JP5728545B2 - Hardened salt-resistant cement - Google Patents
Hardened salt-resistant cement Download PDFInfo
- Publication number
- JP5728545B2 JP5728545B2 JP2013197017A JP2013197017A JP5728545B2 JP 5728545 B2 JP5728545 B2 JP 5728545B2 JP 2013197017 A JP2013197017 A JP 2013197017A JP 2013197017 A JP2013197017 A JP 2013197017A JP 5728545 B2 JP5728545 B2 JP 5728545B2
- Authority
- JP
- Japan
- Prior art keywords
- cement
- mass
- hardened
- blast furnace
- furnace slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004568 cement Substances 0.000 title claims description 36
- 150000003839 salts Chemical class 0.000 title claims description 21
- 239000002893 slag Substances 0.000 claims description 24
- 239000000843 powder Substances 0.000 claims description 20
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 16
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 15
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 15
- 239000004571 lime Substances 0.000 claims description 15
- 239000011398 Portland cement Substances 0.000 claims description 14
- 229910052602 gypsum Inorganic materials 0.000 claims description 12
- 239000010440 gypsum Substances 0.000 claims description 12
- 239000002131 composite material Substances 0.000 claims description 11
- 239000011230 binding agent Substances 0.000 claims description 8
- 238000009792 diffusion process Methods 0.000 claims description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 6
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 14
- 239000004567 concrete Substances 0.000 description 12
- 238000001723 curing Methods 0.000 description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 239000002253 acid Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 230000035515 penetration Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000011400 blast furnace cement Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011396 hydraulic cement Substances 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- BYFGZMCJNACEKR-UHFFFAOYSA-N aluminium(i) oxide Chemical compound [Al]O[Al] BYFGZMCJNACEKR-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 239000007798 antifreeze agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明はセメント硬化体に関し、より詳細には耐塩害性、耐酸性の特性を有する高炉スラグを主体としたセメント硬化体に関する。 The present invention relates to a hardened cement body, and more particularly to a hardened cement body mainly composed of blast furnace slag having salt damage resistance and acid resistance characteristics.
一般に、ポルトランドセメント硬化体に比較して、高炉セメント(高炉スラグ粉末は70質量%以下)、或いは高炉スラグ粉末を多く含有したセメント硬化体は耐塩害性および耐酸性に優れていることが知られている。
特に、コンクリートとして細骨材に高炉スラグ細骨材を使用した高炉セメント、或いは高炉スラグ粉末系コンクリートは、耐硫酸性が優れたものとなる(特許文献1、特許文献2参照)。
Generally, it is known that a hardened blast furnace cement (70% by mass or less of blast furnace slag powder) or a hardened cement body containing a large amount of blast furnace slag powder is superior in salt damage resistance and acid resistance compared to a hardened Portland cement. ing.
In particular, blast furnace cement using blast furnace slag fine aggregate as a fine aggregate as concrete, or blast furnace slag powder-based concrete has excellent sulfuric acid resistance (see Patent Document 1 and Patent Document 2).
従来のセメント硬化体にはつぎのような課題がある。
<1>実際にコンクリートが使用される厳しい環境条件下では、通常の高炉セメントに更に耐塩害性、耐酸性の向上が要求される。
このため、水硬性セメント組成物中の高炉スラグ粉末の比率を増大させた配合で硬化体を得ようとするが、高炉スラグ粉末に若干のポルトランドセメントを加えたものでは強度発現性が悪い。
<2>水硬性セメント組成物の耐塩害、耐酸の性能を向上させるためには、高炉スラグ粉末の割合を70質量%以上にする必要がある。
その一方で、高炉スラグ粉末の割合を70質量%以上にすると、混和するポルトランドセメントの割合が低くなるために強度発現性が悪くなって、所望する耐塩害性、耐酸性の特性が得られていない。
<3>このため、様々な改良が模索されているが、密実な高強度のセメント硬化体は得られていない。
<4>通常のポルトランドセメントの製造時に発生する二酸化炭素は、セメント1トン当たり焼成燃料から350kg/トン、原料の石灰石の脱炭酸から450kg/トン、合計約750kg/トンにもおよぶ。
二酸化炭素は地球温暖化の要因とみなされ、国内だけでなく世界規模で二酸化炭素の低減が強く求められている。
The conventional cement hardened body has the following problems.
<1> Under severe environmental conditions in which concrete is actually used, normal blast furnace cement is required to further improve salt damage resistance and acid resistance.
For this reason, an attempt is made to obtain a cured product with a composition in which the ratio of the blast furnace slag powder in the hydraulic cement composition is increased.
<2> In order to improve the salt resistance and acid resistance performance of the hydraulic cement composition, the ratio of the blast furnace slag powder needs to be 70% by mass or more.
On the other hand, when the ratio of the blast furnace slag powder is 70% by mass or more, the ratio of the Portland cement to be mixed is lowered, so that the strength development is deteriorated, and desired salt damage resistance and acid resistance characteristics are obtained. Absent.
<3> For this reason, various improvements have been sought, but a solid high-strength cement cured body has not been obtained.
<4> Carbon dioxide generated during the production of ordinary Portland cement is 350 kg / ton from calcined fuel per ton of cement and 450 kg / ton from decarboxylation of the raw limestone, reaching a total of about 750 kg / ton.
Carbon dioxide is regarded as a cause of global warming, and there is a strong demand for carbon dioxide reduction not only in Japan but also on a global scale.
本発明は以上の点に鑑みて成されたもので、その目的とするところは、耐塩害性、耐酸性の特性を有する密実なセメント硬化体を短時間に製造できる、高炉スラグ粉末を主体とした耐塩害セメント硬化体を提供することにある。 The present invention has been made in view of the above points. The object of the present invention is mainly a blast furnace slag powder capable of producing a dense cement hardened body having salt damage resistance and acid resistance characteristics in a short time. An object of the present invention is to provide a cured salt-resistant cement.
水硬性セメント組成物の耐塩害、耐酸の性能を向上させるためには、高炉スラグ粉末の割合を70質量%以上にする必要があるが、混和するポルトランドセメントの割合が低くなるため強度発現が悪くなり、目的の耐塩害、耐酸の特性も得られない。
この問題の解決のために、本発明者は、石灰・石膏複合物を一定量、高炉スラグ粉末とポルトランドセメントに混和し、低温蒸気養生することにより強度発現性が良く、塩化物イオンの浸透が少ない、耐硫酸性のセメント硬化体を見出したものである。
In order to improve the salt damage resistance and acid resistance performance of the hydraulic cement composition, the ratio of the blast furnace slag powder needs to be 70% by mass or more, but the strength expression is poor because the ratio of the Portland cement to be mixed becomes low. Therefore, the target salt damage resistance and acid resistance characteristics cannot be obtained.
In order to solve this problem, the present inventor mixed a certain amount of lime / gypsum composite with blast furnace slag powder and Portland cement and cured it at low temperature to improve strength and prevent penetration of chloride ions. The present inventors have found a small amount of sulfuric acid-resistant cement cured body.
本発明は少なくとも次のひとつの効果を奏する。
<1>高炉スラグ粉末を主体とした、海水・防凍剤等の塩害、硫酸が存在する環境下においても耐久性のあるセメント硬化体を提供できる。
<2>本発明で使用するセメント結合材である大量の高炉スラグ粉末は、鉄鋼生産時の廃棄物を有効活用するものであるから、セメント系結合材の製造時に二酸化炭素の排出が著しく少ない。
したがって、従来と比べて二酸化炭素の排出量を大幅に削減できて、地球環境の保護にも大きく貢献できる。
The present invention has at least one of the following effects.
<1> It is possible to provide a hardened cement body that is mainly composed of blast furnace slag powder and that is durable even in an environment where salt damage such as seawater and antifreeze agents and sulfuric acid exist.
<2> Since a large amount of blast furnace slag powder, which is a cement binder used in the present invention, effectively uses waste during steel production, carbon dioxide emissions are remarkably small during the production of cement-based binders.
Therefore, the amount of carbon dioxide emission can be greatly reduced compared to the conventional case, which can greatly contribute to the protection of the global environment.
以下に本発明について詳細に説明する。 The present invention is described in detail below.
<1>セメント硬化体の組成
本発明に係るセメント硬化体は、高炉スラグ粉末を主体とし、これに石灰・石膏複合物、およびポルトランド系セメントを含むセメント系結合材を蒸気養生したものである。
セメント硬化体の組成配合は、高炉スラグ粉末が70〜93質量%、石灰・石膏複合物が2〜20質量%、ポルトランド系セメントが5〜28質量%からなるセメント系結合材を、40〜65℃にて蒸気養生したものである。
<1> Composition of hardened cement body The hardened cement body according to the present invention is obtained by steam curing a cement-based binder containing blast furnace slag powder as a main component and containing lime / gypsum composite and Portland cement. .
The composition blend of the hardened cement is 40-93% of cementitious binder comprising 70-93% by mass of blast furnace slag powder, 2-20% by mass of lime / gypsum composite, and 5-28% by mass of Portland cement. Steam-cured at 65 ° C.
<2>高炉スラグ粉末
耐塩害、耐酸性を得るためには高炉スラグ粉末は70質量%以上(70〜93質量%)必要である。
<2> Blast Furnace Slag Powder In order to obtain salt damage resistance and acid resistance, the blast furnace slag powder needs 70 mass% or more (70 to 93 mass%).
本発明で用いる高炉スラグ粉末は、粉末度がブレーン比表面積で3000〜10000cm2/gのものを使用でき、JIS A 6206に規定されている高炉スラグ粉末でも良い。 As the blast furnace slag powder used in the present invention, a powder having a fineness of 3000 to 10,000 cm 2 / g can be used, and the blast furnace slag powder defined in JIS A 6206 may be used.
<3>ポルトランド系セメント
混和するポルトランド系セメントは通常の普通ポルトランドセメント、早強ポルトランドセメント等を含む。
<3> Portland cement The mixed Portland cement includes ordinary ordinary Portland cement, early-strength Portland cement, and the like.
ポルトランド系セメントは5〜28質量%が好適である。
ポルトランド系セメントは5質量%以下では強度発現が悪くなり、28質量%以上では耐塩害の効果が減じる。
The Portland cement is preferably 5 to 28% by mass.
When the Portland cement is 5% by mass or less, the strength development is deteriorated, and when it is 28% by mass or more, the salt damage resistance is reduced.
<4>石灰・石膏複合物
混和する石灰・石膏複合物は、遊離石灰、無水石膏を相当量含有し、化学成分として1〜15質量%の酸化アルミニウム(Al2O3)を含む。
高温焼成品、あるいは、一部混合品でも良い。
粉末度はブレーン比表面積で2000〜5000cm2/gのものが良い。
コンクリート用膨張材にはこの組成を満足するものもあり、使用可能である。
遊離石灰、無水石膏は水和時に高炉スラグ粉末に刺激を与え、反応性を良好にしてスラグの水和を促進させ、密実な組織を作り、セメント硬化体の強度を増進させる。
酸化アルミニウム成分を含む石灰アルミナ系鉱物は初期強度発現に寄与する。
酸化アルミニウム成分が1質量%以下では効果がほとんど無く、酸化アルミニウム成分が15質量%以上になると硬化が早すぎて成形作業が困難となる。
<4> lime gypsum composite miscible lime gypsum composite, free lime, contains considerable amounts of anhydrite, containing 1 to 15 wt% of aluminum oxide as a chemical component (Al2O 3).
A high-temperature fired product or a partially mixed product may be used.
The fineness is preferably 2000 to 5000 cm 2 / g in terms of Blaine specific surface area.
Some concrete expansion materials satisfy this composition and can be used.
Free lime and anhydrous gypsum stimulate the blast furnace slag powder at the time of hydration, improve the reactivity, promote slag hydration, create a dense structure, and increase the strength of the hardened cement.
A lime-alumina mineral containing an aluminum oxide component contributes to the development of initial strength.
When the aluminum oxide component is 1% by mass or less, there is almost no effect. When the aluminum oxide component is 15% by mass or more, the curing is too early and the molding operation becomes difficult.
さらに石灰、酸化アルミニウム成分を含む石灰・石膏複合物を用いるのは、セメント硬化体に外部から塩分が侵入しようとした際、フリーデル氏塩(3CaO・Al2O3・CaCl2・10H2O)を生成し、塩化物イオンを固定化して硬化体内部への浸透を防ぎ耐塩害の性能を発揮させるためである。 Furthermore, the use of a lime / gypsum composite containing lime and aluminum oxide components produces Friedel's salt (3CaO · Al2O3 · CaCl2 · 10H2O) when salinity enters the hardened cement body from the outside. This is because the ions of ions are fixed to prevent penetration into the inside of the cured body and to exhibit salt damage resistance.
石灰・石膏複合物は2〜20質量%か好適である。
石灰・石膏複合物が2質量%以下では強度および密実性の向上、塩化物イオンの侵入防止に効果が無く、20質量%以上では膨張過多によりコンクリート硬化体の物性に大きな悪影響を及ぼす。
The lime / gypsum composite is preferably 2 to 20% by mass.
If the lime / gypsum composite is less than 2% by mass, it is ineffective in improving strength and solidity and preventing intrusion of chloride ions, and if it is more than 20% by mass, the physical properties of the hardened concrete are greatly adversely affected by excessive expansion.
<5>骨材
本発明に用いる骨材は、通常の天然の粗骨材、細骨材も使用可能であるが、耐酸性向上の観点にたてば細骨材として高炉スラグ細骨材を用いることが望ましい。
<5> Aggregates As the aggregates used in the present invention, normal natural coarse aggregates and fine aggregates can be used, but blast furnace slag fine aggregates are used as fine aggregates in terms of improving acid resistance. It is desirable to use it.
<6>水とセメント系結合材の比率
水とセメント系結合材の比率は、セメント系結合材に対し、水は45%以下である。45%を超えると良好な耐塩害セメント硬化体を得ることがきわめて困難となる。
<6> Ratio of water and cement-based binder The ratio of water and cement-based binder is 45% or less of water with respect to the cement-based binder. If it exceeds 45%, it becomes very difficult to obtain a good cured salt-resistant cement.
<7>蒸気養生
本発明では養生手段として低温による蒸気養生を用いる。
耐塩害セメント硬化体製造時の初期材齢(18時間まで)の具体的な蒸気養生温度は40〜65℃に保たれなければならない。
常温養生では強度発現性が悪く、また65℃以上の蒸気養生ではセメント組成物の水和物が安定せず、完成したセメント硬化体の物性に悪影響が出るだけでなく、養生後の脱型枠時にひび割れが発生しやすい。
<7> Steam Curing In the present invention, steam curing at a low temperature is used as a curing means.
The specific steam curing temperature of the initial age (up to 18 hours) when producing a salt-resistant cement hardened body must be kept at 40 to 65 ° C.
The strength development is poor at room temperature curing, and the steam curing at 65 ° C or higher does not stabilize the cement composition hydrate, which not only adversely affects the physical properties of the finished cement cured body, but also a demolding frame after curing. Sometimes cracks easily occur.
<8>塩化物イオン拡散係数
既述した配合と上記養生法を経て製造したセメント硬化体の塩化物イオン拡散係数は0.3cm2/年以下となる。
通常の一般コンクリートの塩化物イオン拡散係数は1cm2/年であるから、本発明では一般コンクリートと比較し、著しく良好な耐塩害セメント硬化体が得られる。
<8> Chloride Ion Diffusion Coefficient Chloride ion diffusion coefficient of a hardened cement produced through the above-described blending and curing method is 0.3 cm 2 / year or less.
Since the ordinary general concrete has a chloride ion diffusion coefficient of 1 cm 2 / year, in the present invention, a significantly better salt-resistant cement hardened body can be obtained as compared with general concrete.
なお、本発明における塩化物イオン拡散係数の測定は、土木学会の「浸せきによるコンクリート中の塩化物イオンの見掛けの拡散係数試験方法(案)」(JSCE−G−572−2010)に準じて行なった。 In addition, the measurement of the chloride ion diffusion coefficient in the present invention is carried out in accordance with the Japan Society of Civil Engineers' “Method of testing apparent diffusion coefficient of chloride ions in concrete by immersion (draft)” (JSCE-G-572-2010). It was.
以下、本発明の実施例について詳細に説明する。 Examples of the present invention will be described in detail below.
<1>使用材料
使用材料は次の材料を用いた。(数字は密度)
<1> Materials used The following materials were used. (Numbers are density)
<2>供試体
上記材料を使用し、表1に示した各種コンクリート配合で練混ぜ、養生条件を変化させてセメント硬化体の供試体を製造した(実施例1〜3、比較例1〜6)。
<2> Specimen Using the above materials, mixing with various concrete blends shown in Table 1, and changing the curing conditions, produced specimens of hardened cement (Examples 1-3, Comparative Examples 1-6) ).
<3>供試体の試験結果
各供試体の圧縮強度および塩化物イオンの浸透深さの試験結果を表2に示す。
<3> Test Results of Specimens Table 2 shows the test results of the compressive strength and chloride ion penetration depth of each specimen.
塩化物イオンの浸透深さの試験は、前述のJSCE.G572.2010 に準じ、濃度10%の塩化ナトリウム水溶液中に供試体を浸せきし、浸せき期間6ヶ月で表面からの塩化物イオン浸透深さを測定した。
実施例1,2,3に示されるように本発明のセメント硬化体は、初期材齢においても高い圧縮強度を示し、塩化物イオン浸透深さの小さいものが得られていることが確認できた。
比較例1に示されるように石灰・石膏複合物を混和していないものは、強度も低く、塩化物イオンの浸透深さが大きい。
また、比較例2に示されるように石灰・石膏複合物に変え無水石膏を使ったものは、混和効果が現れていない。
The test for penetration depth of chloride ion was conducted by the above-mentioned JSCE. In accordance with G572.2010, the specimen was immersed in an aqueous sodium chloride solution having a concentration of 10%, and the chloride ion penetration depth from the surface was measured in the immersion period of 6 months.
As shown in Examples 1, 2, and 3, the hardened cement of the present invention showed high compressive strength even in the initial age, and it was confirmed that a product having a small chloride ion penetration depth was obtained. .
As shown in Comparative Example 1, the material in which the lime / gypsum composite is not mixed has low strength and a large penetration depth of chloride ions.
Further, as shown in Comparative Example 2, the effect of mixing with lime / gypsum composite using anhydrous gypsum does not appear.
<4>塩化物イオン拡散係数試験
実施1と比較例6のコンクリート配合により得られた供試体を前述のJSCE.G572−2010 に準じて、濃度10%の塩化ナトリウム水溶液中に浸せきし、浸せき期間12ヶ月で塩化物イオン拡散係数を測定した。
その試験結果はつぎのとおりである。
本発明のセメント硬化体では塩化物イオンの浸透が著しく小さかったことが確認できた。
<4> Chloride Ion Diffusion Coefficient Test The specimens obtained by the blending of concrete in Example 1 and Comparative Example 6 were used in the above-mentioned JSCE. In accordance with G572-2010, the sample was immersed in an aqueous sodium chloride solution having a concentration of 10%, and the chloride ion diffusion coefficient was measured at an immersion period of 12 months.
The test results are as follows.
It was confirmed that the penetration of chloride ions was extremely small in the hardened cement body of the present invention.
<5>耐硫酸試験
実施例1と比較例6のコンクリート配合により得られた供試体を日本下水道事業団「下水道コンクリート構造物の腐食抑制技術及び防食技術マニュアル」に準じ、供試体脱型後14日水中養生した後、5%硫酸液に浸せきし質量変化を測定した。その試験結果を表3に示す。
<5> Sulfuric acid resistance test The specimens obtained by mixing the concrete in Example 1 and Comparative Example 6 were subjected to 14 after the specimen was demolded in accordance with the Japan Sewerage Corporation “Corrosion Inhibition Technology and Anticorrosion Technology Manual for Sewerage Concrete Structures”. After curing in sunlight, the sample was immersed in a 5% sulfuric acid solution and the change in mass was measured. The test results are shown in Table 3.
本発明の実施例1の供試体は、二水石膏の析出生成により若干質量が増加しているが、硫酸で溶解してはいない。
これに対し、比較6の供試体は表面から硫酸に溶解し大きく質量が減少していることが確認された。
The specimen of Example 1 of the present invention is slightly increased in mass due to the formation of dihydrate gypsum, but is not dissolved in sulfuric acid.
On the other hand, it was confirmed that the specimen of Comparative 6 was dissolved in sulfuric acid from the surface and greatly reduced in mass.
Claims (3)
高炉スラグ粉末70〜93質量%、遊離石灰、無水石膏を含み、化学成分で1〜15質量%の酸化アルミニウムを含む石灰・石膏複合物2〜20質量%、ポルトランド系セメント5〜28質量%から成るセメント系結合材を蒸気養生したことを特徴とする、
耐塩害セメント硬化体。 A hardened cement mainly made of blast furnace slag,
Blast furnace slag powder 70 to 93% by mass, free lime, anhydrous gypsum, 2 to 20% by mass of lime / gypsum composite containing 1 to 15% by mass of aluminum oxide as a chemical component, 5 to 28% by mass of Portland cement It is characterized by steam curing a cement-based binder consisting of
Hardened salt-resistant cement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013197017A JP5728545B2 (en) | 2013-09-24 | 2013-09-24 | Hardened salt-resistant cement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013197017A JP5728545B2 (en) | 2013-09-24 | 2013-09-24 | Hardened salt-resistant cement |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015063420A JP2015063420A (en) | 2015-04-09 |
JP5728545B2 true JP5728545B2 (en) | 2015-06-03 |
Family
ID=52831666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013197017A Active JP5728545B2 (en) | 2013-09-24 | 2013-09-24 | Hardened salt-resistant cement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5728545B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5878258B1 (en) * | 2015-04-21 | 2016-03-08 | ゼニス羽田株式会社 | Sulfuric acid resistant cement hardened body and method for producing the same |
JP6873663B2 (en) * | 2016-11-30 | 2021-05-19 | 大成建設株式会社 | Precast members for low-carbon underground structures |
JP7081939B2 (en) * | 2018-02-26 | 2022-06-07 | 太平洋マテリアル株式会社 | concrete |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4987316B2 (en) * | 2006-02-14 | 2012-07-25 | 株式会社デイ・シイ | Cement composition for non-shrinkable concrete |
JP5539673B2 (en) * | 2009-06-09 | 2014-07-02 | 株式会社竹中工務店 | Concrete composition using blast furnace slag composition |
JP5545616B2 (en) * | 2009-06-09 | 2014-07-09 | 株式会社竹中工務店 | Concrete composition using blast furnace cement composition |
JP5750011B2 (en) * | 2011-08-29 | 2015-07-15 | 株式会社デイ・シイ | Blast furnace cement composition |
-
2013
- 2013-09-24 JP JP2013197017A patent/JP5728545B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015063420A (en) | 2015-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011108065A1 (en) | Cement admixture and cement composition | |
JP6639608B2 (en) | Highly durable mortar, highly durable concrete, and method of manufacturing high durable mortar | |
JP2016088777A (en) | High durable mortar and high durability concrete | |
JP6753687B2 (en) | Manufacturing method of concrete products and concrete products | |
JP5728545B2 (en) | Hardened salt-resistant cement | |
JP5345821B2 (en) | Cement admixture and cement composition | |
JP2016088778A (en) | High durability concrete | |
KR101664273B1 (en) | cement mortar compositon and cement mortar comprising the same, method thereof | |
TWI734863B (en) | Cement admixture, cement composition using the same, and salt damage suppression processing method of concrete structure | |
JP6131459B2 (en) | Mortar or concrete composition and molded product obtained by molding the same | |
JP6985177B2 (en) | Hydraulic composition and concrete | |
Kubissa et al. | Comparative investigations of some properties related to durability of cement concretes containing different fly ashes | |
JP6735624B2 (en) | Concrete surface modifier and method for improving surface quality of concrete using the same | |
JP2017031037A (en) | Anti-washout underwater concrete composition and cured body thereof | |
KR101706721B1 (en) | High performance cement concrete composition and producing methods using dried materials separated from silicon wafer waste | |
JP2016023105A (en) | Concrete binder for blast furnace cement concrete | |
KR100508207B1 (en) | Cement Admixture for high strength, shrinkage-reducing and cold-construction, and cement composite incorporating the admixture | |
JP5345820B2 (en) | Cement admixture and cement composition | |
JP4222870B2 (en) | Sulfuric acid resistant cement composition and sulfuric acid resistant concrete | |
JP6272184B2 (en) | Concrete production method | |
VijayaGowri et al. | On the relationship between compressive strength and water binder ratio of high volumes of slag concrete | |
JP5313623B2 (en) | Cement admixture and cement composition | |
JP5843105B2 (en) | Cement admixture, cement composition and method for producing the same | |
JP5634683B2 (en) | Cement admixture and method for adjusting cement composition | |
JP6003900B2 (en) | Cement admixture manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20150116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150331 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150406 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5728545 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |