Nothing Special   »   [go: up one dir, main page]

JP5858877B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP5858877B2
JP5858877B2 JP2012142286A JP2012142286A JP5858877B2 JP 5858877 B2 JP5858877 B2 JP 5858877B2 JP 2012142286 A JP2012142286 A JP 2012142286A JP 2012142286 A JP2012142286 A JP 2012142286A JP 5858877 B2 JP5858877 B2 JP 5858877B2
Authority
JP
Japan
Prior art keywords
fluid
fluid channel
row
channel
fluid flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012142286A
Other languages
Japanese (ja)
Other versions
JP2014006003A (en
Inventor
宗史 池田
宗史 池田
寿守務 吉村
寿守務 吉村
裕之 森本
裕之 森本
傑 鳩村
傑 鳩村
進一 内野
進一 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012142286A priority Critical patent/JP5858877B2/en
Publication of JP2014006003A publication Critical patent/JP2014006003A/en
Application granted granted Critical
Publication of JP5858877B2 publication Critical patent/JP5858877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、第1の流体と第2の流体の熱交換を行う熱交換器に関するものである。   The present invention relates to a heat exchanger that performs heat exchange between a first fluid and a second fluid.

従来の冷暖房装置として、高温ガスにより冷媒を加熱する冷暖房装置がある。そのような冷暖房装置では、燃料供給装置から供給された燃料をバーナーで燃焼して燃焼室内に高温の排気ガスを発生させ、その排気ガスによってフィンが加熱される。フィンの熱が隔壁部材に伝熱し、隔壁部材と接する伝熱部材が加熱される。伝熱部材には複数の流体流路が1列に形成されており、その流体流路を流れる液状態の冷媒が加熱される。加熱された液状態の冷媒は、気化蒸発して液の中に気泡が生じた気液二相状態となる。気液二相状態の冷媒は高温であるため、自然循環力によって出口ヘッダー管に流入し、出口ヘッダー管に接続された冷媒出口管を経由して放熱器に流入する(例えば、特許文献1参照。)。   As a conventional air conditioner, there is an air conditioner that heats a refrigerant with a high-temperature gas. In such an air conditioner, the fuel supplied from the fuel supply device is burned by a burner to generate hot exhaust gas in the combustion chamber, and the fins are heated by the exhaust gas. The heat of the fins is transferred to the partition member, and the heat transfer member in contact with the partition member is heated. A plurality of fluid flow paths are formed in a row in the heat transfer member, and the liquid refrigerant flowing through the fluid flow paths is heated. The heated liquid refrigerant is vaporized and evaporated to a gas-liquid two-phase state in which bubbles are generated in the liquid. Since the gas-liquid two-phase refrigerant is hot, it flows into the outlet header pipe by natural circulation force, and flows into the radiator via the refrigerant outlet pipe connected to the outlet header pipe (see, for example, Patent Document 1). .)

特許第2600930号公報(第4欄第49行−第6欄第10行、第1−4図)Japanese Patent No. 2600930 (column 4, line 49-column 6, line 10, Fig. 1-4)

機器の能力の増大に伴って冷媒流量を増加する場合には、圧力損失の増加を防止するために、各流体流路の断面積を大きくする必要がある。しかし、流体流路の列方向と平行な方向に各流体流路の寸法を拡大すると、伝熱部材が大型化してしまうという問題点があった。また、流体流路の列方向と垂直な方向に各流体流路の寸法を拡大すると、流体流路の隔壁部材から遠い側の面と隔壁部材の距離が遠くなり、その面の近傍を流れる冷媒が熱を受熱することができなくなるため、機器の性能低下を引き起こすという問題点があった。また、各流体流路の断面積を大きくすると、伝熱部材の耐圧強度が低下するという問題点があった。   When the refrigerant flow rate is increased with an increase in the capacity of the device, it is necessary to increase the cross-sectional area of each fluid flow path in order to prevent an increase in pressure loss. However, when the dimension of each fluid flow path is enlarged in a direction parallel to the row direction of the fluid flow paths, there is a problem that the heat transfer member becomes large. Further, when the dimension of each fluid flow path is enlarged in the direction perpendicular to the column direction of the fluid flow path, the distance between the surface of the fluid flow path farther from the partition wall member and the partition wall member becomes longer, and the refrigerant flows in the vicinity of the surface. However, since it is impossible to receive heat, there is a problem that the performance of the device is deteriorated. Further, when the cross-sectional area of each fluid flow path is increased, there is a problem in that the pressure resistance strength of the heat transfer member decreases.

本発明は、上記のような課題を解決するためになされたもので、冷媒流量を増加する場合でも大型化されない熱交換器を得るものである。また、冷媒流量を増加する場合でも機器の性能低下を引き起こさない熱交換器を得るものである。また、冷媒流量を増加する場合でも耐圧強度が低下しない熱交換器を得るものである。   The present invention has been made to solve the above-described problems, and provides a heat exchanger that is not increased in size even when the refrigerant flow rate is increased. Moreover, the heat exchanger which does not cause the performance fall of an apparatus even when increasing a refrigerant | coolant flow volume is obtained. Moreover, even when the refrigerant flow rate is increased, a heat exchanger in which the pressure resistance does not decrease is obtained.

本発明に係る熱交換器は、第1の流体が流れる少なくとも1つの第1流体流路と、前記第1の流体と熱交換する第2の流体が流れる複数の第2流体流路が列状に設けられた少なくとも1列の第2流体流路列と、前記第2の流体が流れる少なくとも1つの第3流体流路と、が少なくとも形成された伝熱部材を少なくとも備え、前記第1流体流路と前記第2流体流路列と前記第3流体流路は、前記第1流体流路、前記第2流体流路列、前記第3流体流路の順に設けられ、前記第2流体流路と前記第3流体流路は、少なくとも2列の流体流路列を形成し、前記第1流体流路と前記第2流体流路と前記第3流体流路のうちの列状に設けられた流体流路の列は、互いに交差しないように設けられ、前記第2流体流路列は、前記第1流体流路の断面中心と前記第3流体流路の断面中心を結ぶ直線と交差するように設けられ、前記第2流体流路と前記第3流体流路は、前記第1流体流路に近いものほど、断面積が小さくなるように、又は、前記第1流体流路に近いものほど、列状に設けられた流体流路の同一の列に属する最も近い流体流路との間隔が広くなるように、又は、前記第1流体流路に近いものほど、断面積が小さく且つ列状に設けられた流体流路の同一の列に属する最も近い流体流路との間隔が広くなるように、設けられたものである。   In the heat exchanger according to the present invention, at least one first fluid channel through which a first fluid flows and a plurality of second fluid channels through which a second fluid that exchanges heat with the first fluid flows are arranged in a line. At least one second fluid flow path row provided in the at least one heat transfer member formed by at least one third fluid flow path through which the second fluid flows. A channel, the second fluid channel array, and the third fluid channel are provided in the order of the first fluid channel, the second fluid channel column, and the third fluid channel, and the second fluid channel And the third fluid channel forms at least two fluid channel rows, and is provided in a row of the first fluid channel, the second fluid channel, and the third fluid channel. The rows of fluid flow paths are provided so as not to cross each other, and the second fluid flow path rows are arranged at the center of the cross section of the first fluid flow path The cross section of the second fluid channel and the third fluid channel are smaller as the second fluid channel and the third fluid channel are closer to the first fluid channel. Or the closer to the first fluid flow path, the wider the distance from the nearest fluid flow path belonging to the same row of the fluid flow paths provided in a row, or the first fluid flow path. The one closer to one fluid flow path is provided such that the cross-sectional area is smaller and the distance from the closest fluid flow path belonging to the same row of the fluid flow paths provided in a row is increased.

本発明は、第1の流体が流れる流体流路に対して異なる距離に第2の流体が流れる流体流路が複数設けられることで、流体流路を広い面積に並べて設ける必要がなくなり、冷媒流量を増加する場合でも伝熱部材を小型化することができる。また、多くの流体流路に分割して第2の流体を流すことで、第2の流体が流れる流体流路の表面と第2の流体が接する表面積が増加して冷媒の受熱が促進され、冷媒流量を増加する場合でも機器の性能低下を抑制することができる。また、多くの流体流路に分割して第2の流体を流すことで、各流体流路の断面積が小さくなり、冷媒流量を増加する場合でも伝熱部材の耐圧強度が低下しない。   The present invention provides a plurality of fluid flow paths through which the second fluid flows at different distances relative to the fluid flow path through which the first fluid flows, so that it is not necessary to arrange the fluid flow paths in a wide area, and the refrigerant flow rate Even when increasing the heat transfer member, the heat transfer member can be downsized. In addition, by dividing the fluid flow into a number of fluid flow paths and flowing the second fluid, the surface area of the fluid flow path through which the second fluid flows and the surface area where the second fluid comes into contact is increased, and the heat reception of the refrigerant is promoted. Even when the refrigerant flow rate is increased, it is possible to suppress degradation in the performance of the device. In addition, by dividing the fluid flow into many fluid flow paths and flowing the second fluid, the cross-sectional area of each fluid flow path is reduced, and the pressure resistance strength of the heat transfer member does not decrease even when the refrigerant flow rate is increased.

本発明の実施の形態1に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の変形例を示す斜視図である。It is a perspective view which shows the modification of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の変形例を示す斜視図である。It is a perspective view which shows the modification of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の変形例を示す斜視図である。It is a perspective view which shows the modification of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の変形例を示す斜視図である。It is a perspective view which shows the modification of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の変形例を示す斜視図である。It is a perspective view which shows the modification of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器をヒートポンプ式暖房システムに適用した例を示す図である。It is a figure which shows the example which applied the heat exchanger which concerns on Embodiment 1 of this invention to the heat pump type heating system. 本発明の実施の形態1に係る熱交換器をヒートポンプ式給湯システムに適用した例を示す図である。It is a figure which shows the example which applied the heat exchanger which concerns on Embodiment 1 of this invention to the heat pump type hot-water supply system. 本発明の実施の形態2に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る熱交換器の変形例を示す斜視図である。It is a perspective view which shows the modification of the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る熱交換器の変形例を示す斜視図である。It is a perspective view which shows the modification of the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る熱交換器の変形例を示す斜視図である。It is a perspective view which shows the modification of the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る熱交換器の変形例を示す斜視図である。It is a perspective view which shows the modification of the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る熱交換器の変形例を示す斜視図である。It is a perspective view which shows the modification of the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る熱交換器の変形例を示す斜視図である。It is a perspective view which shows the modification of the heat exchanger which concerns on Embodiment 2 of this invention.

以下、本発明に係る熱交換器について、図面を用いて説明する。
なお、以下では暖房システム又は給湯システム用の熱交換器を例として説明を行うが、他の用途に用いられる熱交換器にも適用できることは言うまでもない。また、各図において、同一部材又は同一部分には同一の符号を付している。また、細かい構造については適宜図示を省略している。また、重複する説明については、適宜簡略化又は省略している。
Hereinafter, the heat exchanger according to the present invention will be described with reference to the drawings.
In the following, a heat exchanger for a heating system or a hot water supply system will be described as an example, but it goes without saying that the present invention can also be applied to a heat exchanger used for other purposes. Moreover, in each figure, the same code | symbol is attached | subjected to the same member or the same part. Moreover, illustration is abbreviate | omitted suitably about the fine structure. In addition, overlapping descriptions are simplified or omitted as appropriate.

実施の形態1.
図1は、実施の形態1に係る熱交換器の斜視図を示す。
熱交換器1は、少なくとも伝熱部材2で構成される。伝熱部材2は、例えばアルミニウム材の一体押出成形により製造される。伝熱部材2には、第1の流体が流れる複数の第1流体流路3が1列に設けられた第1流体流路列4と、第1の流体と熱交換する第2の流体が流れる複数の第2流体流路5が少なくとも1列に設けられた第2流体流路列6と、第1の流体と熱交換する第2の流体が流れる複数の第3流体流路7が1列に設けられた第3流体流路列8と、が形成される。第1流体流路列4と第2流体流路列6と第3流体流路列8は、平行でも平行でなくてもよい。第2流体流路列6は、1列でも複数列でもよく、複数列の場合は互いに平行でも平行でなくてもよい(図1では第2流体流路列6が3列の場合を記載しているが、3列に限定されるわけではない。)。また、第2流体流路5と第3流体流路7によって、列と略直交する方向に行が形成される(図1では行が10行の場合を記載しているが、10行に限定されるわけではない。)。また、第2流体流路5と第3流体流路7は、列毎に設けられる数が同一でも異なっていてもよい。第1流体流路列4と第2流体流路列6と第3流体流路列8は、列同士が互いに交差せず、第1流体流路列4、第2流体流路列6、第3流体流路列8の順に並べて設けられる。また、各行は、平行でも平行でなくてもよい。また、行同士は、互いに交差しない。
Embodiment 1 FIG.
1 shows a perspective view of a heat exchanger according to Embodiment 1. FIG.
The heat exchanger 1 includes at least a heat transfer member 2. The heat transfer member 2 is manufactured, for example, by integral extrusion molding of an aluminum material. The heat transfer member 2 includes a first fluid channel row 4 in which a plurality of first fluid channels 3 through which the first fluid flows are provided in one row, and a second fluid that exchanges heat with the first fluid. A plurality of second fluid flow paths 5 in which at least one second fluid flow path 5 is provided in at least one row, and a plurality of third fluid flow paths 7 in which a second fluid that exchanges heat with the first fluid flows are 1 The third fluid flow path row 8 provided in the row is formed. The first fluid channel row 4, the second fluid channel row 6, and the third fluid channel row 8 may not be parallel or parallel. The second fluid flow path row 6 may be one row or a plurality of rows. In the case of a plurality of rows, the second fluid flow passage rows 6 may not be parallel to or parallel to each other. However, it is not limited to three rows.) Further, the second fluid flow path 5 and the third fluid flow path 7 form a row in a direction substantially orthogonal to the column (in FIG. 1, the case where there are 10 rows is described, but the number is limited to 10 rows). Not.) In addition, the second fluid channel 5 and the third fluid channel 7 may be the same or different in the number provided for each row. The first fluid channel row 4, the second fluid channel row 6, and the third fluid channel row 8 do not cross each other, and the first fluid channel row 4, the second fluid channel row 6, The three fluid flow path rows 8 are arranged in this order. Each row may be parallel or non-parallel. Also, the rows do not cross each other.

第1の流体と第2の流体は、例えばR410、R32、水等の冷媒である。第1の流体や第2の流体として水を用い、伝熱部材2をアルミニウム等の水により腐食しやすい素材とする場合は、第1流体流路3や第2流体流路5や第3流体流路7の内部に、アルミニウムよりも水による腐食が生じにくい銅管等が拡管等にされて設けられ、第1の流体や第2の流体が銅管内を流れてもよい。   The first fluid and the second fluid are refrigerants such as R410, R32 and water, for example. When water is used as the first fluid or the second fluid, and the heat transfer member 2 is made of a material that is easily corroded by water such as aluminum, the first fluid channel 3, the second fluid channel 5, and the third fluid are used. A copper pipe or the like that is less likely to be corroded by water than aluminum is provided inside the flow path 7 so as to be expanded, and the first fluid and the second fluid may flow through the copper pipe.

第1流体流路3と第2流体流路5と第3流体流路7のそれぞれは、伝熱部材2の長手方向に互いに交わらないように伝熱部材2を貫通して設けられる。ここでは、第1流体流路3の断面形状を円とし、第2流体流路5と第3流体流路7の断面形状を矩形として説明するが、その他の形状でもよい。なお、第1流体流路3や第2流体流路5や第3流体流路7の断面形状を円や正方形とした場合には、伝熱部材2を一体押出成形する際の製造精度等を向上することができる。また、第1流体流路3と第2流体流路5と第3流体流路7の断面形状は、同一でも異なっていてもよい。また、列内又は行内で断面形状を異ならせても良く、列毎又は行毎に断面形状を異ならせてもよい。また、列内で又は行内で又は列毎に又は行毎に、断面形状が同一で断面積が互いに異なっていてもよいし、断面形状が互いに異なっていて断面積が同一でもよい。また、第1流体流路3と第2流体流路5と第3流体流路7は、流体流路の中心が直線状に設けられても設けられなくてもよい。
なお、伝熱部材2の両端部に横穴9が設けられてもよい。横穴9は第2流体流路5及び第3流体流路7に連通し、第2流体流路5及び第3流体流路7と垂直に設けられる。システムの配管に接続するためのチューブを横穴9部分にろう付けして取り付けてもよい。
Each of the first fluid channel 3, the second fluid channel 5, and the third fluid channel 7 is provided through the heat transfer member 2 so as not to cross each other in the longitudinal direction of the heat transfer member 2. Here, the cross-sectional shape of the first fluid flow path 3 is assumed to be a circle, and the cross-sectional shapes of the second fluid flow path 5 and the third fluid flow path 7 are assumed to be rectangular. However, other shapes may be used. In addition, when the cross-sectional shape of the 1st fluid flow path 3, the 2nd fluid flow path 5, or the 3rd fluid flow path 7 is made into a circle or a square, the manufacturing precision at the time of integrally extruding the heat-transfer member 2 etc. Can be improved. Moreover, the cross-sectional shapes of the first fluid channel 3, the second fluid channel 5, and the third fluid channel 7 may be the same or different. Further, the cross-sectional shape may be different within the column or row, and the cross-sectional shape may be different for each column or row. Further, the cross-sectional shape may be the same and the cross-sectional areas may be different from each other within the column, the row, or the column or the row, or the cross-sectional shapes may be different from each other. Further, the first fluid channel 3, the second fluid channel 5, and the third fluid channel 7 may or may not be provided with the center of the fluid channel being linear.
In addition, the horizontal hole 9 may be provided in the both ends of the heat-transfer member 2. FIG. The lateral hole 9 communicates with the second fluid channel 5 and the third fluid channel 7 and is provided perpendicular to the second fluid channel 5 and the third fluid channel 7. A tube for connecting to the piping of the system may be attached by brazing to the side hole 9 portion.

第2流体流路5と第3流体流路7は、最も近い第1流体流路3からの距離に応じて断面積や間隔が設定される。図1に示すように、第2流体流路5と第3流体流路7は、最も近い第1流体流路3からの距離が遠くなるにつれて、断面積が大きくなるように設けられる。また、第2流体流路5と第3流体流路7は、最も近い第1流体流路3からの距離が遠くなるにつれて、同一の列に属する最も近い流体流路との間隔が狭くなるように設けられる。なお、第2流体流路5と第3流体流路7は、第1流体流路3よりも断面積が小さい方が、熱交換する上で好ましい。   The second fluid channel 5 and the third fluid channel 7 are set to have a cross-sectional area and an interval according to the distance from the nearest first fluid channel 3. As shown in FIG. 1, the second fluid channel 5 and the third fluid channel 7 are provided so that the cross-sectional area increases as the distance from the closest first fluid channel 3 increases. Further, the second fluid channel 5 and the third fluid channel 7 are arranged such that the distance from the nearest fluid channel belonging to the same row becomes narrower as the distance from the nearest first fluid channel 3 increases. Is provided. The second fluid channel 5 and the third fluid channel 7 preferably have a smaller cross-sectional area than the first fluid channel 3 in terms of heat exchange.

このように、熱交換器1を構成することで、以下の効果が得られる。
第1の流体が流れる流体流路に対して異なる距離に第2の流体が流れる流体流路が複数設けられることで、流体流路を広い面積に並べて設ける必要がなくなり、冷媒流量を増加する場合でも伝熱部材を小型化することができる。また、多くの流体流路に分割して第2の流体を流すことで、第2の流体が流れる流体流路の表面と第2の流体が接する表面積が増加して冷媒の受熱が促進され、冷媒流量を増加する場合でも機器の性能低下を抑制することができる。また、多くの流体流路に分割して第2の流体を流すことで、各流体流路の断面積が小さくなり、冷媒流量を増加する場合でも伝熱部材の耐圧強度が低下しない。
Thus, the following effects are acquired by comprising the heat exchanger 1. FIG.
When a plurality of fluid flow paths through which the second fluid flows are provided at different distances with respect to the fluid flow path through which the first fluid flows, it is not necessary to arrange the fluid flow paths in a wide area and the refrigerant flow rate is increased. However, the heat transfer member can be reduced in size. In addition, by dividing the fluid flow into a number of fluid flow paths and flowing the second fluid, the surface area of the fluid flow path through which the second fluid flows and the surface area where the second fluid comes into contact is increased, and the heat reception of the refrigerant is promoted. Even when the refrigerant flow rate is increased, it is possible to suppress degradation in the performance of the device. In addition, by dividing the fluid flow into many fluid flow paths and flowing the second fluid, the cross-sectional area of each fluid flow path is reduced, and the pressure resistance strength of the heat transfer member does not decrease even when the refrigerant flow rate is increased.

また、第1の流体が流れる流体流路から遠くに設けられた第2の流体が流れる流体流路は、近くに設けられた第2の流体が流れる流体流路と比べて熱交換量が低下してしまうが、熱交換器1では、第2流体流路5と第3流体流路7が、最も近い第1流体流路3からの距離が遠くなるにつれて、断面積が大きくなるように設けられることで、遠くに設けられた第2の流体が流れる流体流路の表面と第2の流体が接する表面積を大きくすることができ、遠くに設けられた第2の流体が流れる流体流路の熱交換量の低下を抑制することができる。
また、第2流体流路5と第3流体流路7が、最も近い第1流体流路3からの距離が遠くなるにつれて、同一の列に属する最も近い流体流路との間隔が狭くなるように設けられることで、第1の流体が流れる流体流路と遠くに設けられた第2の流体が流れる流体流路の間の伝熱経路を確保することができ、遠くに設けられた第2の流体が流れる流体流路の熱交換量の低下を抑制することができる。
In addition, the fluid flow path through which the second fluid provided far from the fluid flow path through which the first fluid flows has a lower heat exchange amount than the fluid flow path through which the second fluid provided nearby. However, in the heat exchanger 1, the second fluid channel 5 and the third fluid channel 7 are provided so that the cross-sectional area increases as the distance from the nearest first fluid channel 3 increases. By doing so, the surface area of the fluid flow path through which the second fluid provided in the distance flows and the surface of the second fluid in contact with the surface of the fluid flow path can be increased. A decrease in the amount of heat exchange can be suppressed.
Further, as the distance from the nearest first fluid passage 3 between the second fluid passage 5 and the third fluid passage 7 increases, the distance between the nearest fluid passage belonging to the same row becomes narrower. It is possible to secure a heat transfer path between the fluid flow path through which the first fluid flows and the fluid flow path through which the second fluid provided far away, and the second provided far away. It is possible to suppress a decrease in the heat exchange amount of the fluid flow path through which the fluid flows.

なお、フィンでは、一般的に、フィン高さをd、フィン幅をt、フィンの熱伝導率をλ、フィンに接する流体の熱伝達率をαとすると、フィン効率η(フィンの表面積Sを増やすことで熱抵抗R(R=1/αS)を減少させることができるが、実際にはフィン上で温度分布が生じるため、熱抵抗Rは表面積Sの増加ほど減少しない。この比率をフィン効率という。)は、η=tanh(Ub)/Ub、Ub=d(2α/λt)0.5となる。
そして、この関係を熱交換器1に当て嵌めると、フィン幅tは、第2流体流路5及び第3流体流路7で形成される行の間隔、つまり行間の伝熱経路の幅に相当し、フィン高さdは、行間の伝熱経路の行方向での長さに相当し、フィン効率ηは、熱交換の効率に相当する。
つまり、上記関係式に示されるように、行間の伝熱経路の幅が広くなるほど、熱交換の効率は向上するため、熱交換器1のように、行間の伝熱経路、特に第1流体流路3に近い側の伝熱経路の幅を広くすることで熱交換の効率を向上することが可能となる。
また、上記関係式に示されるように、行間の伝熱経路の行方向での長さが長くなるほど、熱交換の効率は低下するが、熱交換器1のように、第2流体流路5と第3流体流路7のそれぞれの行方向での長さを長くした場合、つまり第2流体流路5と第3流体流路7のそれぞれの断面積を大きくした場合には、行間の伝熱経路の表面積Sを大きくすることができ、行間の伝熱経路の行方向での長さが長くなったことに伴う熱交換の効率の低下を補うべく、熱抵抗Rを減少させることが可能となる。
In general, for fins, fin efficiency η (fin surface area S is defined as fin height d, fin width t, fin thermal conductivity λ, and heat transfer coefficient of fluid in contact with the fin α. Although the thermal resistance R (R = 1 / αS) can be reduced by increasing the temperature, a temperature distribution is actually generated on the fin, so that the thermal resistance R does not decrease as the surface area S increases. Is η = tanh (Ub) / Ub and Ub = d (2α / λt) 0.5 .
When this relationship is applied to the heat exchanger 1, the fin width t corresponds to the interval between rows formed by the second fluid channel 5 and the third fluid channel 7, that is, the width of the heat transfer path between the rows. The fin height d corresponds to the length of the heat transfer path between the rows in the row direction, and the fin efficiency η corresponds to the efficiency of heat exchange.
That is, as shown in the above relational expression, as the width of the heat transfer path between rows becomes wider, the efficiency of heat exchange improves. Therefore, like the heat exchanger 1, the heat transfer path between rows, in particular, the first fluid flow. By increasing the width of the heat transfer path on the side close to the path 3, it is possible to improve the efficiency of heat exchange.
Further, as shown in the above relational expression, the heat exchange efficiency decreases as the length of the heat transfer path between the rows increases, but the second fluid flow path 5 as in the heat exchanger 1 decreases. When the length of each of the third fluid flow paths 7 in the row direction is increased, that is, when the cross-sectional area of each of the second fluid flow path 5 and the third fluid flow path 7 is increased, the transmission between the rows is increased. The surface area S of the heat path can be increased, and the thermal resistance R can be reduced to compensate for the decrease in heat exchange efficiency associated with the increase in the length of the heat transfer path between the lines in the row direction. It becomes.

なお、図1では、第2流体流路5と第3流体流路7が、最も近い第1流体流路3からの距離が遠くなるにつれて、断面積が大きくなるように設けられることと、第2流体流路5と第3流体流路7が、最も近い第1流体流路3からの距離が遠くなるにつれて、同一の列に属する最も近い流体流路との間隔が狭くなるように設けられることの両方を実施しているが、冷媒流量に応じて何れかを選択して実施してもよい。両方を実施した場合には、遠くに設けられた第2の流体が流れる流体流路の熱交換量の低下をより抑制することが可能となる。   In FIG. 1, the second fluid channel 5 and the third fluid channel 7 are provided so that the cross-sectional area increases as the distance from the nearest first fluid channel 3 increases. The two-fluid channel 5 and the third fluid channel 7 are provided so that the distance from the nearest fluid channel belonging to the same row becomes narrower as the distance from the nearest first fluid channel 3 increases. Both are implemented, but either one may be selected according to the refrigerant flow rate. When both are implemented, it is possible to further suppress a decrease in the heat exchange amount of the fluid flow path through which the second fluid provided far away flows.

図2は、実施の形態1に係る熱交換器の変形例を示す斜視図である。
図2に示すように、第2流体流路5と第3流体流路7が、最も近い第1流体流路3からの距離が遠くなるにつれて、断面積が大きくなるように設けられ、第2流体流路5と第3流体流路7が、最も近い第1流体流路3からの距離が遠くなるにつれて、同一の列に属する最も近い流体流路との間隔が狭くなるように設けられ、更に、第2流体流路5が、最も近い第1流体流路3からの距離が遠くなるにつれて、第3流体流路7側に設けられた最も近い流体流路との間隔が広くなるように設けられる。
FIG. 2 is a perspective view showing a modification of the heat exchanger according to the first embodiment.
As shown in FIG. 2, the second fluid channel 5 and the third fluid channel 7 are provided so that the cross-sectional area increases as the distance from the nearest first fluid channel 3 increases. The fluid channel 5 and the third fluid channel 7 are provided such that the distance from the nearest fluid channel belonging to the same row becomes narrower as the distance from the nearest first fluid channel 3 increases. Further, the distance between the second fluid channel 5 and the nearest fluid channel provided on the third fluid channel 7 side becomes wider as the distance from the nearest first fluid channel 3 increases. Provided.

このように、第2流体流路5が、最も近い第1流体流路3からの距離が遠くなるにつれて、第3流体流路7側に設けられた最も近い流体流路との間隔が広くなるように設けられることで、遠くに設けられた第2の流体が流れる流体流路の第1の流体が流れる流体流路側の面への伝熱経路を確保することができ、遠くに設けられた第2の流体が流れる流体流路の熱交換量の低下を抑制することができる。   Thus, the distance between the second fluid flow path 5 and the closest fluid flow path provided on the third fluid flow path 7 side increases as the distance from the closest first fluid flow path 3 increases. By providing as described above, it is possible to secure a heat transfer path to the surface on the fluid flow path side through which the first fluid flows in the fluid flow path through which the second fluid is provided far away. A decrease in the amount of heat exchange in the fluid flow path through which the second fluid flows can be suppressed.

なお、図2では、第2流体流路5と第3流体流路7が、最も近い第1流体流路3からの距離が遠くなるにつれて、断面積が大きくなるように設けられることと、第2流体流路5と第3流体流路7が、最も近い第1流体流路3からの距離が遠くなるにつれて、同一の列に属する最も近い流体流路との間隔が狭くなるように設けられることと、第2流体流路5が、最も近い第1流体流路3からの距離が遠くなるにつれて、第3流体流路7側に設けられた最も近い流体流路との間隔が広くなるように設けられることの全てを実施しているが、冷媒流量に応じて何れかを選択して実施してもよい。全てを実施した場合には、遠くに設けられた第2の流体が流れる流体流路の熱交換量の低下をより抑制することが可能となる。   In FIG. 2, the second fluid channel 5 and the third fluid channel 7 are provided so that the cross-sectional area increases as the distance from the nearest first fluid channel 3 increases. The two-fluid channel 5 and the third fluid channel 7 are provided so that the distance from the nearest fluid channel belonging to the same row becomes narrower as the distance from the nearest first fluid channel 3 increases. The distance between the second fluid channel 5 and the nearest fluid channel provided on the third fluid channel 7 side increases as the distance from the nearest first fluid channel 3 increases. However, any one of them may be selected according to the refrigerant flow rate. When all are implemented, it is possible to further suppress a decrease in the heat exchange amount of the fluid flow path through which the second fluid provided far away flows.

図3は、実施の形態1に係る熱交換器の変形例を示す斜視図である。
例えば、図3に示すように、第2流体流路5と第3流体流路7が、最も近い第1流体流路3からの距離が遠くなるにつれて、断面積が大きくなるように設けられることと、第2流体流路5が、最も近い第1流体流路3からの距離が遠くなるにつれて、第3流体流路7側に設けられた最も近い流体流路との間隔が広くなるように設けられることのみを実施した場合でも、遠くに設けられた第2の流体が流れる流体流路の熱交換量の低下を抑制することができる。
FIG. 3 is a perspective view showing a modification of the heat exchanger according to the first embodiment.
For example, as shown in FIG. 3, the second fluid channel 5 and the third fluid channel 7 are provided so that the cross-sectional area increases as the distance from the nearest first fluid channel 3 increases. As the distance from the nearest first fluid channel 3 increases, the distance between the second fluid channel 5 and the nearest fluid channel provided on the third fluid channel 7 side increases. Even when only the provision is made, it is possible to suppress a decrease in the heat exchange amount of the fluid flow path through which the second fluid provided far away flows.

図4乃至図6は、実施の形態1に係る熱交換器の変形例を示す斜視図である。
図4に示すように、第3流体流路7は、1つでもよい。また、図5に示すように、第1流体流路列4と第2流体流路列6と第3流体流路列8の組は、複数段設けられてもよい(図5では段数が2つの場合を記載しているが、2つに限定されるわけではない。)。また、図6に示すように、第1流体流路列4は、1列でも複数列でもよく、第2流体流路列6と第3流体流路列8は、第1流体流路列4の片側のみに設けられても両側に設けられてもよい(図6では第1流体流路列4が2列の場合を記載しているが、1列又は3列以上でもよい。)。また、第1流体流路3は、複数でも1つでもよい(図1乃至図6では第1流体流路3が5つの場合を記載しているが、5つに限定されるわけではない。)。
4 to 6 are perspective views showing modifications of the heat exchanger according to the first embodiment.
As shown in FIG. 4, the number of the third fluid flow paths 7 may be one. Further, as shown in FIG. 5, a plurality of sets of the first fluid channel row 4, the second fluid channel row 6 and the third fluid channel row 8 may be provided (in FIG. 5, the number of stages is 2). Although one case is described, it is not limited to two.) In addition, as shown in FIG. 6, the first fluid flow path row 4 may be one row or a plurality of rows, and the second fluid flow passage row 6 and the third fluid flow passage row 8 are the first fluid flow passage row 4. May be provided only on one side or on both sides (in FIG. 6, the first fluid flow path row 4 has two rows, but may be one row or three or more rows). Further, the number of the first fluid flow paths 3 may be plural or one (FIGS. 1 to 6 show the case where there are five first fluid flow paths 3, but the number is not limited to five. ).

次に、実施の形態1に係る熱交換器の適用例を説明する。
図7は、実施の形態1に係る熱交換器をヒートポンプ式暖房システムに適用した例を示す図である。
ヒートポンプ式暖房システム10は、第1の流体が流れる第1流体回路11と第2の流体が流れる第2流体回路12と第1の流体と第2の流体の熱交換を行う熱交換器1とを有する。この例では、第1の流体としてR410A、第2の流体として水を用いる。第1流体回路11は、圧縮機13と膨張弁14と室外熱交換器15とファン16とを有する。第2流体回路12は、ポンプ17と利用側熱交換器18とを有する。なお、流体の種類はこれに限らず、第1の流体として、例えばフロン系冷媒、炭化水素等の自然冷媒、それらの混合物等を用いてもよい。また、第2の流体として、水道水、蒸留水、ブライン等の水を用いてもよい。
Next, an application example of the heat exchanger according to Embodiment 1 will be described.
FIG. 7 is a diagram illustrating an example in which the heat exchanger according to Embodiment 1 is applied to a heat pump heating system.
The heat pump heating system 10 includes a first fluid circuit 11 through which a first fluid flows, a second fluid circuit 12 through which a second fluid flows, and a heat exchanger 1 that performs heat exchange between the first fluid and the second fluid. Have In this example, R410A is used as the first fluid, and water is used as the second fluid. The first fluid circuit 11 includes a compressor 13, an expansion valve 14, an outdoor heat exchanger 15, and a fan 16. The second fluid circuit 12 includes a pump 17 and a use side heat exchanger 18. In addition, the kind of fluid is not limited to this, and as the first fluid, for example, a natural refrigerant such as a chlorofluorocarbon refrigerant, a hydrocarbon, or a mixture thereof may be used. Moreover, you may use water, such as a tap water, distilled water, and a brine, as a 2nd fluid.

第1流体回路11においては、圧縮機13で高温高圧となった第1の流体は、熱交換器1で第2の流体と熱交換を行う。その後、膨張弁14で減圧され低温低圧となった第1の流体は、室外熱交換器15でファン16からの空気と熱交換を行って蒸発した後、圧縮機13へ戻る。第2流体回路12において、熱交換器1で加熱された第2の流体は、ポンプ17から送出され、利用側熱交換器18にて放熱する。利用側熱交換器18として、例えばラジエターや床暖房ヒーター等を使用することができる。   In the first fluid circuit 11, the first fluid that has become high temperature and pressure in the compressor 13 exchanges heat with the second fluid in the heat exchanger 1. Thereafter, the first fluid, which has been decompressed by the expansion valve 14 to become low temperature and pressure, evaporates by exchanging heat with the air from the fan 16 in the outdoor heat exchanger 15, and then returns to the compressor 13. In the second fluid circuit 12, the second fluid heated by the heat exchanger 1 is sent out from the pump 17 and radiated by the use side heat exchanger 18. As the use-side heat exchanger 18, for example, a radiator, a floor heater, or the like can be used.

図8は、実施の形態1に係る熱交換器をヒートポンプ式給湯システムに適用した例を示す図である。
ヒートポンプ式給湯システム19は、ヒートポンプ式暖房システム10の構成に加えて、利用側熱交換器18が内部に設けられるタンク20を有する。利用側熱交換器18によってタンク20内の水が加熱され、その水が取水される。
FIG. 8 is a diagram illustrating an example in which the heat exchanger according to Embodiment 1 is applied to a heat pump hot water supply system.
In addition to the configuration of the heat pump heating system 10, the heat pump hot water supply system 19 includes a tank 20 in which a use side heat exchanger 18 is provided. Water in the tank 20 is heated by the use side heat exchanger 18 and the water is taken.

図7及び図8に示すように、本実施の形態1に係る熱交換器をヒートポンプ式暖房システムやヒートポンプ式給湯システムに適用することで、冷媒流量を増加する場合でもシステムを小型化することができる。また、冷媒流量を増加する場合でもシステムの性能低下を抑制することができる。また、冷媒流量を増加する場合でもシステムの耐久性を向上することができる。なお、このようなヒートポンプ式暖房システムやヒートポンプ式給湯システムは、利用側熱交換器18を熱源とするため、従来のボイラを熱源とした暖房システムや給湯システムに比べて省エネルギーである。   As shown in FIGS. 7 and 8, by applying the heat exchanger according to the first embodiment to a heat pump heating system or a heat pump hot water supply system, the system can be downsized even when the refrigerant flow rate is increased. it can. Further, even when the refrigerant flow rate is increased, it is possible to suppress a decrease in system performance. Further, the durability of the system can be improved even when the refrigerant flow rate is increased. In addition, since such a heat pump type heating system and a heat pump type hot water supply system use the utilization side heat exchanger 18 as a heat source, they are energy-saving compared with the heating system and hot water supply system which used the conventional boiler as the heat source.

実施の形態2.
図9は、実施の形態2に係る熱交換器の斜視図である。
実施の形態2に係る熱交換器は、伝熱部材2に設けられた1つの第1流体流路3に対して、第2流体流路列6と第3流体流路列8が円弧状に設けられる。なお、構造や効果や適用例等について、実施の形態1と重複する説明は、適宜省略している。
Embodiment 2. FIG.
FIG. 9 is a perspective view of a heat exchanger according to the second embodiment.
In the heat exchanger according to the second embodiment, the second fluid channel row 6 and the third fluid channel row 8 have an arc shape with respect to one first fluid channel 3 provided in the heat transfer member 2. Provided. In addition, about the structure, an effect, an application example, etc., the description which overlaps with Embodiment 1 is abbreviate | omitted suitably.

第2流体流路5と第3流体流路7は、第1流体流路3からの距離に応じて断面積や間隔が設定される。図9に示すように、第2流体流路5と第3流体流路7は、第1流体流路3からの距離が遠くなるにつれて、断面積が大きくなるように設けられる。また、第2流体流路5と第3流体流路7は、第1流体流路3からの距離が遠くなるにつれて、同一の列に属する最も近い流体流路との間隔が狭くなるように設けられる。また、第2流体流路5は、第1流体流路3からの距離が遠くなるにつれて、第3流体流路7側に設けられた最も近い流体流路との間隔が広くなるように設けられる。   The second fluid channel 5 and the third fluid channel 7 are set to have a cross-sectional area and an interval according to the distance from the first fluid channel 3. As shown in FIG. 9, the second fluid channel 5 and the third fluid channel 7 are provided such that the cross-sectional area increases as the distance from the first fluid channel 3 increases. The second fluid channel 5 and the third fluid channel 7 are provided such that the distance from the nearest fluid channel belonging to the same row becomes narrower as the distance from the first fluid channel 3 increases. It is done. The second fluid channel 5 is provided such that the distance from the nearest fluid channel provided on the third fluid channel 7 side increases as the distance from the first fluid channel 3 increases. .

なお、図9では、第2流体流路5と第3流体流路7が、第1流体流路3からの距離が遠くなるにつれて、断面積が大きくなるように設けられることと、第2流体流路5と第3流体流路7が、第1流体流路3からの距離が遠くなるにつれて、同一の列に属する最も近い流体流路との間隔が狭くなるように設けられることと、第2流体流路5が、第1流体流路3からの距離が遠くなるにつれて、第3流体流路7側に設けられた最も近い流体流路との間隔が広くなるように設けられることの全てを実施しているが、冷媒流量に応じて何れかを選択して実施してもよい。全てを実施した場合には、遠くに設けられた第2の流体が流れる流体流路の熱交換量の低下をより抑制することが可能である。   In FIG. 9, the second fluid channel 5 and the third fluid channel 7 are provided so that the cross-sectional area increases as the distance from the first fluid channel 3 increases, and the second fluid channel The flow path 5 and the third fluid flow path 7 are provided so that the distance from the closest fluid flow path belonging to the same row becomes narrower as the distance from the first fluid flow path 3 increases. All of the two fluid flow paths 5 are provided so that the distance from the closest fluid flow path provided on the third fluid flow path 7 side increases as the distance from the first fluid flow path 3 increases. However, any one may be selected according to the refrigerant flow rate. When all are implemented, it is possible to further suppress a decrease in the heat exchange amount of the fluid flow path through which the second fluid provided far away flows.

図10は、実施の形態2に係る熱交換器の変形例を示す斜視図である。
例えば、図10に示すように、第2流体流路5と第3流体流路7が、第1流体流路3からの距離が遠くなるにつれて、断面積が大きくなるように設けられることと、第2流体流路5が、第1流体流路3からの距離が遠くなるにつれて、第3流体流路7側に設けられた最も近い流体流路との間隔が広くなるように設けられることのみを実施した場合でも、遠くに設けられた第2の流体が流れる流体流路の熱交換量の低下を抑制することができる。
FIG. 10 is a perspective view showing a modification of the heat exchanger according to the second embodiment.
For example, as shown in FIG. 10, the second fluid channel 5 and the third fluid channel 7 are provided so that the cross-sectional area increases as the distance from the first fluid channel 3 increases. The second fluid channel 5 is only provided so that the distance from the nearest fluid channel provided on the third fluid channel 7 side becomes wider as the distance from the first fluid channel 3 increases. Even when the above is implemented, it is possible to suppress a decrease in the heat exchange amount of the fluid flow path through which the second fluid provided far away flows.

図11乃至図15は、実施の形態2に係る熱交換器の変形例を示す斜視図である。
図11に示すように、第3流体流路7は、1つでもよい。また、図12に示すように、第2流体流路列6と第3流体流路列8は、第1流体流路3の略全周を囲っても全周の1領域又は複数領域を囲ってもよい(図12では第1流体流路列4の全周の150°程度が囲まれる場合を記載しているが、150°程度に限定されるわけではない。)。また、図13に示すように、複数の第1流体流路3が1列に設けられて、第1流体流路列4が形成されてもよい(図13では第1流体流路3が3つの場合を記載しているが、3つに限定されるわけではない。)。また、図14に示すように、第1流体流路列4と第2流体流路列6と第3流体流路列8の組は、複数段設けられてもよい(図14では段数が2つの場合を記載しているが、2つに限定されるわけではない。)。また、図15に示すように、第1流体流路列4は、1列でも複数列でもよく(図15では第1流体流路列4が2列の場合を記載しているが、1列又は3列以上でもよい。)、第2流体流路列6と第3流体流路列8は、第1流体流路列4の片側のみに設けられても両側に設けられてもよい。
11 to 15 are perspective views showing modifications of the heat exchanger according to the second embodiment.
As shown in FIG. 11, the number of the third fluid flow paths 7 may be one. In addition, as shown in FIG. 12, the second fluid flow channel row 6 and the third fluid flow channel row 8 surround one region or a plurality of regions of the entire circumference even if they surround substantially the entire circumference of the first fluid flow channel 3. (Although FIG. 12 shows a case where about 150 ° of the entire circumference of the first fluid flow path row 4 is surrounded, it is not limited to about 150 °). Further, as shown in FIG. 13, a plurality of first fluid flow paths 3 may be provided in one row to form a first fluid flow path row 4 (in FIG. 13, the first fluid flow path 3 is 3). Although one case is described, it is not limited to three.) Further, as shown in FIG. 14, a plurality of sets of the first fluid channel row 4, the second fluid channel row 6, and the third fluid channel row 8 may be provided (in FIG. 14, the number of stages is 2). Although one case is described, it is not limited to two.) Further, as shown in FIG. 15, the first fluid flow path row 4 may be one row or a plurality of rows (in FIG. 15, the case where the first fluid flow passage row 4 is two rows is described, Alternatively, the second fluid channel row 6 and the third fluid channel row 8 may be provided only on one side of the first fluid channel row 4 or on both sides.

なお、実施の形態1、2に係る熱交換器は、伝熱部材2に穴を設けて第1流体流路3と第2流体流路5と第3流体流路7を形成しているが、他の構成でもよい。例えば、ガス等の伝熱媒体を密封した中空の伝熱部材2の内部に管を設け、伝熱部材2の外部からその管に冷媒を流すことで第1流体流路3と第2流体流路5と第3流体流路7を形成してもよい。
また、各実施の形態や各変形例を組み合わせることも可能である。
In the heat exchanger according to the first and second embodiments, a hole is formed in the heat transfer member 2 to form the first fluid channel 3, the second fluid channel 5, and the third fluid channel 7. Other configurations may be used. For example, a tube is provided inside a hollow heat transfer member 2 in which a heat transfer medium such as gas is sealed, and a coolant is allowed to flow from the outside of the heat transfer member 2 to the tube, whereby the first fluid flow path 3 and the second fluid flow The channel 5 and the third fluid channel 7 may be formed.
Moreover, it is also possible to combine each embodiment and each modification.

1 熱交換器、2 伝熱部材、3 第1流体流路、4 第1流体流路列、5 第2流体流路、6 第2流体流路列、7 第3流体流路、8 第3流体流路列、9 横穴、10 ヒートポンプ式暖房システム、11 第1流体回路、12 第2流体回路、13 圧縮機、14 膨張弁、15 室外熱交換器、16 ファン、17 ポンプ、18 利用側熱交換器、19 ヒートポンプ式給湯システム、20 タンク。   DESCRIPTION OF SYMBOLS 1 Heat exchanger, 2 Heat-transfer member, 1st fluid flow path, 4th 1st fluid flow path row | line | column, 5 2nd fluid flow path row | line, 6 2nd fluid flow path row | line | column, 7 3rd fluid flow path row | line, 8 3rd Fluid passage array, 9 horizontal hole, 10 heat pump heating system, 11 first fluid circuit, 12 second fluid circuit, 13 compressor, 14 expansion valve, 15 outdoor heat exchanger, 16 fan, 17 pump, 18 user side heat Exchanger, 19 heat pump hot water supply system, 20 tanks.

Claims (8)

第1の流体が流れる少なくとも一つの第1流体流路と、前記第1の流体と熱交換する第2の流体が流れる複数の第2流体流路が列状に設けられた少なくとも一列の第2流体流路列と、前記第2の流体が流れる少なくとも一つの第3流体流路と、が少なくとも形成された伝熱部材を少なくとも備え、
前記第1流体流路と前記第2流体流路列と前記第3流体流路は、前記第1流体流路、前記第2流体流路列、前記第3流体流路の順に設けられ、
前記第2流体流路と前記第3流体流路は、少なくとも2列の流体流路列を形成し、
前記第1流体流路と前記第2流体流路と前記第3流体流路のうちの列状に設けられた流体流路の列は、互いに交差しないように設けられ、
前記第2流体流路列は、前記第1流体流路の断面中心と前記第3流体流路の断面中心を結ぶ直線と交差するように設けられ、
前記第2流体流路と前記第3流体流路は、前記第1流体流路に近いものほど、断面積が小さくなるように、又は、前記第1流体流路に近いものほど、列状に設けられた流体流路の同一の列に属する最も近い流体流路との間隔が広くなるように、又は、前記第1流体流路に近いものほど、断面積が小さく且つ列状に設けられた流体流路の同一の列に属する最も近い流体流路との間隔が広くなるように、設けられた、
ことを特徴とする熱交換器。
At least one second fluid channel in which at least one first fluid channel through which the first fluid flows and a plurality of second fluid channels through which the second fluid that exchanges heat with the first fluid flows are arranged in a row. At least a heat transfer member formed with at least one fluid flow path row and at least one third fluid flow path through which the second fluid flows;
The first fluid channel, the second fluid channel array, and the third fluid channel are provided in the order of the first fluid channel, the second fluid channel column, and the third fluid channel,
The second fluid channel and the third fluid channel form at least two fluid channel rows,
A row of fluid flow paths provided in a row among the first fluid flow path, the second fluid flow path, and the third fluid flow path is provided so as not to cross each other.
The second fluid flow channel row is provided so as to intersect a straight line connecting the cross-sectional center of the first fluid flow channel and the cross-sectional center of the third fluid flow channel,
The second fluid channel and the third fluid channel are arranged in a row so that the closer to the first fluid channel, the smaller the cross-sectional area, or the closer to the first fluid channel. The cross-sectional area is reduced and provided in a row so that the interval between the provided fluid channels and the closest fluid channel belonging to the same row in the same row becomes wider or closer to the first fluid channel. Provided so that the distance between the closest fluid flow path belonging to the same row of fluid flow paths is wide,
A heat exchanger characterized by that.
前記第2流体流路と前記第3流体流路は、前記第1流体流路に遠い側に設けられた最も近い流体流路との間隔が、前記第1流体流路に近いものほど狭くなるように設けられた、
ことを特徴とする請求項1に記載の熱交換器。
The second fluid channel and the third fluid channel are narrower as the distance from the closest fluid channel provided on the side far from the first fluid channel is closer to the first fluid channel. Provided as
The heat exchanger according to claim 1.
前記第2流体流路と前記第3流体流路のうちの列状に設けられた流体流路は、同一の列に属する流体流路が、最も近い前記第1流体流路に対して同一の距離になるように設けられた、
ことを特徴とする請求項1又は2に記載の熱交換器。
The fluid channels provided in a row of the second fluid channel and the third fluid channel have the same fluid channel belonging to the same column with respect to the nearest first fluid channel. Provided to be a distance,
The heat exchanger according to claim 1 or 2, characterized in that.
前記第1流体流路は、複数であり、列状に設けられて少なくとも一列の第1流体流路列を形成している、
ことを特徴とする請求項1乃至3のいずれか一項に記載の熱交換器。
The plurality of first fluid flow paths are provided in a row to form at least one first fluid flow path row.
The heat exchanger according to any one of claims 1 to 3, wherein the heat exchanger is provided.
前記第2流体流路列と前記第3流体流路は、前記第1流体流路列の片側に設けられた、
ことを特徴とする請求項4に記載の熱交換器。
The second fluid channel row and the third fluid channel are provided on one side of the first fluid channel row,
The heat exchanger according to claim 4.
前記第2流体流路列と前記第3流体流路は、前記第1流体流路列の両側に設けられた、
ことを特徴とする請求項4に記載の熱交換器。
The second fluid channel row and the third fluid channel are provided on both sides of the first fluid channel row,
The heat exchanger according to claim 4.
前記第1流体流路は、一つである、
ことを特徴とする請求項1乃至3のいずれか一項に記載の熱交換器。
The first fluid flow path is one.
The heat exchanger according to any one of claims 1 to 3, wherein the heat exchanger is provided.
前記第3流体流路は、複数であり、列状に設けられて一列の第3流体流路列を形成している、
ことを特徴とする請求項1乃至7のいずれか一項に記載の熱交換器。
The third fluid flow path is a plurality, and is provided in a row to form a third row of third fluid flow paths.
The heat exchanger according to any one of claims 1 to 7, wherein
JP2012142286A 2012-06-25 2012-06-25 Heat exchanger Active JP5858877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012142286A JP5858877B2 (en) 2012-06-25 2012-06-25 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012142286A JP5858877B2 (en) 2012-06-25 2012-06-25 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2014006003A JP2014006003A (en) 2014-01-16
JP5858877B2 true JP5858877B2 (en) 2016-02-10

Family

ID=50103887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012142286A Active JP5858877B2 (en) 2012-06-25 2012-06-25 Heat exchanger

Country Status (1)

Country Link
JP (1) JP5858877B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102270987B1 (en) * 2020-09-24 2021-07-01 주식회사 아이토브 High efficiency heating and cooling radiator

Also Published As

Publication number Publication date
JP2014006003A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP6017047B2 (en) Heat exchanger, air conditioner, refrigeration cycle apparatus, and heat exchanger manufacturing method
JP5394405B2 (en) Heat exchanger
JP5784215B2 (en) Heat exchanger and refrigeration cycle equipment
JP2009079781A (en) Heat exchanger, heat pump water heater using the same, and heat pump air conditioner
JP2011106738A (en) Heat exchanger and heat pump system
WO2015004720A1 (en) Heat exchanger, and air conditioner
US20080184734A1 (en) Flat Tube Single Serpentine Co2 Heat Exchanger
JP5545160B2 (en) Heat exchanger
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
JP2013024543A (en) Heat exchanger, and heat pump heating device using the same
JP6016935B2 (en) Plate heat exchanger and refrigeration cycle apparatus equipped with the plate heat exchanger
JP5858877B2 (en) Heat exchanger
JP5591285B2 (en) Heat exchanger and air conditioner
JP2009133530A (en) Heat exchanger and heat pump hot water supply machine
KR102025459B1 (en) Tubing element for a heat exchanger means
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
KR102010156B1 (en) shell in a shell and plate heat exchanger, and shell and plate heat exchanger having the same
JP6205578B2 (en) Heat exchanger
JP2010255857A (en) Heat exchanger and heat pump water heater using the same
JP2010230300A (en) Heat exchanger and air conditioner having the same
KR101927125B1 (en) Fin-tube Heat Exchanger
KR101373738B1 (en) Dual pipe type air conditioner refrigerant pipe
JP2010078171A (en) Internal heat exchanger
JP2010223492A (en) Water heat exchanger and heat pump type water heater
JP2009139026A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151215

R150 Certificate of patent or registration of utility model

Ref document number: 5858877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250