present invention includes the light emitting element of the present invention.
Such an authentication apparatus can perform biometric authentication using near infrared light. Further, since the light-emitting element with high efficiency and long life is provided, the reliability is excellent.
The electronic device of the present invention includes the light emitting element of the present invention.
Since such an electronic device includes a light-emitting element with high efficiency and a long lifetime, it has excellent reliability.
以下、本発明の発光素子、発光装置、認証装置および電子機器を添付図面に示す好適な実施形態について説明する。
図1は、本発明の実施形態に係る発光素子を模式的に示す断面図である。なお、以下では、説明の都合上、図1中の上側を「上」、下側を「下」として説明を行う。
図1に示す発光素子(エレクトロルミネッセンス素子)1は、陽極3と正孔注入層4と正孔輸送層5と発光層6と電子輸送層7と電子注入層8と陰極9とがこの順に積層されてなるものである。すなわち、発光素子1では、陽極3と陰極9との間に、陽極3側から陰極9側へ正孔注入層4と正孔輸送層5と発光層6と電子輸送層7と電子注入層8とがこの順で積層された積層体14が介挿されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a light-emitting element, a light-emitting device, an authentication device, and an electronic device according to the invention will be described with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view schematically showing a light emitting device according to an embodiment of the present invention. In the following description, for convenience of explanation, the upper side in FIG. 1 will be described as “upper” and the lower side as “lower”.
A light-emitting element (electroluminescence element) 1 shown in FIG. 1 includes an
そして、発光素子1は、その全体が基板2上に設けられるとともに、封止部材10で封止されている。
このような発光素子1にあっては、陽極3および陰極9に駆動電圧が印加されることにより、発光層6に対し、それぞれ、陰極9側から電子が供給(注入)されるとともに、陽極3側から正孔が供給(注入)される。そして、発光層6では、正孔と電子とが再結合し、この再結合に際して放出されたエネルギーによりエキシトン(励起子)が生成し、エキシトンが基底状態に戻る際にエネルギー(蛍光やりん光)を放出(発光)する。これにより、発光素子1は、発光する。
The entire
In such a
特に、この発光素子1は、後述するように発光層6の発光材料としてチアジアゾール系化合物を用いることにより、近赤外域で発光する。なお、本明細書において、「近赤外域」とは、700nm以上1500nm以下の波長域を言う。
基板2は、陽極3を支持するものである。本実施形態の発光素子1は、基板2側から光を取り出す構成(ボトムエミッション型)であるため、基板2および陽極3は、それぞれ、実質的に透明(無色透明、着色透明または半透明)とされている。
In particular, the
The substrate 2 supports the
基板2の構成材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリエーテルサルフォン、ポリメチルメタクリレート、ポリカーボネート、ポリアリレートのような樹脂材料や、石英ガラス、ソーダガラスのようなガラス材料等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
このような基板2の平均厚さは、特に限定されないが、0.1〜30mm程度であるのが好ましく、0.1〜10mm程度であるのがより好ましい。
Examples of the constituent material of the substrate 2 include resin materials such as polyethylene terephthalate, polyethylene naphthalate, polypropylene, cycloolefin polymer, polyamide, polyethersulfone, polymethyl methacrylate, polycarbonate, and polyarylate, quartz glass, and soda glass. Such glass materials can be used, and one or more of these can be used in combination.
Although the average thickness of such a board | substrate 2 is not specifically limited, It is preferable that it is about 0.1-30 mm, and it is more preferable that it is about 0.1-10 mm.
なお、発光素子1が基板2と反対側から光を取り出す構成(トップエミッション型)の場合、基板2には、透明基板および不透明基板のいずれも用いることができる。
不透明基板としては、例えば、アルミナのようなセラミックス材料で構成された基板、ステンレス鋼のような金属基板の表面に酸化膜(絶縁膜)を形成したもの、樹脂材料で構成された基板等が挙げられる。
また、このような発光素子1では、陽極3と陰極9との間の距離(すなわち積層体14の平均厚さ)は、150〜500nmであるのが好ましく、100〜300nmであるのがより好ましく、100〜250nmであるのがさらに好ましい。これにより、簡単かつ確実に、発光素子1の駆動電圧を実用的な範囲内にすることができる。
In the case where the
Examples of the opaque substrate include a substrate made of a ceramic material such as alumina, an oxide film (insulating film) formed on the surface of a metal substrate such as stainless steel, and a substrate made of a resin material. It is done.
In such a light-emitting
以下、発光素子1を構成する各部を順次説明する。
(陽極)
陽極3は、後述する正孔注入層4を介して正孔輸送層5に正孔を注入する電極である。この陽極3の構成材料としては、仕事関数が大きく、導電性に優れる材料を用いるのが好ましい。
Hereinafter, each part which comprises the
(anode)
The
陽極3の構成材料としては、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、In3O3、SnO2、Sb含有SnO2、Al含有ZnO等の酸化物、Au、Pt、Ag、Cuまたはこれらを含む合金等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
特に、陽極3は、ITOで構成されているのが好ましい。ITOは、透明性を有するとともに、仕事関数が大きく、導電性に優れる材料である。これにより、陽極3から正孔注入層4へ効率的に正孔を注入することができる。
Examples of the constituent material of the
In particular, the
また、陽極3の正孔注入層4側の面(図1にて上面)は、プラズマ処理が施されているのが好ましい。これにより、陽極3と正孔注入層4との接合面の化学的および機械的な安定性を高めることができる。その結果、陽極3から正孔注入層4への正孔注入性を向上させることができる。なお、かかるプラズマ処理については、後述する発光素子1の製造方法の説明において詳述する。
このような陽極3の平均厚さは、特に限定されないが、10〜200nm程度であるのが好ましく、50〜150nm程度であるのがより好ましい。
Further, the surface of the
The average thickness of the
(陰極)
一方、陰極9は、後述する電子注入層8を介して電子輸送層7に電子を注入する電極である。この陰極9の構成材料としては、仕事関数の小さい材料を用いるのが好ましい。
陰極9の構成材料としては、例えば、Li、Mg、Ca、Sr、La、Ce、Er、Eu、Sc、Y、Yb、Ag、Cu、Al、Cs、Rbまたはこれらを含む合金等が挙げられ、これらのうちの1種または2種以上を組み合わせて(例えば、複数層の積層体、複数種の混合層等として)用いることができる。
(cathode)
On the other hand, the
Examples of the constituent material of the
特に、陰極9の構成材料として合金を用いる場合には、Ag、Al、Cu等の安定な金属元素を含む合金、具体的には、MgAg、AlLi、CuLi等の合金を用いるのが好ましい。かかる合金を陰極9の構成材料として用いることにより、陰極9の電子注入効率および安定性の向上を図ることができる。
このような陰極9の平均厚さは、特に限定されないが、100〜10000nm程度であるのが好ましく、100〜500nm程度であるのがより好ましい。
なお、本実施形態の発光素子1は、ボトムエミッション型であるため、陰極9に、光透過性は、特に要求されない。また、トップエミッション型である場合には、陰極9側から光を透過させる必要があるので、陰極9の平均厚さは、1〜50nm程度であるのが好ましい。
In particular, when an alloy is used as the constituent material of the
Although the average thickness of such a
In addition, since the
(正孔注入層)
正孔注入層4は、陽極3からの正孔注入効率を向上させる機能を有する(すなわち正孔注入性を有する)ものである。
このように陽極3と後述する正孔輸送層5との間に正孔注入層4を設けることにより、陽極3からの正孔性を向上させ、その結果、発光素子1の発光効率を高めることができる。
(Hole injection layer)
The hole injection layer 4 has a function of improving the hole injection efficiency from the anode 3 (that is, has a hole injection property).
Thus, by providing the hole injection layer 4 between the
この正孔注入層4は、正孔注入性を有する材料(すなわち正孔注入性材料)を含んでいる。
この正孔注入層4に含まれる正孔注入性材料としては、特に限定されないが、例えば、銅フタロシアニンや、4,4’,4’’−トリス(N,N−フェニル−3−メチルフェニルアミノ)トリフェニルアミン(m−MTDATA)、N,N’−ビス−(4−ジフェニルアミノ−フェニル)−N, N’−ジフェニル−ビフェニル−4−4’−ジアミン、テトラ−p−ビフェニリル−ベンジジン(HTL−1)等が挙げられる。
The hole injection layer 4 includes a material having a hole injection property (that is, a hole injection material).
The hole injecting material contained in the hole injecting layer 4 is not particularly limited. For example, copper phthalocyanine, 4,4 ′, 4 ″ -tris (N, N-phenyl-3-methylphenylamino) ) Triphenylamine (m-MTDATA), N, N′-bis- (4-diphenylamino-phenyl) -N, N′-diphenyl-biphenyl-4-4′-diamine, tetra-p-biphenylyl-benzidine ( HTL-1) and the like.
中でも、正孔注入層4に含まれる正孔注入性材料としては、正孔注入性および正孔輸送性に優れるという観点から、アミン系材料を用いるのが好ましく、ジアミノベンゼン誘導体、ベンジジン誘導体(ベンジジン骨格を有する材料)、分子内に「ジアミノベンゼン」ユニットと「ベンジジン」ユニットとの両方を有するトリアミン系化合物、テトラアミン系化合物を用いるのがより好ましい。
このような正孔注入層4の平均厚さは、特に限定されないが、5〜90nm程度であるのが好ましく、10〜70nm程度であるのがより好ましい。
なお、正孔注入層4は、陽極3および正孔輸送層5の構成材料によっては、省略してもよい。
Among them, as the hole injecting material contained in the hole injecting layer 4, it is preferable to use an amine-based material from the viewpoint of excellent hole injecting property and hole transporting property, and a diaminobenzene derivative, a benzidine derivative (benzidine) It is more preferable to use a triamine-based compound or a tetraamine-based compound having both a “diaminobenzene” unit and a “benzidine” unit in the molecule.
The average thickness of the hole injection layer 4 is not particularly limited, but is preferably about 5 to 90 nm, and more preferably about 10 to 70 nm.
The hole injection layer 4 may be omitted depending on the constituent materials of the
(正孔輸送層)
正孔輸送層5は、陽極3から正孔注入層4を介して注入された正孔を発光層6まで輸送する機能を有する(すなわち正孔輸送性を有する)ものである。
この正孔輸送層5は、正孔輸送性を有する材料(すなわち正孔輸送性材料)を含んで構成されている。
(Hole transport layer)
The
The
この正孔輸送層5に含まれる正孔輸送性材料には、各種p型の高分子材料や、各種p型の低分子材料を単独または組み合わせて用いることができ、例えば、N,N’−ジ(1−ナフチル)−N,N’−ジフェニル−1,1’−ジフェニル−4,4’−ジアミン(NPD)、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−1,1’−ジフェニル−4,4’−ジアミン(TPD)等のテトラアリールベンジジン誘導体、テトラアリールジアミノフルオレン化合物またはその誘導体(アミン系化合物)、テトラ−p−ビフェニリル−ベンジジン(HTL−1)等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
As the hole transporting material contained in the
中でも、正孔輸送層5に含まれる正孔輸送性材料としては、正孔注入性および正孔輸送性に優れるという観点から、アミン系材料であるのが好ましく、ベンジジン誘導体(ベンジジン骨格を有する材料)であるのがより好ましい。
このような正孔輸送層5の平均厚さは、特に限定されないが、5〜90nm程度であるのが好ましく、10〜70nm程度であるのがより好ましい。
Among them, the hole transport material contained in the
The average thickness of the
(発光層)
この発光層6は、前述した陽極3と陰極9との間に通電することにより、発光するものである。
このような発光層6は、発光材料を含んで構成されている。
特に、この発光層6は、発光材料として、下記式(1)で表わされる化合物(以下、単に「チアジアゾール系化合物」ともいう)を含んで構成されている。
(Light emitting layer)
The
Such a
In particular, the
このようなチアジアゾール系化合物を含む発光層6は、700nm以上の波長域(近赤外域)での発光を得ることができる。
特に、発光層6に用いる発光材料としては、高効率化および長寿命化を図れるという観点から、下記式(2)〜(4)で表わされる化合物を用いるのが好ましく、具体的には、特に、下記式D−1〜D−3で表わされる化合物を用いるのが好ましい。
The
In particular, as the light emitting material used for the
なお、発光層6は、上述した発光材料以外の発光材料(各種蛍光材料、各種燐光材料)が含まれていてもよい。
また、発光層6の構成材料としては、前述したような発光材料に加えて、この発光材料がゲスト材料(ドーパント)として添加(担持)されるホスト材料を用いる。このホスト材料は、正孔と電子とを再結合して励起子を生成するとともに、その励起子のエネルギーを発光材料に移動(フェルスター移動またはデクスター移動)させて、発光材料を励起する機能を有する。そのため、発光素子1の発光効率を高めることができる。このようなホスト材料は、例えば、ゲスト材料である発光材料をドーパントとしてホスト材料にドープして用いることができる。
In addition, the
As the constituent material of the
このようなホスト材料としては、用いる発光材料に対して前述したような機能を発揮するものであれば、特に限定されないが、例えば、ジスチリルアリーレン誘導体、下記式(7)で表わされる化合物等のナフタセン誘導体、2−t−ブチル−9,10−ジ(2−ナフチル)アントラセン(TBADN)等のアントラセン誘導体、ペリレン誘導体、ジスチリルベンゼン誘導体、ジスチリルアミン誘導体、ビス(2−メチル−8−キノリノラト)(p−フェニルフェノラト)アルミニウム(BAlq)、トリス(8−キノリノラト)アルミニウム錯体(Alq3)等のキノリノラト系金属錯体、トリフェニルアミンの4量体等のトリアリールアミン誘導体、オキサジアゾール誘導体、ルブレンおよびその誘導体、シロール誘導体、ジカルバゾール誘導体、オリゴチオフェン誘導体、ベンゾピラン誘導体、トリアゾール誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、4,4’−ビス(2,2’−ジフェニルビニル)ビフェニル(DPVBi)、3−フェニル−4−(1’−ナフチル)−5−フェニルカルバゾール、4,4’−N,N’−ジカルバゾールビフェニル(CBP)等のカルバゾール誘導体等が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることもできる。 Such a host material is not particularly limited as long as it exhibits the functions described above with respect to the light emitting material to be used. Examples thereof include a distyrylarylene derivative and a compound represented by the following formula (7). Naphthacene derivatives, anthracene derivatives such as 2-t-butyl-9,10-di (2-naphthyl) anthracene (TBADN), perylene derivatives, distyrylbenzene derivatives, distyrylamine derivatives, bis (2-methyl-8-quinolinolato) ) (P-phenylphenolato) aluminum (BAlq), quinolinolato metal complexes such as tris (8-quinolinolato) aluminum complex (Alq 3 ), triarylamine derivatives such as triphenylamine tetramers, oxadiazole derivatives , Rubrene and its derivatives, silole derivatives, dicarbazo Derivatives, oligothiophene derivatives, benzopyran derivatives, triazole derivatives, benzoxazole derivatives, benzothiazole derivatives, quinoline derivatives, 4,4′-bis (2,2′-diphenylvinyl) biphenyl (DPVBi), 3-phenyl-4- And carbazole derivatives such as (1′-naphthyl) -5-phenylcarbazole and 4,4′-N, N′-dicarbazolebiphenyl (CBP), and the like. One of these may be used alone, or two or more may be used. It can also be used in combination.
これらの中でも、ホスト材料としては、アセン系材料を用いるのが好ましい。発光層6のホスト材料がアセン系材料を含んで構成されていると、電子輸送層7中の電子輸送性材料のアントラセン骨格部分から発光層6中のアセン系材料へ電子を効率的に受け渡すことができる。
アセン系材料は、前述したような発光材料との不本意な相互材用が少ない。また、ホスト材料としてアセン系材料(特にアントラセン系材料、テトラセン系材料)を用いると、ホスト材料から発光材料へのエネルギー移動を効率的に行うことができる。これは、(a)アセン系材料の三重項励起状態からのエネルギー移動による発光材料の一重項励起状態の生成が可能となること、(b)アセン系材料のπ電子雲と発光材料の電子雲との重なりが大きくなること、(c)アセン系材料の蛍光スペクトルと発光材料の吸収スペクトルとの重なりが大きくなること等によるものと考えられる。
このようなことから、ホスト材料としてアセン系材料を用いると、発光素子1の発光効率を高めることができる。
Among these, it is preferable to use an acene-based material as the host material. When the host material of the light-emitting
The acene-based material is rarely used for unintentional mutual materials with the light emitting material as described above. In addition, when an acene-based material (particularly an anthracene-based material or a tetracene-based material) is used as the host material, energy transfer from the host material to the light-emitting material can be efficiently performed. This is because (a) it is possible to generate a singlet excited state of the luminescent material by energy transfer from the triplet excited state of the acene-based material, and (b) a π electron cloud of the acene-based material and an electron cloud of the luminescent material. And (c) the overlap between the fluorescence spectrum of the acene-based material and the absorption spectrum of the light-emitting material is increased.
Therefore, when an acene-based material is used as the host material, the light emission efficiency of the light-emitting
また、アセン系材料は、電子および正孔に対する耐性に優れる。また、アセン系材料は、熱安定性にも優れる。そのため、発光素子1は、長寿命化を図ることができる。また、アセン系材料は、熱安定性に優れるため、気相成膜法を用いて発光層を形成する場合に、成膜時の熱によるホスト材料の分解を防止することができる。そのため、優れた膜質を有する発光層を形成することができ、その結果、この点でも、発光素子1の発光効率を高めるとともに長寿命化を図ることができる。
Acene-based materials are excellent in resistance to electrons and holes. Acene-based materials are also excellent in thermal stability. Therefore, the life of the
さらに、アセン系材料は、それ自体発光しにくいので、ホスト材料が発光素子1の発光スペクトルに悪影響を及ぼすのを防止することもできる。
このようなアセン系材料は、アセン骨格を有し、かつ、前述したような効果を発揮するものであれば、特に限定されず、例えば、ナフタレン誘導体、アントラセン誘導体、ナフタセン誘導体(テトラセン誘導体)、ペンタセン誘導体が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができるが、アントラセン誘導体(アントラセン系材料)またはテトラセン誘導体(テトラセン系材料)を用いるのが好ましい。
これにより、電子輸送層7中の電子輸送性材料のアントラセン骨格部分から発光層6中のアントラセン系材料またはテトラセン系材料へ電子を効率的に受け渡すことができる。
Furthermore, since the acene-based material itself does not easily emit light, the host material can be prevented from adversely affecting the emission spectrum of the light-emitting
Such an acene-based material is not particularly limited as long as it has an acene skeleton and exhibits the effects described above. For example, naphthalene derivatives, anthracene derivatives, naphthacene derivatives (tetracene derivatives), pentacene Derivatives are listed, and one or more of these can be used in combination, but anthracene derivatives (anthracene-based materials) or tetracene derivatives (tetracene-based materials) are preferably used.
Thereby, electrons can be efficiently delivered from the anthracene skeleton portion of the electron transport material in the
テトラセン系材料としては、1つの分子内に少なくとも1つのテトラセン骨格を有し、かつ、前述したようなホスト材料としての機能を発揮し得るものであれば、特に限定されないが、例えば、下記式IRH−1で表わされる化合物を用いるのが好ましく、下記式IRH−2で表わされる化合物を用いるのがより好ましく、下記IRH−3で表わされる化合物を用いるのがさらに好ましい。 The tetracene-based material is not particularly limited as long as it has at least one tetracene skeleton in one molecule and can function as a host material as described above. For example, the following formula IRH The compound represented by -1 is preferably used, the compound represented by the following formula IRH-2 is more preferably used, and the compound represented by the following IRH-3 is more preferably used.
また、テトラセン系材料は、炭素原子および水素原子で構成されているのが好ましい。これにより、ホスト材料と発光材料との不本意な相互作用が生じるのを防止することができる。そのため、発光素子1の発光効率を高めることができる。また、電位および正孔に対するホスト材料の耐性を高めることができる。そのため、発光素子1の長寿命化を図ることができる。
具体的には、テトラセン系材料としては、例えば、下記式H1−1〜H1−11で表わされる化合物、下記式H1−12〜H1−27で表される化合物を用いるのが好ましい。
The tetracene-based material is preferably composed of carbon atoms and hydrogen atoms. Thereby, it is possible to prevent unintended interaction between the host material and the light emitting material. Therefore, the light emission efficiency of the
Specifically, as the tetracene-based material, for example, compounds represented by the following formulas H1-1 to H1-11 and compounds represented by the following formulas H1-12 to H1-27 are preferably used.
また、アントラセン系材料としては、1つの分子内に少なくとも1つのアントラセン骨格を有し、かつ、前述したようなホスト材料としての機能を発揮し得るものであれば、特に限定されないが、例えば、下記式IRH−4で表わされる化合物またはその誘導体を用いるのが好ましく、下記式IRH5〜IRH−8で表わされる化合物を用いるのがより好ましい。 The anthracene-based material is not particularly limited as long as it has at least one anthracene skeleton in one molecule and can exhibit the function as the host material as described above. It is preferable to use a compound represented by the formula IRH-4 or a derivative thereof, and it is more preferable to use a compound represented by the following formulas IRH5 to IRH-8.
また、アントラセン系材料は、炭素原子および水素原子で構成されているのが好ましい。これにより、ホスト材料と発光材料との不本意な相互作用が生じるのを防止することができる。そのため、発光素子1の発光効率を高めることができる。また、電位および正孔に対するホスト材料の耐性を高めることができる。そのため、発光素子1の長寿命化を図ることができる。
具体的には、アントラセン系材料としては、例えば、下記式H2−1〜H2−16で表わされる化合物、下記式H2−17〜H2−36で表される化合物、下記式H2−37〜H2−56で表される化合物を用いるのが好ましい。
The anthracene-based material is preferably composed of carbon atoms and hydrogen atoms. Thereby, it is possible to prevent unintended interaction between the host material and the light emitting material. Therefore, the light emission efficiency of the
Specifically, examples of the anthracene-based material include compounds represented by the following formulas H2-1 to H2-16, compounds represented by the following formulas H2-17 to H2-36, and formulas H2-37 to H2- The compound represented by 56 is preferably used.
このような発光材料およびホスト材料を含む発光層6中における発光材料の含有量(ドープ量)は、0.01〜10wt%であるのが好ましく、0.1〜5wt%であるのがより好ましい。発光材料の含有量をこのような範囲内とすることで、発光効率を最適化することができる。
また、発光層6の平均厚さは、特に限定されないが、1〜60nm程度であるのが好ましく、3〜50nm程度であるのがより好ましい。
The content (doping amount) of the light emitting material in the
Moreover, although the average thickness of the
(電子輸送層)
電子輸送層7は、陰極9から電子注入層8を介して注入された電子を発光層6に輸送する機能を有するものである。
この電子輸送層7は、電子輸送性材料を含んで構成されている。特に、電子輸送層7は、電子輸送性材料として、アザインドリジン骨格およびアントラセン骨格を分子内に有する化合物(以下、単に「アザインドリジン系化合物」ともいう)を含んで構成されている。
(Electron transport layer)
The
The
このように、発光層6に隣接する電子輸送層7の電子輸送性材料としてアザインドリジン骨格およびアントラセン骨格を分子内に有する化合物を用いているので、電子輸送層7から発光層6へ電子を効率的に輸送することができる。そのため、発光素子1の発光効率を優れたものとすることができる。
また、電子輸送層7から発光層6への電子輸送を効率的に行えることから、発光素子1の駆動電圧を低電圧化することができ、それに伴って、発光素子1の長寿命化を図ることができる。
さらに、アザインドリジン骨格およびアントラセン骨格を分子内に有する化合物は電子およびホールに対する安定性(耐性)に優れるため、この点でも、発光素子1の長寿命化を図ることができる。
In this way, since a compound having an azaindolizine skeleton and an anthracene skeleton in the molecule is used as the electron transport material of the
In addition, since the electron transport from the
Furthermore, since a compound having an azaindolizine skeleton and an anthracene skeleton in a molecule is excellent in stability (resistance) against electrons and holes, the life of the light-emitting
電子輸送層7に用いる電子輸送性材料(アザインドリジン系化合物)は、1つの分子内に含まれるアザインドリジン骨格およびアントラセン骨格の数がそれぞれ1つまたは2つであるのが好ましい。これにより、電子輸送層7の電子輸送性および電子注入性を優れたものとすることができる。
具体的には、電子輸送層7に用いるアザインドリジン系化合物としては、例えば、下記式ELT−A1〜ELT−A24で表わされるような化合物、下記式ELT−B1〜式ELT−B12で表わされるような化合物、下記ELT−C1〜ELT−C20で表わされる化合物を用いるのが好ましい。
The electron transporting material (azaindolizine compound) used for the
Specifically, examples of the azaindolizine compound used for the
このようなアザインドリジン化合物は、電子輸送性および電子注入性に優れる。そのため、発光素子1の発光効率を向上させることができる。
かかるアザインドリジン化合物の電子輸送性および電子注入性が優れるのは、以下のような理由によるものと考えられる。
前述したようなアザインドリジン骨格およびアントラセン骨格を分子内に有するアザインドリジン系化合物は、その分子全体がπ共役系で繋がっているため、電子雲が分子全体に亘って拡がっている。
Such an azaindolizine compound is excellent in electron transport property and electron injection property. Therefore, the light emission efficiency of the
The reason why the electron transport property and electron injection property of the azaindolizine compound is excellent is considered as follows.
In the azaindolizine-based compound having an azaindolizine skeleton and an anthracene skeleton in the molecule as described above, the entire molecule is connected by a π-conjugated system, and therefore the electron cloud spreads over the entire molecule.
そして、かかるアザインドリジン系化合物のアザインドリジン骨格の部分は、電子を受け入れる機能と、その受け取った電子をアントラセン骨格の部分へ送り出す機能とを有する。一方、かかるアザインドリジン系化合物のアントラセン骨格の部分は、アザインドリジン骨格の部分から電子を受け入れる機能と、その受け入れた電子を、電子輸送層7の陽極3側に隣接する層、すなわち発光層6へ受け渡す機能とを有する。
The azaindolizine skeleton portion of the azaindolizine compound has a function of accepting electrons and a function of sending the received electrons to the anthracene skeleton portion. On the other hand, the portion of the anthracene skeleton of the azaindolizine-based compound has a function of accepting electrons from the portion of the azaindolizine skeleton and a layer adjacent to the
具体的に説明すると、かかるアザインドリジン系化合物のアザインドリジン骨格の部分は、2つの窒素原子を有し、その一方(アントラセン骨格の部分に近い側)の窒素原子がsp2混成軌道を有し、他方(アントラセン骨格の部分に遠い側)の窒素原子がsp3混成軌道を有する。sp2混成軌道を有する窒素原子は、アザインドリジン系化合物の分子の共役系の一部を構成するとともに、炭素原子よりも電気陰性度が高く、電子を引き付ける強さが大きいため、電子を受け入れる部分として機能する。一方、sp3混成軌道を有する窒素原子は、通常の共役系ではないが、非共有電子対を有するため、その電子がアザインドリジン系化合物の分子の共役系に向けて電子を送り出す部分として機能する。 Specifically, the azaindolizine skeleton portion of the azaindolizine compound has two nitrogen atoms, and one of the nitrogen atoms (on the side close to the anthracene skeleton portion) has an sp2 hybrid orbital. The nitrogen atom on the other side (the side far from the anthracene skeleton portion) has an sp3 hybrid orbital. Nitrogen atom having sp2 hybrid orbital constitutes part of the conjugated system of azaindolizine compound molecule, and has higher electronegativity than carbon atom, and has higher strength to attract electrons. Function as. On the other hand, a nitrogen atom having an sp3 hybrid orbital is not a normal conjugated system, but has an unshared electron pair, so that the electron functions as a part that sends electrons toward the conjugated system of the molecule of the azaindolizine compound. .
一方、かかるアザインドリジン系化合物のアントラセン骨格の部分は、電気的に中性であるため、アザインドリジン骨格の部分から電子を容易に受け入れることができる。また、かかるアザインドリジン系化合物のアントラセン骨格の部分は、発光層6の構成材料、特にホスト材料(アセン系材料)と軌道の重なりが大きいため、発光層6のホスト材料へ電子を容易に受け渡すことができる。
On the other hand, since the anthracene skeleton portion of the azaindolizine compound is electrically neutral, electrons can be easily accepted from the azaindolizine skeleton portion. In addition, since the anthracene skeleton portion of the azaindolizine compound has a large orbital overlap with the constituent material of the
また、かかるアザインドリジン系化合物は、前述したように電子輸送性および電子注入性に優れるため、結果として、発光素子1の駆動電圧を低電圧化することができる。
また、アザインドリジン骨格の部分は、sp2混成軌道を有する窒素原子が還元されても安定であり、sp3混成軌道を有する窒素原子が酸化されても安定である。そのため、かかるアザインドリジン系化合物は、電子および正孔に対する安定性が高いものとなる。その結果、発光素子1の長寿命化を図ることができる。
In addition, since the azaindolizine-based compound is excellent in the electron transporting property and the electron injecting property as described above, the driving voltage of the
The azaindolizine skeleton portion is stable even when a nitrogen atom having an sp2 hybrid orbital is reduced, and is stable even if a nitrogen atom having an sp3 hybrid orbital is oxidized. Therefore, such an azaindolizine compound has high stability against electrons and holes. As a result, the lifetime of the
また、電子輸送層7は、前述したような電子輸送性材料のうち2種以上を組み合わせて用いる場合、2種以上の電子輸送性材料を混合した混合材料で構成されていてもよいし、異なる電子輸送性材料で構成された複数の層を積層して構成されていてもよい。また、電子輸送層7は、アザインドリジン系化合物以外の材料を含んで構成されていてもよい。
電子輸送層7が複数の層を積層して構成されている場合、電子輸送層7は、前述したアザインドリジン系化合物を第1の電子輸送性材料として含んで構成された第1の電子輸送層と、この第1の電子輸送層と発光層6との間にこれらの両層に接して設けられ、第1の電子輸送性材料とは異なる第2の電子輸送性材料を含んで構成された第2の電子輸送層とを備えるのが好ましい。これにより、発光素子1の長寿命化を図ることができる。
In addition, when the
When the
また、この場合、上記第2の電子輸送性材料としては、例えば、Alq、テトラセン系材料、アントラセン系材料等を用いることができる。また、第2の電子輸送層の平均厚さは、特に限定されないが、例えば、5nm以上20nm程度であるのが好ましい。これにより、第2の電子輸送層が発光層6または第1の電子輸送層の一部と混合層を形成するため、電子輸送層7から発光層6への電子輸送性を良好なものとしつつ、発光素子1の長寿命化を図ることができる。
電子輸送層7の平均厚さは、特に限定されないが、0.5〜100nm程度であるのが好ましく、1〜50nm程度であるのがより好ましい。
In this case, as the second electron transporting material, for example, Alq, a tetracene-based material, an anthracene-based material, or the like can be used. The average thickness of the second electron transport layer is not particularly limited, but is preferably about 5 nm to 20 nm, for example. Thereby, since the second electron transport layer forms a mixed layer with the
Although the average thickness of the
(電子注入層)
電子注入層8は、陰極9からの電子注入効率を向上させる機能を有するものである。
この電子注入層8の構成材料(電子注入性材料)としては、例えば、各種の無機絶縁材料、各種の無機半導体材料が挙げられる。
このような無機絶縁材料としては、例えば、アルカリ金属カルコゲナイド(酸化物、硫化物、セレン化物、テルル化物)、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらを主材料として電子注入層8を構成することにより、電子注入性をより向上させることができる。特にアルカリ金属化合物(アルカリ金属カルコゲナイド、アルカリ金属のハロゲン化物等)は仕事関数が非常に小さく、これを用いて電子注入層8を構成することにより、発光素子1は、高い輝度が得られるものとなる。
(Electron injection layer)
The
Examples of the constituent material (electron injectable material) of the
Examples of such inorganic insulating materials include alkali metal chalcogenides (oxides, sulfides, selenides, tellurides), alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides. Of these, one or two or more of these can be used in combination. By forming the
アルカリ金属カルコゲナイドとしては、例えば、Li2O、LiO、Na2S、Na2Se、NaO等が挙げられる。
アルカリ土類金属カルコゲナイドとしては、例えば、CaO、BaO、SrO、BeO、BaS、MgO、CaSe等が挙げられる。
アルカリ金属のハロゲン化物としては、例えば、CsF、LiF、NaF、KF、LiCl、KCl、NaCl等が挙げられる。
アルカリ土類金属のハロゲン化物としては、例えば、CaF2、BaF2、SrF2、MgF2、BeF2等が挙げられる。
Examples of the alkali metal chalcogenide include Li 2 O, LiO, Na 2 S, Na 2 Se, and NaO.
Examples of the alkaline earth metal chalcogenide include CaO, BaO, SrO, BeO, BaS, MgO, and CaSe.
Examples of the alkali metal halide include CsF, LiF, NaF, KF, LiCl, KCl, and NaCl.
Examples of the alkaline earth metal halide include CaF 2 , BaF 2 , SrF 2 , MgF 2 , and BeF 2 .
また、無機半導体材料としては、例えば、Li、Na、Ba、Ca、Sr、Yb、Al、Ga、In、Cd、Mg、Si、Ta、SbおよびZnのうちの少なくとも1つの元素を含む酸化物、窒化物または酸化窒化物等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
電子注入層8の平均厚さは、特に限定されないが、0.1〜1000nm程度であるのが好ましく、0.2〜100nm程度であるのがより好ましく、0.2〜50nm程度であるのがさらに好ましい。
なお、この電子注入層8は、陰極9および電子輸送層7の構成材料や厚さ等によっては、省略してもよい。
In addition, as the inorganic semiconductor material, for example, an oxide including at least one element of Li, Na, Ba, Ca, Sr, Yb, Al, Ga, In, Cd, Mg, Si, Ta, Sb, and Zn , Nitrides, oxynitrides, and the like, and one or more of these can be used in combination.
The average thickness of the
The
(封止部材)
封止部材10は、陽極3、積層体14、および陰極9を覆うように設けられ、これらを気密的に封止し、酸素や水分を遮断する機能を有する。封止部材10を設けることにより、発光素子1の信頼性の向上や、変質・劣化の防止(耐久性向上)等の効果が得られる。
封止部材10の構成材料としては、例えば、Al、Au、Cr、Nb、Ta、Tiまたはこれらを含む合金、酸化シリコン、各種樹脂材料等を挙げることができる。なお、封止部材10の構成材料として導電性を有する材料を用いる場合には、短絡を防止するために、封止部材10と陽極3、積層体14および陰極9との間には、必要に応じて、絶縁膜を設けるのが好ましい。
(Sealing member)
The sealing
Examples of the constituent material of the sealing
また、封止部材10は、平板状として、基板2と対向させ、これらの間を、例えば熱硬化性樹脂等のシール材で封止するようにしてもよい。
以上のように構成された発光素子1によれば、発光層6の発光材料としてチアジアゾール系化合物を用いるとともに、電子輸送層7の電子輸送性材料としてアザインドリジン系化合物を用いることにより、近赤外域での発光を可能とするとともに、高効率化および長寿命化を図ることができる。
以上のような発光素子1は、例えば、次のようにして製造することができる。
Further, the sealing
According to the light-emitting
The above
[1] まず、基板2を用意し、この基板2上に陽極3を形成する。
陽極3は、例えば、プラズマCVD、熱CVDのような化学蒸着法(CVD)、真空蒸着等の乾式メッキ法、電解メッキ等の湿式メッキ法、溶射法、ゾル・ゲル法、MOD法、金属箔の接合等を用いて形成することができる。
[2] 次に、陽極3上に正孔注入層4を形成する。
正孔注入層4は、例えば、CVD法や、真空蒸着、スパッタリング等の乾式メッキ法等を用いた気相プロセスにより形成するのが好ましい。
なお、正孔注入層4は、例えば、正孔注入性材料を溶媒に溶解または分散媒に分散してなる正孔注入層形成用材料を、陽極3上に供給した後、乾燥(脱溶媒または脱分散媒)することによっても形成することができる。
[1] First, the substrate 2 is prepared, and the
The
[2] Next, the hole injection layer 4 is formed on the
The hole injection layer 4 is preferably formed by, for example, a vapor phase process using a CVD method, a dry plating method such as vacuum deposition or sputtering, or the like.
For example, the hole injection layer 4 may be dried (desolvent or solvent-free) after supplying a material for forming a hole injection layer obtained by dissolving a hole injection material in a solvent or dispersing in a dispersion medium onto the
正孔注入層形成用材料の供給方法としては、例えば、スピンコート法、ロールコート法、インクジェット印刷法等の各種塗布法を用いることもできる。かかる塗布法を用いることにより、正孔注入層4を比較的容易に形成することができる。
正孔注入層形成用材料の調製に用いる溶媒または分散媒としては、例えば、各種無機溶媒や、各種有機溶媒、または、これらを含む混合溶媒等が挙げられる。
なお、乾燥は、例えば、大気圧または減圧雰囲気中での放置、加熱処理、不活性ガスの吹付け等により行うことができる。
As a method for supplying the hole injection layer forming material, for example, various coating methods such as a spin coating method, a roll coating method, and an ink jet printing method can be used. By using such a coating method, the hole injection layer 4 can be formed relatively easily.
Examples of the solvent or dispersion medium used for the preparation of the hole injection layer forming material include various inorganic solvents, various organic solvents, or mixed solvents containing these.
The drying can be performed, for example, by standing in an atmospheric pressure or a reduced pressure atmosphere, heat treatment, or blowing an inert gas.
また、本工程に先立って、陽極3の上面には、酸素プラズマ処理を施すようにしてもよい。これにより、陽極3の上面を親液性を付与すること、陽極3の上面に付着する有機物を除去(洗浄)すること、陽極3の上面付近の仕事関数を調整すること等を行うことができる。
ここで、酸素プラズマ処理の条件としては、例えば、プラズマパワー100〜800W程度、酸素ガス流量50〜100mL/min程度、被処理部材(陽極3)の搬送速度0.5〜10mm/sec程度、基板2の温度70〜90℃程度とするのが好ましい。
Prior to this step, the upper surface of the
Here, the oxygen plasma treatment conditions include, for example, a plasma power of about 100 to 800 W, an oxygen gas flow rate of about 50 to 100 mL / min, a conveyance speed of the member to be treated (anode 3) of about 0.5 to 10 mm / sec, and a substrate. The temperature of 2 is preferably about 70 to 90 ° C.
[3] 次に、正孔注入層4上に正孔輸送層5を形成する。
正孔輸送層5は、例えば、CVD法や、真空蒸着、スパッタリング等の乾式メッキ法等を用いた気相プロセスにより形成するのが好ましい。
なお、正孔輸送性材料を溶媒に溶解または分散媒に分散してなる正孔輸送層形成用材料を、正孔注入層4上に供給した後、乾燥(脱溶媒または脱分散媒)することによっても形成することができる。
[3] Next, the
The
In addition, a hole transport layer forming material obtained by dissolving a hole transport material in a solvent or dispersing in a dispersion medium is supplied onto the hole injection layer 4 and then dried (desolvent or dedispersion medium). Can also be formed.
[4] 次に、正孔輸送層5上に、発光層6を形成する。
発光層6は、例えば、真空蒸着等の乾式メッキ法等を用いた気相プロセスにより形成することができる。
また、発光層を形成する材料を溶媒に溶解または分散媒に分散してなる発光層用材料を、正孔輸送層5上に供給した後、乾燥(脱溶媒または脱分散媒)することによっても形成することができる。
[4] Next, the
The
Alternatively, the material for the light emitting layer formed by dissolving the material for forming the light emitting layer in a solvent or dispersing in a dispersion medium is supplied onto the
[5] 次に、発光層6上に、電子輸送層7を形成する。
電子輸送層7は、例えば、真空蒸着等の乾式メッキ法等を用いた気相プロセスにより形成するのが好ましい。
なお、電子輸送層7は、例えば、電子輸送性材料を溶媒に溶解または分散媒に分散してなる電子輸送層形成用材料を、発光層6上に供給した後、乾燥(脱溶媒または脱分散媒)することによっても形成することができる。
[5] Next, the
The
For example, the
[6] 次に、電子輸送層7上に、電子注入層8を形成する。
電子注入層8の構成材料として無機材料を用いる場合、電子注入層8は、例えば、CVD法や、真空蒸着、スパッタリング等の乾式メッキ法等を用いた気相プロセス、無機微粒子インクの塗布および焼成等を用いて形成することができる。
[7] 次に、電子注入層8上に、陰極9を形成する。
陰極9は、例えば、真空蒸着法、スパッタリング法、金属箔の接合、金属微粒子インクの塗布および焼成等を用いて形成することができる。
以上のような工程を経て、発光素子1が得られる。
最後に、得られた発光素子1を覆うように封止部材10を被せ、基板2に接合する。
[6] Next, the
In the case where an inorganic material is used as the constituent material of the
[7] Next, the
The
The
Finally, the sealing
(発光装置)
次に、本発明の発光装置の実施形態について説明する。
図2は、本発明の発光装置を適用したディスプレイ装置の実施形態を示す縦断面図である。
図2に示すディスプレイ装置100は、基板21と、複数の発光素子1Aと、各発光素子1Aをそれぞれ駆動するための複数の駆動用トランジスタ24とを有している。ここで、ディスプレイ装置100は、トップエミッション構造のディスプレイパネルである。
(Light emitting device)
Next, an embodiment of the light emitting device of the present invention will be described.
FIG. 2 is a longitudinal sectional view showing an embodiment of a display device to which the light emitting device of the present invention is applied.
A
基板21上には、複数の駆動用トランジスタ24が設けられ、これらの駆動用トランジスタ24を覆うように、絶縁材料で構成された平坦化層22が形成されている。
各駆動用トランジスタ24は、シリコンからなる半導体層241と、半導体層241上に形成されたゲート絶縁層242と、ゲート絶縁層242上に形成されたゲート電極243と、ソース電極244と、ドレイン電極245とを有している。
平坦化層上には、各駆動用トランジスタ24に対応して発光素子1Aが設けられている。
A plurality of driving
Each driving
On the planarization layer, the
発光素子1Aは、平坦化層22上に、反射膜32、腐食防止膜33、陽極3、積層体(有機EL発光部)14、陰極13、陰極カバー34がこの順に積層されている。本実施形態では、各発光素子1Aの陽極3は、画素電極を構成し、各駆動用トランジスタ24のドレイン電極245に導電部(配線)27により電気的に接続されている。また、各発光素子1Aの陰極13は、共通電極とされている。
In the
図2における発光素子1Aは、近赤外域で発光するものである。
隣接する発光素子1A同士の間には、隔壁31が設けられている。また、これらの発光素子1A上には、これらを覆うように、エポキシ樹脂で構成されたエポキシ層35が形成されている。
そして、エポキシ層35上には、これらを覆うように封止基板20が設けられている。
以上説明したようなディスプレイ装置100は、例えば軍事用途等の近赤外線ディスプレイとして用いることができる。
このようなディスプレイ装置100によれば、近赤外域での発光が可能である。また、高効率および長寿命な発光素子1Aを備えるので、信頼性に優れる。
2A emits light in the near infrared region.
A
A sealing
The
According to such a
(認証装置)
次に、本発明の認証装置の実施形態を説明する。
図3は、本発明の認証装置の実施形態を示す図である。
図3に示す認証装置1000は、生体F(本実施形態では指先)の生体情報を用いて個人を認証する生体認証装置である。
(Authentication device)
Next, an embodiment of the authentication device of the present invention will be described.
FIG. 3 is a diagram showing an embodiment of the authentication device of the present invention.
An
この認証装置1000は、光源100Bと、カバーガラス1001と、マイクロレンズアレイ1002と、受光素子群1003と、発光素子駆動部1006と、受光素子駆動部1004と、制御部1005とを有する。
光源100Bは、前述した発光素子1を複数備えるものであり、撮像対象物である生体Fへ向けて、近赤外域の光を照射する。例えば、この光源100Bの複数の発光素子1は、カバーガラス1001の外周部に沿って配置される。
The
The
カバーガラス1001は、生体Fが接触または近接する部位である。
マイクロレンズアレイ1002は、カバーガラス1001の生体Fが接触または近接する側と反対側に設けられている。このマイクロレンズアレイ1002は、複数のマイクロレンズがマトリクス状に配列して構成されている。
受光素子群1003は、マイクロレンズアレイ1002に対してカバーガラス1001とは反対側に設けられている。この受光素子群1003は、マイクロレンズアレイ1002の複数のマイクロレンズに対応してマトリクス状に設けられた複数の受光素子で構成されている。この受光素子群1003の各受光素子としては、例えば、CCD(Charge Coupled Device)、CMOS等を用いることができる。
The
The
The light
発光素子駆動部1006は、光源100Bを駆動する駆動回路である。
受光素子駆動部1004は、受光素子群1003を駆動する駆動回路である。
制御部1005は、例えば、MPUであり、発光素子駆動部1006および受光素子駆動部1004の駆動を制御する機能を有する。
また、制御部1005は、受光素子群1003の受光結果と、予め記憶された生体認証情報との比較により、生体Fの認証を行う機能を有する。
The light emitting
The light receiving
The
In addition, the
例えば、制御部1005は、受光素子群1003の受光結果に基づいて、生体Fに関する画像パターン(例えば静脈パターン)を生成する。そして、制御部1005は、その画像パターンと、生体認証情報として予め記憶された画像パターンとを比較し、その比較結果に基づいて、生体Fの認証(例えば静脈認証)を行う。
このような認証装置1000によれば、近赤外光を用いて生体認証を行うことができる。また、高効率および長寿命な発光素子1を備えるので、信頼性に優れる。
このような認証装置1000は、各種の電子機器に組み込むことができる。
For example, the
According to such an
Such an
(電子機器)
図4は、本発明の電子機器を適用したモバイル型(またはノート型)のパーソナルコンピュータの構成を示す斜視図である。
この図において、パーソナルコンピュータ1100は、キーボード1102を備えた本体部1104と、表示部を備える表示ユニット1106とにより構成され、表示ユニット1106は、本体部1104に対しヒンジ構造部を介して回動可能に支持されている。
このパーソナルコンピュータ1100において、本体部1104には、前述した認証装置1000が設けられている。
このようなパーソナルコンピュータ1100によれば、高効率および長寿命な発光素子1を備えるので、信頼性に優れる。
(Electronics)
FIG. 4 is a perspective view showing a configuration of a mobile (or notebook) personal computer to which the electronic apparatus of the present invention is applied.
In this figure, a
In the
According to such a
なお、本発明の電子機器は、図4のパーソナルコンピュータ(モバイル型パーソナルコンピュータ)の他にも、例えば、携帯電話機、ディジタルスチルカメラ、テレビや、ビデオカメラ、ビューファインダ型、モニタ直視型のビデオテープレコーダ、ラップトップ型パーソナルコンピュータ、カーナビゲーション装置、ページャ、電子手帳(通信機能付も含む)、電子辞書、電卓、電子ゲーム機器、ワードプロセッサ、ワークステーション、テレビ電話、防犯用テレビモニタ、電子双眼鏡、POS端末、タッチパネルを備えた機器(例えば金融機関のキャッシュディスペンサー、自動券売機)、医療機器(例えば電子体温計、血圧計、血糖計、脈拍計測装置、脈波計測装置、心電表示装置、超音波診断装置、内視鏡用表示装置)、魚群探知機、各種測定機器、計器類(例えば、車両、航空機、船舶の計器類)、フライトシュミレータ、その他各種モニタ類、プロジェクター等の投射型表示装置等に適用することができる。
以上、本発明の発光素子、発光装置、認証装置および電子機器を、図示の実施形態に基づいて説明したが、本発明はこれらに限定されるものでない。
In addition to the personal computer (mobile personal computer) shown in FIG. 4, the electronic apparatus of the present invention may be, for example, a mobile phone, a digital still camera, a television, a video camera, a viewfinder type, or a monitor direct view type video tape. Recorder, laptop personal computer, car navigation system, pager, electronic organizer (including communication function), electronic dictionary, calculator, electronic game device, word processor, workstation, video phone, security TV monitor, electronic binoculars, POS Terminals, devices equipped with a touch panel (for example, cash dispensers of financial institutions, automatic ticket vending machines), medical devices (for example, electronic thermometers, blood pressure monitors, blood glucose meters, pulse measuring devices, pulse measuring devices, electrocardiographic display devices, ultrasonic diagnostics) Device, endoscope display device), fish finder Various measuring instruments, gauges (e.g., gages for vehicles, aircraft, and ships), a flight simulator, various monitors, and a projection display such as a projector.
As described above, the light-emitting element, the light-emitting device, the authentication device, and the electronic device of the present invention have been described based on the illustrated embodiments, but the present invention is not limited to these.
次に、本発明の具体的実施例について説明する。
1.チアジアゾール系化合物の製造
(合成例A1)前記式D−1で表わされる化合物の合成
Next, specific examples of the present invention will be described.
1. Production of thiadiazole compound (Synthesis Example A1) Synthesis of compound represented by Formula D-1
合成(A1−1)
5リットルのフラスコに発煙硝酸1500mlを入れ冷却した。そこへ10〜50℃に保つようにして硫酸1500mlを分割添加した。さらにそこへ原料のジブロモベンゾチアジアゾールである化合物(a)を150gを1時間かけて少量ずつ添加した。その際に溶液温度は5℃以下になるように行った。全量添加後、室温(25℃)において20時間反応させた。反応後、氷3kgに反応液を注ぎ、一晩攪拌した。その後、ろ過してメタノール、ヘプタンで洗浄した。
ろ過して残った物を200mlのトルエンで熱溶解させた後、室温まで徐冷後にろ過し、残ったものを少量のトルエンで洗浄後、減圧乾燥させた。
これにより、HPLC純度95%の化合物(b)(4、7−ジブロモ−5、6−ジニトロ−ベンゾ[1、2、5]チアジアゾール)60gを得た。
Synthesis (A1-1)
A 5-liter flask was charged with 1500 ml of fuming nitric acid and cooled. Thereto, 1500 ml of sulfuric acid was added in portions while maintaining the temperature at 10 to 50 ° C. Further, 150 g of compound (a), which is a raw material dibromobenzothiadiazole, was added in small portions over 1 hour. At that time, the solution temperature was adjusted to 5 ° C. or lower. After adding the whole amount, the reaction was allowed to proceed at room temperature (25 ° C.) for 20 hours. After the reaction, the reaction solution was poured into 3 kg of ice and stirred overnight. Thereafter, the mixture was filtered and washed with methanol and heptane.
The residue remaining after filtration was dissolved in 200 ml of toluene by heating, and then gradually cooled to room temperature, followed by filtration. The residue was washed with a small amount of toluene and then dried under reduced pressure.
As a result, 60 g of compound (b) (4,7-dibromo-5,6-dinitro-benzo [1,2,5] thiadiazole) having an HPLC purity of 95% was obtained.
合成(A1−2)
Ar下、5リットルのフラスコに、得られたジブロモ体である化合物(b)30gとフェニルボロン酸(市販品)23g、トルエン2500ml、2M炭酸セシウム水溶液(152g/(蒸留水)234ml)を入れ、90℃で一晩反応させた。反応後ろ過、分液、濃縮し、得られた粗体52gをシリカゲルカラム(SiO2 5kg)で分離し、赤紫色固体を得た。
これにより、HPLC純度96%の化合物(c)(5、6−ジニトロ−4、7−ジフェニル−ベンゾ[1、2、5]チアジアゾール)6gを得た。
Synthesis (A1-2)
Under Ar, a 5 liter flask was charged with 30 g of the obtained dibromo compound (b) and 23 g of phenylboronic acid (commercial product), 2500 ml of toluene, 2 M aqueous cesium carbonate solution (152 g / (distilled water) 234 ml), The reaction was allowed to proceed overnight at 90 ° C. After the reaction, filtration, liquid separation and concentration were performed, and 52 g of the resulting crude product was separated with a silica gel column (
As a result, 6 g of a compound (c) (5,6-dinitro-4,7-diphenyl-benzo [1,2,5] thiadiazole) having a purity of 96% was obtained.
合成(A1−3)
Ar下、1リットルのフラスコに、得られたジニトロ体である化合物(c)6g、還元鉄7g、酢酸600mlを入れ、80℃で4時間反応させて室温まで冷却させた。反応後、反応液をイオン交換水1.5リットルに注ぎ、そこへ酢酸エチル1.5リットルをさらに添加した。添加後、固体が析出していたので、テトラヒドロフラン1リットルと食塩300gを添加し、分液した。水層は1リットルのテトラヒドロフランで再抽出した。濃縮乾燥したものを再度、少量の水、メタノールにて洗浄し、橙色固体を得た。
これにより、HPLC純度80%の化合物(d)(4、7−ジフェニル−ベンゾ[1、2、5]チアジアゾロ−5、6−ジアミン)7gを得た。
Synthesis (A1-3)
Under Ar, 6 g of the obtained dinitro compound (c), 7 g of reduced iron, and 600 ml of acetic acid were placed in a 1 liter flask, reacted at 80 ° C. for 4 hours, and cooled to room temperature. After the reaction, the reaction solution was poured into 1.5 liters of ion exchange water, and 1.5 liters of ethyl acetate was further added thereto. After the addition, since a solid was precipitated, 1 liter of tetrahydrofuran and 300 g of sodium chloride were added and separated. The aqueous layer was re-extracted with 1 liter of tetrahydrofuran. The concentrated and dried product was washed again with a small amount of water and methanol to obtain an orange solid.
As a result, 7 g of compound (d) (4,7-diphenyl-benzo [1,5,5] thiadiazolo-5,6-diamine) having an HPLC purity of 80% was obtained.
合成(A1−4)
Ar下、1リットルのフラスコに、得られたジアミン体である化合物(d)4.5g、9,10−フェナントレンキノン2.95g、溶媒として酢酸300mlを入れ、80℃にて2時間反応させた。反応後、室温まで冷却させ、反応液をイオン交換水1リットルに注ぎ、結晶をろ過、水洗、7.2gの黒緑色固体を得た。そして、その黒緑色固体をシリカゲルカラム(SiO2 1kg)で精製した。
これにより、HPLC純度99%の化合物(e)(前記式D−1で表わされる化合物)4.5gを得た。この化合物(e)を質量分析したところ、M+:490であった。
さらに、得られた化合物(e)を設定温度340℃で昇華精製した。その昇華精製後の化合物(e)のHPLC純度は99%であった。
Synthesis (A1-4)
Under Ar, a 1-liter flask was charged with 4.5 g of the obtained diamine compound (d), 2.95 g of 9,10-phenanthrenequinone, and 300 ml of acetic acid as a solvent, and reacted at 80 ° C. for 2 hours. . After the reaction, the reaction solution was cooled to room temperature, poured into 1 liter of ion-exchanged water, and the crystals were filtered and washed with water to obtain 7.2 g of a black-green solid. The black-green solid was purified with a silica gel column (
As a result, 4.5 g of a compound (e) (compound represented by the formula D-1) having an HPLC purity of 99% was obtained. Mass analysis of this compound (e) showed M +: 490.
Furthermore, the obtained compound (e) was purified by sublimation at a set temperature of 340 ° C. The HPLC purity of the compound (e) after the sublimation purification was 99%.
(合成例A2)前記式D−2で表わされる化合物の合成 (Synthesis Example A2) Synthesis of compound represented by Formula D-2
前述した合成例A1において、合成(A1−2)で使用するフェニルボロン酸の代わりにトリフェニルアミンのボロン酸体を用いた以外は、前述した合成例A1と同様にして合成を行った。これにより、前記式D−2で表わされる化合物(h)を得た。
ここで、トリフェニルアミンのボロン酸体の合成に際しては、Ar下、5リットルのフラスコに、4−ブロモトリフェニルアミン(市販品)246g、脱水テトラヒドロフラン1500mlを入れ、−60℃で1.6M n−BuLi/ヘキサン溶液570mlを3時間かけて滴下した。30分後ホウ酸トリイソプロピル429gを1時間かけて滴下した。滴下後は成り行きの温度で一晩反応させた。反応後、水2リットルを滴下し、その後トルエン2リットルで抽出、分液した。有機層を濃縮、再結晶し、ろ過、乾燥させて白色の目的物であるボロン酸体160gを得た。
Synthesis was performed in the same manner as in Synthesis Example A1 except that in Example Synthesis A1 described above, a boronic acid form of triphenylamine was used instead of phenylboronic acid used in Synthesis (A1-2). Thereby, the compound (h) represented by the formula D-2 was obtained.
Here, in synthesizing the boronic acid form of triphenylamine, 246 g of 4-bromotriphenylamine (commercial product) and 1500 ml of dehydrated tetrahydrofuran were placed in a 5-liter flask under Ar, and 1.6 M n at −60 ° C. -570 ml of a BuLi / hexane solution was added dropwise over 3 hours. After 30 minutes, 429 g of triisopropyl borate was added dropwise over 1 hour. After dropping, the reaction was allowed to proceed overnight at the expected temperature. After the reaction, 2 liters of water was added dropwise, and then extracted with 2 liters of toluene and separated. The organic layer was concentrated, recrystallized, filtered and dried to obtain 160 g of a boronic acid compound as a white target product.
得られたボロン酸体のHPLC純度は、99%であった。
そして、得られたボロン酸体を用いて、前述した合成例A1の合成(A1−2)と同様の合成を行い、化合物(f)を得た。
得られた化合物(f)を用いて、前述した合成例A1の合成(A1−3)と同様の合成を行い、化合物(g)を得た。
得られた化合物(g)を用いて、前述した合成例A1の合成(A1−4)と同様の合成を行い、前記式D−2で表わされる化合物(h)を得た。
The HPLC purity of the obtained boronic acid compound was 99%.
And the synthesis | combination similar to the synthesis | combination (A1-2) of the synthesis example A1 mentioned above was performed using the obtained boronic acid body, and the compound (f) was obtained.
Using the obtained compound (f), the same synthesis as the synthesis (A1-3) of Synthesis Example A1 described above was performed to obtain a compound (g).
Using the obtained compound (g), the synthesis similar to the synthesis (A1-4) of Synthesis Example A1 described above was performed to obtain the compound (h) represented by the formula D-2.
(合成例A3)前記式D−3で表わされる化合物の合成 (Synthesis Example A3) Synthesis of compound represented by Formula D-3
前述した合成例A1において、合成(A1−2)で使用するフェニルボロン酸の代わりにジフェニルアミンを用いた以外は、前述した合成例A1と同様にして合成を行った。これにより、前記式D−3で表わされる化合物(k)を得た。
ここで、ジフェニルアミンを用いた合成に際しては、Ar下で300mlのフラスコに、テトラキストリフェニルPd(0)11gを100mlのトルエンに溶解させ100℃に温めた。そこへトリ−t−ブチルフォスフィン8gを加えて30分間反応させ、触媒(Pd触媒)とした。
Synthesis was performed in the same manner as in Synthesis Example A1, except that diphenylamine was used instead of phenylboronic acid used in Synthesis (A1-2) in Synthesis Example A1. Thereby, the compound (k) represented by the formula D-3 was obtained.
Here, in the synthesis using diphenylamine, 11 g of tetrakistriphenyl Pd (0) was dissolved in 100 ml of toluene and heated to 100 ° C. in a 300 ml flask under Ar. Thereto, 8 g of tri-t-butylphosphine was added and reacted for 30 minutes to obtain a catalyst (Pd catalyst).
一方、Ar下、5リットルのフラスコに、ジブロモ体である化合物(b)30gとジフェニルアミン(市販品)33gを、トルエン2500mlに溶解させて100℃に温めた。そこへ先に調整したPd触媒とt−BuOK 20gを添加して3時間過熱還流させた。
反応後室温まで冷却後、100mlの水を添加し、1時間程攪拌した後に分液ロートにて水で分液洗浄し、有機層を乾燥させ、固体を得た。得られた固体をシリカゲルカラム(SiO2 5kg)で分離し、紫色固体を得た。
On the other hand, 30 g of dibromo compound (b) and 33 g of diphenylamine (commercial product) were dissolved in 2500 ml of toluene and heated to 100 ° C. in a 5-liter flask under Ar. The previously prepared Pd catalyst and 20 g of t-BuOK were added thereto and heated to reflux for 3 hours.
After the reaction, the reaction mixture was cooled to room temperature, 100 ml of water was added, and the mixture was stirred for about 1 hour. The obtained solid was separated with a silica gel column (
これにより、HPLC純度96%の化合物(i)(5、6−ジニトロ−N、N、N'、N'−テトラフェニル−ベンゾ[1、2、5]チアジアゾール)10gを得た。
そして、得られた化合物(i)を用いて、前述した合成例A1の合成(A1−3)と同様の合成を行い、化合物(j)を得た。
得られた化合物(j)を用いて、前述した合成例A1の合成(A1−4)と同様の合成を行い、前記式D−3で表わされる化合物(k)を得た。
As a result, 10 g of compound (i) (5,6-dinitro-N, N, N ′, N′-tetraphenyl-benzo [1,2,5] thiadiazole) having an HPLC purity of 96% was obtained.
And using the obtained compound (i), the synthesis | combination similar to the synthesis | combination (A1-3) of the synthesis example A1 mentioned above was performed, and the compound (j) was obtained.
Using the obtained compound (j), the synthesis similar to the synthesis (A1-4) of Synthesis Example A1 described above was performed to obtain the compound (k) represented by the formula D-3.
2.ホスト材料(テトラセン系材料)の製造
(合成例B1)式H1−2で表わされる化合物の合成
2. Production of host material (tetracene-based material) (Synthesis Example B1) Synthesis of compound represented by formula H1-2
合成(B1−1)
Ar下、300mlのフラスコに、4−ブロモビフェニル6gと乾燥ジエチルエーテル50mlを入れた。室温で1.6M n−BuLi/ヘキサン溶液14.5mlを滴下し、30分間反応させた。
一方、別途、Ar下、500mlのフラスコに、5、12−ナフタセンキノン2.7と乾燥トルエン100mlを投入した。そこへ先に調整したビフェニルリチウムを滴下し、3時間反応させた。反応後、20mlの蒸留水を添加し、30分攪拌後、メタノール中に入れ、固体をろ過分離した。得られた固体をシリカゲル(SiO2 500g)で精製した。
これにより、白色固体(5、12−ビスビフェニル−4−イル−5、12−ジヒドロ−ナフタセン−5、12−ジオール)4.5gを得た。
Synthesis (B1-1)
Under Ar, 6 g 4-bromobiphenyl and 50 ml dry diethyl ether were placed in a 300 ml flask. At room temperature, 14.5 ml of 1.6M n-BuLi / hexane solution was added dropwise and reacted for 30 minutes.
Separately, 5,12-naphthacenequinone 2.7 and 100 ml of dry toluene were charged into a 500 ml flask under Ar. The biphenyllithium prepared previously was dripped there and it was made to react for 3 hours. After the reaction, 20 ml of distilled water was added, stirred for 30 minutes, put into methanol, and the solid was separated by filtration. The obtained solid was purified on silica gel (SiO 2 500 g).
This gave 4.5 g of a white solid (5,12-bisbiphenyl-4-yl-5,12-dihydro-naphthacene-5,12-diol).
合成(B1−2)
合成(B1−1)で得られたジオール体4.5gと酢酸300mlを計量し、1000mlのフラスコに入れた。そこへ、塩酸(35%)5gに塩化スズ(II)(無水)5gを溶かしたものを入れ、30分攪拌した。その後、分液ロートに移し、トルエンを加えて、蒸留水にて分液洗浄し、乾燥させた。得られた個体をシリカゲル(SiO2 500g)で精製し、黄色固体(前記式H1−2で表わされる化合物)4gを得た。
Synthesis (B1-2)
4.5 g of the diol obtained in synthesis (B1-1) and 300 ml of acetic acid were weighed and placed in a 1000 ml flask. A solution prepared by dissolving 5 g of tin (II) chloride (anhydrous) in 5 g of hydrochloric acid (35%) was added and stirred for 30 minutes. Then, it moved to the separating funnel, added toluene, liquid-separated and washed with distilled water, and dried. The obtained solid was purified with silica gel (SiO 2 500 g) to obtain 4 g of a yellow solid (compound represented by the formula H1-2).
(合成例B2)式H1−5で表わされる化合物の合成 (Synthesis Example B2) Synthesis of compound represented by formula H1-5
合成(B2−1)
Ar下、300mlのフラスコに、4−ブロモ−[1,1';3',1'']ターフェニル6gと乾燥ジエチルエーテル50mlを入れた。室温で1.6M n−BuLi/ヘキサン溶液14.5mlを滴下し、30分間反応させた。
一方、別途、Ar下500mlのフラスコに、5、12−ナフタセンキノン2gと乾燥トルエン100mlを入れた。そこへ先に調整したターフェニルリチウムを滴下し、3時間反応させた。反応後、20mlの蒸留水を添加し、30分攪拌後、メタノール中に入れ、固体をろ過分離した。得られた固体をシリカゲル(SiO2 500g)で精製した。
これにより、白色固体(5,12−ビス−[1,1';3',1'']ターフェニル−4'−イル−5,12−ジヒドロナフタセン−5,12−ジオール)5gを得た。
Synthesis (B2-1)
Under Ar, a 300 ml flask was charged with 6 g of 4-bromo- [1,1 ′; 3 ′, 1 ″] terphenyl and 50 ml of dry diethyl ether. At room temperature, 14.5 ml of 1.6M n-BuLi / hexane solution was added dropwise and reacted for 30 minutes.
Separately, 2 g of 5,12-naphthacenequinone and 100 ml of dry toluene were placed in a 500 ml flask under Ar. The terphenyl lithium adjusted previously was dripped there and it was made to react for 3 hours. After the reaction, 20 ml of distilled water was added, stirred for 30 minutes, put into methanol, and the solid was separated by filtration. The obtained solid was purified on silica gel (SiO 2 500 g).
This gives 5 g of a white solid (5,12-bis- [1,1 ′; 3 ′, 1 ″] terphenyl-4′-yl-5,12-dihydronaphthacene-5,12-diol). It was.
合成(B2−2)
合成(B2−1)で得られたジオール体5gと酢酸300mlを計量し、1000mlのフラスコに投入した。そこへ、塩酸(35%)5gに塩化スズ(II)(無水)5gを溶かしたものを入れ、30分攪拌した。その後、分液ロートに移し、トルエンを加えて、蒸留水にて分液洗浄し、乾燥させた。得られた個体をシリカゲル(SiO2 500g)で精製し、黄色固体(前記式H1−5で表わされる化合物)4.5gを得た。
Synthesis (B2-2)
5 g of the diol obtained in the synthesis (B2-1) and 300 ml of acetic acid were weighed and put into a 1000 ml flask. A solution prepared by dissolving 5 g of tin (II) chloride (anhydrous) in 5 g of hydrochloric acid (35%) was added and stirred for 30 minutes. Then, it moved to the separating funnel, added toluene, liquid-separated and washed with distilled water, and dried. The obtained solid was purified with silica gel (SiO 2 500 g) to obtain 4.5 g of a yellow solid (compound represented by the formula H1-5).
(合成例B3)式H1−13で表わされる化合物の合成 (Synthesis Example B3) Synthesis of Compound Represented by Formula H1-13
合成(B3−1)
500mlのフラスコに、ジクロロメタン100mlと、ナフトキノン5.2gと、1,3−ジフェニルイソベンゾフラン10gを入れ、1時間攪拌した。攪拌後、市販品の三臭化ホウ素(ジクロロメタン溶液 1mol/L)33mlを、10分かけて添加することにより、黄色針状結晶(6,11−ジフェニル−5,12−ナフタセンキノン)7.1gを得た。
Synthesis (B3-1)
A 500 ml flask was charged with 100 ml of dichloromethane, 5.2 g of naphthoquinone, and 10 g of 1,3-diphenylisobenzofuran, and stirred for 1 hour. After stirring, 33 ml of commercially available boron tribromide (
合成(B3−2)
Ar下、200mlのフラスコに、4−ブロモ−ビフェニル6gと乾燥ジエチルエーテル80mlを投入した。室温で1.6M n−BuLi/ヘキサン溶液16mlを滴下し、30分間反応させた。
一方、別途、Ar下500mlのフラスコに、合成(B3−1)で得られたキノン4.2gと乾燥トルエン100mlを投入した。そこへ先に調整したビフェニルリチウムを滴下し、3時間反応させた。反応後、20mlの蒸留水を添加し、30分攪拌後、メタノール中に空け、固体をろ過分離した。得られた固体をシリカゲル(SiO2 500g)で精製した。
これにより、白色固体(5、12−ビスビフェニル−4−イル−6、11−ジフェニル−5、12−ジヒドロ−ナフタセン−5、12−ジオール)5.5gを得た。
Synthesis (B3-2)
Under Ar, a 200 ml flask was charged with 6 g of 4-bromo-biphenyl and 80 ml of dry diethyl ether. At room temperature, 16 ml of 1.6M n-BuLi / hexane solution was added dropwise and reacted for 30 minutes.
Separately, 4.2 g of quinone obtained by synthesis (B3-1) and 100 ml of dry toluene were charged into a 500 ml flask under Ar. The biphenyllithium prepared previously was dripped there and it was made to react for 3 hours. After the reaction, 20 ml of distilled water was added, stirred for 30 minutes, poured into methanol, and the solid was separated by filtration. The obtained solid was purified on silica gel (SiO 2 500 g).
This gave 5.5 g of a white solid (5,12-bisbiphenyl-4-yl-6,11-diphenyl-5,12-dihydro-naphthacene-5,12-diol).
合成(B3−3)
合成(B3−2)で得られたジオール体5gとテトラヒドロフラン200mlを計量し、500mlのフラスコに入れた。そこへ、ヨウ化水素酸(55%水溶液)10gを入れ、2時間遮光しながら攪拌した。その後、分液ロートに移し、トルエンを加えて、蒸留水にて分液洗浄し、乾燥させた。得られた個体をシリカゲル(SiO2 500g)で精製し、赤色固体(前記式H1−13で表わされる化合物)3gを得た。
Synthesis (B3-3)
5 g of the diol obtained in Synthesis (B3-2) and 200 ml of tetrahydrofuran were weighed and put into a 500 ml flask. Thereto was added 10 g of hydroiodic acid (55% aqueous solution), and the mixture was stirred for 2 hours while being shielded from light. Then, it moved to the separating funnel, added toluene, liquid-separated and washed with distilled water, and dried. The obtained solid was purified with silica gel (SiO 2 500 g) to obtain 3 g of a red solid (compound represented by the formula H1-13).
3.ホスト材料(アントラセン系材料)の製造
(合成例C1)式H2−30で表わされる化合物の合成
3. Production of host material (anthracene-based material) (Synthesis Example C1) Synthesis of compound represented by formula H2-30
合成(C1−1)
市販の2−ナフタレンボロン酸2.1gと9,10−ジブロモアントラセン5gを50mlのジメトキシエタンに溶解させ、80℃に加熱した。そこへ蒸留水50mlおよび炭酸ナトリウム10gを入れた。さらにそこへテトラキストリフェニルホスフィンパラジウム(0)0.4gを入れた。
3時間後分液ロートにてトルエン抽出を行い、シリカゲル(SiO2 500g)で精製した。
これにより、薄黄白色結晶(9−ブロモ−10−ナフタレン−2−イル−アントラセン)3gを得た。
Synthesis (C1-1)
Commercially available 2-naphthaleneboronic acid (2.1 g) and 9,10-dibromoanthracene (5 g) were dissolved in 50 ml of dimethoxyethane and heated to 80 ° C. Thereto, 50 ml of distilled water and 10 g of sodium carbonate were added. Further, 0.4 g of tetrakistriphenylphosphine palladium (0) was added thereto.
After 3 hours, toluene was extracted with a separatory funnel and purified with silica gel (SiO 2 500 g).
As a result, 3 g of pale yellowish white crystals (9-bromo-10-naphthalen-2-yl-anthracene) were obtained.
合成(C1−2)
Ar下、500mlのフラスコに、市販の2−ナフタレンボロン酸10.5gと1,4−ジブロベンゼン17.5gを250mlのジメトキシエタンに溶解させ、80℃に加熱した。そこへ蒸留水250mlおよび炭酸ナトリウム30gを入れた。さらにそこへテトラキストリフェニルホスフィンパラジウム(0)2gを入れた。
3時間後分液ロートにてトルエン抽出を行い、シリカゲル(SiO2 500g)で精製した。
これにより、白色結晶(2−(4−ブロモフェニル)−ナフタレン)10gを得た。
Synthesis (C1-2)
Under Ar, 10.5 g of commercially available 2-naphthaleneboronic acid and 17.5 g of 1,4-dibrobenzene were dissolved in 250 ml of dimethoxyethane and heated to 80 ° C. in a 500 ml flask. Thereto, 250 ml of distilled water and 30 g of sodium carbonate were added. Further, 2 g of tetrakistriphenylphosphine palladium (0) was added thereto.
After 3 hours, toluene was extracted with a separatory funnel and purified with silica gel (SiO 2 500 g).
This obtained 10 g of white crystals (2- (4-bromophenyl) -naphthalene).
合成(C1−3)
Ar下、1リットルのフラスコに、合成(C1−2)で得られた2−(4−ブロモフェニル)−ナフタレン10g、脱水テトラヒドロフラン500mlを入れ、−60℃で1.6M n−BuLi/ヘキサン溶液22mlを30分かけて滴下した。30分後ホウ酸トリイソプロピル7gを添加した。滴下後は成り行きの温度で一晩反応させた。反応後、水100mlを滴下し、その後トルエン2リットルで抽出、分液した。有機層を濃縮、再結晶し、ろ過、乾燥させて白色のフェニルボロン酸誘導体5gを得た。
Synthesis (C1-3)
Under Ar, in a 1 liter flask, 10 g of 2- (4-bromophenyl) -naphthalene obtained in synthesis (C1-2) and 500 ml of dehydrated tetrahydrofuran were added, and a 1.6 M n-BuLi / hexane solution at −60 ° C. 22 ml was added dropwise over 30 minutes. After 30 minutes, 7 g of triisopropyl borate was added. After dropping, the reaction was allowed to proceed overnight at the expected temperature. After the reaction, 100 ml of water was added dropwise, and then extracted with 2 liters of toluene and separated. The organic layer was concentrated, recrystallized, filtered and dried to obtain 5 g of a white phenylboronic acid derivative.
合成(C1−4)
Ar下、500mlのフラスコに、合成(C1−1)で得られた9−ブロモ−10−ナフタレン−2−イル−アントラセン3gと、合成(C1−3)で得られたボロン酸3gを200mlのジメトキシエタンに溶解させ、80℃に加熱した。そこへ蒸留水250mlおよび炭酸ナトリウム10gを入れた。さらにそこへテトラキストリフェニルホスフィンパラジウム(0)0.5gを入れた。
3時間後分液ロートにてトルエン抽出を行い、シリカゲルクロマトグラフィーにより精製を行った。
これにより、薄黄白色固体(前記式H2−30で表わされる化合物)3gを得た。
Synthesis (C1-4)
Under Ar, a 500 ml flask was charged with 3 g of 9-bromo-10-naphthalen-2-yl-anthracene obtained by synthesis (C1-1) and 3 g of boronic acid obtained by synthesis (C1-3). Dissolved in dimethoxyethane and heated to 80 ° C. Thereto, 250 ml of distilled water and 10 g of sodium carbonate were added. Further, 0.5 g of tetrakistriphenylphosphine palladium (0) was added thereto.
After 3 hours, toluene was extracted with a separatory funnel and purified by silica gel chromatography.
As a result, 3 g of a pale yellowish white solid (compound represented by the formula H2-30) was obtained.
(合成例C2)式H2−47で表わされる化合物の合成 (Synthesis Example C2) Synthesis of compound represented by formula H2-47
合成(C2−1)
Ar下、300mlのフラスコに、ビアントロン5gと乾燥ジエチルエーテル150mlを入れた。そこへ市販のフェニルリチウム試薬(19% ブチルエーテル溶液)を5.5ml加えて、3時間室温にて攪拌させた。その後、10mlの水を投入後、分液ロートに移してトルエンにて目的物を抽出、乾燥させ、シリカゲル(SiO2 500g)にて分離精製した。
これにより、白色の目的物(10、10'−ジフェニル−10H、10'H−[9、9']ビアントラセニリデン−10、10'−ジオール)5gを得た。
Synthesis (C2-1)
Under Ar, 5 g of Biantron and 150 ml of dry diethyl ether were placed in a 300 ml flask. 5.5 ml of a commercially available phenyl lithium reagent (19% butyl ether solution) was added thereto and stirred at room temperature for 3 hours. Thereafter, 10 ml of water was added, and the mixture was transferred to a separatory funnel, and the target product was extracted with toluene, dried, and separated and purified on silica gel (SiO 2 500 g).
As a result, 5 g of a white target product (10, 10′-diphenyl-10H, 10′H- [9,9 ′] bianthracenylidene-10, 10′-diol) was obtained.
合成(C2−2)
合成(C2−1)で得られたジオール体5gと酢酸300mlを500mlのフラスコに入れた。そこへ塩酸(35%)5gに塩化スズ(II)(無水)5gを溶かしたものを入れ、30分攪拌した。その後、分液ロートに移し、トルエンを加えて、蒸留水にて分液洗浄し、乾燥させた。得られた固体をシリカゲル(SiO2 500g)で精製し、黄色白色固体(前記式H2−47で表わされる化合物)5.5gを得た。
Synthesis (C2-2)
5 g of the diol obtained in synthesis (C2-1) and 300 ml of acetic acid were placed in a 500 ml flask. A solution prepared by dissolving 5 g of tin (II) chloride (anhydrous) in 5 g of hydrochloric acid (35%) was added and stirred for 30 minutes. Then, it moved to the separating funnel, added toluene, liquid-separated and washed with distilled water, and dried. The obtained solid was purified by silica gel (SiO 2 500 g) to obtain 5.5 g of a yellow white solid (compound represented by the formula H2-47).
(合成例C3)式H2−52で表わされる化合物 (Synthesis Example C3) Compound represented by Formula H2-52
合成(C3−1)
市販のフェニルボロン酸2.2gと9,10−ジブロモアントラセン6gを100mlのジメトキシエタンに溶解させ、80℃に加熱した。そこへ蒸留水50mlおよび炭酸ナトリウム10gを入れた。さらにそこへテトラキストリフェニルホスフィンパラジウム(0)0.5gを入れた。
3時間後分液ロートにてトルエン抽出を行い、シリカゲル(SiO2 500g)で精製を行った。
これにより、黄白色結晶(9−ブロモ−10−フェニル−アントラセン)4gを得た。
Synthesis (C3-1)
Commercially available phenylboronic acid (2.2 g) and 9,10-dibromoanthracene (6 g) were dissolved in 100 ml of dimethoxyethane and heated to 80 ° C. Thereto, 50 ml of distilled water and 10 g of sodium carbonate were added. Further, 0.5 g of tetrakistriphenylphosphine palladium (0) was added thereto.
After 3 hours, toluene was extracted with a separatory funnel and purified with silica gel (SiO 2 500 g).
As a result, 4 g of yellowish white crystals (9-bromo-10-phenyl-anthracene) were obtained.
合成(C3−2)
Ar下、500mlのフラスコに、合成(C3−1)で得られた9−ブロモ−10−フェニル−アントラセン4gと市販品のフェニレンジボロン酸0.8gを200mlのジメトキシエタンに溶解させ、80℃に加熱した。そこへ蒸留水250mlおよび炭酸ナトリウム10gを入れた。さらにそこへテトラキストリフェニルホスフィンパラジウム(0)0.5gを入れた。
3時間後分液ロートにてトルエン抽出を行い、シリカゲルクロマトグラフィーを用いて精製を行った。
これにより、薄黄白色固体(前記式H2−52で表わされる化合物)2gを得た。
Synthesis (C3-2)
Under Ar, in a 500 ml flask, 4 g of 9-bromo-10-phenyl-anthracene obtained by synthesis (C3-1) and 0.8 g of commercially available phenylenediboronic acid were dissolved in 200 ml of dimethoxyethane, and 80 ° C. Heated. Thereto, 250 ml of distilled water and 10 g of sodium carbonate were added. Further, 0.5 g of tetrakistriphenylphosphine palladium (0) was added thereto.
After 3 hours, toluene was extracted with a separatory funnel and purified using silica gel chromatography.
As a result, 2 g of a pale yellowish white solid (compound represented by the formula H2-52) was obtained.
4.電子輸送性材料(アザインドリジン系化合物)の製造
(合成例D1)式ETL−A3で表わされる化合物の合成
4). Production of Electron Transport Material (Azaindolizine Compound) (Synthesis Example D1) Synthesis of Compound Represented by Formula ETL-A3
合成(D1−1)
市販の2−ナフタレンボロン酸2.1gと9,10−ジブロモアントラセン5gを50mlのジメトキシエタンに溶解させ、80℃に加熱した。そこへ蒸留水50mlおよび炭酸ナトリウム10gを入れた。さらにそこへテトラキストリフェニルホスフィンパラジウム(0)0.4gを入れた。
Synthesis (D1-1)
Commercially available 2-naphthaleneboronic acid (2.1 g) and 9,10-dibromoanthracene (5 g) were dissolved in 50 ml of dimethoxyethane and heated to 80 ° C. Thereto, 50 ml of distilled water and 10 g of sodium carbonate were added. Further, 0.4 g of tetrakistriphenylphosphine palladium (0) was added thereto.
3時間後分液ロートにてトルエン抽出を行い、シリカゲル(SiO2 500g)で精製を行った。
これにより、薄黄白色結晶(9−ブロモ−10−ナフタレン−2−イル−アントラセン)3gを得た。
After 3 hours, toluene was extracted with a separatory funnel and purified with silica gel (SiO 2 500 g).
As a result, 3 g of pale yellowish white crystals (9-bromo-10-naphthalen-2-yl-anthracene) were obtained.
合成(D1−2)
Ar下、1リットルのフラスコに、合成(D1−1)で得られた9−ブロモ−10−ナフタレン−2−イル−アントラセン3g、脱水テトラヒドロフラン500mlを入れ、−60℃で1.6M n−BuLi/ヘキサン溶液6mlを10分かけて滴下した。30分後ホウ酸トリイソプロピル1.5gを添加した。滴下後は成り行きの温度で3時間反応させた。反応後、蒸留水50mLを滴下し、その後トルエン1リットルで抽出、分液した。有機層を濃縮、再結晶し、ろ過、乾燥させて白色の目的物(ボロン酸体)2gを得た。
Synthesis (D1-2)
Under Ar, in a 1 liter flask, 3 g of 9-bromo-10-naphthalen-2-yl-anthracene obtained in Synthesis (D1-1) and 500 ml of dehydrated tetrahydrofuran were added, and 1.6M n-BuLi was added at -60 ° C. / 6 ml of hexane solution was added dropwise over 10 minutes. After 30 minutes, 1.5 g of triisopropyl borate was added. After dropping, the reaction was allowed to proceed for 3 hours at the expected temperature. After the reaction, 50 mL of distilled water was added dropwise, and then extracted and separated with 1 liter of toluene. The organic layer was concentrated, recrystallized, filtered and dried to obtain 2 g of a white target product (boronic acid form).
合成(D1−3)
Ar下、300mlのフラスコに2−アミノピリジン3.4gを計量し、そこへエタノール40mlとアセトン40mLを加えて溶解させた。そこへ4−ブロモフェナシルブロミド10gを加えて加熱還流させた。3時間後、加熱を中止して室温まで冷却した。溶媒を減圧除去後、1リットルのメタノールに加熱溶解させて、ろ過で不溶不純物を除去後、濃縮し際沈殿させたものを回収した。
これにより、目的物の白色固体(2−(4−ブロモフェニル)−イミダゾ[1、2−a]ピリジン)8gを得た。
Synthesis (D1-3)
Under Ar, 3.4 g of 2-aminopyridine was weighed into a 300 ml flask, and 40 ml of ethanol and 40 ml of acetone were added and dissolved therein. 4-bromophenacyl bromide 10g was added there, and it was made to heat and reflux. After 3 hours, heating was discontinued and cooled to room temperature. After removing the solvent under reduced pressure, it was dissolved by heating in 1 liter of methanol, and after removing insoluble impurities by filtration, the concentrated and precipitated product was collected.
As a result, 8 g of a target white solid (2- (4-bromophenyl) -imidazo [1,2-a] pyridine) was obtained.
合成(D1−4)
Ar下、500mlのフラスコに、合成(D1−2)で得られたボロン酸体2gと、合成(D1−3)で得られたイミダゾピリジン誘導体1.7gを200mlのジメトキシエタンに溶解させ、80℃に加熱した。そこへ蒸留水250mlおよび炭酸ナトリウム10gを入れた。さらにそこへテトラキストリフェニルホスフィンパラジウム(0)0.5gを入れた。
3時間後分液ロートにてトルエン抽出を行い、シリカゲル(SiO2 500g)で精製した。
これにより、白色固体(前記式ETL−A3で表わされる化合物)2gを得た。
Synthesis (D1-4)
Under Ar, in a 500 ml flask, 2 g of the boronic acid compound obtained by synthesis (D1-2) and 1.7 g of the imidazopyridine derivative obtained by synthesis (D1-3) were dissolved in 200 ml of dimethoxyethane. Heated to ° C. Thereto, 250 ml of distilled water and 10 g of sodium carbonate were added. Further, 0.5 g of tetrakistriphenylphosphine palladium (0) was added thereto.
After 3 hours, toluene was extracted with a separatory funnel and purified with silica gel (SiO 2 500 g).
As a result, 2 g of a white solid (compound represented by the formula ETL-A3) was obtained.
5.発光素子の製造
(実施例1)
<1> まず、平均厚さ0.5mmの透明なガラス基板を用意した。次に、この基板上に、スパッタ法により、平均厚さ100nmのITO電極(陽極)を形成した。
そして、基板をアセトン、2−プロパノールの順に浸漬し、超音波洗浄した後、酸素プラズマ処理およびアルゴンプラズマ処理を施した。これらのプラズマ処理は、それぞれ、基板を70〜90℃に加温した状態で、プラズマパワー100W、ガス流量20sccm、処理時間5secで行った。
<2> 次に、ITO電極上に、アミン系の正孔輸送性材料として、テトラ−p−ビフェニリル−ベンジジン(下記式HTL−1で表わされる化合物)を真空蒸着法により蒸着させ、平均厚さ60nmの正孔輸送層を形成した。
5). Production of light emitting device (Example 1)
<1> First, a transparent glass substrate having an average thickness of 0.5 mm was prepared. Next, an ITO electrode (anode) having an average thickness of 100 nm was formed on the substrate by sputtering.
And after immersing a board | substrate in order of acetone and 2-propanol and ultrasonically cleaning, oxygen plasma treatment and argon plasma treatment were performed. Each of these plasma treatments was performed at a plasma power of 100 W, a gas flow rate of 20 sccm, and a treatment time of 5 seconds with the substrate heated to 70 to 90 ° C.
<2> Next, tetra-p-biphenylyl-benzidine (a compound represented by the following formula HTL-1) is vapor-deposited on the ITO electrode as an amine-based hole transporting material by a vacuum vapor deposition method, and the average thickness is measured. A 60 nm hole transport layer was formed.
<3> 次に、正孔輸送層上に、発光層の構成材料を真空蒸着法により蒸着させ、平均厚さ25nmの発光層を形成した。発光層の構成材料としては、発光材料(ゲスト材料)として前記式D−2で表わされる化合物を用い、ホスト材料としてトリス(8−キノリノラト)アルミニウム(Alq3)を用いた。また、発光層中の発光材料(ドーパント)の含有量(ドープ濃度)を4.0wt%とした。 <3> Next, the constituent material of the light emitting layer was vapor-deposited on the hole transport layer by a vacuum vapor deposition method to form a light emitting layer having an average thickness of 25 nm. As the constituent material of the light emitting layer, the compound represented by the formula D-2 was used as the light emitting material (guest material), and tris (8-quinolinolato) aluminum (Alq 3 ) was used as the host material. Further, the content (dope concentration) of the light emitting material (dopant) in the light emitting layer was 4.0 wt%.
<4> 次に、発光層上に、前記式ETL−A3で表わされる化合物(アザインドリジン系化合物)を真空蒸着法により成膜し、平均厚さ90nmの電子輸送層を形成した。
<5> 次に、電子輸送層上に、フッ化リチウム(LiF)を真空蒸着法により成膜し、平均厚さ1nmの電子注入層を形成した。
<6> 次に、電子注入層上に、Alを真空蒸着法により成膜した。これにより、Alで構成される平均厚さ100nmの陰極を形成した。
<7> 次に、形成した各層を覆うように、ガラス製の保護カバー(封止部材)を被せ、エポキシ樹脂により固定、封止した。
以上の工程により、発光素子を製造した。
<4> Next, a compound represented by the formula ETL-A3 (azaindolizine compound) was formed on the light emitting layer by a vacuum deposition method to form an electron transport layer having an average thickness of 90 nm.
<5> Next, on the electron transport layer, lithium fluoride (LiF) was formed by a vacuum deposition method to form an electron injection layer having an average thickness of 1 nm.
<6> Next, Al was formed into a film by the vacuum evaporation method on the electron injection layer. Thereby, a cathode having an average thickness of 100 nm made of Al was formed.
<7> Next, a glass protective cover (sealing member) was placed over the formed layers, and fixed and sealed with an epoxy resin.
The light emitting device was manufactured through the above steps.
(実施例2)
発光層のホスト材料として前記式H1−5で表わされる化合物(テトラセン系材料)を用いた以外は、前述した実施例1と同様にして発光素子を製造した。
(実施例3)
発光層のホスト材料として前記式H1−13で表わされる化合物(テトラセン系材料)を用いた以外は、前述した実施例1と同様にして発光素子を製造した。
(Example 2)
A light emitting device was produced in the same manner as in Example 1 except that the compound represented by the formula H1-5 (tetracene material) was used as the host material of the light emitting layer.
(Example 3)
A light emitting device was manufactured in the same manner as in Example 1 except that the compound represented by the formula H1-13 (tetracene material) was used as the host material of the light emitting layer.
(実施例4)
発光層のホスト材料として前記式H1−5で表わされる化合物(テトラセン系材料)を用いるとともに、発光層の平均厚さを45nm、電子輸送層の平均厚さを70nmとした以外は、前述した実施例1と同様にして発光素子を製造した。
(実施例5)
発光層のホスト材料として前記式H1−5で表わされる化合物(テトラセン系材料)を用いるとともに、発光層の平均厚さを15nm、電子輸送層の平均厚さを100nmとした以外は、前述した実施例1と同様にして発光素子を製造した。
Example 4
The implementation described above except that the compound represented by the formula H1-5 (tetracene-based material) is used as the host material of the light emitting layer, the average thickness of the light emitting layer is 45 nm, and the average thickness of the electron transport layer is 70 nm. A light emitting device was produced in the same manner as in Example 1.
(Example 5)
The implementation described above, except that the compound represented by the formula H1-5 (tetracene-based material) is used as the host material of the light emitting layer, the average thickness of the light emitting layer is 15 nm, and the average thickness of the electron transport layer is 100 nm A light emitting device was produced in the same manner as in Example 1.
(実施例6)
発光層のホスト材料として前記式H1−5で表わされる化合物(テトラセン系材料)を用い、また、電子輸送層を、Alq3、前記式ETL−A3で表わされる化合物をこの順で真空蒸着法により積層して形成した以外は、前述した実施例1と同様にして発光素子を製造した。
ここで、電子輸送層は、Alq3で構成された層の平均厚さが20nm、前記式ETL−A3で表わされる化合物で構成された層の平均厚さが70nmであった。
(Example 6)
The compound represented by the formula H1-5 (tetracene-based material) is used as the host material of the light-emitting layer, the electron transport layer is formed of Alq 3 , and the compound represented by the formula ETL-A3 is vacuum-deposited in this order. A light emitting device was manufactured in the same manner as in Example 1 except that the layers were formed by lamination.
Here, in the electron transport layer, the average thickness of the layer composed of Alq 3 was 20 nm, and the average thickness of the layer composed of the compound represented by the formula ETL-A3 was 70 nm.
(実施例7)
発光層のホスト材料として前記式H1−5で表わされる化合物(テトラセン系材料)を用い、また、電子輸送層を、前記式H1−5で表わされる化合物、Alq3、前記式ETL−A3で表わされる化合物をこの順で真空蒸着法により積層して形成した以外は、前述した実施例1と同様にして発光素子を製造した。
ここで、電子輸送層は、前記式H1−5で表わされる化合物で構成された層の平均厚さが20nm、Alq3で構成された層の平均厚さが20nm、前記式ETL−A3で表わされる化合物で構成された層の平均厚さが50nmであった。
(Example 7)
The compound represented by the formula H1-5 (tetracene material) is used as the host material of the light emitting layer, and the electron transport layer is represented by the compound represented by the formula H1-5, Alq 3 , or the formula ETL-A3. A light emitting device was manufactured in the same manner as in Example 1 except that the above compounds were laminated in this order by the vacuum deposition method.
Here, the electron transport layer has an average thickness of a layer composed of the compound represented by the formula H1-5 of 20 nm, an average thickness of a layer composed of Alq 3 of 20 nm, and is represented by the formula ETL-A3. The average thickness of the layer composed of the compound to be obtained was 50 nm.
(実施例8)
発光層の発光材料として前記式D−1で表わされる化合物を用い、発光層のホスト材料として前記式H1−5で表わされる化合物(テトラセン系材料)を用いた以外は、前述した実施例1と同様にして発光素子を製造した。
(実施例9)
発光層の発光材料として前記式D−3で表わされる化合物を用い、発光層のホスト材料として前記式H1−5で表わされる化合物(テトラセン系材料)を用いた以外は、前述した実施例1と同様にして発光素子を製造した。
(比較例)
電子輸送層の電子輸送性材料として2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP)を用いた以外は、前述した実施例1と同様にして発光素子を製造した。
(Example 8)
Example 1 described above, except that the compound represented by the formula D-1 was used as the light emitting material of the light emitting layer, and the compound (tetracene-based material) represented by the formula H1-5 was used as the host material of the light emitting layer. A light emitting device was manufactured in the same manner.
Example 9
Example 1 described above except that the compound represented by Formula D-3 was used as the light emitting material of the light emitting layer, and the compound (tetracene-based material) represented by Formula H1-5 was used as the host material of the light emitting layer. A light emitting device was manufactured in the same manner.
(Comparative example)
A light emitting device was produced in the same manner as in Example 1 except that 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) was used as the electron transporting material for the electron transport layer.
(参考例1)
発光層のホスト材料として前記式H1−5で表わされる化合物(テトラセン系材料)を用い、電子輸送層の電子輸送性材料として2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP)を用いた以外は、前述した実施例1と同様にして発光素子を製造した。
(Reference Example 1)
The compound represented by the formula H1-5 (tetracene material) is used as the host material of the light emitting layer, and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline ( A light emitting device was manufactured in the same manner as in Example 1 except that BCP) was used.
(参考例2)
発光層のホスト材料として前記式H1−13で表わされる化合物(テトラセン系材料)を用い、電子輸送層の電子輸送性材料として2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP)を用いた以外は、前述した実施例1と同様にして発光素子を製造した。
(Reference Example 2)
The compound represented by the formula H1-13 (tetracene-based material) is used as the host material of the light emitting layer, and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline ( A light emitting device was manufactured in the same manner as in Example 1 except that BCP) was used.
(参考例3)
発光層のホスト材料として前記式H1−5で表わされる化合物(テトラセン系材料)を用い、電子輸送層の電子輸送性材料として2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP)を用いるとともに、発光層の平均厚さを45nm、電子輸送層の平均厚さを70nmとした以外は、前述した実施例1と同様にして発光素子を製造した。
(Reference Example 3)
The compound represented by the formula H1-5 (tetracene material) is used as the host material of the light emitting layer, and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline ( BCP) was used, and a light emitting device was manufactured in the same manner as in Example 1 except that the average thickness of the light emitting layer was 45 nm and the average thickness of the electron transport layer was 70 nm.
(参考例4)
発光層のホスト材料として前記式H1−5で表わされる化合物(テトラセン系材料)を用い、電子輸送層の電子輸送性材料として2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP)を用いるとともに、発光層の平均厚さを15nm、電子輸送層の平均厚さを100nmとした以外は、前述した実施例1と同様にして発光素子を製造した。
(Reference Example 4)
The compound represented by the formula H1-5 (tetracene material) is used as the host material of the light emitting layer, and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline ( BCP) was used, and a light emitting device was manufactured in the same manner as in Example 1 except that the average thickness of the light emitting layer was 15 nm and the average thickness of the electron transport layer was 100 nm.
(参考例5)
発光層のホスト材料として前記式H1−5で表わされる化合物(テトラセン系材料)を用い、また、電子輸送層を、Alq3、BCPをこの順で真空蒸着法により積層して形成した以外は、前述した実施例1と同様にして発光素子を製造した。
ここで、電子輸送層は、Alq3で構成された層の平均厚さが20nm、BCPで構成された層の平均厚さが70nmであった。
(Reference Example 5)
Except that the compound represented by the formula H1-5 (tetracene-based material) is used as the host material of the light emitting layer, and the electron transport layer is formed by laminating Alq 3 and BCP in this order by the vacuum evaporation method. A light emitting device was manufactured in the same manner as in Example 1 described above.
Here, in the electron transport layer, the average thickness of the layer composed of Alq 3 was 20 nm, and the average thickness of the layer composed of BCP was 70 nm.
(参考例6)
発光層のホスト材料として前記式H1−5で表わされる化合物(テトラセン系材料)を用い、また、電子輸送層を、前記式H1−5で表わされる化合物、Alq3、BCPをこの順で真空蒸着法により積層して形成した以外は、前述した実施例1と同様にして発光素子を製造した。
ここで、電子輸送層は、前記式H1−5で表わされる化合物で構成された層の平均厚さが20nm、Alq3で構成された層の平均厚さが20nm、BCPで構成された層の平均厚さが50nmであった。
(Reference Example 6)
The compound represented by the formula H1-5 (tetracene-based material) is used as the host material of the light emitting layer, and the compound represented by the formula H1-5, Alq 3 and BCP are vacuum-deposited in this order on the electron transport layer. A light emitting device was manufactured in the same manner as in Example 1 except that the layers were formed by the method.
Here, the electron transport layer has an average thickness of a layer composed of the compound represented by the formula H1-5 of 20 nm, an average thickness of a layer composed of Alq 3 of 20 nm, and a layer composed of BCP. The average thickness was 50 nm.
(参考例7)
発光層の発光材料として前記式D−1で表わされる化合物を用い、発光層のホスト材料として前記式H1−5で表わされる化合物(テトラセン系材料)を用い、電子輸送層の電子輸送性材料としてBCPを用いた以外は、前述した実施例1と同様にして発光素子を製造した。
(参考例8)
発光層の発光材料として前記式D−3で表わされる化合物を用い、発光層のホスト材料として前記式H1−5で表わされる化合物(テトラセン系材料)を用い、電子輸送層の電子輸送性材料としてBCPを用いた以外は、前述した実施例1と同様にして発光素子を製造した。
(Reference Example 7)
As a light-emitting material for the light-emitting layer, the compound represented by the formula D-1 is used. As a host material for the light-emitting layer, the compound represented by the formula H1-5 (tetracene-based material) is used. A light emitting device was manufactured in the same manner as in Example 1 except that BCP was used.
(Reference Example 8)
As a light-emitting material for the light-emitting layer, the compound represented by the formula D-3 is used, and as a host material for the light-emitting layer, the compound represented by the formula H1-5 (tetracene-based material) is used. A light emitting device was manufactured in the same manner as in Example 1 except that BCP was used.
6.評価
各実施例、比較例および各参考例について、一定電流電源(株式会社東陽テクニカ製 KEITHLEY2400)を用いて、発光素子に100mA/cm2の定電流を流し、そのときの発光ピーク波長を小型ファイバ光学分光器(オーシャンオプティクス社製 S2000)を用いて測定した。発光パワーは光パワー測定機(株式会社エーディーシー製 光パワーメーター 8230)を用いて測定した。
また、そのときの電圧値(駆動電圧)も測定した。
さらに、輝度が初期の輝度の80%となる時間(LT80)を測定した。
これらの測定結果を表1に示す。
6). Evaluation About each example, comparative example, and each reference example, a constant current of 100 mA / cm 2 was passed through the light emitting element using a constant current power source (KEITLEY2400 manufactured by Toyo Corporation), and the emission peak wavelength at that time was reduced to a small fiber. It measured using the optical spectrometer (S2000 by Ocean Optics). The light emission power was measured using an optical power measuring device (Optical Power Meter 8230, manufactured by ADC Corporation).
The voltage value (drive voltage) at that time was also measured.
Furthermore, the time (LT80) during which the luminance was 80% of the initial luminance was measured.
These measurement results are shown in Table 1.
表1から明らかなように、各実施例の発光素子は、近赤外域で発光するととともに、比較例の発光素子に比し、高い発光パワーが得られる。また、各実施例の発光素子は、比較例および各参考例の発光素子に比し、駆動電圧を抑えることができる。このようなことから、各実施例の発光素子は、優れた発光効率を有する。
また、各実施例の発光素子は、比較例および各参考例の発光素子に比し、長い寿命を有する。
As is clear from Table 1, the light emitting elements of the respective examples emit light in the near infrared region, and higher light emission power is obtained as compared with the light emitting elements of the comparative examples. Moreover, the light emitting element of each Example can suppress a drive voltage compared with the light emitting element of a comparative example and each reference example. For these reasons, the light emitting elements of the respective examples have excellent luminous efficiency.
Moreover, the light emitting element of each Example has a long lifetime compared with the light emitting element of a comparative example and each reference example.
1、1A……発光素子 2……基板 3……陽極 4……正孔注入層 5……正孔輸送層 6……発光層 7……電子輸送層 8……電子注入層 9……陰極 10……封止部材 13……陰極 14……積層体 100……ディスプレイ装置 20……封止基板 21……基板 22……平坦化層 24……駆動用トランジスタ 241……半導体層 242……ゲート絶縁層 243……ゲート電極 244……ソース電極 245……ドレイン電極 27……配線 31……隔壁 32……反射膜 33……腐食防止膜 34……陰極カバー 35……エポキシ層 100B……光源 1000……認証装置 1001……カバーガラス 1002……マイクロレンズアレイ 1003……受光素子群 1004……受光素子駆動部 1005……制御部 1006……発光素子駆動部 1100……パーソナルコンピュータ 1102……キーボード 1104……本体部 1106……表示ユニット F……生体
DESCRIPTION OF
Claims (9)
陰極と、
前記陽極と前記陰極との間に設けられ、前記陽極と前記陰極との間に通電することにより発光する発光層と、
前記陰極と前記発光層との間に前記発光層に接して設けられ、電子輸送性を有する電子輸送層とを有し、
前記発光層は、下記式(1)で表わされる化合物を発光材料として含むとともに、前記発光材料を保持するホスト材料としてテトラセン系材料を含んで構成され、
前記電子輸送層は、アザインドリジン骨格およびアントラセン骨格を分子内に有する化合物を電子輸送性材料として含んで構成されていることを特徴とする発光素子。
A cathode,
A light emitting layer that is provided between the anode and the cathode, and emits light when energized between the anode and the cathode;
An electron transport layer provided between and in contact with the light emitting layer between the cathode and the light emitting layer, and having an electron transporting property;
The light-emitting layer containing Mutotomoni a compound represented by the following formula (1) as a luminescent material, a tetracene-based material is constituted Nde containing as a host material for holding the light emitting material,
The light-emitting element, wherein the electron transport layer includes a compound having an azaindolizine skeleton and an anthracene skeleton in the molecule as an electron transport material.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011173662A JP5879804B2 (en) | 2011-08-09 | 2011-08-09 | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AUTHENTICATION DEVICE, AND ELECTRONIC DEVICE |
KR1020120082398A KR20130018547A (en) | 2011-08-09 | 2012-07-27 | Thiadiazole, light-emitting element, light-emitting apparatus, authentication apparatus, and electronic device |
US13/564,376 US9067952B2 (en) | 2011-08-09 | 2012-08-01 | Thiadiazole, light-emitting element, light-emitting apparatus, authentication apparatus, and electronic device |
TW101128147A TWI586669B (en) | 2011-08-09 | 2012-08-03 | Thiadiazole, light-emitting element, light-emitting apparatus, authentication apparatus, and electronic device |
CN2012102829015A CN102952150A (en) | 2011-08-09 | 2012-08-09 | Thiadiazole compound, light-emittting element, light-emitting apparatus, authentication apparatus, and electronic device |
US14/693,484 US9741940B2 (en) | 2011-08-09 | 2015-04-22 | Thiadiazole, light-emitting element, light-emitting apparatus, authentication apparatus, and electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011173662A JP5879804B2 (en) | 2011-08-09 | 2011-08-09 | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AUTHENTICATION DEVICE, AND ELECTRONIC DEVICE |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013038247A JP2013038247A (en) | 2013-02-21 |
JP5879804B2 true JP5879804B2 (en) | 2016-03-08 |
Family
ID=47887569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011173662A Active JP5879804B2 (en) | 2011-08-09 | 2011-08-09 | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AUTHENTICATION DEVICE, AND ELECTRONIC DEVICE |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5879804B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5935261B2 (en) * | 2011-08-09 | 2016-06-15 | セイコーエプソン株式会社 | Thiadiazole compounds, compounds for light emitting devices, light emitting devices, light emitting devices, authentication devices, and electronic devices |
JP6398226B2 (en) * | 2014-02-28 | 2018-10-03 | セイコーエプソン株式会社 | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AUTHENTICATION DEVICE, AND ELECTRONIC DEVICE |
JP6613595B2 (en) * | 2014-04-09 | 2019-12-04 | セイコーエプソン株式会社 | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AUTHENTICATION DEVICE, AND ELECTRONIC DEVICE |
JP6331779B2 (en) | 2014-07-02 | 2018-05-30 | セイコーエプソン株式会社 | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AUTHENTICATION DEVICE, AND ELECTRONIC DEVICE |
JP6693053B2 (en) * | 2015-06-03 | 2020-05-13 | セイコーエプソン株式会社 | Light emitting element, light emitting device, authentication device, and electronic device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5006606B2 (en) * | 2006-09-13 | 2012-08-22 | 双葉電子工業株式会社 | COMPOUND FOR ORGANIC EL ELEMENT AND ORGANIC EL ELEMENT |
US7622584B2 (en) * | 2006-11-24 | 2009-11-24 | Samsung Mobile Display Co., Ltd. | Imidazopyridine-based compound and organic light emitting diode including organic layer comprising the imidazopyridine-based compound |
JP2009049094A (en) * | 2007-08-16 | 2009-03-05 | Sony Corp | Organic electroluminescent element, and display device |
JP5347662B2 (en) * | 2009-04-03 | 2013-11-20 | ソニー株式会社 | Organic electroluminescence device and display device |
JP2011134810A (en) * | 2009-12-22 | 2011-07-07 | Seiko Epson Corp | Light-emitting element, electronic device, and electronic apparatus |
-
2011
- 2011-08-09 JP JP2011173662A patent/JP5879804B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013038247A (en) | 2013-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5765034B2 (en) | Thiadiazole compounds, compounds for light emitting devices, light emitting devices, light emitting devices, authentication devices, and electronic devices | |
US20170365793A1 (en) | Thiadiazole-based compound, light emitting element compound, light emitting element, light emitting device, authentication device, and electronic device | |
TWI586669B (en) | Thiadiazole, light-emitting element, light-emitting apparatus, authentication apparatus, and electronic device | |
JP6149377B2 (en) | Light emitting element, light emitting device, authentication device, and electronic device | |
JP5790279B2 (en) | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE | |
JP5682429B2 (en) | Thiadiazole compounds, compounds for light emitting devices, light emitting devices, light emitting devices, authentication devices, and electronic devices | |
US9722184B2 (en) | Thiadiazole, compound for light-emitting elements, light-emitting element, light-emitting apparatus, authentication apparatus, and electronic device | |
JP7043733B2 (en) | Light emitting elements, light emitting devices, light sources, authentication devices and electronic devices | |
JP6885065B2 (en) | Compounds, compounds for light emitting elements, light emitting elements, light emitting devices, light sources, authentication devices and electronic devices | |
JP5982867B2 (en) | Thiadiazole compounds, compounds for light emitting devices, light emitting devices, light emitting devices, authentication devices, and electronic devices | |
JP5879804B2 (en) | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AUTHENTICATION DEVICE, AND ELECTRONIC DEVICE | |
JP5793929B2 (en) | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AUTHENTICATION DEVICE, AND ELECTRONIC DEVICE | |
JP6142498B2 (en) | Light emitting element, light emitting device, authentication device, and electronic device | |
JP5935261B2 (en) | Thiadiazole compounds, compounds for light emitting devices, light emitting devices, light emitting devices, authentication devices, and electronic devices | |
JP5799560B2 (en) | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AUTHENTICATION DEVICE, AND ELECTRONIC DEVICE | |
JP6145989B2 (en) | Thiadiazole compounds, compounds for light emitting devices, light emitting devices, light emitting devices, authentication devices, and electronic devices | |
JP5983289B2 (en) | Thiadiazole compounds, compounds for light emitting devices, light emitting devices, light emitting devices, authentication devices, and electronic devices | |
JP6003087B2 (en) | Light emitting element, light emitting device, authentication device, and electronic device | |
JP6171304B2 (en) | Thiadiazole compounds, compounds for light emitting devices, light emitting devices, light emitting devices, authentication devices, and electronic devices | |
JP5793925B2 (en) | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AUTHENTICATION DEVICE, AND ELECTRONIC DEVICE | |
JP6020681B2 (en) | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE | |
JP5987885B2 (en) | Electronics | |
JP6191714B2 (en) | Light emitting element, light emitting device, authentication device, and electronic device | |
JP5879727B2 (en) | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AUTHENTICATION DEVICE, AND ELECTRONIC DEVICE | |
JP5831030B2 (en) | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AUTHENTICATION DEVICE, AND ELECTRONIC DEVICE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140807 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150609 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5879804 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |