Nothing Special   »   [go: up one dir, main page]

JP5734789B2 - Damage estimation method for structures made of conductive materials - Google Patents

Damage estimation method for structures made of conductive materials Download PDF

Info

Publication number
JP5734789B2
JP5734789B2 JP2011181686A JP2011181686A JP5734789B2 JP 5734789 B2 JP5734789 B2 JP 5734789B2 JP 2011181686 A JP2011181686 A JP 2011181686A JP 2011181686 A JP2011181686 A JP 2011181686A JP 5734789 B2 JP5734789 B2 JP 5734789B2
Authority
JP
Japan
Prior art keywords
potential difference
difference measurement
pair
damage
reference potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011181686A
Other languages
Japanese (ja)
Other versions
JP2013044601A (en
Inventor
大介 朝日
大介 朝日
高橋 茂
茂 高橋
龍 緒方
龍 緒方
有田 圭介
圭介 有田
健太郎 奥
健太郎 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2011181686A priority Critical patent/JP5734789B2/en
Publication of JP2013044601A publication Critical patent/JP2013044601A/en
Application granted granted Critical
Publication of JP5734789B2 publication Critical patent/JP5734789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、導電材料製構造物に生じる減肉等の損傷を推定する方法に係り、とく電位差法を利用して、非破壊的に精度よく推定できる、導電材料製構造物の損傷推定方法に関する。なお、本発明は、石油精製プラントの配管等の構造物のうち、例えば、構造物自体が盛土、堤等に埋設されていたり、被覆材が施されていたりして、それらを解体し、撤去しなければ検査の実施に困難が伴う箇所に生じる損傷を対象とする。   The present invention relates to a method for estimating damage such as thinning that occurs in a structure made of a conductive material, and more particularly to a method for estimating damage to a structure made of a conductive material that can be estimated nondestructively with high accuracy using a potential difference method. . In the present invention, among structures such as pipes of an oil refinery plant, for example, the structure itself is buried in embankments, embankments, etc., or a covering material is applied, and they are dismantled and removed. Otherwise, damage that occurs in places where inspections are difficult to perform will be targeted.

石油精製プラントでは、鋼材等の金属材料製の装置および配管等(以下、配管等ともいう)が強い腐食環境や侵食環境に晒される場合が多く、そのため、配管等の構造物を構成する金属材料には、きず、割れや亀裂、さらに腐食等による肉厚減少などの損傷が生じる場合がある。これら金属材料に生じた損傷は、配管等の構造物の破壊原因となることが多いため、配管等の安全確保という観点から早期に検知する必要がある。   In oil refining plants, equipment and pipes made of metal materials such as steel materials (hereinafter also referred to as pipes) are often exposed to a strong corrosive environment or erosion environment. Therefore, metal materials that make up structures such as pipes In some cases, damage such as flaws, cracks, cracks, and thickness reduction due to corrosion may occur. Since damages to these metal materials often cause destruction of structures such as pipes, it is necessary to detect them from the viewpoint of ensuring the safety of pipes and the like.

配管等の損傷の検知方法として、従来から超音波探傷法、X線透過法等の非破壊検査方法が提案されている。しかし、これらの検知方法には、曲がりや溶接部等が存在すると測定できないという、測定個所の制限があり、さらに損傷の度合いおよびその変化量を精度高く得ることが難しいことや、あるいは測定が複雑でかつ解析が難しいため、測定・解析の実施にあたっては有資格者の協力を必要とすることなどの問題があった。   Conventionally, nondestructive inspection methods such as an ultrasonic flaw detection method and an X-ray transmission method have been proposed as methods for detecting damage to piping and the like. However, these detection methods have limitations on the measurement location that measurement is not possible if there is a bend or a weld, and it is difficult to obtain the degree of damage and the amount of change with high accuracy, or the measurement is complicated. However, since analysis is difficult, there were problems such as requiring the cooperation of qualified personnel in the implementation of measurement and analysis.

また、比較的精度高く、亀裂等の欠陥の大きさ、形状に関する情報が得られる非破壊検査方法として、電位差法がある。亀裂等の欠陥を含む被測定材に電流を流した際に、欠陥は寸法に応じた電気抵抗を有し、欠陥を挟む両側でこれに対応した電位差が生じる。電位差法は、被測定物に電流を流し、この欠陥を挟む位置での電位差を測定し、その結果から予め求めた校正曲線を利用して、被測定物に含まれる欠陥の形状、寸法に関する情報を得ようとするものである。   Further, there is a potential difference method as a nondestructive inspection method that can obtain information on the size and shape of defects such as cracks with relatively high accuracy. When a current is passed through a material to be measured including a defect such as a crack, the defect has an electrical resistance corresponding to its size, and a potential difference corresponding to this occurs on both sides of the defect. In the potentiometric method, a current is passed through the object to be measured, the potential difference at the position where this defect is sandwiched is measured, and information on the shape and size of the defect contained in the object to be measured is obtained using a calibration curve obtained in advance from the result. Is going to get.

例えば、特許文献1には、電位差法を利用した、きずの非破壊検査方法が提案されている。特許文献1に記載された技術では、被測定物表面に複数の電位差測定用端子をマトリックス状に所定の間隔で離隔して配置し、該被測定物に電流を供給しながら、各電位差測定用端子間に生じる電位差または電位差変化率分布を求め、予め関連づけられた電位差分布または電位差変化率分布ときずの寸法形状との関係を参照して、被測定物に含まれるきずの位置、寸法形状さらにはきずの進展状況を検知できるとしている。   For example, Patent Document 1 proposes a nondestructive inspection method for flaws using a potential difference method. In the technique described in Patent Document 1, a plurality of potential difference measuring terminals are arranged in a matrix at a predetermined interval on the surface of the object to be measured, and each potential difference is measured while supplying current to the object to be measured. Obtain the potential difference or potential difference change rate distribution generated between the terminals, and refer to the relationship between the potential difference distribution or potential difference change rate distribution associated with the preliminarily related dimension shape and the position of the flaw included in the object to be measured, the size shape It is said that the progress of flaws can be detected.

また、特許文献2には、電位差法を利用した、導電材料製構造物の損傷検出方法が記載されている。特許文献2に記載された技術では、被測定物である、導電材料製構造物表面に複数の電位差測定用端子を該導電材料製構造物の長手方向に直線状に少なくとも一列、所定の間隔で離隔して配置し、各端子間に生じる電位差を測定し、測定領域における電位差分布を求め、損傷発生の有無を評価する第一の工程を行う。第一の工程で損傷ありと評価され、さらに詳細な測定が必要と判定された場合には、当該領域でさらに狭い測定間隔で、直線状に複数の電位差測定用端子を配置し、各端子間に生じる電位差を測定し、測定領域における電位差分布を求め、損傷発生の有無をさらに精度よく、測定する第二の工程を行う。この第二の工程で損傷ありと評価された場合には、さらに第三の工程として当該領域で、複数の電位差測定用端子をさらに狭い間隔で格子状に配置し、損傷の種類、その度合を評価する。さらに必要に応じて、複数の電位差測定用端子をさらに狭い間隔で格子状に配置し、各端子間に生じる電位差を測定し、測定領域における電位差分布を求め、損傷の度合をさらに精度高く測定する第四の工程を追加してもよいとしている。特許文献2に記載された技術によれば、実構造物における損傷の粗いスクリーニング検査として利用できるとともに、必要に応じて損傷の種類およびその度合を高い精度で検出できるとしている。   Patent Document 2 describes a method for detecting damage to a structure made of a conductive material using a potential difference method. In the technique described in Patent Document 2, a plurality of potential difference measurement terminals are linearly arranged in the longitudinal direction of the conductive material structure on the surface of the conductive material structure, which is the object to be measured, at predetermined intervals. A first step of measuring the potential difference between the terminals, measuring the potential difference between the terminals, obtaining the potential difference distribution in the measurement region, and evaluating the occurrence of damage is performed. If it is determined that there is damage in the first step and it is determined that more detailed measurement is necessary, a plurality of potential difference measurement terminals are arranged in a straight line at a narrower measurement interval in the area. The second step is performed to measure the potential difference occurring in the measurement area, obtain the potential difference distribution in the measurement region, and measure the presence or absence of damage more accurately. If it is evaluated that there is damage in this second step, a plurality of potential difference measurement terminals are arranged in a grid pattern at narrower intervals in the region as a third step, and the type and degree of damage are determined. evaluate. Furthermore, if necessary, a plurality of potential difference measurement terminals are arranged in a grid pattern at a further narrow interval, the potential difference generated between each terminal is measured, the potential difference distribution in the measurement region is obtained, and the degree of damage is measured with higher accuracy. A fourth step may be added. According to the technique described in Patent Document 2, it can be used as a rough screening test for an actual structure, and the type and degree of damage can be detected with high accuracy as required.

また、特許文献3には、導電材料製構造物の損傷検出方法が記載されている。特許文献3に記載された技術では、導電材料製構造物の被測定領域を囲んで、複数の電位差測定用端子を所定の間隔で隔離して配置し、複数の電位差測定用端子を挟んで一対の電極端子を配し、該一対の電極端子を介し導電材料製構造物の特定方向に電流を供給しながら、導電材料製構造物の被測定領域を囲んで相対する各電位差測定用端子間に生じる電位差を測定し、ついで、前記一対の電極端子とは別に複数の電位差測定用端子を挟んで他の一対の電極端子を介し、前記特定方向とは異なる方向に電流を供給しながら、導電材料製構造物の被測定領域を囲んで相対する各電位差測定用端子間に生じる電位差を測定し、被測定領域における損傷状態を評価する。これにより、電位差測定端子を直接設置できないような被測定領域においても、損傷発生領域を特定することができるとしている。また、特許文献3に記載された技術では、電位差測定端子間隔を狭くすることにより、さらに精度よく、損傷発生領域を特定することができるとしている。   Patent Document 3 describes a method for detecting damage to a structure made of a conductive material. In the technique described in Patent Document 3, a plurality of potential difference measurement terminals are arranged at a predetermined interval so as to surround a region to be measured of a structure made of a conductive material, and a pair of potential difference measurement terminals are sandwiched therebetween. Between the respective potential difference measurement terminals that surround the region to be measured of the conductive material structure and are opposed to each other while supplying current in a specific direction of the conductive material structure through the pair of electrode terminals. Conductive material is measured while measuring a potential difference generated, and then supplying a current in a direction different from the specific direction through another pair of electrode terminals sandwiching a plurality of potential difference measurement terminals separately from the pair of electrode terminals. The potential difference generated between the respective potential difference measurement terminals surrounding the measurement area of the manufactured structure is measured, and the damage state in the measurement area is evaluated. As a result, even in the measurement area where the potential difference measurement terminal cannot be directly installed, the damage occurrence area can be specified. Further, in the technique described in Patent Document 3, it is possible to specify the damage occurrence region with higher accuracy by narrowing the interval between the potential difference measurement terminals.

また、最近、ガイド波を利用して、配管等の損傷検査を行う試みがなされている。例えば、非特許文献1には、ガイド波を用いた配管腐食検査技術についての解説がある。この技術は、配管の外表面に設置したセンサから、長距離伝播性の超音波(ガイド波)を印加して欠陥の検査を行うものである。配管の表面から印加された超音波(ガイド波)は、配管の軸方向に伝播して、その経路上に存在する断面形状の変化を反射源として、欠陥の存在を検知する。この技術によれば、配管の設置位置に関係なく、計測位置から数十メートルの検査を可能にできるとしている。   Recently, attempts have been made to inspect pipes and the like using guide waves. For example, Non-Patent Document 1 describes a pipe corrosion inspection technique using a guide wave. This technique is to inspect a defect by applying a long-distance propagation ultrasonic wave (guide wave) from a sensor installed on the outer surface of a pipe. The ultrasonic wave (guide wave) applied from the surface of the pipe propagates in the axial direction of the pipe, and detects the presence of a defect using a change in cross-sectional shape existing on the path as a reflection source. According to this technique, it is possible to inspect several tens of meters from the measurement position regardless of the installation position of the pipe.

特開2005−208039号公報JP 2005-208039 A 特開2008−83038号公報JP 2008-83038 A 特開2009−74923号公報JP 2009-74923 A

卯西裕之ら:NKK技報、No.177(2002.6)、p.38〜42Hiroyuki Shanishi et al .: NKK Technical Report, No.177 (2002.6), p.38-42

特許文献1〜3に記載された技術では、損傷発生箇所近傍に電位差測定端子を設定できる被測定物については、プラントが稼動中でも、非破壊で、比較的精度よく損傷を特定することができるといえる。しかし、例えば、図1に示すような盛土、壁、堤等で覆われた配管等では、複数の電位差測定端子を損傷発生箇所の近傍に直接設定できないため、特許文献1〜3に記載された技術をそのまま適用することはできないという問題がある。   In the techniques described in Patent Documents 1 to 3, with respect to an object to be measured in which a potential difference measurement terminal can be set in the vicinity of a damage occurrence location, damage can be identified relatively accurately with non-destructiveness even while the plant is in operation. I can say that. However, for example, in piping covered with embankments, walls, embankments, etc. as shown in FIG. 1, a plurality of potential difference measurement terminals cannot be set directly in the vicinity of the damage occurrence location, and thus described in Patent Documents 1 to 3 There is a problem that the technology cannot be applied as it is.

図1に示すような盛土、堤等で覆われた配管等に生じる損傷は、従来では、盛土、堤等を解体して超音波探傷、X線検査等により直接損傷の程度を調査していた。しかし、このような盛土、堤等を解体することを前提とした調査では、多大の費用が発生するという問題がある。
また、非特許文献1に記載されたガイド波を利用した検査技術では、盛土、堤、保温材等を解体することなく、配管等の検査を行うことができるという利点はあるが、計測区間が長くなると超音波が減衰し所定の検査精度が確保できにくくなるとともに、配管等の外部に添付された防食テープ等の影響により、所望の検査精度を得ることができないという問題があった。
In the past, the damage caused to the pipes covered with embankments, embankments, etc. as shown in FIG. 1 was investigated by directly disassembling the embankments, embankments, etc., and ultrasonic flaw detection, X-ray inspection, etc. . However, there is a problem that a large amount of cost is incurred in a survey that presupposes the dismantling of such embankments and embankments.
Moreover, in the inspection technique using the guide wave described in Non-Patent Document 1, there is an advantage that inspection of piping and the like can be performed without dismantling the embankment, bank, heat insulating material, etc., but the measurement section is When the length is longer, there is a problem that the ultrasonic wave is attenuated and it becomes difficult to ensure a predetermined inspection accuracy, and a desired inspection accuracy cannot be obtained due to the influence of an anticorrosion tape attached to the outside of a pipe or the like.

そこで、本発明は、このような従来技術の問題を解決し、導電材料製構造物に生じる損傷のうち、検査に多大の費用を要し検査の実施に困難が伴う箇所に生じる減肉等の損傷を、非破壊でかつ簡便に推定できる、導電材料製構造物の損傷推定方法を提案することを目的とする。   Therefore, the present invention solves such a problem of the prior art, and among the damages that occur in the structure made of conductive material, such as thinning that occurs in places that require a large amount of cost for inspection and that are difficult to perform the inspection. It is an object of the present invention to propose a damage estimation method for a structure made of a conductive material that can easily and non-destructively estimate damage.

本発明者らは、上記した目的を達成するために、まず、非破壊でしかも簡便に測定が可能な、電位差法を適用して測定することにし、配管等の構造物において、検査の実施に困難が伴う箇所においても、盛土、堤、保温材等を解体することなく、損傷の程度を精度高く測定する方法について、鋭意研究した。その結果、損傷を測定したい領域(電位差測定領域)と同一の構造物(配管)内で同一の構造を有する領域を、参照電位差測定領域として設定することが有効であることに想到した。そして、参照電位差測定領域内に複数の参照電位差測定端子を設定し、電位差測定領域に設定した電位差測定端子とが直列になるように、電位差測定領域と参照電位差測定領域とを挟むように電極対を設定し電流を流して、それぞれの領域で電位差を測定し、単位長さ当たりの電位差で比較すれば、電位差測定領域における損傷を精度高く測定できることを見出した。   In order to achieve the above-described object, the present inventors first applied non-destructive and simple measurement, applying a potentiometric method, and inspecting a structure such as a pipe. Even in difficult locations, we have intensively studied how to measure the degree of damage with high accuracy without dismantling the embankment, bank, and insulation. As a result, it has been conceived that it is effective to set a region having the same structure in the same structure (pipe) as a region (potential difference measurement region) where damage is to be measured as a reference potential difference measurement region. Then, a plurality of reference potential difference measurement terminals are set in the reference potential difference measurement area, and the electrode pair is sandwiched between the potential difference measurement area and the reference potential difference measurement area so that the potential difference measurement terminals set in the potential difference measurement area are in series. It was found that the damage in the potential difference measurement region can be measured with high accuracy by measuring the potential difference in each region and comparing the potential difference per unit length.

というのは、電位差測定領域と同一構造を有する参照電位差測定領域では、損傷が生じていないか、あるいは生じていても特別な作業を必要とすることなく損傷の程度を容易に測定可能であり、そのような領域に設定された参照電位差測定端子間の単位長さ当たりの電位差を基準電位差として、該基準電位差に対する電位差測定領域の電位差測定端子間の電位差変化率を算出すれば、当該測定領域での損傷の有無、およびその程度が容易に推定できることになる。   This is because the reference potential difference measurement region having the same structure as the potential difference measurement region can easily measure the degree of damage without requiring any special work even if damage has not occurred or has occurred, If the potential difference per unit length between the reference potential difference measurement terminals set in such a region is set as a reference potential difference, and the potential difference change rate between the potential difference measurement terminals in the potential difference measurement region with respect to the reference potential difference is calculated, Therefore, it is possible to easily estimate whether or not there is any damage and how much.

本発明は、かかる知見に基づいて、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)導電材料製構造物における損傷を、複数の電位差測定端子を損傷発生箇所の近傍に直接設定して検査することが難しい検査対象部位の損傷の程度を、電位差法を用いて推定する損傷推定方法であって、前記導電材料製構造物が配管で、前記検査対象部位が直管部からなる管形状を有し、前記検査対象部位を電位差測定区間とし、該電位差測定区間を挟んで両側で一対となるように、少なくとも一対の電位差測定端子を配設し、さらに、前記検査対象部位以外の領域で、前記検査対象部位と同じ管形状を有する部位が、該検査対象部位の近傍の前記配管に存在する場合には、該同じ管形状を有する部位を、参照電位差測定区間として設定し、該参照電位測定区間の端部両側で一対となるように少なくとも一対の参照電位差測定端子を配設し、さらに前記導電材料製構造物に前記電位差測定区間および前記参照電位差測定区間を挟むように一対の電極を設置し、該一対の電極を介して前記電位差測定区間および前記参照電位差測定区間に直列に電流を供給しながら、前記少なくとも一対の電位差測定端子間および前記少なくとも一対の参照電位差測定端子間の電位差をそれぞれ測定し、得られた前記一対の参照電位差測定端子間の単位長さ当たりの電位差 2i を基準にして、得られた前記一対の電位差測定端子間の単位長さ当たりの電位差 3i から、次(1)式
ΔV(%)={(V3i/V2i)−1}×100‥‥(1)
(ここで、ΔV:検査対象部位の電位差変化率(%)、V3i:一対の電位差測定端子間の単位長さ当たりの電位差、V2i:一対の参照電位差測定端子間の単位長さ当たりの電位差)
で定義される、検査対象部位の電位差変化率ΔVを算出し、該電位差変化率ΔVに基づいて前記検査対象部位の損傷の程度を推定することを特徴とする導電材料製構造物の損傷推定方法。
The present invention has been completed on the basis of such findings and further studies. That is, the gist of the present invention is as follows.
(1) Damage using a potentiometric method to estimate the degree of damage in a region to be inspected that is difficult to inspect for damage in a structure made of a conductive material by directly setting a plurality of potential difference measurement terminals in the vicinity of the damage occurrence site In the estimation method, the conductive material structure is a pipe, the inspection target part has a tube shape including a straight pipe part, the inspection target part is defined as a potential difference measurement section, and both sides sandwiching the potential difference measurement section as the pair in, arranged at least one pair of potentiometric terminal, further, in the region other than the previous SL inspected portion, a portion having the same tubular shape as the inspection target region, in the vicinity of the inspected portion wherein when present in piping, a site with of identity Ji pipe shape is set as the reference potential difference measuring period,該参 so that the pair at the ends on both sides of the irradiation potential difference measuring section, at least a pair of reference potential measuring terminal Arrange In addition, a pair of electrodes is installed in the conductive material structure so as to sandwich the potential difference measurement section and the reference potential difference measurement section, and the potential difference measurement section and the reference potential difference measurement section are connected in series via the pair of electrodes. The potential difference per unit length between the pair of reference potential difference measurement terminals obtained by measuring a potential difference between the at least one pair of potential difference measurement terminals and the at least one pair of reference potential difference measurement terminals From the potential difference V 3i per unit length between the pair of potential difference measurement terminals obtained with reference to V 2i , the following equation (1) ΔV 3 (%) = {(V 3i / V 2i ) −1} × 100 (1)
(Where ΔV 3 is the potential difference change rate (%) of the site to be examined, V 3i is the potential difference per unit length between the pair of potential difference measurement terminals, and V 2i is per unit length between the pair of reference potential difference measurement terminals. Potential difference)
The potential difference change rate ΔV 3 of the site to be inspected defined in (1) above is calculated, and the degree of damage to the site to be inspected is estimated based on the potential difference change rate ΔV 3. Estimation method.

(2)(1)において、前記検査対象部位が直管部からなる管形状を有する場合に代えて、前記検査対象部位が直管部とさらに曲がり部とからなる管形状を有し、該検査対象部位と同じ管形状でさらに同じ長さを有する部位が前記検査対象部位の近傍の前記配管に存在する場合には、該同じ管形状で同じ長さを有する部位を、前記参照電位差測定区間として設定することを特徴とする導電材料製構造物の損傷推定方法。 (2 ) In (1), instead of the case where the inspection target part has a tube shape including a straight pipe part , the inspection target part has a pipe shape including a straight pipe part and a bent part, and the inspection when the site with more same length in the same tubular shape as the target site is present in the pipe in the vicinity of the inspected portion is a portion having the same length in of identity Ji tube shape, as said reference potential measure section A damage estimation method for a structure made of a conductive material, characterized by comprising:

)(1)において、前記検査対象部位が直管部からなる管形状を有する場合に代えて、前記検査対象部位が、直管部とn個の曲り部とからなり、該検査対象部位と同じ管形状を有する部位が前記電位差測定区間の近傍の前記配管に存在する場合には、前記参照電位差測定区間を前記直管部と同一管形状の直管部と、さらに前記曲り部と同一管形状を有する少なくとも1個の曲り部とに、それぞれ設定し、前記検査対象部位の電位差変化率ΔVを、前記(1)式に代えて、次(2)式
ΔV(%)=(V/(V2E×n+V2S×L)−1)×100 ‥‥(2)
(ここで、ΔV:検査対象部位の電位差変化率(%)、V:電位差測定区間(検査対象部位)の一対の電位差測定端子間の電位差、V2S:直管部参照電位差測定区間における一対の参照電位差測定端子間の単位長さ当たりの電位差、V2E:曲り部参照電位差測定区間における一対の参照電位差測定端子間の電位差、n:電位差測定区間内の曲り部の個数、L:電位差測定区間内の直管部長さ)
を用いて算出することを特徴とする導電材料製構造物の損傷推定方法。
(3) (1), the examination target region is in place if it has a tubular shape consisting of straight pipe section, before Symbol examination target region is composed of a straight pipe portion and the n-number of bends, the test object When a portion having the same tube shape as the portion is present in the pipe in the vicinity of the potential difference measurement section, the reference potential difference measurement section is a straight pipe portion having the same tube shape as the straight pipe portion, and further, the bending portion. the at least one bend portion having the same tube shape, set respectively, the potential difference change rate [Delta] V 3 of the inspected portion, instead of the equation (1), the following equation (2) [Delta] V 3 (%) = (V 3 / (V 2E × n + V 2S × L) −1) × 100 (2)
(Where ΔV 3 is the potential difference change rate (%) of the site to be examined, V 3 is the potential difference between the pair of potential difference measurement terminals in the potential difference measurement section (test target section), and V 2S is the reference potential difference measurement section in the straight tube section. Potential difference per unit length between a pair of reference potential difference measurement terminals, V 2E : Potential difference between a pair of reference potential difference measurement terminals in a bent portion reference potential difference measurement section, n: Number of bent portions in the potential difference measurement section, L: Potential difference Straight pipe length in the measurement section)
The damage estimation method of the structure made from an electrically-conductive material characterized by calculating using this.

)(1)ないし()のいずれかにおいて、前記検査対象部位の電位差変化率ΔV(%)と、超音波探傷法により求めた前記参照電位差測定区間の平均肉厚ts(mm)を基準として、次(3)式
tm(mm)=(ts)×(1−ΔV/(100+ΔV))‥‥(3)
(ここで、tm:検査対象部位の推定平均肉厚(mm)、ts:参照電位差測定区間の基準平均肉厚(mm)、ΔV:検査対象部位の電位差変化率(%))
を用いて、前記検査対象部位の推定平均肉厚tmを算出することを特徴とする導電材料製構造物の損傷推定方法。
( 4 ) In any one of (1) to ( 3 ), the potential difference change rate ΔV 3 (%) of the site to be inspected and the average thickness ts (mm) of the reference potential difference measurement section obtained by an ultrasonic flaw detection method The following equation (3) tm (mm) = (ts) × (1−ΔV 3 / (100 + ΔV 3 )) (3)
(Where tm: estimated average thickness (mm) of the site to be examined, ts: standard average thickness (mm) of the reference potential difference measurement section, ΔV 3 : potential difference change rate (%) of the site to be examined)
A method for estimating damage to a structure made of a conductive material, comprising calculating an estimated average thickness tm of the inspection target part using a.

)(1)ないし(4)のいずれかにおいて、前記検査対象部位の電位差変化率ΔV(%)が予め設定した閾値を超えた場合には、さらに該検査対象部位の電位差変化率ΔV(%)と、予め求めたマスターカーブとから、最小肉厚を推定することを特徴とする導電材料製構造物の損傷推定方法。 ( 5 ) In any one of (1) to (4), when the potential difference change rate ΔV 3 (%) of the inspection target region exceeds a preset threshold value, the potential difference change rate ΔV of the inspection target region is further increased. A method for estimating damage to a structure made of a conductive material, wherein the minimum thickness is estimated from 3 (%) and a master curve obtained in advance.

本発明によれば、測定に多大の費用を要し測定の実施に困難が伴う箇所(検査対象部位)に生じる、減肉等の損傷を非破壊でかつ簡便に推定でき、産業上格段の効果を奏する。また、本発明によれば、なだらかな減肉に限らず、局所的な損傷の程度も推定できるという効果がある。   According to the present invention, it is possible to easily and non-destructively estimate damage such as thinning that occurs in a place (inspection target part) that requires a great deal of cost for measurement and is difficult to carry out the measurement. Play. In addition, according to the present invention, there is an effect that it is possible to estimate the degree of local damage as well as the gentle thinning.

本発明が対象とする検査対象部位の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the test object site | part which this invention makes object. 本発明で使用する、電位差測定装置の概略構成を模式的に示す説明図である。It is explanatory drawing which shows typically schematic structure of the potentiometric device used by this invention. 直管部からなる検査対象部位における電位差測定用端子対と参照電位差測定用端子対の設置状況の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the installation condition of the electric potential difference measurement terminal pair and the reference electric potential difference measurement terminal pair in the test object part which consists of a straight pipe part. 推定最小肉厚と電位差変化率との関係(マスターカーブ)を示すグラフである。It is a graph which shows the relationship (master curve) between an estimated minimum thickness and a potential difference change rate. 直管部と1個の曲り部とを有する検査対象部位における電位差測定用端子対の設置状況の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the installation condition of the electric potential difference measurement terminal pair in the test object site | part which has a straight pipe part and one bending part. 直管部と2個の曲り部とを有する検査対象部位における電位差測定用端子対の設置状況一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the installation condition of the electric potential difference measurement terminal pair in the test object site | part which has a straight tube | pipe part and two bending parts. 実施例で測定した検査対象部位を、測定端子位置とともに、模式的に示す説明図である。It is explanatory drawing which shows typically the test object site | part measured in the Example with a measurement terminal position. 本発明における、損傷推定の手順を示す説明図である。It is explanatory drawing which shows the procedure of damage estimation in this invention.

例えば石油精製プラントでは、貯槽等からの危険物等の流出を防止するために、貯槽等の周りに、盛土、壁、堤等による防油堤が配設されており、導電材料製構造物である配管がそれらを貫通している箇所がある。またさらに、石油精製プラントに限らず、導電材料製構造物である配管が地中等に埋設されている場合もある。
このような箇所においても、損傷が問題となる場合があり、損傷の程度を定期的にあるいは必要に応じて、検査する必要がある。このような箇所で損傷程度を直接検査するためには、例えば、防油堤では、仮防油堤を設置し、盛土等を解体する必要があり、費用が多大となるという問題があり、損傷の程度を直接検査することが、難しくなっている。また、地中等に埋設された配管の検査では埋設部の堀削工事を必要とし、多大の費用を必要とする。
For example, in oil refining plants, oil barriers such as embankments, walls, and banks are installed around the storage tanks to prevent the outflow of dangerous materials from the storage tanks, etc. There is a place where some piping penetrates them. Furthermore, not only an oil refining plant but also a pipe that is a structure made of a conductive material may be buried in the ground or the like.
Even in such a place, damage may be a problem, and it is necessary to inspect the degree of damage periodically or as necessary. In order to directly inspect the degree of damage at such a location, for example, in a breakwater, it is necessary to install a temporary breakwater and dismantle the embankment, etc. It is becoming difficult to inspect directly the degree of. In addition, inspection of piping buried in the ground requires excavation work of the buried portion, which requires a great deal of cost.

本発明は、このような難検査部位の損傷の程度を、電位差法を用いて非破壊で簡便に推定できる、導電材料製構造物の損傷推定方法である。
本発明では、検査対象部位を被測定領域Wとして電位差測定区間とし、その両側で一対となるように、少なくとも一対の電位差測定用端子を配設し、電位差法を利用して、該測定用端子対の電位差を測定する。電位差を測定するために使用する装置は、とくに限定する必要はないが、図2に示すような、電源1と、電源1から被測定領域Wに電流を印加するための少なくとも一対の電極11,11と、複数の電位差測定用端子2と、電位差測定手段3と、演算手段4と、データ保存手段5と、を有する装置とすることが好ましい。
The present invention is a damage estimation method for a structure made of a conductive material, which can easily and non-destructively estimate the degree of damage to such a difficult-to-inspect site using a potential difference method.
In the present invention, the region to be inspected is set as the measurement area W and is set as a potential difference measurement section, and at least a pair of potential difference measurement terminals are disposed so as to be paired on both sides thereof. Measure the potential difference of the pair. The apparatus used for measuring the potential difference is not particularly limited. However, as shown in FIG. 2, the power source 1 and at least a pair of electrodes 11 for applying a current from the power source 1 to the measurement region W, 11, a device having a plurality of potential difference measuring terminals 2, a potential difference measuring means 3, a calculating means 4, and a data storing means 5.

導電材料製構造物として石油精製プラントにおける配管を例として説明する。なお、本発明は、これに限定されないことは言うまでもない。
図3に示す構造物は、直管部のみから形成される管形状を有する配管である。図3に模式的に示すように、配管の、堤で覆われた部位が検査対象部位である。
図3では、電位差測定用端子を配管の円周方向の各位置に4箇所、計8箇所設置し、電位差測定区間で4対の電位差測定用端子対、2a−2b,2c−2d,2e−2f,2g−2hが形成できるような設置としている。
A pipe in an oil refinery plant will be described as an example of the conductive material structure. Needless to say, the present invention is not limited to this.
The structure shown in FIG. 3 is a pipe having a pipe shape formed only from a straight pipe portion. As schematically shown in FIG. 3, a portion of the piping covered with a bank is a portion to be inspected.
In FIG. 3, four potential difference measurement terminals are installed at each position in the circumferential direction of the pipe, for a total of eight positions, and four potential difference measurement terminal pairs, 2a-2b, 2c-2d, 2e- The installation is such that 2f, 2g-2h can be formed.

本発明では、電位差測定区間以外の領域に、参照電位測定区間を設け、その区間の端部両側で一対となるように、参照電位差測定端子を少なくとも一対配設する。参照電位差測定端子の設置位置は、電位差測定端子の設置位置と同様の位置、例えば図3に示すように、配管の同じ円周方向位置とする。参照電位差測定用端子は、構造物の材質、構造物の形状、構造物の温度変化など、損傷以外の抵抗変化(電位差の変化)を消去するために設けられる。図3では、参照電位差測定用端子を、電位差測定用端子と対応する配管の同じ円周方向位置である円周方向に4箇所、計8箇所設置し、参照電位差測定区間で4対の参照電位差測定用端子対、2b−i,2d−j,2f−k,2h−lが形成できるような設置としている。 In the present invention, in a region other than the potentiometric measurement interval, a reference potential difference measurement section provided, so that the pair at the ends on both sides of the section, at least a pair disposed a reference potential measurement terminal. The installation position of the reference potential difference measurement terminal is the same position as the installation position of the potential difference measurement terminal, for example, the same circumferential direction position of the pipe as shown in FIG. The reference potential difference measurement terminal is provided to erase a resistance change (change in potential difference) other than damage, such as a material of the structure, a shape of the structure, and a temperature change of the structure. In FIG. 3, four reference potential difference measuring terminals are installed in the circumferential direction, which is the same circumferential position of the pipe corresponding to the potential difference measuring terminal, for a total of eight locations, and four pairs of reference potential differences are measured in the reference potential difference measuring section. The measurement terminal pairs 2b-i, 2d-j, 2f-k, and 2h-l are installed.

なお、電位差測定用端子、参照電位差測定端子は、導電材料製測定物の表面に、ばね等で押圧し表面に十分に接触させて、配設する方式の端子とすることが好ましいが、圧接、溶接、圧着、接着等の接合手段で、接合し、配設してもよい。なお、接合は、接触抵抗が変化しない方法であればよく、とくに限定されない。
本発明では、上記した電位差測定区間および参照電位差測定区間を挟むように、すなわち図3では配管の長手方向に電位差測定区間と参照電位差測定区間とが、電気的に直列となるように、一対の電極11、11を設置する。1対の電極11,11には、電流供給用電源が配線され、電源1から電流が供給可能とされる。印加する電流は、直流または直流パルス電流とすることが好ましい。なお、印加する電流の大きさは、被測定領域で電位差が測定可能であれば、その値は特に限定されない。
The potential difference measuring terminal and the reference potential difference measuring terminal are preferably a terminal of a method in which the surface is measured with a spring or the like and sufficiently brought into contact with the surface of the conductive material measurement object. You may join and arrange | position by joining means, such as welding, crimping | bonding, and adhesion | attachment. Bonding is not particularly limited as long as the contact resistance does not change.
In the present invention, a pair of potential difference measurement sections and reference potential difference measurement sections are sandwiched between the above-described potential difference measurement sections and reference potential difference measurement sections, that is, in FIG. Electrodes 11 and 11 are installed. A current supply power source is wired to the pair of electrodes 11 and 11 so that a current can be supplied from the power source 1. The applied current is preferably a direct current or a direct current pulse current. Note that the value of the applied current is not particularly limited as long as the potential difference can be measured in the measurement region.

本発明では、電極対の間に、電流を供給しながら、少なくとも一対の電位差測定端子間および参照電位差測定区間で対応する円周方向位置に設置された少なくとも一対の参照電位差測定端子間に発生する電位差をそれぞれ測定する。得られた一対の電位差測定端子間の電位差、および一対の参照電位差測定端子間の電位差から、単位長さ当たりの電位差をそれぞれ求め、参照電位差測定端子間の単位長さ当たりの電位差を基準にして、電位差測定端子間の電位差変化率を算出する。   In the present invention, while current is supplied between the electrode pair, it occurs between at least a pair of potential difference measurement terminals and at least a pair of reference potential difference measurement terminals installed at corresponding circumferential positions in the reference potential difference measurement section. Each potential difference is measured. Obtain the potential difference per unit length from the obtained potential difference between the pair of potential difference measurement terminals and the potential difference between the pair of reference potential difference measurement terminals, and use the potential difference per unit length between the reference potential difference measurement terminals as a reference. The rate of change in potential difference between potential difference measurement terminals is calculated.

なお、電位差測定端子間の電位差変化率(電場指紋係数)ΔV、すなわち、検査対象部位の電位差変化率は、次(1)式
ΔV(%)={(V3i/V2i)−1}×100‥‥(1)
ここで、V3i:一対の電位差測定端子間(検査対象部位)の単位長さ当たりの電位差、
2i:一対の参照電位差測定端子間の単位長さ当たりの電位差
で定義される値である。
It should be noted that the potential difference change rate (electric field fingerprint coefficient) ΔV 3 between the potential difference measurement terminals, that is, the potential difference change rate of the region to be examined is expressed by the following equation (1) ΔV 3 (%) = {(V 3i / V 2i ) −1 } × 100 (1)
Here, V 3i : Potential difference per unit length between a pair of potential difference measurement terminals (inspection site),
V 2i : A value defined by a potential difference per unit length between a pair of reference potential difference measurement terminals.

本発明では、この検査対象部位の電位差変化率ΔVに基づいて、検査対象部位の損傷の程度を推定する。なお、検査対象部位の電位差変化率ΔVは、当該区間の損傷の程度に比例することを本発明者らはすでに確認している。例えば、損傷が肉厚減少であれば、電位差変化率ΔVが大きくなれば、肉厚減少量が大きくなる。また損傷が局所的な孔食であれば、電位差変化率ΔVが大きくなれば、孔食深さが深くなる。 In the present invention, based on the potential difference change rate ΔV 3 of the inspection target part, the degree of damage of the inspection target part is estimated. In addition, the present inventors have already confirmed that the potential difference change rate ΔV 3 of the site to be examined is proportional to the degree of damage in the section. For example, if the damage is a decrease in thickness, if the potential difference change rate ΔV 3 increases, the decrease in thickness increases. If the damage is local pitting corrosion, the pitting corrosion depth increases as the potential difference change rate ΔV 3 increases.

損傷が肉厚減少である場合には、検査対象部位ではない参照電位測定区間での肉厚を、超音波探傷等により基準肉厚として測定することにより、参照電位測定区間での平均肉厚ts(mm)を基準として、検査対象部位の電位差変化率ΔVから、次(3)式
tm(mm)=(ts)×(1−ΔV/(100+ΔV))‥‥(3)
(ここで、tm:検査対象部位の推定平均肉厚(mm)、ts:参照電位差測定区間の基準平均肉厚(mm)、ΔV:検査対象部位の電位差変化率(%))
を用いて、検査対象部位の推定平均肉厚tm(mm)を算出することができる。なお、参照電位差測定区間の基準平均肉厚は、参照電位差測定端子において超音波探傷法で別途測定した値を用いるものとする。
If damage is reduced wall thickness is the thickness of the reference potential difference measuring section are not inspected portion, by measuring as a reference thickness by ultrasonic flaw detection and the like, the average wall of the reference potential difference measuring section Using the thickness ts (mm) as a reference, from the potential difference change rate ΔV 3 of the site to be inspected, the following equation (3): tm (mm) = (ts) × (1−ΔV 3 / (100 + ΔV 3 )) (3)
(Where tm: estimated average thickness (mm) of the site to be examined, ts: standard average thickness (mm) of the reference potential difference measurement section, ΔV 3 : potential difference change rate (%) of the site to be examined)
Can be used to calculate the estimated average thickness tm (mm) of the region to be examined. In addition, the value measured separately by the ultrasonic flaw detection method in the reference potential difference measurement terminal shall be used for the standard average thickness of the reference potential difference measurement section.

また、導電材料製構造物が配管である場合には、円周方向各位置でそれぞれ、電位差変化率V(%)を測定し、その最大値を求める。電位差変化率が肉厚減少量に比例することから、最大値が生じる円周方向位置に最大の肉厚減少が生じていることになる。したがって、安全性の観点からは、構造物が配管である場合には、最大電位差変化率が生じる位置の肉厚減少量(最小肉厚)を用いて、損傷の程度を推定することが好ましい。 When the conductive material structure is a pipe, the potential difference change rate V 3 (%) is measured at each position in the circumferential direction, and the maximum value is obtained. Since the potential difference change rate is proportional to the thickness reduction amount, the maximum thickness reduction occurs at the circumferential position where the maximum value occurs. Therefore, from the viewpoint of safety, when the structure is a pipe, it is preferable to estimate the degree of damage using the thickness reduction amount (minimum thickness) at the position where the maximum potential difference change rate occurs.

なお、検査対象となる構造物によっては、製作時の誤差等の影響から、電位差変化率は5%程度の変動が認められる。得られた電位差測定区間の電位差変化率が、この製作時の誤差等による電位差変化率より大きい場合には、当該区間に腐食(肉厚減少)が生じているものと推定できる。このようなことから、肉厚減少の発生検知のため、製作時の誤差等を含めて、閾値を設けておくことが好ましい。一つの閾値の例として、電位差変化率:5%を用いることもできる。また、規格やミルシートの公差をもとに計算によって求めた値を閾値として用いてもよい。その閾値を超えない程度の電位差変化率であれば、当該区間の腐食は軽微であると判断でき、閾値を超える場合には、腐食が生じており損傷ありとして、さらに、マスターカーブを利用して、損傷の程度を確認しておくことが必要となる。また、さらには、当該損傷の進展を監視することも可能となる。   Depending on the structure to be inspected, the potential difference change rate may vary by about 5% due to the influence of manufacturing errors and the like. When the obtained potential difference change rate in the potential difference measurement section is larger than the potential difference change rate due to an error at the time of manufacturing, it can be estimated that corrosion (thickness reduction) occurs in the section. For this reason, it is preferable to set a threshold value including an error during manufacturing in order to detect the occurrence of the thickness reduction. As an example of one threshold value, a potential difference change rate of 5% can be used. Further, a value obtained by calculation based on a standard or a tolerance of the mill sheet may be used as the threshold value. If the potential difference change rate does not exceed the threshold value, it can be determined that the corrosion in the section is minor, and if the threshold value is exceeded, it is assumed that corrosion has occurred and there is damage. It is necessary to confirm the degree of damage. In addition, the progress of the damage can be monitored.

なお、マスターカーブは、同種の環境下に曝された構造物に実際に生じた損傷(肉厚減少)について、損傷(肉厚減少)の程度と当該損傷における電位差変化率とを、多数、測定し、得られたデータをもとに、例えば、図4におけるように、電位差変化率ΔVと推定最小肉厚(最大肉厚減少量)との相関関係として、予め、決定しておくことが好ましい。 The master curve measures a number of damages (thickness reduction) and the degree of potential difference change in the damage (thickness reduction) that actually occurs in structures exposed to the same type of environment. Then, based on the obtained data, for example, as shown in FIG. 4, the correlation between the potential difference change rate ΔV 3 and the estimated minimum thickness (maximum thickness reduction amount) may be determined in advance. preferable.

このようなマスターカーブとして予め求めた、電位差変化率ΔVと推定最小肉厚(最大肉厚減少量)との相関関係に基づいて、得られた電位差変化率ΔVから、当該検査対象区間の推定最小肉厚を推定し、損傷(腐食)の程度を判定(確認)することができる。
なお、検査対象部位が、直管部とさらに曲がり部とからなる管形状を有する配管である場合には、曲り部が測定される電位差に対し直管部と異なる影響を及ぼすことを考慮する必要がある。
Such a pre-determined as a master curve, based on the correlation between the potential difference change rate [Delta] V 3 and the estimated minimum wall thickness (maximum thickness reduction), the potential difference change rate [Delta] V 3 obtained, of the inspection target section The estimated minimum wall thickness can be estimated and the degree of damage (corrosion) can be determined (confirmed).
In addition, when the inspection target part is a pipe having a pipe shape including a straight pipe part and a bent part, it is necessary to consider that the bent part has a different influence on the potential difference measured from the straight pipe part. There is.

例えば、図5に示すように、配管内の検査対象部位の近傍に、検査対象部位と同じ管形状でさらに同じ長さを有する部位が存在する場合には、該同じ管形状で同じ長さを有する部位を参照電位差測定区間として設定することが好ましい。電位差測定区間である検査対象部位と同じ管形状でさらに同じ長さを有する部位を参照電位差測定区間と設定することにより、直管部のみの管形状である場合と同様に、上記した(1)式が利用でき、参照電位差測定端子間の電位差を基準として、得られた電位差測定端子間の電位差から、当該電位差測定区間の電位差変化率を算出することができる。この場合、参照電位差測定端子間と電位差測定端子間との長さが同じであることから、(1)式の利用にあたっては、電位差をとくに単位長さあたりに換算する必要もない。   For example, as shown in FIG. 5, when there is a part having the same tube shape and the same length as the inspection target part in the vicinity of the inspection target part in the pipe, the same length and the same length are used. It is preferable to set the part which has as a reference electric potential difference measurement area. The above-described (1) is the same as in the case of the tube shape of only the straight tube portion by setting a portion having the same tube shape and the same length as the examination target portion that is the potential difference measurement section as the reference potential difference measurement section. The formula can be used, and the potential difference change rate in the potential difference measurement section can be calculated from the potential difference between the obtained potential difference measurement terminals based on the potential difference between the reference potential difference measurement terminals. In this case, since the length between the reference potential difference measurement terminals and the potential difference measurement terminals are the same, it is not necessary to convert the potential difference per unit length when using the equation (1).

また、図6に示すように、検査対象部位が、直管部とn個の曲り部とからなり、検査対象部位と長さを含め全く同じ管形状を有する部位が検査対象部位近傍の配管にないが、同じ管形状の曲り部が近傍の配管に存在する場合には、参照電位差測定区間を、難検査部位の直管部と同一管形状の直管部に、また難検査部位の曲り部と同一管形状を有する少なくとも1個の曲り部に、それぞれ設定することが好ましい。この場合にも(1)式と同様に、検査対象部位の電位差変化率を、参照電位差測定区間の電位差を基準として、次(2)式
ΔV(%)=((V/(V2E×n+V2S×L)−1)×100 ‥‥(2)
(ここで、ΔV:検査対象部位の電位差変化率(%)、V:電位差測定区間(検査対象部位)の電位差、V2S:参照電位差測定区間の直管部単位長さ当たりの直管部参照電位差、V2E:参照電位差測定区間の曲り部1個当たりの参照電位差、n:電位差測定区間内の曲り部の個数、L:電位差測定区間内の直管部長さ)
を用いて算出することが好ましい。(2)式を利用することにより、直管部と複数の曲り部を含有する電位差測定区間の損傷の程度を、直管部および曲り部の損傷を含めて、簡便に推定することができるようになる。
Further, as shown in FIG. 6, the inspection target part is composed of a straight pipe part and n bent parts, and the part having the same pipe shape including the inspection target part and the length is connected to the pipe near the inspection target part. If there is a bent part with the same tube shape in the nearby pipe, the reference potential difference measurement section is set to a straight pipe part with the same tube shape as the straight pipe part of the difficultly inspected part, and the bent part of the difficultly inspected part It is preferable to set at least one bent portion having the same tube shape. Also in this case, similarly to the equation (1), the rate of change of the potential difference of the examination target site is expressed by the following equation (2) ΔV 3 (%) = ((V 3 / (V 2E × n + V 2S × L) -1) × 100 (2)
(Where ΔV 3 is the potential difference change rate (%) of the site to be examined, V 3 is the potential difference of the potential difference measurement section (test target site), and V 2S is the straight pipe per unit length of the straight pipe portion of the reference potential difference measurement section. Part reference potential difference, V 2E : reference potential difference per bent part of the reference potential difference measurement section, n: number of bent parts in the potential difference measurement section, L: length of straight pipe part in the potential difference measurement section)
It is preferable to calculate using By using the equation (2), it is possible to easily estimate the degree of damage in the potential difference measurement section including the straight pipe portion and the plurality of bent portions, including damage to the straight pipe portion and the bent portion. become.

構造物が配管で、測定対象とする検査対象部位が、種々の管形状を有する場合に、損傷の度合を電位差法を用いて推定する手順を、フローとしてまとめて図8に示す。
まず、検査対象を選定する。検査対象が、直管形状のみの配管であれば、図3に示すような測定端子の設定とする。検査対象が、直管以外に曲り部(構成部品)を含む場合には、近傍に同じ形状、同じ長さの部位が存在する場合には、図5に示すような測定端子の設定とする。検査対象が、それ以外の場合には、図6に示すような測定端子の設定とする、すなわち参照電位差測定区間を直管部と曲がり部にそれぞれ設定する。測定端子の設定を完了したら、電極対に電流を流し、各測定端子間の電位差を測定し、当該電位差測定区間の電位差変化率を求める。電位差変化率が所定の閾値以下であれば、当該電位差測定区間の腐食の程度は軽微と判定し、閾値を超えて大きい場合には、予め決定しておいたマスターカーブを用いて推定最小肉厚等をもとめ、その値から腐食(損傷)の程度を判定することが好ましい。
FIG. 8 shows a flow of a procedure for estimating the degree of damage using the potentiometric method when the structure is a pipe and the inspection target part to be measured has various pipe shapes.
First, the inspection object is selected. If the object to be inspected is a straight pipe-shaped pipe, the measurement terminal is set as shown in FIG. When the inspection object includes a bent portion (component) other than the straight pipe, if there is a portion having the same shape and the same length in the vicinity, the measurement terminal is set as shown in FIG. When the inspection object is other than that, the measurement terminal is set as shown in FIG. 6, that is, the reference potential difference measurement section is set to the straight pipe portion and the bent portion, respectively. When the setting of the measurement terminals is completed, a current is passed through the electrode pair, the potential difference between the measurement terminals is measured, and the potential difference change rate in the potential difference measurement section is obtained. If the potential difference change rate is less than or equal to a predetermined threshold, the degree of corrosion in the potential difference measurement section is determined to be minor, and if it exceeds the threshold, the estimated minimum wall thickness is determined using a predetermined master curve. It is preferable to determine the degree of corrosion (damage) from the value.

以下、実施例に基づいて、さらに本発明について説明する。   Hereinafter, based on an Example, this invention is demonstrated further.

(実施例1)
石油精製プラントの配管(炭素鋼鋼管製)で、図3に示すような、防油堤を貫通する貫通部(検査対象部位)の損傷状態を電位差法を用いて測定した。貫通部(検査対象部位)の両側で一対となるように、複数の電位差測定用端子を設置し電位差測定区間とした。複数の電位差測定用端子の設置位置は、配管の円周方向に4位置(0°、90°、180°、270°)とした。なお、参照電位差測定区間を、貫通部(検査対象部位)に隣接して設置した。参照電位差測定区間では、区間の端部両側で一対となるように、複数の参照電位差測定用端子を設置した。なお、複数の参照電位差測定用端子の設置位置は、電位差測定用端子と同様に、配管の円周方向に4位置(0°、90°、180°、270°)とした。
Example 1
The damage state of the penetrating part (part to be inspected) penetrating the oil barrier as shown in FIG. 3 was measured using a potentiometric method in an oil refinery plant pipe (made of carbon steel pipe). A plurality of potential difference measurement terminals were provided so as to be paired on both sides of the penetrating portion (inspection target site), thereby forming a potential difference measurement section. The plurality of potential difference measurement terminals were installed at four positions (0 °, 90 °, 180 °, 270 °) in the circumferential direction of the pipe. In addition, the reference potential difference measurement section was installed adjacent to the penetrating part (part to be inspected). In the reference potential difference measuring section, a plurality of reference potential difference measuring terminals were installed so as to be paired on both ends of the section. The plurality of reference potential difference measurement terminals were installed at four positions (0 °, 90 °, 180 °, and 270 °) in the circumferential direction of the pipe, similarly to the potential difference measurement terminals.

なお、一対の電極11、11を、電位差測定区間および参照電位差測定区間を挟むように、設置した。そして、一対の電極を介して、直流パルス電流を供給しながら、配管の円周方向各位置での電位差測定対の電位差および参照電位差測定対の電位差を測定した。
得られた電位差を用いて、上記した(1)式により、難検査部位の電位差変化率ΔV(%)を算出した。ついで、得られたΔVを用いて、上記した(3)式から難検査部位の推定平均肉厚tmを算出した。なお、各参照電位差測定端子の位置で、超音波探傷法によりその位置での肉厚を測定し、基準平均肉厚tsを求めた。円周方向の同じ位置の参照電位差測定端子の間で異なる値が測定された場合には、その間で直線的に肉厚が変化しているとして、平均値を用いた。
The pair of electrodes 11 and 11 were installed so as to sandwich the potential difference measurement section and the reference potential difference measurement section. Then, the potential difference of the potential difference measurement pair and the potential difference of the reference potential difference measurement pair at each position in the circumferential direction of the pipe were measured while supplying a DC pulse current through the pair of electrodes.
Using the obtained potential difference, the potential difference change rate ΔV 3 (%) of the difficult-to-test site was calculated by the above-described equation (1). Next, using the obtained ΔV 3 , the estimated average thickness tm of the difficult-to-inspect part was calculated from the above equation (3). The thickness at each reference potential difference measurement terminal was measured by an ultrasonic flaw detection method to obtain a standard average thickness ts. When different values were measured between the reference potential difference measurement terminals at the same position in the circumferential direction, the average value was used on the assumption that the wall thickness changed linearly between them.

得られた結果を表1に示す。   The obtained results are shown in Table 1.

Figure 0005734789
Figure 0005734789

円周方向270°位置が、3.6%と最も大きな電位差変化率を示している。また、最小推定平均肉厚は、円周方向90°位置で、6.0mm(減肉量:0.4mm)であった。この程度の減肉量であれば、対象とする検査対象部位では腐食なしと判定した。
(実施例2)
石油精製プラントの配管(炭素鋼鋼管製)で、図6に示すような、2個の曲り部と、直管部とから構成されている貫通部(検査対象部位)を、電位差測定区間として、実施例1と同様に、電位差を測定した。なお、参照電位差測定区間を、貫通部以外の曲り部、および直管部に設定した。各区間での測定用端子の配設は、実施例1と同様に、円周方向に4箇所とした。そして、実施例1と同様に、電位差測定区間および参照電位差測定区間を挟むように、一対の電極11,11を配設し、直流パルス電流を供給して、各電位差測定用端子対、および各参照電位差測定用端子対に生じる電位差を測定した。
The position of 270 ° in the circumferential direction shows the largest potential difference change rate of 3.6%. The minimum estimated average wall thickness was 6.0 mm (thickness reduction: 0.4 mm) at the 90 ° position in the circumferential direction. If the thickness was reduced to this extent, it was determined that there was no corrosion at the inspection target site.
(Example 2)
With a pipe (made of carbon steel pipe) of an oil refinery plant, as shown in FIG. 6, a penetrating part (part to be inspected) composed of two bent parts and a straight pipe part is used as a potential difference measuring section. In the same manner as in Example 1, the potential difference was measured. Note that the reference potential difference measurement section was set to a bent portion other than the through portion and a straight pipe portion. In the same manner as in Example 1, the measurement terminals in each section were arranged at four locations in the circumferential direction. As in the first embodiment, a pair of electrodes 11 and 11 are arranged so as to sandwich the potential difference measurement section and the reference potential difference measurement section, and a DC pulse current is supplied to each potential difference measurement terminal pair, and The potential difference generated in the reference potential difference measuring terminal pair was measured.

得られた電位差を用いて、上記した(2)式を用いて、貫通部(検査対象部位)の電位差変化率ΔVを算出した。得られた電位差変化率ΔVと、超音波探傷法により測定した参照電位差測定用端子間の平均肉厚tsから(3)式を用いて、貫通部(検査対象部位)の推定平均肉厚tmを求めた。
得られた結果を表2に示す。
Using the obtained potential difference, the potential difference change rate ΔV 3 of the penetrating portion (examination target site) was calculated using the above-described equation (2). From the obtained potential difference change rate ΔV 3 and the average thickness ts between the reference potential difference measurement terminals measured by the ultrasonic flaw detection method, the estimated average thickness tm of the penetrating portion (examination target site) is calculated using equation (3). Asked.
The obtained results are shown in Table 2.

Figure 0005734789
Figure 0005734789

円周方向180°位置が、−1.0%と最も大きな電位差変化率を示している。また、最小推定(平均)肉厚は、円周方向180°位置で、3.8mm(減肉量:0.4mm)であった。この程度の減肉量であれば、対象とする検査対象部位では腐食なしと判定した。
(実施例3)
石油精製プラントの配管(炭素鋼鋼管製)で、図7に示すような、貫通部の出口側に鞘管が接続された直管形状の、貫通部(検査対象部位)について、電位差法を用いて損傷状態を測定した。鞘管が存在するために、参照電位差測定区間は、貫通部から離れた位置に隣接させずに設置し、測定用端子は、参照電位差測定区間の端部両側に設けた。各区間での測定用端子の配設は、実施例1と同様に、円周方向に4箇所とした。そして、実施例1と同様に、電位差測定区間および参照電位差測定区間を挟むように、一対の電極11,11を配設し、直流パルス電流を供給して、各電位差測定用端子対、および各参照電位差測定用端子対に生じる電位差を測定した。
The 180 ° position in the circumferential direction shows the largest potential difference change rate of −1.0%. Moreover, the minimum estimated (average) thickness was 3.8 mm (thickness reduction: 0.4 mm) at a 180 ° position in the circumferential direction. If the thickness was reduced to this extent, it was determined that there was no corrosion at the inspection target site.
(Example 3)
In the pipe of an oil refinery plant (made of carbon steel pipe), as shown in Fig. 7, the potential difference method is used for the through-hole (inspection target part) having a straight pipe shape with a sheath pipe connected to the outlet side of the through-hole. The damage state was measured. Since the sheath tube exists, the reference potential difference measurement section was installed without being adjacent to the position away from the penetrating portion, and the measurement terminals were provided on both sides of the end portion of the reference potential difference measurement section. In the same manner as in Example 1, the measurement terminals in each section were arranged at four locations in the circumferential direction. As in the first embodiment, a pair of electrodes 11 and 11 are arranged so as to sandwich the potential difference measurement section and the reference potential difference measurement section, and a DC pulse current is supplied to each potential difference measurement terminal pair, and The potential difference generated in the reference potential difference measuring terminal pair was measured.

得られた電位差を用いて、実施例1と同様に、上記した(1)式により、貫通部(検査対象部位)の電位差変化率ΔV(%)を算出した。ついで、得られたΔVを用いて、上記した(3)式から検査対象部位の推定平均肉厚tmを算出した。なお、各参照電位差測定端子の位置で、超音波探傷装置によりその位置での肉厚を測定し、基準平均肉厚tsとした。なお、円周方向の同位置の参照電位差測定端子の間で異なる値が測定された場合には、その間で直線的に肉厚が変化しているとして、平均値を用いた。 Using the obtained potential difference, similarly to Example 1, the potential difference change rate ΔV 3 (%) of the penetrating portion (examination target site) was calculated by the above-described equation (1). Next, using the obtained ΔV 3 , the estimated average thickness tm of the site to be inspected was calculated from the above equation (3). The thickness at each reference potential difference measurement terminal was measured by an ultrasonic flaw detector to obtain the standard average thickness ts. When different values were measured between the reference potential difference measurement terminals at the same position in the circumferential direction, the average value was used on the assumption that the wall thickness changed linearly between them.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 0005734789
Figure 0005734789

円周方向270°位置が、最も大きな電位差変化率を示し、5.4%であり、また、円周方向90°位置で、推定平均肉厚が5.9mm(減肉量:0.5mm)であり、小規模の腐食が生じていると判定した。なお、腐食の程度は、得られた最大電位差変化率と図4に示すマスターカーブとから、推定最小肉厚が、元厚の約70%程度になる腐食が生じていると推定した。しかし、当該配管の必要肉厚が元厚の60%であるため、緊急の対策は必要ないと判断した。   The position of 270 ° in the circumferential direction shows the largest potential difference change rate, which is 5.4%, and the estimated average thickness is 5.9mm (thickness reduction: 0.5mm) at the position of 90 ° in the circumferential direction. It was determined that scale corrosion had occurred. The degree of corrosion was estimated from the obtained maximum potential difference change rate and the master curve shown in FIG. 4 that the estimated minimum thickness was about 70% of the original thickness. However, since the required wall thickness of the pipe is 60% of the original thickness, it was judged that no urgent measures were necessary.

1 電源
11、12 電極
2 電位差測定用端子
3 電位差測定手段
4 演算手段
5 データ保存手段
1 Power supply
11, 12 Electrode 2 Potential difference measurement terminal 3 Potential difference measurement means 4 Calculation means 5 Data storage means

Claims (5)

導電材料製構造物における損傷を、複数の電位差測定端子を損傷発生箇所の近傍に直接設定して検査することが困難な検査対象部位の損傷の程度を、電位差法を用いて推定する損傷推定方法であって、
前記導電材料製構造物が配管で、前記検査対象部位が直管部からなる管形状を有し、
前記検査対象部位を電位差測定区間とし、該電位差測定区間を挟んで両側で一対となるように、少なくとも一対の電位差測定端子を配設し、
さらに、前記検査対象部位以外の領域で、前記検査対象部位と同じ管形状を有する部位が、該検査対象部位の近傍の前記配管に存在する場合には、該同じ管形状を有する部位を、参照電位差測定区間として設定し、
該参照電位測定区間の端部両側で一対となるように少なくとも一対の参照電位差測定端子を配設し、
さらに前記導電材料製構造物に前記電位差測定区間および前記参照電位差測定区間を挟むように一対の電極を設置し、該一対の電極を介して前記電位差測定区間および前記参照電位差測定区間に直列に電流を供給しながら、前記少なくとも一対の電位差測定端子間および前記少なくとも一対の参照電位差測定端子間の電位差をそれぞれ測定し、
得られた前記一対の参照電位差測定端子間の単位長さ当たりの電位差V2iを基準にして、得られた前記一対の電位差測定端子間の単位長さ当たりの電位差V3iから、下記(1)式で定義される、検査対象部位の電位差変化率ΔVを算出し、該電位差変化率ΔVに基づいて前記検査対象部位の損傷の程度を推定することを特徴とする導電材料製構造物の損傷推定方法。

ΔV(%)={(V3i/V2i)−1}×100‥‥(1)
ここで、ΔV:検査対象部位の電位差変化率(%)、
3i:一対の電位差測定端子間の単位長さ当たりの電位差、
2i:一対の参照電位差測定端子間の単位長さ当たりの電位差
Damage estimation method that uses the potentiometric method to estimate the degree of damage in a part to be inspected that is difficult to inspect for damage in a structure made of a conductive material by directly setting a plurality of potential difference measurement terminals in the vicinity of the damage occurrence part Because
The conductive material structure is a pipe, and the inspection target part has a pipe shape including a straight pipe part,
At least a pair of potential difference measurement terminals are arranged so that the examination target site is a potential difference measurement section, and a pair is formed on both sides across the potential difference measurement section,
Furthermore, an area other than the pre-Symbol inspected portion, a portion having the same tubular shape as the inspection target region, if present in the pipe in the vicinity of the inspected portion is a portion having a of identity Ji tube shape, Set as reference potential difference measurement section,
Disposed at least one pair of reference potential measuring terminal such that the pair at the ends on both sides of the 該参 irradiation potential difference measuring section,
Furthermore, a pair of electrodes is installed in the conductive material structure so as to sandwich the potential difference measurement section and the reference potential difference measurement section, and a current is connected in series to the potential difference measurement section and the reference potential difference measurement section via the pair of electrodes. Measuring the potential difference between the at least one pair of potential difference measuring terminals and between the at least one pair of reference potential difference measuring terminals,
On the basis of the potential difference V 2i per unit length between the pair of reference potential measurement terminals obtained, the potential difference V 3i per unit length between the pair of potential difference measurement terminals obtained from the following (1) A potential difference change rate ΔV 3 of the site to be inspected defined by the equation is calculated, and a degree of damage of the site to be inspected is estimated based on the rate of change in potential difference ΔV 3 . Damage estimation method.
ΔV 3 (%) = {(V 3i / V 2i ) −1} × 100 (1)
Where ΔV 3 : potential difference change rate (%) of the site to be examined
V 3i : Potential difference per unit length between a pair of potential difference measurement terminals,
V 2i : Potential difference per unit length between a pair of reference potential difference measurement terminals
前記検査対象部位が直管部からなる管形状を有する場合に代えて、前記検査対象部位が直管部とさらに曲がり部とからなる管形状を有し、該検査対象部位と同じ管形状でさらに同じ長さを有する部位が前記検査対象部位の近傍の前記配管に存在する場合には、該同じ管形状で同じ長さを有する部位を、前記参照電位差測定区間として設定することを特徴とする請求項1に記載の導電材料製構造物の損傷推定方法。 Instead of the case where the inspection target part has a tube shape made of a straight pipe part, the inspection target part has a pipe shape made of a straight pipe part and a further bent part, and further has the same tube shape as the inspection target part. If the sites having the same length are present in the pipe in the vicinity of the inspected portion is claims and sets the sites having the same length in of identity Ji tube shape, as said reference potential measure section Item 2. A method for estimating damage to a structure made of a conductive material according to Item 1. 前記検査対象部位が直管部からなる管形状を有する場合に代えて、前記検査対象部位が、直管部とn個の曲り部とからなり、該検査対象部位と同じ管形状を有する部位が前記電位差測定区間の近傍の前記配管に存在する場合には、前記参照電位差測定区間を前記直管部と同一管形状の直管部と、さらに前記曲り部と同一管形状を有する少なくとも1個の曲り部とに、それぞれ設定し、前記検査対象部位の電位差変化率ΔVを、前記(1)式に代えて、下記(2)式を用いて算出することを特徴とする請求項1に記載の導電材料製構造物の損傷推定方法。

ΔV(%)=(V/(V2E×n+V2S×L)−1)×100 ‥‥(2)
ここで、ΔV:検査対象部位の電位差変化率(%)、
:電位差測定区間(検査対象部位)の一対の電位差測定端子間の電位差、
2S:直管部参照電位差測定区間における一対の参照電位差測定端子間の単位長さ当たりの電位差、
2E:曲り部参照電位差測定区間における一対の参照電位差測定端子間の電位差、n:電位差測定区間内の曲り部の個数、
L:電位差測定区間内の直管部長さ
Instead of the case where the inspection target part has a tube shape including a straight pipe part, the inspection target part includes a straight pipe part and n bent parts, and a part having the same tube shape as the inspection target part is provided. When present in the pipe in the vicinity of the potential difference measuring section, the reference potential difference measuring section has at least one straight pipe portion having the same tube shape as the straight pipe portion, and further having the same pipe shape as the bent portion. in a bend, respectively set, a potential difference change rate [Delta] V 3 of the inspected portion, instead of the equation (1), according to claim 1, characterized in that calculated using the following formula (2) Of estimating damage to a structure made of conductive material.
ΔV 3 (%) = (V 3 / (V 2E × n + V 2S × L) −1) × 100 (2)
Where ΔV 3 : potential difference change rate (%) of the site to be examined
V 3 : Potential difference between a pair of potential difference measurement terminals in a potential difference measurement section (examination target site),
V 2S : Potential difference per unit length between a pair of reference potential difference measurement terminals in the straight pipe portion reference potential difference measurement section,
V 2E : Potential difference between a pair of reference potential difference measurement terminals in the bent portion reference potential difference measurement section, n: Number of bent portions in the potential difference measurement section,
L: Straight pipe length in the potential difference measurement section
前記検査対象部位の電位差変化率ΔV(%)と、超音波探傷法により求めた前記参照電位差測定区間の平均肉厚ts(mm)を基準として、下記(3)式を用いて、前記検査対象部位の推定平均肉厚tm(mm)を算出することを特徴とする請求項1ないしのいずれかに記載の導電材料製構造物の損傷推定方法。

tm(mm)=(ts)×(1−ΔV/(100+ΔV))‥‥(3)
ここで、tm:検査対象部位の推定平均肉厚(mm)、
ts:参照電位差測定区間の基準平均肉厚(mm)、
ΔV:検査対象部位の電位差変化率(%)
Based on the potential difference change rate ΔV 3 (%) of the site to be inspected and the average thickness ts (mm) of the reference potential difference measurement section obtained by the ultrasonic flaw detection method, the following equation (3) is used as a reference. The estimated average thickness tm (mm) of a target part is calculated, The damage estimation method of the structure made from a conductive material in any one of Claim 1 thru | or 3 characterized by the above-mentioned.
Tm (mm) = (ts) × (1−ΔV 3 / (100 + ΔV 3 )) (3)
Where tm: estimated average thickness (mm) of the site to be examined
ts: standard average thickness (mm) of the reference potential difference measurement section,
ΔV 3 : Potential difference change rate (%) of the site to be examined
前記検査対象部位の電位差変化率ΔV(%)が予め設定した閾値を超えた場合には、さらに該検査対象部位の電位差変化率ΔV(%)と、予め求めたマスターカーブとから、最小肉厚を推定することを特徴とする請求項1ないし4のいずれかに記載の導電材料製構造物の損傷推定方法。 When the potential difference change rate ΔV 3 (%) of the inspection target region exceeds a preset threshold, the potential difference change rate ΔV 3 (%) of the inspection target region is further calculated from the master curve obtained in advance. The method of estimating damage to a structure made of a conductive material according to claim 1, wherein the thickness is estimated.
JP2011181686A 2011-08-23 2011-08-23 Damage estimation method for structures made of conductive materials Active JP5734789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011181686A JP5734789B2 (en) 2011-08-23 2011-08-23 Damage estimation method for structures made of conductive materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011181686A JP5734789B2 (en) 2011-08-23 2011-08-23 Damage estimation method for structures made of conductive materials

Publications (2)

Publication Number Publication Date
JP2013044601A JP2013044601A (en) 2013-03-04
JP5734789B2 true JP5734789B2 (en) 2015-06-17

Family

ID=48008628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011181686A Active JP5734789B2 (en) 2011-08-23 2011-08-23 Damage estimation method for structures made of conductive materials

Country Status (1)

Country Link
JP (1) JP5734789B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2904957A4 (en) 2013-03-06 2016-08-24 Olympus Corp Endoscope system
KR102336705B1 (en) 2020-02-03 2021-12-08 황원식 Apparatus for strain measurement

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134486A (en) * 1977-04-28 1978-11-24 Sumikin Kokan Koji Kk Inspection method and apparatus for flawed parts of coated film on underground coated steel pipes
JPS5841341A (en) * 1981-09-04 1983-03-10 Hitachi Ltd Detection of crack
JP3007390B2 (en) * 1990-08-13 2000-02-07 東京瓦斯株式会社 Measuring method and measuring device for coating coverage area of underground pipe
JP2004198410A (en) * 2002-12-02 2004-07-15 Osaka Gas Co Ltd Method for inspecting defect in coated pipe, and method for diagnosing corrosion
JP4375791B2 (en) * 2003-05-19 2009-12-02 有限会社ビルドシステム Defect detection system for buried pipes at gas stations
JP2005208039A (en) * 2003-12-22 2005-08-04 Atlus:Kk Nondestructive inspection method and nondestructive inspection device for flaw
JP2007010385A (en) * 2005-06-29 2007-01-18 Atlus:Kk Potential difference measuring terminal substrate and non-destructive inspection method
JP2008083038A (en) * 2006-08-30 2008-04-10 Atlus:Kk Method of detecting damage of structure made of conductive material
JP2009074923A (en) * 2007-09-20 2009-04-09 Atlus:Kk Damage detection method for structure made of conductive material
JP2009204564A (en) * 2008-02-29 2009-09-10 Atlus:Kk Monitoring method of damage occurrence/growth of steel bridge

Also Published As

Publication number Publication date
JP2013044601A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
US8816705B2 (en) Method and device for monitoring a zone of metal
US10809217B2 (en) Corrosion detection system
JP6213859B2 (en) Estimating the average remaining thickness by estimating the average corrosion depth of the ground corrosion damage zone
Gan et al. Investigation of pitting corrosion monitoring using field signature method
Gan et al. Improved formula for localized corrosion using field signature method
WO2019044555A1 (en) Remaining life evaluation method and maintenance management method
CN111656182B (en) Method for inspecting plant equipment
WO2019044554A1 (en) Crack evaluation-standard establishment method, method for evaluating crack by internal flaw inspection, and maintenance management method
JP5734789B2 (en) Damage estimation method for structures made of conductive materials
KR101164518B1 (en) Monitoring Method for Crack Growth in Real Steel Structure and Estimation Method for Residual life of Real Steel Structure
JP5718190B2 (en) Defect estimation method for structures made of conductive materials
Amer et al. Inspection challenges for detecting corrosion under insulation (CUI) in the oil and gas industry
JP2008083038A (en) Method of detecting damage of structure made of conductive material
JP2015190950A (en) Life evaluation method and life evaluation device
McDonnell et al. Identifying stress concentrations on buried steel pipelines using large standoff magnetometry technology
Kalyanam et al. Mode mixity in the fracture toughness characterization of HAZ material using SEN (T) testing
JP2009074923A (en) Damage detection method for structure made of conductive material
JP6746870B2 (en) Crack detection method
JP5739649B2 (en) Crack inspection method for pipe welds and crack inspection apparatus for pipe welds
Kania et al. Investigation and Assessment of Low-Frequency ERW Seam Imperfections by EMAT and CMFL ILI
RU2585796C1 (en) Method for quality control of articles
Bergman et al. Evaluation of the Real-Time Active Pipeline Integrity Dectection System for Corrosion Quantification
RU2244297C1 (en) Method of detection of corrosion on underground pipe lines
Holliday et al. Do You Have Wrinkles? A Strain-and Stress-Based Approach for the Assessment of Wrinkles Reported by In-Line Inspection
KR101202078B1 (en) Monitoring method for the defect of conducting, structural material using switching DCPD

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150415

R150 Certificate of patent or registration of utility model

Ref document number: 5734789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250