Nothing Special   »   [go: up one dir, main page]

JP5853131B2 - 無線通信装置、無線通信方法及び無線通信システム - Google Patents

無線通信装置、無線通信方法及び無線通信システム Download PDF

Info

Publication number
JP5853131B2
JP5853131B2 JP2011274732A JP2011274732A JP5853131B2 JP 5853131 B2 JP5853131 B2 JP 5853131B2 JP 2011274732 A JP2011274732 A JP 2011274732A JP 2011274732 A JP2011274732 A JP 2011274732A JP 5853131 B2 JP5853131 B2 JP 5853131B2
Authority
JP
Japan
Prior art keywords
wireless communication
power storage
unit
electrical energy
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011274732A
Other languages
English (en)
Other versions
JP2013126161A (ja
Inventor
征生 鹿谷
征生 鹿谷
伊藤 快
快 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2011274732A priority Critical patent/JP5853131B2/ja
Publication of JP2013126161A publication Critical patent/JP2013126161A/ja
Application granted granted Critical
Publication of JP5853131B2 publication Critical patent/JP5853131B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は、環境エネルギーから生成された電気エネルギーの蓄積時に発生する事象を利用して他の無線通信装置との間で同期をとって通信を行う無線通信装置、無線通信方法及び無線通信システムに関する。
複数の無線通信装置(以下「ノード」という)によって構成され、ノードが取得した周囲環境に関するデータ又はノードが記憶するデータを伝達するセンサネットワークが利用されている。当該センサネットワークは、例えば、データを収集するノードと、データを発信するノードとによって構成された主従関係のあるネットワーク、又はP2P(peer-to-peer)通信を利用してデータを伝達するアドホックネットワークである。
センサネットワークでは、各ノードにおいて、通信等のために電力が消費される。ノードが電池を動力源とする場合、多くのノードを含むネットワークにおいては、取り付け困難なノードに対する電池交換、頻繁な電池交換を行うことによる作業コストの増大などの、メンテナンスが問題となる。この問題を解決する技術が、例えば特許文献1に開示されている。特許文献1に開示されたセンサタグ装置(以下、従来技術)は、周囲の電波を受信し、その受信した電波を昇圧整流することで生成された電力を用いて駆動するセンサタグ装置が開示される。
特許第4725979号公報
しかしながら、一般に受信した電波から生成される電力は微弱であり、従来技術では、基地局とノード間で無線通信に必要となる同期をとるためだけに、その生成した電力を消費してしまう、という課題があった。
本発明の目的は、無線通信を行う際に同期をとるための消費電力を低減可能な無線通信装置、無線通信方法及び無線通信システムを提供することである。
本発明は、他の無線通信装置と同期通信を行う無線通信装置であって、外部から間欠的に供給される環境エネルギーから電気エネルギーを生成する電気エネルギー生成部と、前記電気エネルギー生成部が生成した電気エネルギーを蓄電し、蓄電量が所定の閾値以上になった場合、蓄積された電気エネルギーを出力する蓄電部と、前記蓄電部から出力された電気エネルギーによって起動し、前記蓄電部の蓄電状況を監視して、前記環境エネルギーが供給されていない期間を検出した後、前記蓄電部へはじめて突入電流が流入するタイミングを検出する蓄電状況監視部と、前記蓄電状況監視部において検出された前記タイミングを基準に、前記他の無線通信装置との無線通信における同期をとった上で、前記他の無線通信装置と無線通信を行う無線通信部と、を有する無線通信装置を提供する。
本発明は、無線通信装置が他の無線通信装置と同期通信を行う場合の無線通信方法において、電気エネルギー生成部は、外部から間欠的に供給される環境エネルギーから電気エネルギーを生成し、蓄電部は、前記電気エネルギー生成部が生成した電気エネルギーを前記蓄電部に蓄電し、蓄電量が所定の閾値以上になった場合に、蓄積された電気エネルギーを出力し、蓄電状況監視部は、前記蓄電部から出力された前記電気エネルギーにより前記蓄電部の蓄電状況を監視して、前記環境エネルギーが供給されていない期間を検出した後、前記蓄電部へはじめて突入電流が流入したタイミングを検出し、無線通信部は、前記蓄電状況監視部において検出された前記タイミングを基準に、前記他の無線通信装置との無線通信における同期をとった上で、前記他の無線通信装置と無線通信を行う無線通信方法を提供する。
本発明は、第1の無線通信装置が少なくとも一つの第2の無線通信装置と同期通信を行う無線通信システムであって、前記第1の無線通信装置は、間欠的に環境エネルギーを供給し、前記第2の無線通信装置は、前記第1の無線通信装置から供給される前記環境エネルギーから電気エネルギーを生成する電気エネルギー生成部と、前記電気エネルギー生成部が生成した電気エネルギーを蓄電し、蓄電量が所定の閾値以上になった場合、蓄積された電気エネルギーを出力する蓄電部と、前記蓄電部から出力された電気エネルギーによって起動し、前記蓄電部の蓄電状況を監視して、前記環境エネルギーが供給されていない期間を検出した後、前記蓄電部へはじめて突入電流が流入したタイミングを検出する蓄電状況監視部と、前記蓄電状況監視部において検出されたタイミングを基準に、前記第1の無線通信装置との無線通信における同期をとった上で、前記第1の無線通信装置と無線通信を行う無線通信部と、を有する無線通信システムを提供する。
本発明によれば、無線通信装置が他の無線通信装置と無線通信を行う際に同期をとるための消費電力を低減できる。
コンデンサに電圧をかけたときに生じる過渡現象の説明に供する図 過渡現象時にコンデンサを流れる典型的な突入電流の波形を示すグラフ 実施の形態1の無線通信装置の構成を示すブロック図 実施の形態1の無線通信装置を複数備えたセンサネットワークシステムの概要の一例を示す模式図 実施の形態1の無線通信装置を複数備えたセンサネットワークシステムの概要の他の例を示す模式図 基地局1が発信する電磁波の状態を模式的に示すタイムチャート ノード100と基地局1の間又は複数のノード間で行われる無線通信における送信データの構成の一例を示す模式図 ノード100と基地局1の間で行われる無線通信の状態を模式的に示すタイムチャート 実施の形態1の無線通信装置100の動作を示すフローチャート 基地局が発信する電磁波の状態に対する、蓄電部の残容量の変位及び充電電流の変位、並びに、無線通信部の状態変位を示すタイムチャート 実施の形態1の無線通信装置が備える制御部の構成が図3とは異なる、第1実施例の無線通信装置の構成を示すブロック図 実施の形態1の無線通信装置が備える制御部の構成が図3とは異なる、第2実施例の無線通信装置の構成を示すブロック図 実施の形態1の無線通信装置が備える制御部の構成が図3とは異なる、第3実施例の無線通信装置の構成を示すブロック図 実施の形態2の無線通信装置の構成を示すブロック図 実施の形態2の無線通信装置200の動作を示すフローチャート 図6に示したタイムチャート(基地局1が発信する電磁波の状態)に対する、各蓄電部の残容量(SOC)の変位と、各蓄電部の充電電流の変位と、無線通信部205の状態の変位を示すタイムチャート
以下、本発明の実施形態について、図面を参照して説明する。
はじめに、コンデンサ又はスーパーキャパシタ(電気二重層コンデンサ等)等の蓄電デバイスに蓄電するときの過渡現象について説明する。図1は、コンデンサに電圧をかけたときに生じる過渡現象の説明に供する図である。図1に示す電気回路は、電源41と、コンデンサ42と、スイッチ43と、端子44とを有する。当該電気回路において、スイッチ43が端子44に接続され、電源41からの電圧がコンデンサ42にかかると、コンデンサに、瞬間的に電流Icが流れる。この現象を一般的に過渡現象といい、瞬間的に流れる電流を「突入電流」という。
図2は、典型的な突入電流の波形を示す。図2のグラフにおいて、横軸は時間tを示し、縦軸は突入電流Icを示す。図2に示すように、時間t1でスイッチ43が端子44に接続されると、その直後に瞬間的に大きな電流(突入電流)がコンデンサ42に流れ込む。
(実施の形態1)
図3は、実施の形態1の無線通信装置の構成を示すブロック図である。図3に示すように、実施の形態1の無線通信装置100は、電気エネルギー生成部101と、蓄電部102と、制御部103とを備える。制御部103は、蓄電状況監視部104と、無線通信部105とを有する。本実施の形態の無線通信装置100は、周囲環境にあるエネルギー源から電気エネルギーを生成し、この電気エネルギーを利用して他の無線通信装置との間で同期をとって無線通信を行う。また、図3において、エネルギーの流れを点線、データ及び制御情報の流れを実線で示す。
ここで、無線通信装置間で同期をとって通信を行うとは、送信処理の開始又は終了、受信処理の開始又は終了の時刻が複数の無線通信装置間で同時刻になっている状態を示す。
以下、無線通信装置100が備える各構成要素について説明する。
電気エネルギー生成部101は、自然環境などの周囲環境中に存在する電磁波、光、振動、熱等の環境エネルギーから直流電力等の電気エネルギーを生成する。なお、電気エネルギー生成部101は、環境エネルギーから電気エネルギーを生成する素子であるレクテナ(Rectenna:Rectifying antenna)、太陽光発電素子、振動発電素子、圧電素子又は熱発電変換素子等を有する。電気エネルギー生成部101が生成した電気エネルギーは蓄電部102に蓄積される。
なお、電磁波には、電波、赤外線、可視光線、紫外線、X線、ガンマ線などがある。また、電気エネルギー生成部101の機能である「生成」は、「変換」の意味を含むものとする。
蓄電部102は、電気エネルギー生成部101が生成した電気エネルギーを蓄積する。蓄電部102は、例えば、コンデンサ又はスーパーキャパシタ、二次電池(リチウム、ニッカド等)等である。蓄電部102は、自らの蓄電状況を判別する。蓄電量が所定の閾値以上になった場合、蓄積された電気エネルギー(電力)を制御部103に出力する。なお、蓄電状況とは、例えば、蓄電部102の残容量(SOC:State of Charge)である。また、所定の閾値とは、予め設計仕様により定まり、少なくとも後述する制御部103が有する蓄電状況監視部104が稼働するために要する電気エネルギーの値がその閾値となりうる。
制御部103は、蓄電部102に所定の閾値以上の電気エネルギーが蓄積された後、蓄電部102から出力される電気エネルギー(電力)により起動する。制御部103が有する蓄電状況監視部104は、蓄電部102の蓄電状況を監視することにより、無線通信装置100に環境エネルギーが供給されていない期間を検出する。また、蓄電状況監視部104は、環境エネルギーが供給されていない期間を検出した後、蓄電部102へ初めて突入電流が流入したタイミングを検出する。具体的には、蓄電状況監視部104は、環境エネルギーが供給されていない期間を検出した後、初めて蓄電部102へ流入する突入電流を検出し、突入電流を検出した旨を無線通信部105へ即座に通知する。無線通信部105への通知は、突入電流を検出したタイミング又は時刻(以下「突入電流検出時刻」という)を含んでもよい。なお、瞬間的に流れる比較的大きな電流である突入電流のピーク電流値は、定常状態の電流値よりも大きい。
なお、蓄電状況監視部104は、蓄電部102に入力される電流(充電電流)を検出するセンサからのデータ又は蓄電部102の両端電圧を検出するセンサからのデータに基づいて、蓄電部102の蓄電状況を監視する。蓄電状況監視部104は、蓄電部102の蓄電状況を監視中に、所定のしきい値に到達した充電電流を検出すると、蓄電部102に突入電流が流れたと判別する。
制御部103が有する無線通信部105は、蓄電状況監視部104によって検出された突入電流が流入したタイミングを基準に他の無線通信装置との間で同期通信を行う。具体的には、無線通信部105は、蓄電状況監視部104から、突入電流を検出した旨の通知を受けることで、他の無線通信装置との無線通信における同期をとった上で、当該他の無線通信装置と無線通信を行う。蓄電状況監視部104及び無線通信部105の各機能は、CPU(Central Processing Unit)、RAM(Random Access Memory)及び無線通信回路を有する制御部103が制御プログラムを実行することにより実現される。
図4は、実施の形態1の無線通信装置を複数備えたセンサネットワークシステムの構成の一例を示す模式図である。図4に示したセンサネットワークシステムは、道路施設又は農場等での定点観測などを目的としたシステムである。以下の説明では、各無線通信装置が周囲環境にあるエネルギー源として電磁波を利用し、また、他の無線通信装置と無線通信を行う際の通信プロトコルが時分割多元接続方式(TDMA:Time Division Multiple Access)である場合を例に説明する。
図4に示した例において、センサネットワーク10は、3台の無線通信装置(以下「ノード」ともいう)100a〜cと、エネルギー源として電磁波を発信することでノードに環境エネルギーを供給する基地局1とを有する。また、基地局1と3つのノード100a〜cの各々は、TDMAによる無線通信を行う。
3台のノード100a〜cは、基地局1が発信する電磁波が到達し、かつ、基地局1と無線通信が可能な範囲に設置される。基地局1が電磁波を発信し、ノード100が当該電磁波から電気エネルギーを生成すると、ノード100に蓄電された電力によって基地局1と無線通信を行う。
なお、ノード100が電気エネルギーを生成するための電磁波の周波数は、基地局1がノード100と無線通信を行うために利用される電波の周波数と同じであっても異なっても良い。異なる周波数の場合、基地局1は、電磁波の発生と無線通信のための電波の発生をそれぞれ独立して行うことができる。同じ周波数の場合、基地局1は周波数のリソースを節約することができる。
図4に示した例では、3台のノード100a〜cが基地局1と通信を行うセンサネットワーク10が示されているが、これに限定されない。例えば、図5に示したセンサネットワーク11も想定される。図5は、実施の形態1の無線通信装置を複数備えたセンサネットワークシステムの概要の他の例を示す模式図である。図5に示したセンサネットワーク11では、基地局1はノード100a〜cに電磁波を発信しており、3つのノード間でTDMAによるP2Pの無線通信が行われる。
図6は、基地局1が発信する電磁波の状態を模式的に示すタイムチャートである。図6のタイムチャートに示すように、基地局1は、時間t0〜t1、t2〜t3、t4〜t5及びt6〜t7の各期間で電磁波の発信を停止し、時間t1〜t2、t3〜t4及びt5〜t6の期間では電磁波を発信する。このように、基地局1は間欠的に電磁波の発信を停止する。
次に、ノード100と基地局1の間又は複数のノード間で行われる無線通信について説明する。図7は、ノード100と基地局1の間又は複数のノード間で行われる無線通信における送信データの構成の一例を示す模式図である。図7に示すように、送信データ31は、ヘッダ部32と、ペイロード部33とから構成される。ヘッダ部32には、プロトコルタイプ34及びメッセージタイプ35が格納される。ペイロード部33には、ノードID36及びデータ37が格納される。
プロトコルタイプ34は、無線通信のプロトコルの種別を示し、例えば、フレーム間隔、タイムスロット間隔及び伝送速度などを規定する。メッセージタイプ35は、ペイロード部33に格納されたデータの種類を示し、例えば、ビーコンACK/応答ACK、ビーコンNAK/応答NAK及び制御ビーコンなどを示す。ノードID36は、送信データ31の送信元のノード識別子(ノードID)を示す。データ37は、データ本体であり、本実施の形態ではノード内部で記憶しているデータを格納する。
図8は、ノード100と基地局1の間で行われる無線通信の状態の一例を模式的に示すタイムチャートである。図8のタイムチャートに示すように、当該無線通信では、フレーム21を単位とし、複数のフレーム21が連続的に配置されている。各フレーム21は、複数のスーパーフレーム(SF)22から構成される。本実施の形態では、各フレーム21の先頭のスーパーフレーム(SF1)は、無線通信に使用されない送信停止期間23であるものとする。そして、残りのスーパーフレーム(SF2〜SFn)は、無線通信に使用される送受信期間24であるものとする。各スーパーフレーム22は、複数のタイムスロット(TS)25から構成される。
無線通信での送受信は、タイムスロット25を最小単位として行う。ノード100及び基地局1は、例えば、図8に示すように、あるタイムスロット25では、キャリアセンス(CS)26の後に送信(TX)27を行い、別のタイムスロット25では、受信(RX)28のみを行う。
ここで、無線通信装置間で同期をとって通信を行うとは、送信停止期間23のはじまり、あるいは、終わり、又は、送受信期間24のはじまり、あるいは、終わりの時刻が複数の無線通信装置間で同時刻になっている状態を示す。
なお、ノード100及び基地局1は、必ずしも送信の前にキャリアセンスを行わなくてもよい。キャリアセンスとは、他の無線通信装置が無線で送信している最中かを確認することを示し、無線通信装置が送信を行う前にキャリアセンスを行うことで同じタイムスロットで複数の送信が重なることを防ぎ、他の無線通信装置が正しく受信できるようになる。したがって、ノード100及び基地局1がキャリアセンス26を行うことにより、センサネットワーク10は、より確実に、全てのノード100及び基地局1が互いに異なるタイムスロット25で送信を行うようにすることができる。
以下、基地局1とノード100の間での無線通信の一例を説明する。基地局1は、フレーム21ごとに、送信停止期間23が経過した後、送受信期間24において、ノード100との通信を行う。基地局1は、フレーム21の先頭からいくつかのタイムスロットにて、ノード100に対して送信(TX)27でビーコン信号を送信し、受信待機状態に移行する。ノード100は、フレーム21の先頭からいくつかのタイムスロットで受信待機状態となり、基地局1からのビーコン信号を受信する。ビーコン信号を受信したノード100は、ビーコン信号に対してノードID36とデータ37を有する送信データ31を、スーパーフレームの中の何番目のタイムスロットで送信するかをランダムに仮決定する。そして、ノード100は、送信(TX)27を行うと仮決定したタイムスロット25において、キャリアセンス26により、他のノードが送信を行っているか否かを判断する。そして、そのノードは、他のノードが送信を行っていないと判断した場合にのみ、そのタイムスロット25において、実際に送信(TX)27にて送信データ31を送り、受信待機状態に移行する。そして、受信待機状態である基地局1は、送信データ31を受け取り、それに対する応答を送信元のノードに送り返す。
このように、基地局1は、送信データ31を受信するごとに、送信データ31から、その送信元のノードID36及びデータ37を取得することができる。なお、3つの異なるノード100は、キャリアセンスを行い、常に、スーパーフレームの中で、互いに異なるタイムスロット番号で送信(TX)27を行うものとして説明を行う。
以下、無線通信装置100の動作について、図9を参照して詳細に説明する。図9は、実施の形態1の無線通信装置100の動作を示すフローチャートである。まず、蓄電部102は、当該蓄電部102のSOCが所定値以上かを判断し(ステップS101)、SOCが所定値以上であればステップS103に進む。ステップS103では、蓄電部102は、制御部103への電力供給を開始する。次に、制御部103の蓄電状況監視部104は、蓄電部102の蓄電状況を監視して、蓄電部102への入力電力(充電電流)が0か否かを判断し(ステップS105)、充電電流が0であればステップS107に進む。
ステップS107では、蓄電状況監視部104は、蓄電部102への突入電流の検出の有無を判断し、突入電流を検出するとステップS109に進む。ステップS109では、蓄電状況監視部104は、突入電流を検出した時刻(突入電流検出時刻)を無線通信部105に通知する。次に、ステップS111では、無線通信部105は、突入電流検出時刻を基準に他の無線通信装置との無線通信における同期をとった上で、当該他の無線通信装置と無線通信を行う。
なお、ステップS109において、無線通信部305へ通知する内容として、突入電流検出時刻tp2に限ったものではない。突入電流を検出したことを通知してもよい。この場合、ステップS111では、無線通信部305は、通知を受けた時点を基準に他の無線通信装置との無線通信における同期をとった上で、当該他の無線通信装置と無線通信を行う。
次に、図10を参照して、無線通信装置100が、蓄電部102への突入電流の検出時刻を基準に他の無線通信装置との間で同期をとり、無線通信を行う際の状態遷移について説明する。図10は、基地局1が発信する電磁波の状態に対する、蓄電部102の残容量(SOC)の変位及び充電電流の変位、並びに、無線通信部105の状態を示すタイムチャートである。図10において、基地局1が発信する電磁波の状態は、図6に示したタイムチャートと同じである。
図10に示すように、蓄電部102のSOCは、基地局1からの電磁波の発信に応じて、時間t0〜t1で0%、時間t1〜t2で増加、時間t2〜t3で変化量が0、時間t3〜t4で増加、時間t4〜t5で若干低下、時間t5〜t6で増加、時間t6〜t7で低下を示す。また、蓄電部102への充電電流は、時間t0〜t1で電流値は0、時間t1の直後にピークp0があり、時間t2〜t3で電流値0、時間t3の直後にピークp1があり、時間t4〜t5で電流値0、時間t5の直後にピークp2があり、時間t6〜t7で電流値0を示す。
時間t0〜t1の期間、基地局1は電磁波を発信していない。そのため、無線通信装置100は電気エネルギーを生成できず、蓄電部102のSOCは0%のままである。次の時間t1〜t2の期間、基地局1は電磁波を発信する。そのため、無線通信装置100は電気エネルギーを生成でき、蓄電部102への充電が開始されて、蓄電部102のSOCが徐々に増加する。次の時間t2〜t3の期間、基地局1は電磁波を発信しない。そのため、無線通信装置100は電気エネルギーを生成できず、蓄電部102のSOCは増加しない。
次の時間t3〜t4の期間、基地局1は電磁波を発信する。そのため、蓄電部102への充電が再開され、蓄電部102のSOCは徐々に増加する。蓄電部102のSOCが制御部103を稼働可能なしきい値に到達すると、蓄電部102から制御部103に電力供給が開始され、蓄電状況監視部104が起動する。なお、当該しきい値は、無線通信部105が無線通信を行うために要する電力を蓄電部102が供給可能なSOCであってもよい。図10に示した例では、時間t3〜t4の期間中の時刻tp1の時点で、蓄電部102のSOCがしきい値に到達する。すなわち、時刻tp1の時点で蓄電状況監視部104が起動され、蓄電状況監視部104は、蓄電部102の蓄電状況の監視を開始する。なお、蓄電状況監視部104の起動に伴い、蓄電状況監視部104における電力消費が発生するため、蓄電部102のSOCの増加の割合(傾斜)は小さくなる。
次の時間t4〜t5の期間、基地局1は電磁波を発信しない。このとき、蓄電状況監視部104は蓄電部102からの電力供給により稼働しているため、蓄電部102のSOCは若干低下する。次に、時間t5のとき、基地局1は電磁波の発信を再開する。このとき、電気エネルギー生成部101が電気エネルギーを生成するため、蓄電部102には突入電流が流れる。制御部103は稼働状態であり、蓄電状況監視部104は、この突入電流を検出する。図10の例では、時間t5の直後(t5+Δt)である時刻tp2にピークp2を示す突入電流が示されている。蓄電状況監視部104は、時刻tp2(=t5+Δt)を突入電流検出時刻として無線通信部105に通知する。
ここで、時間t1〜t2および時間t3〜t4の期間にも突入電流p0、p1が流れるが、時間t0〜tp1の期間は、制御部103が稼働していないため、蓄電状況監視部104は突入電流p0、p1は検出しない。
時間t5〜t6の期間、基地局1は電磁波を発信する。そのため、蓄電部102への充電が再開され、蓄電部102のSOCは徐々に増加する。したがって、時間t5の直後(時刻tp2)には蓄電部102に突入電流が流れる。無線通信部105は、突入電流検出時刻tp2を基準に他の無線通信装置との無線通信における同期をとる。具体的には、無線通信部105は、tp2+T1(=t7)の時刻から無線通信を開始する。T1=T0−Δtである。T0は、基地局1における電磁波の発信及び停止の1フレーム期間である。このようにして、無線通信部105が無線通信を行う際の送信可能期間の先頭を合わせる、つまり、外部の他の無線通信装置と同期を合わせることができる。
なお、同期を合わせる時刻としては、tp2+T1(=t7)に限ったものではない。tp2を基準とした時刻であればよく、例えば、すべての無線通信装置間で共有しているオフセット時間をTとすると、tp2+Tとしてもよい。また、無線通信における同期を合わせる基準として、突入電流検出時刻tp2に限ったものではない。突入電流を検出したことを受け取り、その時点を基準として無線通信の同期を合わせてもよい。
上記図10に示した例では、制御部103への電力供給が、蓄電部102の残容量(SOC)に基づいて開始されているが、電気エネルギー生成部101の電力発電量に基づいて開始されても良い。
以上説明したように、本実施の形態によれば、無線通信装置100の周囲環境にあるエネルギー源から間欠的に得られる環境エネルギーを利用して、蓄電部102への蓄電過程で得られる特定の電気信号として突入電流の検出時刻を他の無線通信装置との無線通信の同期信号として扱う。したがって、無線通信装置100は、周囲環境にあるエネルギー源から間欠的に得られる同じ環境エネルギー源を利用して同様の動作を行う他の無線通信装置とであれば、無線通信における同期をとるための制御信号を予め送受信しなくても無線通信を開始できる。その結果、他の無線通信装置との無線通信における同期をとるための制御信号の送受信に要する電力消費を削減でき、かつ、無線通信を開始するまでの時間を短縮できる。
なお、本実施の形態の無線通信装置100では、制御部103への電力供給源は電気エネルギー生成部101が生成した電気エネルギーを蓄えた蓄電部102であるとしたが、これに限定されない。例えば、蓄電部102に代わって、別途あらかじめ装備された電池、振動、熱又は光等から発電可能な環境発電モジュール等からの電力を制御部103に供給されてもよい。また、蓄電状況監視部104の電力供給源を蓄電部102とし、制御部103の蓄電状況監視部104以外の構成要素の電力供給源を別途あらかじめ装備された電力源としてもよい。
(第1実施例)
図11は、実施の形態1の無線通信装置が備える制御部の構成が図3とは異なる、第1実施例の無線通信装置の構成を示すブロック図である。図11に示すように、第1実施例の無線通信装置100aは、電気エネルギー生成部101と、蓄電部102と、制御部103aとを備える。第1実施例の無線通信装置100aが図3に示した実施の形態1の無線通信装置100と異なる点は、制御部103aの内部構成である。この点以外は実施の形態1と同様であり、図11において、図3と共通する構成要素には同じ参照符号が付されている。
制御部103aは、制御部103と同様に、蓄電部102に所定の閾値以上の電気エネルギーが蓄積された後、蓄電部102から供給される電力により起動する。制御部103aは、蓄電状況監視部104と、無線通信部105aと、内部状態取得部106と、内部状態記憶部107とを有する。
内部状態取得部106は、無線通信装置100aの内部状態を示すデータを取得する。内部状態とは、例えば、無線通信装置100aの稼働履歴、電気エネルギー生成状態又は蓄電状況等である。内部状態記憶部107は、内部状態取得部106が取得したデータ及び無線通信装置100aが動作するために内部で管理しているデータ(例えば、装置ID、無線通信履歴、無線通信設定パラメータ等)を記憶する。内部状態記憶部107は、例えば、メモリ(揮発メモリ若しくは不揮発メモリ)、ハードディスクドライブ、SDカード又はUSBメモリである。
無線通信部105aは、蓄電状況監視部104から通知された突入電流検出時刻を同期信号として扱い、当該突入電流検出時刻を基準に他の無線通信装置との無線通信における同期をとった上で、当該他の無線通信装置と無線通信を行う。また、無線通信部105aは、基地局1からの要求に応じて、内部状態記憶部107が記憶するデータを返信したり、内部状態記憶部107が記憶するデータを定期的に基地局1に発信したりする。
(第2実施例)
図12は、実施の形態1の無線通信装置が備える制御部の構成が図3とは異なる、第2実施例の無線通信装置の構成を示すブロック図である。図12に示すように、第2実施例の無線通信装置100bは、電気エネルギー生成部101と、蓄電部102と、制御部103bとを備える。第2実施例の無線通信装置100bが図3に示した実施の形態1の無線通信装置100と異なる点は、制御部103bの内部構成である。この点以外は実施の形態1と同様であり、図12において、図3と共通する構成要素には同じ参照符号が付されている。
制御部103bは、制御部103と同様に、蓄電部102に所定の閾値以上の電気エネルギーが蓄積された後、蓄電部102から供給される電力により起動する。制御部103bは、蓄電状況監視部104と、無線通信部105bと、センサデータ取得部108と、センサデータ記憶部109とを有する。
センサデータ取得部108は、外界から得られる環境情報を取得し、数値データ(以下「センサデータ」という)に変換する。環境情報とは、自然現象(温度、湿度、土壌温湿度、振動、光、ガス濃度等)、人工物の機械的、電磁気的、熱的、音響的、化学的性質あるいはそれらで示される空間情報又は時間情報の物理量を示す情報である。センサデータ記憶部109は、センサデータ取得部108が変換したセンサデータを記憶する。センサデータ記憶部109は、例えば、メモリ(揮発メモリ若しくは不揮発メモリ)、ハードディスクドライブ、SDカード又はUSBメモリである。
無線通信部105bは、蓄電状況監視部104から通知された突入電流検出時刻を同期信号として扱い、当該突入電流検出時刻を基準に他の無線通信装置との無線通信における同期をとった上で、当該他の無線通信装置と無線通信を行う。また、無線通信部105bは、基地局1からの要求に応じて、センサデータ記憶部109が記憶するセンサデータを返信したり、センサデータ記憶部109が記憶するセンサデータを定期的に基地局1に発信したりする。
(第3実施例)
図13は、実施の形態1の無線通信装置が備える制御部の構成が図3とは異なる、第3実施例の無線通信装置の構成を示すブロック図である。図13に示すように、第3実施例の無線通信装置100cは、電気エネルギー生成部101と、蓄電部102と、制御部103cとを備える。第3実施例の無線通信装置100cが図3に示した実施の形態1の無線通信装置100と異なる点は、制御部103cの内部構成である。この点以外は実施の形態1と同様であり、図13において、図3と共通する構成要素には同じ参照符号が付されている。
制御部103cは、制御部103と同様に、蓄電部102に所定の閾値以上の電気エネルギーが蓄積された後、蓄電部102から供給される電力により起動する。制御部103cは、蓄電状況監視部104と、無線通信部105cと、設定データ記憶部110と、設定データ変換部111とを有する。
無線通信部105cは、蓄電状況監視部104から通知された突入電流検出時刻を同期信号として扱い、当該突入電流検出時刻を基準に他の無線通信装置との無線通信における同期をとった上で、当該他の無線通信装置と無線通信を行う。なお、無線通信部105cは、基地局1から送信された無線通信装置100cにおける設定データを受信し、当該設定データを設定データ記憶部110に記憶する。設定データとは、無線通信周波数及び無線通信間隔等といった無線通信部105cが行う無線通信に関するパラメータ、又は、蓄電状況監視部104が行う蓄電状況の監視に関するパラメータ等である。
設定データ記憶部110は、無線通信部105cが受信した設定データを記憶する。設定データ記憶部110は、例えば、メモリ(揮発メモリ又は不揮発メモリ)、ハードディスクドライブ、SDカード又はUSBメモリである。設定データ変換部111は、設定データ記憶部110が記憶する設定情報を読み取って、無線通信装置100cにおける設定を変更する。
(実施の形態2)
図14は、実施の形態2の無線通信装置の構成を示すブロック図である。図14に示すように、実施の形態2の無線通信装置200は、蓄電部を二つ備え、状況に応じて蓄電先を切り替え、切り替えた蓄電部の蓄電状況を監視する。無線通信装置200は、電気エネルギー生成部301と、第一蓄電部302aと、第二蓄電部302bと、蓄電切替部311と、制御部303とを備える。制御部303は、蓄電状況監視部304と、無線通信部305とを有する。また、図14において、エネルギーの流れを点線、データ及び制御情報の流れを実線で示す。
電気エネルギー生成部301は、実施の形態1の電気エネルギー生成部101と同様に、周囲環境中に存在するエネルギー源から電気エネルギーを生成する。電気エネルギー生成部301が生成した電気エネルギーは、蓄電切替部311を介して第一蓄電部302a又は第二蓄電部302bに蓄積される。
蓄電切替部311は、電気エネルギー生成部301が生成した電気エネルギーの蓄積先を、第一蓄電部302a又は第二蓄電部302bに切り替える。蓄電切替部311は、電子回路で実装される場合、例えば、トランジスタ又はリレーを使ったスイッチなどである。
第一蓄電部302a及び第二蓄電部302bは、実施の形態1の蓄電部102と同様に、電気エネルギー生成部301が生成した電気エネルギーを蓄積する。なお、第一蓄電部302a及び第二蓄電部302bは、各々、自らの蓄電状況を判別し、所定の閾値以上の電気エネルギーが蓄積されれば制御部303に電力を供給する。なお、蓄電状況とは、例えば、各蓄電部の残容量(SOC:State of Charge)である。
制御部303は、第一蓄電部302a又は第二蓄電部302bに所定の閾値以上の電気エネルギーが蓄積された後、第一蓄電部302a又は第二蓄電部302bから供給される電力により起動する。制御部303が有する蓄電状況監視部304は、無線通信装置200に環境エネルギーが供給されていない期間を検出すると、電気エネルギーの蓄積先をSOCが低い方(最大蓄電容量が同じ場合)あるいは、蓄電可能容量(最大蓄電容量からSOCを引いた値)が大きい方の蓄電部に切り替える。また、蓄電状況監視部304は、電気エネルギーの蓄積先を切り替えた後に、初めて蓄電部へ流入する突入電流を検出し、突入電流を検出した旨を無線通信部105へ即座に通知する。無線通信部105への通知は、突入電流を検出したタイミング又は時刻(以下「突入電流検出時刻」という)を含んでもよい。
なお、蓄電状況監視部304は、第一蓄電部302a若しくは第二蓄電部302bに入力される電流(充電電流)を検出するセンサからのデータ又は第一蓄電部302a若しくは第二蓄電部302bの両端電圧を検出するセンサからのデータに基づいて、第一蓄電部302a又は第二蓄電部302bの蓄電状況を監視する。蓄電状況監視部304は、蓄電部の蓄電状況を監視中に、しきい値に到達した充電電流を検出すると、当該蓄電部に突入電流が流れたと判別する。さらに、蓄電状況監視部304は、電気エネルギー生成部301が生成した電気エネルギーの蓄積先を切り替えるよう蓄電切替部311に指示する。
制御部303が有する無線通信部305は、蓄電状況監視部304から通知された突入電流検出時刻を同期信号として扱い、当該突入電流検出時刻を基準に他の無線通信装置との無線通信における同期をとった上で、当該他の無線通信装置と無線通信を行う。蓄電状況監視部304及び無線通信部305の各機能は、CPU(Central Processing Unit)、RAM(Random Access Memory)及び無線通信回路を有する制御部303が制御プログラムを実行することにより実現される。
以下、無線通信装置200の動作について、図15を参照して詳細に説明する。図15は、実施の形態2の無線通信装置200の動作を示すフローチャートである。まず、一方の蓄電部は、当該蓄電部のSOCが所定値以上かを判断し(ステップS201)、SOCが所定値以上であればステップS203に進む。ステップS203では、前記一方の蓄電部は、制御部303への電力供給を開始する。次に、制御部303の蓄電状況監視部204は、前記一方の蓄電部の蓄電状況を監視して、当該一方の蓄電部への入力電力(充電電流)が0か否かを判断し(ステップS205)、充電電流が0であればステップS207に進む。
ステップS207では、蓄電状況監視部304は、電気エネルギー生成部301が生成した電気エネルギーの蓄積先を前記一方の蓄電部から他方の蓄電部に切り替えるよう蓄電切替部311に指示し、蓄電切替部311が当該指示に従って動作する。次に、ステップS209では、蓄電状況監視部304は、前記他方の蓄電部への突入電流の検出の有無を判断し、突入電流を検出するとステップS109に進む。ステップS109では、実施の形態1と同様に、蓄電状況監視部304は、突入電流を検出した時刻(突入電流検出時刻)を無線通信部305に通知する。次に、ステップS111では、実施の形態1と同様に、無線通信部305は、突入電流検出時刻を基準に他の無線通信装置との無線通信における同期をとった上で、当該他の無線通信装置と無線通信を行う。
なお、ステップS109において、無線通信部305へ通知する内容として、突入電流検出時刻tp2に限ったものではない。突入電流を検出したことを通知してもよい。この場合、ステップS111では、無線通信部305は、通知を受けた時点を基準に他の無線通信装置との無線通信における同期をとった上で、当該他の無線通信装置と無線通信を行う。
次に、図16を参照して、無線通信装置200において、突入電流の検出時刻を基準とした他の無線通信装置との無線通信における同期をとり、当該他の無線通信装置との無線通信を行う際の状態遷移について説明する。図16は、図6に示したタイムチャート(基地局1が発信する電磁波の状態)に対する、各蓄電部の残容量(SOC)の変位と、各蓄電部への充電電流の変位と、無線通信部205の状態を示すタイムチャートである。なお、図16に示した例において、電気エネルギー生成部301が生成した電気エネルギーの蓄電先は、蓄電切替部311によって時間t4〜t5の間に、第一蓄電部302aから第二蓄電部302bへ切り替えられる。
図16に示すように、第一蓄電部302aのSOCは、基地局1からの電磁波の発信及び蓄電切替部311による切替制御に応じて、時間t0〜t1で0%、時間t1〜t2で増加、時間t2〜t3で変化量が0、時間t3〜t4で増加、時間t4〜t7で低下を示す。また、第一蓄電部302aの充電電流は、時間t0〜t1で電流値は0、時間t1の直後にピークp0があり、時間t2〜t3で電流値0、時間t3の直後にピークp1があり、時間t4〜t7で電流値0を示す。
また、第二蓄電部302bのSOCは、基地局1からの電磁波の発信及び蓄電切替部311による切替制御に応じて、時間t0〜t5で0%、時間t5〜t6で増加、時間t6〜t7で変化量が0を示す。また、第二蓄電部302bの充電電流は、時間t0〜t5で電流値は0、時間t5の直後にピークp2があり、時間t6〜t7で電流値0を示す。
時間t0〜t1の期間は、基地局1は電磁波を発信していない。そのため、第一蓄電部302aのSOCは0%のままである。次の時間t1〜t2の期間、基地局1は電磁波を発信する。そのため、第一蓄電部302aへの充電が開始され、第一蓄電部302aのSOCは徐々に増加する。次の時間t2〜t3の期間、基地局1は電磁波を発信しない。そのため、第一蓄電部302aのSOCは増加しない。
次の時間t3〜t4の期間、基地局1は電磁波を発信する。そのため、第一蓄電部302aへの充電が再開され、第一蓄電部302aのSOCは徐々に増加する。第一蓄電部302aのSOCが制御部303を稼働可能なしきい値に到達すると、第一蓄電部302aから制御部303に電力供給が開始され、蓄電状況監視部304が起動する。なお、当該しきい値は、無線通信部305が無線通信を行うために要する電力を第一蓄電部302aが供給可能なSOCであってもよい。図16に示した例では、時間t3〜t4の期間中の時刻tp1の時点で、第一蓄電部302aのSOCがしきい値に到達する。すなわち、時刻tp1の時点で蓄電状況監視部304が起動され、蓄電状況監視部304は、第一蓄電部302aの蓄電状況の監視を開始する。なお、蓄電状況監視部304の起動に伴い、蓄電状況監視部304における電力消費が発生するため、第一蓄電部302aのSOCの増加の割合(傾斜)は小さくなる。
時間t4〜t5の期間は、基地局1は電磁波を発信しない。このとき、蓄電状況監視部304は第一蓄電部302aからの電力供給により稼働しているため、第一蓄電部302aのSOCは若干低下する。時間t4〜t5の期間中、蓄電状況監視部304は、蓄電切替部311に蓄電先の切り替えを指示し、蓄電切替部311は、当該指示に従って、電気エネルギー生成部301が生成する電気エネルギーの蓄電先を第一蓄電部302aから第二蓄電部302bに切り替える。なお、蓄電切替部311が電気エネルギーの蓄電先を第一蓄電部302aから第二蓄電部302bに切り替えても、第一蓄電部302aが制御部303に電力を供給し続ける。また、蓄電状況監視部304は、蓄電切替部311に蓄電先の切り替えを指示すると、切替先の蓄電部(第二蓄電部302b)の蓄電状況の監視を開始する。なお、図16に示すように、この時点で第二蓄電部302bのSOCは0%である。
時間t5〜t6の期間、基地局1は電磁波を発信する。そのため、第二蓄電部302bへの充電が開始され、第二蓄電部302bのSOCは徐々に増加する。したがって、時間t5の直後には第二蓄電部302bに突入電流が流れる。当該突入電流は、実施の形態1と異なり、SOCが0%の第二蓄電部302bを流れる。SOCが低い蓄電部の内部抵抗は低いため、本実施の形態の突入電流のピーク値は、実施の形態1の図10で説明した蓄電部102を流れる突入電流のピーク値よりも高い。
無線通信部305は、突入電流検出時刻tp2を基準に他の無線通信装置との無線通信における同期をとる。具体的には、無線通信部305は、tp2+T1(=t7)の時刻から無線通信を開始する。T1=T0−Δtである。T0は、基地局1における電磁波の発信及び停止の1フレーム期間である。このようにして、無線通信部305が無線通信を行う際の送信可能期間の先頭を合わせる、つまり、外部の他の無線通信装置と同期を合わせることができる。
なお、無線通信における同期を合わせる基準として、突入電流検出時刻tp2に限ったものではない。突入電流を検出したことを受け取り、その時点を基準として無線通信の同期を合わせてもよい。
上記図16に示した例では、制御部303への電力供給が、第一蓄電部302aのSOCに基づいて開始されているが、電気エネルギー生成部301の電力発電量に基づいて開始されても良い。
以上説明したように、本実施の形態によれば、蓄電切替部311が蓄電先を切り替えることにより、制御部303に電力が供給されているとき、環境エネルギーから生成された電気エネルギーによってSOCが0%に近い蓄電部に突入電流が流れる。当該突入電流のピーク値は、SOCがある程度増加した蓄電部を流れる突入電流よりも大きい。したがって、蓄電状況監視部304は、突入電流の発生を高い精度で検出することができる。その結果、他の無線通信装置との無線通信における同期の精度が高くなる。
なお、本実施の形態の無線通信装置200では、制御部303への電力供給源は電気エネルギー生成部301が生成した電気エネルギーを蓄えた第一蓄電部302a又は第二蓄電部302bであるとしたが、これに限定されない。例えば、第一蓄電部302a又は第二蓄電部302bに代わって、別途あらかじめ装備された電池、振動、熱又は光等から発電可能な環境発電モジュール等の電力を制御部303に供給されてもよい。また、蓄電状況監視部304の電力供給源を第一蓄電部302a又は第二蓄電部302bとし、制御部303の蓄電状況監視部304以外の構成要素の電力供給源を別途あらかじめ装備された電力源としてもよい。
上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連携においてソフトウェアでも実現することも可能である。
また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続若しくは設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
本発明に係る無線通信装置、無線通信方法、及び無線通信システムは、環境エネルギーから生成された電気エネルギーの蓄積時に発生する事象を利用することで、他の無線通信装置との間で同期をとり、無線通信を行う技術等に有用である。
100,100a,100b,100c,200 無線通信装置(ノード)
101,301 電気エネルギー生成部
102 蓄電部
103,103a,103b,103c,303 制御部
104,304 蓄電状況監視部
105,105a,105b,105c,305 無線通信部
106 内部状態取得部
107 内部状態記憶部
108 センサデータ取得部
109 センサデータ記憶部
110 設定データ記憶部
111 設定データ変換部
302a 第一蓄電部
302b 第二蓄電部
311 蓄電切替部

Claims (6)

  1. 他の無線通信装置と同期通信を行う無線通信装置であって、
    外部から間欠的に供給される環境エネルギーから電気エネルギーを生成する電気エネルギー生成部と、
    前記電気エネルギー生成部が生成した電気エネルギーを蓄電し、蓄電量が所定の閾値以上になった場合、蓄積された電気エネルギーを出力する蓄電部と、
    前記蓄電部から出力された電気エネルギーによって起動し、前記蓄電部の蓄電状況を監視して、前記環境エネルギーが供給されていない期間を検出した後、前記蓄電部へはじめて突入電流が流入したタイミングを検出する蓄電状況監視部と、
    前記蓄電状況監視部において検出された前記タイミングを基準に、前記他の無線通信装置との無線通信における同期をとった上で、前記他の無線通信装置と無線通信を行う無線通信部と、
    を備える無線通信装置。
  2. 請求項1に記載の無線通信装置であって、
    前記蓄電部は第一蓄電部及び第二蓄電部を有し、
    さらに、前記電気エネルギー生成部が生成した電気エネルギーの蓄積先を、前記第一蓄電部又は前記第二蓄電部に切り替える蓄電切替部を備え、
    前記第一蓄電部は、前記電気エネルギー生成部が生成した電気エネルギーを蓄電し、蓄電量が所定の閾値以上になった場合、蓄積された電気エネルギーを出力し、
    前記第一蓄電部から出力された電気エネルギーにより起動した前記蓄電状況監視部は、
    前記環境エネルギーが供給されていない期間を検出した後、前記電気エネルギー生成部が生成した電気エネルギーの蓄積先を前記第一蓄電部から前記第二蓄電部に切り替えるよう前記蓄電切替部に指示し、前記蓄電切替部が前記電気エネルギーの蓄積先を切り替えた後に、前記第二蓄電部へはじめて突入電流が流入したタイミングを検出する、
    無線通信装置。
  3. 請求項1に記載の無線通信装置であって、
    前記所定の閾値以上の電気エネルギーが蓄積された前記蓄電部は、少なくとも前記蓄電状況監視部が稼働するために要する電気エネルギーを前記蓄電状況監視部に出力する無線通信装置。
  4. 請求項1に記載の無線通信装置であって、
    前記環境エネルギーが電磁波の場合、
    前記無線通信部は、前記環境エネルギーの周波数と同じ周波数又は前記環境エネルギーの周波数と異なる周波数を用いて、前記他の無線通信装置と無線通信を行う無線通信装置。
  5. 無線通信装置が他の無線通信装置と同期通信を行う場合の無線通信方法であって、
    電気エネルギー生成部は、外部から間欠的に供給される環境エネルギーから電気エネルギーを生成し、
    蓄電部は、前記電気エネルギー生成部が生成した電気エネルギーを前記蓄電部に蓄電し、蓄電量が所定の閾値以上になった場合に、蓄積された電気エネルギーを出力し、
    蓄電状況監視部は、前記蓄電部から出力された前記電気エネルギーにより前記蓄電部の蓄電状況を監視して、前記環境エネルギーが供給されていない期間を検出した後、前記蓄電部へはじめて突入電流が流入したタイミングを検出し、
    無線通信部は、前記蓄電状況監視部において検出された前記タイミングを基準に、前記他の無線通信装置との無線通信における同期をとった上で、前記他の無線通信装置と無線通信を行う無線通信方法。
  6. 第1の無線通信装置が少なくとも一つの第2の無線通信装置と同期通信を行う無線通信システムであって、
    前記第1の無線通信装置は、間欠的に環境エネルギーを供給し、
    前記第2の無線通信装置は、
    前記第1の無線通信装置から供給される前記環境エネルギーから電気エネルギーを生成する電気エネルギー生成部と、
    前記電気エネルギー生成部が生成した電気エネルギーを蓄電し、蓄電量が所定の閾値以上になった場合、蓄積された電気エネルギーを出力する蓄電部と、
    前記蓄電部から出力された電気エネルギーによって起動し、前記蓄電部の蓄電状況を監視して、前記環境エネルギーが供給されていない期間を検出した後、前記蓄電部へはじめて突入電流が流入したタイミングを検出する蓄電状況監視部と、
    前記蓄電状況監視部において検出された前記タイミングを基準に、前記第1の無線通信装置との無線通信における同期をとった上で、前記第1の無線通信装置と無線通信を行う無線通信部と、
    を有する無線通信システム。
JP2011274732A 2011-12-15 2011-12-15 無線通信装置、無線通信方法及び無線通信システム Expired - Fee Related JP5853131B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011274732A JP5853131B2 (ja) 2011-12-15 2011-12-15 無線通信装置、無線通信方法及び無線通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011274732A JP5853131B2 (ja) 2011-12-15 2011-12-15 無線通信装置、無線通信方法及び無線通信システム

Publications (2)

Publication Number Publication Date
JP2013126161A JP2013126161A (ja) 2013-06-24
JP5853131B2 true JP5853131B2 (ja) 2016-02-09

Family

ID=48777158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011274732A Expired - Fee Related JP5853131B2 (ja) 2011-12-15 2011-12-15 無線通信装置、無線通信方法及び無線通信システム

Country Status (1)

Country Link
JP (1) JP5853131B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017046996A1 (ja) * 2015-09-16 2017-03-23 ソニー株式会社 通信装置、通信方法及び通信システム
JP6145741B1 (ja) * 2016-12-27 2017-06-14 パナソニックIpマネジメント株式会社 エナジーハーベスト端末

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8493181B2 (en) * 2005-07-15 2013-07-23 Hitoshi Kitayoshi Sensor tag, sensor tag device, power receiving circuit, and sensor tag device power supply method
JP2009253360A (ja) * 2008-04-01 2009-10-29 Mitsubishi Electric Corp センサネットワークシステム
JP5235535B2 (ja) * 2008-07-03 2013-07-10 株式会社日立システムズ ノード時刻同期方法及びセンサネットワークシステム
US8497658B2 (en) * 2009-01-22 2013-07-30 Qualcomm Incorporated Adaptive power control for wireless charging of devices

Also Published As

Publication number Publication date
JP2013126161A (ja) 2013-06-24

Similar Documents

Publication Publication Date Title
JP7020181B2 (ja) 電源制御装置及び通信装置
JP5816545B2 (ja) 無線センサシステム
EP3598408A1 (en) Sensor device and sensor network system
Varghese et al. Design and development of an RF energy harvesting wireless sensor node (EH-WSN) for aerospace applications
JP5853131B2 (ja) 無線通信装置、無線通信方法及び無線通信システム
Chew et al. Energy savvy network joining strategies for energy harvesting powered TSCH nodes
JP2019115036A (ja) リアルタイムクロックを備えたトランシーバ装置
KR101374830B1 (ko) 센서노드의 전력공급 제어장치 및 방법
JP2009038661A (ja) 無線通信方法、無線通信システム及び無線通信装置
JP2010252165A (ja) 通信端末装置および通信システム
Amaro et al. Device and operation mechanism for non-beacon IEEE802. 15.4/Zigbee nodes running on harvested energy
KR20130067907A (ko) 능동 무선 전력 장치 및 그 방법
JP2018506699A (ja) エネルギー貯蔵装置の低能力通知を提供するための技術
Chan et al. Power management of a wireless sensor node with solar energy harvesting technology
JP6303062B1 (ja) センサ装置
JP2018098902A (ja) 監視システムおよび監視装置
JP2005086425A (ja) データ通信装置及びデータ通信システム
WO2023052155A1 (en) Methods for handling energy conditions of an energy harvesting wireless device, a related network node and a related wireless device
JP2019118196A (ja) 停電検出システム
Marsic et al. Design and implementation of a wireless sensor communication system with low power consumption for energy harvesting technology
US20150181528A1 (en) Communications apparatus, system, and communications method
Semente et al. A energy efficient WSN system for limited power source environments
Chew et al. Energy Harvesting Powered Wireless Sensor Nodes With Energy Efficient Network Joining Strategies
JP6303061B1 (ja) センサ装置
Diaz et al. Demo Abstract: ATON, A battery-less power supply with dynamic duty cycle for wireless sensor networks

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140826

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141008

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150716

R151 Written notification of patent or utility model registration

Ref document number: 5853131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees