Nothing Special   »   [go: up one dir, main page]

JP5712723B2 - Laminate for solar cell backsheet - Google Patents

Laminate for solar cell backsheet Download PDF

Info

Publication number
JP5712723B2
JP5712723B2 JP2011066788A JP2011066788A JP5712723B2 JP 5712723 B2 JP5712723 B2 JP 5712723B2 JP 2011066788 A JP2011066788 A JP 2011066788A JP 2011066788 A JP2011066788 A JP 2011066788A JP 5712723 B2 JP5712723 B2 JP 5712723B2
Authority
JP
Japan
Prior art keywords
gas barrier
mass
resin composition
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011066788A
Other languages
Japanese (ja)
Other versions
JP2011218803A (en
Inventor
高津 洋二
洋二 高津
祐美 津曲
祐美 津曲
大川 剛
剛 大川
芳治 森原
芳治 森原
修成 松田
修成 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2011066788A priority Critical patent/JP5712723B2/en
Publication of JP2011218803A publication Critical patent/JP2011218803A/en
Application granted granted Critical
Publication of JP5712723B2 publication Critical patent/JP5712723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、透明性を有し、水蒸気や酸素等に対するガスバリア性に優れ、食品、医薬品等の包装フィルムとして好適なガスバリア性積層フィルムに関する。更に詳しくは、レトルト処理によっても良好なガスバリア性、密着性(ラミネート強度)が得られるようなガスバリア性積層フィルムに関する。   The present invention relates to a gas barrier laminate film having transparency, excellent gas barrier properties against water vapor, oxygen and the like, and suitable as a packaging film for foods, pharmaceuticals and the like. More specifically, the present invention relates to a gas barrier laminate film that can provide good gas barrier properties and adhesion (laminate strength) even by retorting.

従来、ガスバリア性フィルムとしてプラスチックフィルムの表面にアルミニウム等の金属薄膜や、酸化ケイ素、酸化アルミニウム等の無機酸化物の薄膜を積層させたフィルムが知られていた。なかでも、酸化ケイ素や酸化アルミニウム、及び、これらの混合物等の無機酸化物の薄膜を積層させたフィルムは、透明であり内容物の確認が可能であることから食品用途で広く用いられている。   Conventionally, a film in which a metal thin film such as aluminum or a thin film of inorganic oxide such as silicon oxide or aluminum oxide is laminated on the surface of a plastic film is known as a gas barrier film. Especially, the film which laminated | stacked thin films of inorganic oxides, such as a silicon oxide, aluminum oxide, and these mixtures, is transparent and can confirm the content, and is widely used for the food use.

しかしながら、これらの無機薄膜は薄膜形成の工程でピンホールやクラック等が発生し易く、さらに加工工程において無機薄膜層がひび割れてクラックが発生し、期待通りの十分なガスバリア性は得られていない。そこで、このような欠点を改善する方法として、無機薄膜の上にさらにガスバリア性層を設けようとする試みがなされている。このような方法のガスバリア性フィルムとしては、無機薄膜上に特定の粒径及びアスペクト比の無機層状化合物を含有する樹脂層をコートしたガスバリア性フィルム(例えば、特許文献1)が開示されている。   However, these inorganic thin films are liable to generate pinholes and cracks in the thin film forming process, and the inorganic thin film layer is cracked and cracked in the processing process, and sufficient gas barrier properties as expected are not obtained. Therefore, as a method for improving such a defect, an attempt has been made to further provide a gas barrier layer on the inorganic thin film. As a gas barrier film of such a method, a gas barrier film (for example, Patent Document 1) in which a resin layer containing an inorganic layered compound having a specific particle diameter and aspect ratio is coated on an inorganic thin film is disclosed.

また、プラスチックフィルムの表面に高いガスバリア性を有する樹脂組成物をコートしたフィルムも多く提案されている。このようなフィルムに用いられる樹脂組成物では、さらに、ガスバリア性を向上させる方法として樹脂中に無機層状化合物等の扁平形態の無機物を分散させる方法も知られており、例えば、基材フィルム上にエチレン−ビニルアルコール系共重合体、水溶性ジルコニウム系架橋剤、無機層状化合物からなるバリアコート層を設けたもの(例えば、特許文献2)が提案されている。   Many films have also been proposed in which the surface of a plastic film is coated with a resin composition having a high gas barrier property. In the resin composition used for such a film, a method of dispersing a flat form inorganic substance such as an inorganic layered compound in the resin is also known as a method for improving gas barrier properties. For example, on a base film There has been proposed (for example, Patent Document 2) provided with a barrier coat layer made of an ethylene-vinyl alcohol copolymer, a water-soluble zirconium-based crosslinking agent, and an inorganic layered compound.

しかし、これらの方法であっても、ボイルや高湿下での特性の改良は認められるものの、レトルト後のガスバリア性、ラミネート強度が十分満足でき、かつ、安定した品質のガスバリア性フィルムは得られていないのが現状であった。   However, even with these methods, although improvement in characteristics under boiling and high humidity is recognized, a gas barrier film having a stable quality and satisfactory gas barrier properties after retort and laminate strength can be obtained. The current situation was not.

特許第3681426号公報Japanese Patent No. 3681426 特開2008−297527号公報JP 2008-297527 A

本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、各種食品や医薬品、工業製品の包装用途、太陽電池、電子ペーパー、有機EL素子、半導体素子、等の工業用途に用いることができる、優れたガスバリア性、層間密着性を有するガスバリア性積層フィルムを提供することにある。特に、レトルト処理後であってもガスバリア性の低下が少なく層間剥離の起こらないガスバリア性積層フィルムを提供することにある。   The present invention has been made against the background of such prior art problems. That is, the object of the present invention is to provide excellent gas barrier properties and interlayer adhesion that can be used for various foods and pharmaceuticals, industrial product packaging applications, solar cells, electronic paper, organic EL elements, semiconductor elements, and the like. It is providing the gas-barrier laminated film which has these. In particular, an object of the present invention is to provide a gas barrier laminated film in which the gas barrier property is hardly lowered even after the retort treatment and no delamination occurs.

上記課題を解決することができた本発明のガスバリア性積層フィルムは、プラスチックフィルムの少なくとも一方の表面に、無機薄膜層及びガスバリア性樹脂組成物層が、他の層を介して又は介さずにこの順に積層されており、前記ガスバリア性樹脂組成物層が、エチレン−ビニルアルコール系共重合体からなるガスバリア性樹脂と無機層状化合物と添加剤とからなるガスバリア性樹脂組成物から形成され、該ガスバリア性樹脂組成物中の無機層状化合物の含有量が0.1質量%〜9.0質量%であり、かつ、前記添加剤がカップリング剤及び/又は架橋剤であり、前記ガスバリア性樹脂組成物層の厚さが0.05μm〜0.5μmであることを特徴とする。   The gas barrier laminate film of the present invention that has been able to solve the above-mentioned problems is provided with an inorganic thin film layer and a gas barrier resin composition layer on at least one surface of a plastic film with or without other layers interposed therebetween. The gas barrier resin composition layer is formed from a gas barrier resin composition comprising an ethylene-vinyl alcohol copolymer, a gas barrier resin composition comprising an inorganic layered compound, and an additive; The content of the inorganic stratiform compound in the resin composition is 0.1% by mass to 9.0% by mass, and the additive is a coupling agent and / or a crosslinking agent, and the gas barrier resin composition layer The thickness is 0.05 μm to 0.5 μm.

前記無機層状化合物は、スメクタイトが好適である。前記無機薄膜層は、無機酸化物を少なくとも含有することが好ましい。   The inorganic layered compound is preferably smectite. The inorganic thin film layer preferably contains at least an inorganic oxide.

前記添加剤としてカップリング剤を用いる場合、前記カップリング剤は、有機官能基を少なくとも1種類以上有するシランカップリング剤が好適である。前記添加剤として架橋剤を用いる場合、前記架橋剤は、水素結合性基用架橋剤を含有することが好ましい。この場合において、前記ガスバリア性樹脂組成物中の添加剤(カップリング剤及び/又は架橋剤)の合計含有量は、0.3質量%〜20質量%であることが好ましい。   When a coupling agent is used as the additive, the coupling agent is preferably a silane coupling agent having at least one organic functional group. When a crosslinking agent is used as the additive, the crosslinking agent preferably contains a hydrogen bonding group crosslinking agent. In this case, the total content of the additives (coupling agent and / or crosslinking agent) in the gas barrier resin composition is preferably 0.3% by mass to 20% by mass.

前記無機薄膜層と前記ガスバリア性樹脂組成物層との間に、厚さ0.05μm〜0.5μmのアンカーコート層を有することも好ましい態様である。前記アンカーコート層を形成するためのアンカーコート剤樹脂組成物は、有機官能基を少なくとも1種類以上有するシランカップリング剤を含有していることが好ましい。また、前記アンカーコート層を形成するためのアンカーコート剤樹脂組成物中の前記シランカップリング剤の添加量は0.1質量%〜10質量%であることが好ましい。   It is also a preferable aspect to have an anchor coat layer having a thickness of 0.05 μm to 0.5 μm between the inorganic thin film layer and the gas barrier resin composition layer. The anchor coat agent resin composition for forming the anchor coat layer preferably contains a silane coupling agent having at least one organic functional group. Moreover, it is preferable that the addition amount of the said silane coupling agent in the anchor coating agent resin composition for forming the said anchor coat layer is 0.1 mass%-10 mass%.

本発明には、上記ガスバリア性積層フィルムのガスバリア性樹脂組成物層側に、ポリエステル基材フィルムを積層した太陽電池バックシート用積層体も含まれる。   The laminated body for solar cell back sheets which laminated | stacked the polyester base film on the gas barrier resin composition layer side of the said gas barrier laminated film is also contained in this invention.

本発明によれば、酸素、水蒸気に対する優れたガスバリア性を持ち、また層間接着力が高くラミネート強度に優れたガスバリア性積層フィルムが得られる。特に、レトルト処理を行ってもガスバリア性、層間接着力の低下が少なく、各種用途に適した実用性の高いガスバリア性積層フィルムを得ることができる。また、生産安定性に優れ、均質の特性が得られやすいガスバリア性積層フィルムとなる。   According to the present invention, a gas barrier laminate film having excellent gas barrier properties against oxygen and water vapor and having high interlayer adhesion and excellent laminate strength can be obtained. In particular, even if a retort treatment is performed, the gas barrier property and interlayer adhesive force are hardly lowered, and a highly practical gas barrier laminate film suitable for various applications can be obtained. Moreover, it becomes the gas barrier laminated film which is excellent in production stability and is easy to obtain uniform characteristics.

本発明のガスバリア性積層フィルムは、プラスチックフィルムの少なくとも一方の表面に、無機薄膜層及びガスバリア性樹脂組成物層が、他の層を介して又は介さずにこの順に積層されている。以下、本発明のガスバリア性積層フィルムについて、各層に分けて説明する。   In the gas barrier laminate film of the present invention, an inorganic thin film layer and a gas barrier resin composition layer are laminated in this order on or without any other layer on at least one surface of a plastic film. Hereinafter, the gas barrier laminate film of the present invention will be described separately for each layer.

1.ガスバリア性樹脂組成物層
前記ガスバリア性樹脂組成物層は、ガスバリア性樹脂組成物から形成される。前記ガスバリア性樹脂組成物は、エチレン−ビニルアルコール系共重合体(以下、「EVOH」と称する場合がある。)からなるガスバリア性樹脂と無機層状化合物と添加剤とからなる。以下、ガスバリア性樹脂組成物層の個々の構成に関して説明する。
1. Gas barrier resin composition layer The gas barrier resin composition layer is formed from a gas barrier resin composition. The gas barrier resin composition comprises a gas barrier resin composed of an ethylene-vinyl alcohol copolymer (hereinafter sometimes referred to as “EVOH”), an inorganic layered compound, and an additive. Hereinafter, individual configurations of the gas barrier resin composition layer will be described.

1−1.ガスバリア性樹脂
ガスバリア性樹脂として用いることができるEVOHとしては、例えば、エチレン−酢酸ビニル系共重合体をケン化して得られるものが挙げられる。上記エチレン−酢酸ビニル系共重合体をケン化して得られるものの具体例としては、エチレン及び酢酸ビニルを共重合して得られるエチレン−酢酸ビニル共重合体をケン化して得られるもの;エチレン及び酢酸ビニルとともに、他の単量体を共重合して得られるエチレン−酢酸ビニル系共重合体をケン化して得られるものが挙げられる。本発明では、エチレン及び酢酸ビニルを共重合して得られる共重合体、及び、エチレン及び酢酸ビニルとともに他の単量体を共重合して得られる共重合体を総称して「エチレン−酢酸ビニル系共重合体」とする。
1-1. Gas Barrier Resin Examples of EVOH that can be used as the gas barrier resin include those obtained by saponifying an ethylene-vinyl acetate copolymer. Specific examples of those obtained by saponifying the ethylene-vinyl acetate copolymer include those obtained by saponifying an ethylene-vinyl acetate copolymer obtained by copolymerizing ethylene and vinyl acetate; ethylene and acetic acid Examples include those obtained by saponifying an ethylene-vinyl acetate copolymer obtained by copolymerizing other monomers together with vinyl. In the present invention, a copolymer obtained by copolymerizing ethylene and vinyl acetate, and a copolymer obtained by copolymerizing other monomers together with ethylene and vinyl acetate are collectively referred to as “ethylene-vinyl acetate”. System-based copolymer ".

エチレン−酢酸ビニル系共重合体の場合、共重合前の単量体組成物中のエチレン比率が20モル%〜60モル%であることが好ましい。エチレン比率が20モル%以上であれば、高湿度下におけるガスバリア性がより向上し、また、レトルト処理後のラミネート強度の低下がより抑制される。一方、エチレン比率が60モル%以下であれば、ガスバリア性がより向上する。上記エチレン−酢酸ビニル系共重合体は、酢酸ビニル成分のケン化度が95モル%以上のものが好ましい。酢酸ビニル成分のケン化度が95モル%以上であればガスバリア性や耐油性がより良好となる。   In the case of an ethylene-vinyl acetate copolymer, the ethylene ratio in the monomer composition before copolymerization is preferably 20 mol% to 60 mol%. When the ethylene ratio is 20 mol% or more, the gas barrier property under high humidity is further improved, and the decrease in the laminate strength after the retort treatment is further suppressed. On the other hand, when the ethylene ratio is 60 mol% or less, the gas barrier properties are further improved. The ethylene-vinyl acetate copolymer preferably has a vinyl acetate component having a saponification degree of 95 mol% or more. When the saponification degree of the vinyl acetate component is 95 mol% or more, the gas barrier properties and oil resistance are improved.

また、上記EVOHは、溶剤中での溶解安定性を向上させるために、過酸化物等により処理して分子鎖切断し、低分子量化したものであっても良い。
上記過酸化物としては、以下の(1)〜(7)が挙げられる。
(1)H22
(2)M22型(M:Na、K、NH、Rb、Cs、Ag、Li等)
(3)M’O2型(M’:Mg、Ca、Sr、Ba、Zn、Cs、Hg等)
(4)R−O−O−R型(Rはアルキル基を表す。以下同様):過酸化ジエチル等の過酸化ジアルキル類
(5)R−CO−O−O−CO−R型:過酸化ジアセチル、過酸化ジアミル、過酸化ジベンゾイル等の過酸化アシル等
(6)過酸化酸型
a)−O−O−結合を持つ酸:過硫酸(H2SO5)、過リン酸(H3PO5)等
b)R−CO−O−OH:過ギ酸、過酢酸、過安息香酸、過フタル酸等
(7)過酸化水素包含物:(NaOOH)2/H22、(KOOH)2/3H22
これらの中でも、特に過酸化水素は、後から還元剤、還元性酵素や触媒を用いて、容易に分解処理することが可能であるために好適である。
In addition, the EVOH may have a molecular weight cut by treatment with a peroxide or the like so as to improve dissolution stability in a solvent, thereby reducing the molecular weight.
Examples of the peroxide include the following (1) to (7).
(1) H 2 O 2
(2) M 2 O 2 type (M: Na, K, NH 4 , Rb, Cs, Ag, Li, etc.)
(3) M′O 2 type (M ′: Mg, Ca, Sr, Ba, Zn, Cs, Hg, etc.)
(4) R—O—O—R type (R represents an alkyl group; the same applies hereinafter): Dialkyl peroxides such as diethyl peroxide (5) R—CO—O—O—CO—R type: peroxidation Diacetyl, Diamyl peroxide, Acyl peroxide such as dibenzoyl peroxide, etc. (6) Peroxy acid type a) Acid having a —O—O— bond: Persulfuric acid (H 2 SO 5 ), Perphosphoric acid (H 3 PO 5 ) etc. b) R—CO—O—OH: performic acid, peracetic acid, perbenzoic acid, perphthalic acid, etc. (7) Hydrogen peroxide inclusions: (NaOOH) 2 / H 2 O 2 , (KOOH) 2 / 3H 2 O 2 and the like Among these, hydrogen peroxide is particularly preferable because it can be easily decomposed later using a reducing agent, a reducing enzyme, or a catalyst.

EVOHを過酸化物で処理する方法としては特に限定されず、公知の処理方法を用いることができる。具体的には、例えば、EVOHを溶解した溶液(以下、「EVOH溶液」と称する場合がある。)に、過酸化物、分子鎖切断を行うための触媒(例えば、硫酸鉄等)を添加し、攪拌下で40〜90℃で加熱する方法が挙げられる。   A method for treating EVOH with a peroxide is not particularly limited, and a known treatment method can be used. Specifically, for example, a peroxide (eg, sometimes referred to as “EVOH solution”) in which EVOH is dissolved is added with a peroxide and a catalyst for molecular chain scission (eg, iron sulfate). The method of heating at 40-90 degreeC under stirring is mentioned.

より詳しくは、過酸化物として過酸化水素を使用する方法を例にとると、EVOH溶液を後記する溶剤中に溶解した溶液に過酸化水素(通常は35質量%水溶液)を添加し、攪拌下で、温度40℃〜90℃、1時間〜50時間の条件で処理する。過酸化水素(35質量%水溶液)の添加量は、溶液中のEVOH100質量部に対して3質量部〜300質量部程度である。また、分子鎖切断を行うための触媒として、酸化分解の反応速度を調整するため、金属触媒(CuCl2、CuSO4、MoO3、FeSO4、TiCl4、SeO2等)をEVOH溶液当たり1ppm〜5000ppm(質量基準、以下同じ)程度添加してもよい。かかる処理の終了時点は、溶液の粘度が初期の1割程度以下となった点を一つの目安とすることができる。処理終了後の溶液より公知の方法にて溶媒を除去することにより、分子末端に0.03meq/g〜0.2meq/g程度のカルボキシル基を含有した、末端カルボン酸変性EVOHを得ることができる。 More specifically, in the case of using hydrogen peroxide as a peroxide, hydrogen peroxide (usually a 35 mass% aqueous solution) is added to a solution obtained by dissolving an EVOH solution in a solvent described later, and the mixture is stirred. Then, the treatment is performed under conditions of a temperature of 40 ° C. to 90 ° C. and 1 hour to 50 hours. The amount of hydrogen peroxide (35% by mass aqueous solution) added is about 3 to 300 parts by mass with respect to 100 parts by mass of EVOH in the solution. Further, as a catalyst for performing molecular chain cleavage, a metal catalyst (CuCl 2 , CuSO 4 , MoO 3 , FeSO 4 , TiCl 4 , SeO 2, etc.) is added at 1 ppm to EVOH solution in order to adjust the reaction rate of oxidative decomposition. You may add about 5000 ppm (mass standard, hereafter the same). The point at which the treatment is completed can be taken as a measure that the viscosity of the solution is about 10% or less of the initial value. By removing the solvent from the solution after the treatment by a known method, a terminal carboxylic acid-modified EVOH containing a carboxyl group of about 0.03 meq / g to 0.2 meq / g at the molecular end can be obtained. .

1−2.無機層状化合物
前記無機層状化合物は、スメクタイト、カオリン、雲母、ハイドロタルサイト、クロライト等の粘土鉱物を挙げることができる。具体的には、モンモリロナイト、バイデライト、サポナイト、ヘクトライト、ソーコナイト、スチーブンサイト、カオリナイト、ナクライト、ディッカイト、ハロイサイト、加水ハロイサイト、テトラシリリックマイカ、ナトリウムテニオライト、白雲母、マーガライト、金雲母、タルク、アンチゴライト、クリソタイル、パイロフィライト、バーミキュライト、ザンソフィライト、緑泥石等を挙げることができる。また鱗片状シリカ等も使用できる。これらは単独で用いてもよく、2種以上を併用してもよい。これらの中でも、特にスメクタイト(その合成品も含む)が好ましい。
1-2. Inorganic layered compound Examples of the inorganic layered compound include clay minerals such as smectite, kaolin, mica, hydrotalcite, and chlorite. Specifically, montmorillonite, beidellite, saponite, hectorite, soconite, stevensite, kaolinite, nacrite, dickite, halloysite, hydrous halloysite, tetrasilic mica, sodium teniolite, muscovite, margarite, phlogopite, talc , Antigolite, chrysotile, pyrophyllite, vermiculite, xanthophyllite, chlorite and the like. Also, scaly silica can be used. These may be used alone or in combination of two or more. Among these, smectite (including synthetic products thereof) is particularly preferable.

また、無機層状化合物中に酸化還元性を有する金属イオン、特に鉄イオンが存在するものが好適である。更に、このようなものの中でも、塗工適性、ガスバリア性からモンモリロナイトの使用が好ましい。モンモリロナイトとしては、従来からガスバリア剤に使用されている公知のものが使用できる。例えば、一般式:(X,Y)2〜3410(OH)2・mH2O・(Wω)(式中、Xは、Al、Fe(III)、Cr(III)を表す。Yは、Mg、Fe(II)、Mn(II)、Ni、Zn、Liを表す。Zは、Si、Alを表す。Wは、K、Na、Caを表す。H2Oは、層間水を表す。m及びωは正の実数を表す。)で示されるモンモリロン石群鉱物を使用することができる。これらの中でも、WがNaであるものが水性媒体中でへき開する点から好ましい。さらに、無機層状化合物の粒径としては、5μm以下、アスペクト比としては50〜5000、とりわけ200〜3000の範囲がより好ましい。 Moreover, the thing in which the metal ion which has oxidation-reduction property in an inorganic layered compound, especially an iron ion exists is suitable. Further, among these, montmorillonite is preferably used from the viewpoint of coating suitability and gas barrier properties. As montmorillonite, known ones conventionally used for gas barrier agents can be used. For example, the general formula: (X, Y) 2 to 3 Z 4 O 10 (OH) 2 .mH 2 O. (Wω) (wherein X represents Al, Fe (III), Cr (III). Y represents Mg, Fe (II), Mn (II), Ni, Zn, Li, Z represents Si, Al, W represents K, Na, Ca H 2 O represents interlayer water M and ω represent positive real numbers). Among these, those in which W is Na are preferable from the viewpoint of cleavage in an aqueous medium. Furthermore, the particle size of the inorganic layered compound is more preferably 5 μm or less, and the aspect ratio is more preferably in the range of 50 to 5000, particularly 200 to 3000.

ガスバリア性樹脂組成物(ガスバリア性樹脂と無機層状化合物と添加剤との合計100質量%)中の無機層状化合物の含有量は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは1.0質量%以上、さらに好ましくは1.2質量%以上であり、9.0質量%以下、好ましくは7.0質量%以下、より好ましくは6.0質量%以下、さらに好ましくは5.0質量%以下である。無機層状化合物の含有量が0.1質量%未満では、レトルト処理によってガスバリア性が低下したり、レトルト処理後のラミネート強度が低下する。一方、無機層状化合物の含有量が9.0質量%を超えると、レトルト処理によって、ラミネート強度及びガスバリア性が低下する。これは、レトルト処理により層間剥離強度が低下するために無機薄膜層とガスバリア性樹脂層間で剥離が生じたり、ガスバリア性樹脂層の柔軟性が低下するために、使用中の各種応力、振動やレトルト処理時のシャワー水の応力によりガスバリア性樹脂層に亀裂が入る等の理由によりガスバリア性が低下していると推測される。   The content of the inorganic layered compound in the gas barrier resin composition (a total of 100% by weight of the gas barrier resin, the inorganic layered compound, and the additive) is 0.1% by weight or more, preferably 0.5% by weight or more. Preferably it is 1.0 mass% or more, More preferably, it is 1.2 mass% or more, 9.0 mass% or less, Preferably it is 7.0 mass% or less, More preferably, it is 6.0 mass% or less, More preferably It is 5.0 mass% or less. When the content of the inorganic layered compound is less than 0.1% by mass, the gas barrier property is lowered by retort treatment, or the laminate strength after retort treatment is lowered. On the other hand, when the content of the inorganic layered compound exceeds 9.0% by mass, the laminate strength and gas barrier properties are reduced by the retort treatment. This is because the delamination strength decreases due to the retort treatment, and peeling occurs between the inorganic thin film layer and the gas barrier resin layer, and the flexibility of the gas barrier resin layer decreases. It is presumed that the gas barrier property is lowered due to a crack in the gas barrier resin layer due to the stress of the shower water during the treatment.

ここで、従来、ガスバリア性樹脂組成物層中の無機層状化合物の配合量が、少ない場合にはガスバリア性が低くなり、多い場合にはガスバリア性は高くなると考えられていた。しかし、本発明のように無機薄膜層と積層する場合においては、ガスバリア性樹脂組成物層中の無機層状化合物含有量が比較的少ない場合であっても無機薄膜との相乗効果により高いガスバリア性を示す。これは、無機薄膜層上のガスバリア性樹脂組成物層は無機薄膜のピンホールや割れによって生じた欠点を埋めるだけでなく、無機薄膜の割れ等の破損を防ぐ機能を持つが、無機層状化合物含有量が少ない量であっても欠点を埋める機能は十分に果たしていることによると考えられる。逆に、無機層状化合物含有量が多くなるとレトルト処理時の層間接着力の低下、膜の柔軟性の低下といった現象が現れ、無機薄膜の破損を防ぐ機能が低下して、全体としてはそれ以上のガスバリア性の向上効果が得られないだけでなく、逆にガスバリア性の低下につながっていると考えられる。   Here, conventionally, it has been considered that when the amount of the inorganic stratiform compound in the gas barrier resin composition layer is small, the gas barrier property is low, and when it is large, the gas barrier property is high. However, in the case of laminating with an inorganic thin film layer as in the present invention, even if the content of the inorganic layered compound in the gas barrier resin composition layer is relatively small, a high gas barrier property is obtained due to a synergistic effect with the inorganic thin film. Show. This is because the gas barrier resin composition layer on the inorganic thin film layer not only fills in the defects caused by pinholes and cracks in the inorganic thin film, but also has the function of preventing damage such as cracking of the inorganic thin film, but contains an inorganic layered compound This is considered to be due to the fact that even if the amount is small, the function of filling the defects is sufficiently fulfilled. On the other hand, when the content of the inorganic layered compound increases, a phenomenon such as a decrease in interlayer adhesion during retort treatment and a decrease in film flexibility appears, and the function of preventing damage to the inorganic thin film decreases. It is considered that not only the improvement effect of the gas barrier property is not obtained, but also the gas barrier property is reduced.

前記無機層状化合物の配合量は、前記ガスバリア性樹脂100質量部に対して0.5質量部以上が好ましく、より好ましくは1質量部以上、さらに好ましくは3質量部以上であり、10質量部以下が好ましく、より好ましくは9質量部以下、さらに好ましくは8質量部以下である。   The blending amount of the inorganic layered compound is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, further preferably 3 parts by mass or more, and 10 parts by mass or less with respect to 100 parts by mass of the gas barrier resin. More preferably, it is 9 mass parts or less, More preferably, it is 8 mass parts or less.

1−3.添加剤
本発明では、ガスバリア性樹脂組成物が添加剤として、カップリング剤及び架橋剤の少なくとも一種を含有する。前記カップリング剤としては、樹脂組成物に使用されるものであれば特に限定されないが、有機官能基を少なくとも1種類以上有するシランカップリング剤が好ましい。前記有機官能基としては、エポキシ基、アミノ基、アルコキシ基、イソシアネート基等が挙げられる。
1-3. Additive In the present invention, the gas barrier resin composition contains at least one of a coupling agent and a crosslinking agent as an additive. The coupling agent is not particularly limited as long as it is used in a resin composition, but a silane coupling agent having at least one organic functional group is preferable. Examples of the organic functional group include an epoxy group, an amino group, an alkoxy group, and an isocyanate group.

前記有機官能基を少なくとも1種類以上有するシランカップリング剤の具体例としては、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−(3,4−エポキシシクロヘキシル)プロピルトリメトキシシラン、2−グリシジルオキシエチルトリメトキシシラン、2−グリシジルオキシエチルトリエトキシシラン、3−グリシジルオキシプロピルトリメトキシシラン、3−グリシジルオキシプロピルトリエトキシシラン等のエポキシ基含有シランカップリング剤;2−アミノエチルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−[N−(2−アミノエチル)アミノ]エチルトリメトキシシラン、3−[N−(2−アミノエチル)アミノ]プロピルトリメトキシシラン、3−[N−(2−アミノエチル)アミノ]プロピルトリエトキシシラン、3−[N−(2−アミノエチル)アミノ]プロピルメチルジメトキシシラン等のアミノ基含有シランカップリング剤;ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等のアルコキシ基含有シランカップリング剤;γ−イソシアネートプロピルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルメチルジメトキシシラン、γ−イソシアネートプロピルメチルジエトキシシラン等のイソシアネート基含有シランカップリング剤;等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。   Specific examples of the silane coupling agent having at least one organic functional group include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane, 2-glycidyloxyethyltrimethoxysilane, 2-glycidyloxyethyltriethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane Epoxy group-containing silane coupling agents such as 2-aminoethyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2- [N- (2-aminoethyl) amino] ethyltrimethoxy Silane, 3- [N- (2-aminoethyl) amino] propyltrimethoxysilane, 3- [N- (2-aminoethyl) amino] propyltriethoxysilane, 3- [N- (2-aminoethyl) amino ] Amino group-containing silane coupling agents such as propylmethyldimethoxysilane; dimethyldimethoxysilane, dimethyldiethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, tetramethoxysilane, tetraethoxy Alkoxy group-containing silane coupling agents such as silane, tetrapropoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane; γ-isocyanatopropyltrimethoxysilane , Γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ-isocyanatopropylmethyldiethoxysilane and other isocyanate group-containing silane coupling agents; These may be used alone or in combination of two or more.

前記架橋剤としては、樹脂組成物に使用されるものであれば特に限定されないが、水素結合性基用架橋剤が好ましい。水素結合性基用架橋剤としては、水溶性ジルコニウム化合物、水溶性チタン化合物等が挙げられる。水溶性ジルコニウム化合物の具体例としては、塩酸化ジルコニウム、ヒドロキシ塩化ジルコニウム、塩基性硫酸ジルコニウム、硝酸ジルコニウム、炭酸ジルコニウムアンモニウム、硫酸ジルコニウムナトリウム、クエン酸ジルコニウムナトリウム、乳酸ジルコニウム、酢酸ジルコニウム、硫酸ジルコニウム、オキシ硫酸ジルコニウム、オキシ硝酸ジルコニウム、塩基性炭酸ジルコニウム、水酸化ジルコニウム、炭酸ジルコニウムカリウム、塩化ジルコニウム、塩化ジルコニウム八水和物、オキシ塩化ジルコニウム、モノヒドロキシトリス(ラクテート)ジルコニウムアンモニウム、テトラキス(ラクテート)ジルコニウムアンモニウム、モノヒドロキシトリス(スレート)ジルコニウムアンモニウム等が例示できる。これらの中でも、塗布凝集力の向上による熱水処理後の熱水処理適性及びガスバリア性樹脂組成物層を形成するための塗工液の安定性の点から、塩酸化ジルコニウム、ヒドロキシ塩化ジルコニウムが好ましく、特に塩酸化ジルコニウムが好ましい。水溶性チタン化合物の具体例としては、チタンラクテート、チタンラクテートアンモニウム塩、ジイソプロポキシチタン(トリエタノールアミネート)、ジ−n−ブトキシチタンビス(トリエタノールアミネート)、ジイソプロポキシチタンビス(トリエタノールアミネート)、チタンテトラキス(アセチルアセトナート)等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。   The crosslinking agent is not particularly limited as long as it is used in a resin composition, but a hydrogen bonding group crosslinking agent is preferable. Examples of the hydrogen bonding group crosslinking agent include water-soluble zirconium compounds and water-soluble titanium compounds. Specific examples of the water-soluble zirconium compound include zirconium chloride, hydroxy zirconium chloride, basic zirconium sulfate, zirconium nitrate, ammonium zirconium carbonate, sodium zirconium sulfate, sodium zirconium citrate, zirconium lactate, zirconium acetate, zirconium sulfate, oxysulfuric acid Zirconium, zirconium oxynitrate, basic zirconium carbonate, zirconium hydroxide, potassium zirconium carbonate, zirconium chloride, zirconium chloride octahydrate, zirconium oxychloride, monohydroxytris (lactate) zirconium ammonium, tetrakis (lactate) zirconium ammonium, mono Examples thereof include hydroxytris (slate) zirconium ammonium. Among these, zirconium hydrochloride and hydroxyzirconium chloride are preferred from the viewpoint of hydrothermal treatment suitability after hydrothermal treatment by improving coating cohesion and the stability of the coating liquid for forming the gas barrier resin composition layer. In particular, zirconium hydroxide is preferred. Specific examples of the water-soluble titanium compound include titanium lactate, titanium lactate ammonium salt, diisopropoxytitanium (triethanolamate), di-n-butoxytitanium bis (triethanolamate), diisopropoxytitanium bis (triethanolamido). Nate), titanium tetrakis (acetylacetonate) and the like. These may be used alone or in combination of two or more.

ガスバリア性樹脂組成物(ガスバリア性樹脂と無機層状化合物と添加剤との合計100質量%)中の添加剤(カップリング剤及び架橋剤)の含有量は、0.3質量%以上が好ましく、より好ましくは0.5質量%以上、さらに好ましくは1質量%以上、最も好ましくは8質量%以上であり、20質量%以下が好ましく、より好ましくは18質量%以下、さらに好ましくは15質量%以下、最も好ましくは12質量%以下である。添加剤の含有量を上記範囲内とすることにより、レトルト処理後のラミネート強度の低下をより抑制することができる。   The content of the additive (coupling agent and crosslinking agent) in the gas barrier resin composition (a total of 100 mass% of the gas barrier resin, the inorganic layered compound, and the additive) is preferably 0.3 mass% or more. Preferably it is 0.5% by weight or more, more preferably 1% by weight or more, most preferably 8% by weight or more, preferably 20% by weight or less, more preferably 18% by weight or less, still more preferably 15% by weight or less, Most preferably, it is 12 mass% or less. By making content of an additive into the said range, the fall of the laminate strength after a retort process can be suppressed more.

また、前記添加剤の配合量は、前記ガスバリア性樹脂100質量部に対して0.5質量部以上が好ましく、より好ましくは1質量部以上、さらに好ましくは3質量部以上であり、15質量部以下が好ましく、より好ましくは13質量部以下、さらに好ましくは12質量部以下である。   Further, the blending amount of the additive is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, further preferably 3 parts by mass or more, and 15 parts by mass with respect to 100 parts by mass of the gas barrier resin. The following is preferable, More preferably, it is 13 mass parts or less, More preferably, it is 12 mass parts or less.

1−4.形成方法
ガスバリア性樹脂組成物層を無機薄膜層上に形成する方法としては、例えば、ガスバリア性樹脂組成物の各材料を溶媒に溶解、分散させた塗工液を無機薄膜層上に塗工する方法;ガスバリア性樹脂組成物を溶融して無機薄膜層上に押し出してラミネートする方法;ガスバリア性樹脂組成物のフィルムを別途形成して、これを無機薄膜層上に接着剤等で貼り合わせる方法;等が挙げられる。これらの中でも、塗工による方法が簡便性、生産性等の面から好ましい。なお、この際に、無機薄膜層上にアンカーコート層を設け、アンカーコート層上にガスバリア性樹脂組成物層を設けても良い。アンカーコート層については後述する。
1-4. Formation method As a method of forming the gas barrier resin composition layer on the inorganic thin film layer, for example, a coating liquid in which each material of the gas barrier resin composition is dissolved and dispersed in a solvent is applied on the inorganic thin film layer. Method: Method of melting gas barrier resin composition and extruding and laminating onto inorganic thin film layer; Method of separately forming a film of gas barrier resin composition and bonding this onto inorganic thin film layer with adhesive or the like; Etc. Among these, the method by coating is preferable from the viewpoints of simplicity and productivity. At this time, an anchor coat layer may be provided on the inorganic thin film layer, and a gas barrier resin composition layer may be provided on the anchor coat layer. The anchor coat layer will be described later.

以下、ガスバリア性樹脂組成物層の形成方法の一例として、ガスバリア性樹脂組成物の各材料を溶媒に溶解、分散させた塗工液を、無機薄膜層上に塗工する方法について説明する。   Hereinafter, as an example of a method for forming a gas barrier resin composition layer, a method for coating a coating liquid in which each material of the gas barrier resin composition is dissolved and dispersed in a solvent on the inorganic thin film layer will be described.

ガスバリア性樹脂組成物を塗工液とするための溶媒(溶剤)としては、EVOHを溶解し得る水性及び非水性のどちらの溶剤でも使用できるが、水と低級アルコールとの混合溶剤を用いることが好ましい。具体的には、水と炭素数2〜4の低級アルコール(エチルアルコール、n−プロピルアルコール、iso−プロピルアルコール、n−ブチルアルコール、iso−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール等)の混合溶剤が好適である。このような混合溶剤を使用するとEVOHの溶解性が良好となり、適度な固形分を維持できる。前記混合溶媒中の低級アルコールの含有量は15質量%〜70質量%が好ましい。混合溶剤中の低級アルコール含有量が70質量%以下であれば、前記無機層状化合物を分散した場合、無機層状化合物のへき開がより進行し、また、15質量%以上であれば、ガスバリア性樹脂組成物を溶解、分散させた塗工液の塗工適性がより向上する。   As a solvent (solvent) for using the gas barrier resin composition as a coating liquid, either an aqueous or non-aqueous solvent capable of dissolving EVOH can be used, but a mixed solvent of water and a lower alcohol can be used. preferable. Specifically, water and lower alcohol having 2 to 4 carbon atoms (ethyl alcohol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, iso-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, etc.) The mixed solvent is preferable. When such a mixed solvent is used, the solubility of EVOH becomes good and an appropriate solid content can be maintained. The content of the lower alcohol in the mixed solvent is preferably 15% by mass to 70% by mass. If the content of the lower alcohol in the mixed solvent is 70% by mass or less, when the inorganic layered compound is dispersed, the cleavage of the inorganic layered compound further proceeds, and if it is 15% by mass or more, the gas barrier resin composition The coating suitability of the coating solution in which the product is dissolved and dispersed is further improved.

ガスバリア性樹脂組成物を溶剤に溶解、分散させる方法は、特に限定されないが、例えば、EVOH溶液に、無機層状化合物(必要により予め水等の分散媒体中に膨潤、へき開させておいてもよい)を添加混合し、無機層状化合物を分散させる方法;水等の分散媒体中に無機層状化合物を膨潤・へき開させた分散液に、EVOH(必要により予め溶剤に溶解させておいてもよい)を添加(溶解)する方法等が挙げられる。このとき、EVOHからなるガスバリア性樹脂と無機層状化合物との質量比率が、無機層状化合物の含有量が、ガスバリア性樹脂組成物100質量部に対して0.1質量部〜10質量部の範囲となる量で混合する。   A method for dissolving and dispersing the gas barrier resin composition in a solvent is not particularly limited. For example, an inorganic layered compound (if necessary, may be swollen and cleaved in a dispersion medium such as water in advance) in an EVOH solution. A method of dispersing and mixing an inorganic layered compound; adding EVOH (may be dissolved in a solvent in advance if necessary) to a dispersion obtained by swelling and cleaving the inorganic layered compound in a dispersion medium such as water The method of (dissolving) etc. is mentioned. At this time, the mass ratio of the gas barrier resin composed of EVOH and the inorganic layered compound is such that the content of the inorganic layered compound is in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the gas barrier resin composition. Mix in the amount to be.

これらの混合に際しては通常の攪拌装置や分散装置を利用して、無機層状化合物を均一に分散することができるが、特に透明で安定な無機層状化合物分散液を得るために、高圧分散機を使用することができる。高圧分散機としては、例えば、ゴーリン(APVゴーリン社製)、ナノマイザー(ナノマイザー社製)、マイクロフルイタイザー(マイクロフライデックス社製)、アルチマイザー(スギノマシン社製)、DeBee(Bee社製)等が挙げられ、これら高圧分散機の圧力条件として100MPa以下で分散処理を行うことが好ましい。圧力条件が100MPa以下であれば、無機層状化合物の粉砕を抑制でき、目的であるガスバリア性が良好となる。なお、添加剤の混合は攪拌だけで行えるため、どの時期に添加してもよいが、できるだけ添加剤の影響を抑えるという観点から、EVOH溶液中に無機層状化合物が分散し終わった段階で、添加剤を添加することが好ましい。塗工の方式は、グラビアコート、バーコート、ダイコート、スプレーコート等従来の方式が、塗工液の特性に合わせて採用することができる。   When mixing these, the inorganic layered compound can be uniformly dispersed using a normal stirring device or dispersing device. In particular, a high-pressure disperser is used to obtain a transparent and stable inorganic layered compound dispersion. can do. Examples of the high-pressure disperser include Gorin (manufactured by APV Gorin), Nanomizer (manufactured by Nanomizer), Microfluidizer (manufactured by Microflydex), Ultimizer (manufactured by Sugino Machine), DeBee (manufactured by Bee), etc. As a pressure condition of these high-pressure dispersers, it is preferable to perform the dispersion treatment at 100 MPa or less. When the pressure condition is 100 MPa or less, the pulverization of the inorganic layered compound can be suppressed, and the target gas barrier property is improved. The additive can be mixed only by stirring, so it can be added at any time, but it is added when the inorganic layered compound has been dispersed in the EVOH solution from the viewpoint of suppressing the influence of the additive as much as possible. It is preferable to add an agent. As the coating method, conventional methods such as gravure coating, bar coating, die coating and spray coating can be adopted according to the characteristics of the coating solution.

1−5.ガスバリア性樹脂組成物層用塗工液の乾燥条件
ガスバリア性樹脂組成物の塗工液を塗工した後の乾燥温度は、100℃以上が好ましく、より好ましくは130℃以上、さらに好ましくは150℃以上であり、200℃以下が好ましい。また、別処理工程での追加の熱処理、すなわち、一度フィルムを巻き取った後、巻き返しながら、またはロールで、或はラミネート工程等の後工程を行う前やその途中で追加の加熱処理(150〜200℃)を行うことも効果的である。乾燥温度が100℃以上であれば、塗工層が十分に乾燥でき、ガスバリア性樹脂組成物層の結晶化や架橋が進行し、レトルト処理後のガスバリア性、ラミネート強度がより良好となる。一方、乾燥温度が200℃以下であれば、プラスチックフィルムに熱がかかりすぎることが抑制され、フィルムが脆くなったり、収縮してしまうことが抑制され、加工性が良好となる。
1-5. Drying conditions of gas barrier resin composition layer coating liquid The drying temperature after coating the gas barrier resin composition coating liquid is preferably 100 ° C or higher, more preferably 130 ° C or higher, and even more preferably 150 ° C. It is above and 200 degrees C or less is preferable. In addition, additional heat treatment in a separate processing step, that is, after the film is wound up once, while being rewound, or in a roll, or before or after the subsequent step such as a laminating step, additional heat treatment (150 to (200 ° C.) is also effective. When the drying temperature is 100 ° C. or higher, the coating layer can be sufficiently dried, crystallization and crosslinking of the gas barrier resin composition layer proceed, and the gas barrier property and laminate strength after retort treatment become better. On the other hand, if the drying temperature is 200 ° C. or lower, it is possible to prevent the plastic film from being overheated, to suppress the film from becoming brittle or to shrink, and to improve the workability.

1−6.ガスバリア性樹脂組成物層の厚さ
ガスバリア性樹脂組成物層の厚さは、0.05μm以上、好ましくは0.10μm以上、より好ましくは0.15μm以上であり、0.5μm以下、好ましくは0.3μm以下、より好ましくは0.2μm以下である。厚さが0.05μm未満では、レトルト処理後のガスバリア性が低下し、一方、0.5μmを超えると、塗工液を用いた場合に、塗工液の乾燥不足が生じてガスバリア性樹脂組成物層が脆くなり、レトルト処理後のラミネート強度が低下する。
1-6. The thickness of the gas barrier resin composition layer The thickness of the gas barrier resin composition layer is 0.05 μm or more, preferably 0.10 μm or more, more preferably 0.15 μm or more, and 0.5 μm or less, preferably 0. .3 μm or less, more preferably 0.2 μm or less. If the thickness is less than 0.05 μm, the gas barrier property after retort treatment is lowered. On the other hand, if the thickness exceeds 0.5 μm, the coating solution is insufficiently dried when the coating solution is used, resulting in a gas barrier resin composition. The material layer becomes brittle and the laminate strength after the retort treatment is lowered.

2.プラスチックフィルム
本発明で用いるプラスチックフィルムは、有機高分子樹脂からなり、溶融押出し後、必要に応じ、長手方向及び/又は幅方向に延伸、冷却、熱固定を施したフィルムである。前記有機高分子としては、ポリアミド、ポリエステル、ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリスルホン、ポリスチレン、ポリ乳酸等を挙げることができる。
2. Plastic Film The plastic film used in the present invention is a film made of an organic polymer resin, which is stretched, cooled and heat-set in the longitudinal direction and / or the width direction as necessary after melt extrusion. Examples of the organic polymer include polyamide, polyester, polyolefin, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, wholly aromatic polyamide, polyamideimide, polyimide, polyetherimide, polysulfone, polystyrene, and polylactic acid. .

前記ポリアミドの具体例としては、ポリカプロアミド(ナイロン6)、ポリ−ε−アミノへプタン酸(ナイロン7)、ポリ−ε−アミノノナン酸(ナイロン9)、ポリウンデカンアミド(ナイロン11)、ポリラウリンラクタム(ナイロン12)、ポリエチレンジアミンアジパミド(ナイロン2・6)、ポリテトラメチレンアジパミド(ナイロン4・6)、ポリヘキサメチレンアジパミド(ナイロン6・6)、ポリヘキサメチレンセバカミド(ナイロン6・10)、ポリヘキサメチレンドデカミド(ナイロン6・12)、ポリオクタメチレンドデカミド(ナイロン6・12)、ポリオクタメチレンアジパミド(ナイロン8・6)、ポリデカメチレンアジパミド(ナイロン10・6)、ポリデカメチレンセバカミド(ナイロン10・10)、ポリドデカメチレンドデカミド(ナイロン12・12)、メタキシレンジアミン−6ナイロン(MXD6)等が挙げられる。また、これらを主成分とする共重合体であってもよく、その例としては、カプロラクタム/ラウリンラクタム共重合体、カプロラクタム/ヘキサメチレンジアンモニウムアジペート共重合体、ラウリンラクタム/ヘキサメチレンジアンモニウムアジペート共重合体、ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体、エチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムアジペート共重合体、カプロラクタム/ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体等を挙げることができる。これらのポリアミドには、フィルムの柔軟性改質成分として、芳香族スルホンアミド類、p−ヒドロキシ安息香酸、エステル類等の可塑剤や低弾性率のエラストマー成分やラクタム類を配合することも有効である。   Specific examples of the polyamide include polycaproamide (nylon 6), poly-ε-aminoheptanoic acid (nylon 7), poly-ε-aminononanoic acid (nylon 9), polyundecanamide (nylon 11), polylaurin Lactam (nylon 12), polyethylenediamine adipamide (nylon 2.6), polytetramethylene adipamide (nylon 4.6), polyhexamethylene adipamide (nylon 6/6), polyhexamethylene sebacamide (Nylon 6 · 10), Polyhexamethylene dodecamide (Nylon 6 · 12), Polyoctamethylene dodecamide (Nylon 6 · 12), Polyoctamethylene adipamide (Nylon 8.6), Polydecamethylene adipamide (Nylon 10.6), polydecamethylene sebacamide (nylon 10.10), poly Examples include dodecamethylene dodecamide (nylon 12 and 12) and metaxylenediamine-6 nylon (MXD6). Copolymers containing these as main components may also be used. Examples thereof include caprolactam / laurin lactam copolymer, caprolactam / hexamethylene diammonium adipate copolymer, laurin lactam / hexamethylene diammonium adipate copolymer. Polymer, hexamethylene diammonium adipate / hexamethylene diammonium sebacate copolymer, ethylene diammonium adipate / hexamethylene diammonium adipate copolymer, caprolactam / hexamethylene diammonium adipate / hexamethylene diammonium sebacate copolymer Etc. It is also effective to blend these polyamides with plasticizers such as aromatic sulfonamides, p-hydroxybenzoic acid and esters, elastomer components with low elastic modulus, and lactams as a film flexibility modifying component. is there.

前記ポリエステルの具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン−2,6−ナフタレート等が挙げられる。また、これらを主成分とする共重合体であっても良く、ポリエステル共重合体を用いる場合、そのジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸又は2,6−ナフタレンジカルボン酸等の芳香族ジカルボン酸;トリメリット酸及びピロメリット酸等の多官能カルボン酸;アジピン酸、セバシン酸等の脂肪族ジカルボン酸;等が用いられる。また、グリコール成分としては、エチレングリコール、1,4−ブタンジオール、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコール等の脂肪族グリコール、p−キシリレングリコール等の芳香族グリコール;1,4−シクロヘキサンジメタノール等の脂環族グリコール;平均分子量が150〜20000のポリエチレングリコール;等が用いられる。ポリエステル100モル%中の好ましい共重合成分の比率は20モル%以下である。共重合成分が20モル%を超えるときはフィルム強度、透明性、耐熱性等が劣る場合がある。これらの有機高分子は、さらに他のモノマーを少量共重合したり、他の有機高分子をブレンドしても良い。   Specific examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, and polyethylene-2,6-naphthalate. Moreover, the copolymer which has these as a main component may be sufficient, and when using a polyester copolymer, as the dicarboxylic acid component, terephthalic acid, isophthalic acid, phthalic acid or 2, 6-naphthalenedicarboxylic acid etc. Aromatic dicarboxylic acids; polyfunctional carboxylic acids such as trimellitic acid and pyromellitic acid; aliphatic dicarboxylic acids such as adipic acid and sebacic acid; Examples of the glycol component include aliphatic glycols such as ethylene glycol, 1,4-butanediol, diethylene glycol, propylene glycol, and neopentyl glycol; aromatic glycols such as p-xylylene glycol; 1,4-cyclohexanedimethanol and the like Alicyclic glycol; polyethylene glycol having an average molecular weight of 150 to 20000; The ratio of the preferable copolymerization component in 100 mol% of polyester is 20 mol% or less. When the copolymerization component exceeds 20 mol%, film strength, transparency, heat resistance, etc. may be inferior. These organic polymers may be further copolymerized with a small amount of other monomers or blended with other organic polymers.

また、本発明のガスバリア性積層フィルムを、太陽電池用のバリアフィルム、有機エレクトロルミネッセンス用のバリアフィルム、電子ペーパー用のバリアフィルムとして用いる場合には、プラスチックフィルムを構成する有機高分子樹脂としてはポリエチレンテレフタレート又はポリエチレンナフタレートが好ましい。特に、太陽電池用のバリアフィルムとして用いる場合には、耐加水分解性が高いことが望まれるため、プラスチックフィルムの酸価は10当量/トン以下、さらには5当量/トン以下であることが好ましい。   When the gas barrier laminate film of the present invention is used as a barrier film for solar cells, a barrier film for organic electroluminescence, or a barrier film for electronic paper, the organic polymer resin constituting the plastic film is polyethylene. Terephthalate or polyethylene naphthalate is preferred. In particular, when used as a barrier film for solar cells, it is desired that the hydrolysis resistance is high. Therefore, the acid value of the plastic film is preferably 10 equivalents / ton or less, more preferably 5 equivalents / ton or less. .

また、ポリエチレンテレフタレートを用いる場合、その固有粘度(IV値)は0.60以上が好ましく、より好ましくは0.65以上であり、0.90以下が好ましく、より好ましくは0.80以下である。なお、IV値は、フェノール/1,1,2,2−テトラクロロエタン(6/4質量比)の混合溶媒中、30℃で測定した値である。また、ポリエチレンテレフタレート中の環状三量体の含有量は0.7質量%以下が好ましく、より好ましくは0.5質量%以下である。   When polyethylene terephthalate is used, its intrinsic viscosity (IV value) is preferably 0.60 or more, more preferably 0.65 or more, preferably 0.90 or less, more preferably 0.80 or less. The IV value is a value measured at 30 ° C. in a mixed solvent of phenol / 1,1,2,2-tetrachloroethane (6/4 mass ratio). Moreover, 0.7 mass% or less is preferable, and, as for content of the cyclic trimer in polyethylene terephthalate, More preferably, it is 0.5 mass% or less.

また、ポリエチレンテレフタレート又はポリエチレンナフタレートの重縮合触媒としては、アンチモン、ゲルマニウム、チタン、アルミニウム、リン等の化合物が好ましく、中でもアルミニウム化合物及びリン化合物からなる重合触媒が好ましく、特開2002−249565号公報に記載された触媒を用いることができる。前記アルミニウム化合物としては、酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、アルミニウムアセチルアセトナート等が好ましい。前記リン化合物としては、ヒンダードフェノール構造をもつホスホン酸化合物が好ましく、具体例としてはIrganox(登録商標)1222,1425(チバ・ジャパン社製)が挙げられる。   The polycondensation catalyst for polyethylene terephthalate or polyethylene naphthalate is preferably a compound such as antimony, germanium, titanium, aluminum, or phosphorus. Among these, a polymerization catalyst comprising an aluminum compound and a phosphorus compound is preferable, and JP-A-2002-249565. Can be used. As the aluminum compound, aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum acetylacetonate and the like are preferable. The phosphorus compound is preferably a phosphonic acid compound having a hindered phenol structure, and specific examples include Irganox (registered trademark) 1222, 1425 (manufactured by Ciba Japan).

さらに上記の有機高分子樹脂には、公知の添加物,例えば、紫外線吸収剤、帯電防止剤、可塑剤、滑剤、着色剤等を添加してもよい。前記プラスチックフィルムの厚さは1μm以上が好ましく、より好ましくは2μm以上、さらに好ましくは3μm以上であり、500μm以下が好ましく、より好ましくは300μm以下、さらに好ましくは100μm以下である。前記プラスチックフィルムの透明度は、特に限定するものではないが、透明性を有する包装材料積層体として使用する場合には、50%以上の光線透過率をもつものが望ましい。また前記プラスチックフィルムは、積層型フィルムであってもよい。積層型フィルムとする場合の積層体の種類、積層数、積層方法等は特に限定されず、目的に応じて公知の方法から任意に選択することができる。   Furthermore, known additives such as ultraviolet absorbers, antistatic agents, plasticizers, lubricants, colorants and the like may be added to the organic polymer resin. The thickness of the plastic film is preferably 1 μm or more, more preferably 2 μm or more, further preferably 3 μm or more, preferably 500 μm or less, more preferably 300 μm or less, and still more preferably 100 μm or less. The transparency of the plastic film is not particularly limited, but when it is used as a packaging material laminate having transparency, it preferably has a light transmittance of 50% or more. The plastic film may be a laminated film. There are no particular limitations on the type of laminate, the number of laminations, the lamination method, and the like in the case of a laminated film, and any one of known methods can be selected according to the purpose.

プラスチックフィルムの製造方法については、押出し法、キャスト法等、既存の方法を使用することができる。本発明におけるプラスチックフィルムは、本発明の目的を損なわないかぎりにおいて、無機薄膜層を積層するに先行して、前記プラスチックフィルムをコロナ放電処理、グロー放電、火炎処理、表面粗面化処理等の表面処理を施しても良く、また、公知のアンカーコート処理、印刷、装飾が施されても良い。   About the manufacturing method of a plastic film, the existing methods, such as an extrusion method and a casting method, can be used. The plastic film according to the present invention has a surface such as corona discharge treatment, glow discharge, flame treatment, surface roughening treatment, etc. prior to laminating the inorganic thin film layer as long as the object of the present invention is not impaired. Processing may be performed, and publicly known anchor coat processing, printing, and decoration may be performed.

3.無機薄膜層
前記無機薄膜層は、金属又は無機酸化物からなる薄膜である。前記金属薄膜を形成する材料は、薄膜にできるものなら特に制限はないが、例えば、マグネシウム、アルミニウム、チタン、クロム、ニッケル、インジウム等が挙げられ、コスト等の観点からアルミニウムが好ましい。また、前記無機酸化物薄膜を形成する材料は、薄膜にできるものなら特に制限はないが、例えば、酸化ケイ素、酸化アルミニウム、酸化マグネシウム等が挙げられ、好ましくは酸化ケイ素、酸化アルミニウム、酸化マグネシウムである。これらの中でも、ガスバリア性に優れることから、酸化ケイ素及び酸化アルミニウムを含む多元系無機酸化物薄膜がより好ましく、酸化ケイ素・酸化アルミニウム二元系無機酸化物薄膜が最も好ましい。ここでいう酸化ケイ素とはSiOやSiO2等の各種珪素酸化物の混合物であり、酸化アルミニウムとは、AlOやAl23等の各種アルミニウム酸化物の混合物である。
3. Inorganic thin film layer The inorganic thin film layer is a thin film made of a metal or an inorganic oxide. The material for forming the metal thin film is not particularly limited as long as it can be formed into a thin film. Examples thereof include magnesium, aluminum, titanium, chromium, nickel, and indium. Aluminum is preferable from the viewpoint of cost and the like. The material for forming the inorganic oxide thin film is not particularly limited as long as it can be formed into a thin film, and examples thereof include silicon oxide, aluminum oxide, magnesium oxide, etc., preferably silicon oxide, aluminum oxide, magnesium oxide. is there. Among these, a multi-component inorganic oxide thin film containing silicon oxide and aluminum oxide is more preferable because of excellent gas barrier properties, and a silicon oxide / aluminum oxide binary inorganic oxide thin film is most preferable. The silicon oxide here is a mixture of various silicon oxides such as SiO and SiO 2 , and the aluminum oxide is a mixture of various aluminum oxides such as AlO and Al 2 O 3 .

なお、酸化ケイ素及び酸化アルミニウムを含む多元系無機酸化物薄膜が、ガスバリア性に優れる理由は、多元系無機酸化物薄膜は薄膜中の無機物の比率により膜のフレキシブル性、ガスバリア性を変化させることが可能であり、性能バランスの取れた、良好な薄膜を得ることができるためである。また、後述するように無機薄膜層上に接着剤層を設ける場合、酸化ケイ素及び酸化アルミニウムを含む多元系無機酸化物薄膜と接着剤層との間において高い密着力が得られやすいからである。   The reason why the multi-element inorganic oxide thin film containing silicon oxide and aluminum oxide is excellent in gas barrier property is that the multi-element inorganic oxide thin film changes the flexibility and gas barrier property of the film depending on the ratio of inorganic substances in the thin film. This is because it is possible to obtain a good thin film having a balanced performance. Moreover, when providing an adhesive bond layer on an inorganic thin film layer so that it may mention later, it is because high adhesive force is easy to be obtained between the multi-component system inorganic oxide thin film containing a silicon oxide and aluminum oxide, and an adhesive bond layer.

酸化ケイ素・酸化アルミニウム二元系無機酸化物薄膜とする場合、無機酸化物薄膜中に占める酸化アルミニウムの含有量は、20質量%以上が好ましく、より好ましくは30質量%以上、さらに好ましくは40質量%以上であり、99質量%以下が好ましく、より好ましくは75質量%以下、さらに好ましくは60質量%以下である。酸化ケイ素・酸化アルミニウム系二元系無機酸化物薄膜中の酸化アルミニウムの含有量が20質量%以上であれば、ガスバリア性がより向上し、99質量%以下であれば、蒸着膜の柔軟性が良好となり、ガスバリア性積層フィルムの曲げや寸法変化に強くなり、二者併用の効果がより向上する。   When the silicon oxide / aluminum oxide binary inorganic oxide thin film is used, the content of aluminum oxide in the inorganic oxide thin film is preferably 20% by mass or more, more preferably 30% by mass or more, and still more preferably 40% by mass. % Or more, preferably 99% by mass or less, more preferably 75% by mass or less, and still more preferably 60% by mass or less. If the content of aluminum oxide in the silicon oxide / aluminum oxide binary inorganic oxide thin film is 20% by mass or more, the gas barrier property is further improved, and if it is 99% by mass or less, the flexibility of the deposited film is improved. It becomes good, it becomes strong to bending and dimensional change of the gas barrier laminate film, and the effect of the combination of the two is further improved.

また、無機酸化物薄膜の比重の値と無機酸化物薄膜中の酸化アルミニウムの含有量(質量%)との関係を、D=0.01A+b(D:薄膜の比重、A:薄膜中の酸化アルミニウムの質量%)で示すとき、b値が1.6よりも小さい領域のときには、酸化ケイ素・酸化アルミニウム系薄膜の構造が粗となり、また、b値が2.2よりも大きい領域の場合、酸化ケイ素・酸化アルミニウム二元系無機酸化物薄膜が硬くなる傾向にある。   Further, the relationship between the specific gravity value of the inorganic oxide thin film and the content (% by mass) of aluminum oxide in the inorganic oxide thin film is expressed as D = 0.01A + b (D: specific gravity of the thin film, A: aluminum oxide in the thin film) In the region where the b value is smaller than 1.6, the structure of the silicon oxide / aluminum oxide thin film becomes rough, and in the region where the b value is larger than 2.2, the oxidation Silicon / aluminum oxide binary inorganic oxide thin films tend to be hard.

このため、無機酸化物薄膜としての酸化ケイ素・酸化アルミニウム二元系無機酸化物薄膜の比重は、前記薄膜の比重と薄膜中の酸化アルミニウムの含有量(質量%)D=0.01A+b(D:薄膜の比重、A:薄膜中の酸化アルミニウムの含有量)という関係式で表すとき、b値が1.6〜2.2であるのが好ましく、さらに好ましくは1.7〜2.1であるが、もちろんこの範囲に限定されるものではない。酸化ケイ素・酸化アルミニウムを含み、さらに他の無機酸化物を含む多元系無機酸化物薄膜もガスバリア性積層体としての効果は大きい。   Therefore, the specific gravity of the silicon oxide / aluminum oxide binary inorganic oxide thin film as the inorganic oxide thin film is such that the specific gravity of the thin film and the content (mass%) of aluminum oxide in the thin film D = 0.01A + b (D: The b value is preferably 1.6 to 2.2, and more preferably 1.7 to 2.1, when expressed by a relational expression of specific gravity of the thin film, A: content of aluminum oxide in the thin film). However, of course, it is not limited to this range. A multi-component inorganic oxide thin film containing silicon oxide / aluminum oxide and further containing other inorganic oxides has a great effect as a gas barrier laminate.

本発明において、無機薄膜層の膜厚は、1nm以上が好ましく、より好ましくは5nm以上であり、800nm以下が好ましく、より好ましくは500nm以下である。膜厚が1nm以上であれば、ガスバリア性がより向上する。なお、800nmを超えて過度に厚くしても、それに相当するガスバリア性の向上の効果は得られない。   In the present invention, the thickness of the inorganic thin film layer is preferably 1 nm or more, more preferably 5 nm or more, preferably 800 nm or less, and more preferably 500 nm or less. If the film thickness is 1 nm or more, the gas barrier property is further improved. In addition, even if it exceeds 800 nm too much, the effect of the gas barrier property equivalent to it is not acquired.

無機薄膜層を形成する方法を、酸化ケイ素・酸化アルミニウム二元系無機酸化物薄膜を例に説明する。蒸着法による薄膜形成法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法、あるいはCVD法(化学蒸着法)等が適宜用いられる。例えば、真空蒸着法を採用する場合は、蒸着原料としてSiO2とAl23の混合物、あるいはSiO2とAlの混合物等が用いられる。加熱には、抵抗加熱、高周波誘導加熱、電子ビーム加熱等を採用することができ、また、反応ガスとして酸素、窒素、水素、アルゴン、炭酸ガス、水蒸気等を導入したり、オゾン添加、イオンアシスト等の手段を用いた反応性蒸着を採用することも可能である。さらに、プラスチックフィルムにバイアスを印加したり、プラスチックフィルムを加熱したり冷却する等、成膜条件も任意に変更することができる。上記蒸着材料、反応ガス、基板バイアス、加熱・冷却等は、スパッタリング法やCVD法を採用する場合にも同様に変更可能である。このような方法により、透明でガスバリア性に優れ、各種処理、例えば、煮沸処理やレトルト処理、さらにはゲルボ試験(耐屈曲性試験)にも耐えることができる優れた性能のガスバリア性積層フィルムを得ることが可能となる。 A method of forming the inorganic thin film layer will be described by taking a silicon oxide / aluminum oxide binary inorganic oxide thin film as an example. As a thin film forming method by a vapor deposition method, a vacuum vapor deposition method, a sputtering method, a physical vapor deposition method such as an ion plating method, a CVD method (chemical vapor deposition method), or the like is appropriately used. For example, when the vacuum deposition method is employed, a mixture of SiO 2 and Al 2 O 3 or a mixture of SiO 2 and Al is used as a deposition material. For heating, resistance heating, high-frequency induction heating, electron beam heating, etc. can be adopted, and oxygen, nitrogen, hydrogen, argon, carbon dioxide gas, water vapor, etc. are introduced as reaction gases, ozone addition, ion assist It is also possible to employ reactive vapor deposition using such means. Furthermore, the film forming conditions can be arbitrarily changed, such as applying a bias to the plastic film, heating or cooling the plastic film, and the like. The vapor deposition material, reaction gas, substrate bias, heating / cooling, and the like can be similarly changed when a sputtering method or a CVD method is employed. By such a method, a transparent and excellent gas barrier property is obtained, and a gas barrier laminate film having excellent performance capable of withstanding various treatments such as boiling treatment and retort treatment, and further gelbo test (flexibility test) is obtained. It becomes possible.

4.アンカーコート層
本発明のガスバリア性積層フィルムにおいては、無機薄膜層とガスバリア性樹脂組成物層との間に、アンカーコート層を有することが好ましい。アンカーコート層を有することにより、無機薄膜層とガスバリア性樹脂組成物層との接着力をより向上させることができる。
4). Anchor coat layer In the gas barrier laminate film of the present invention, it is preferable to have an anchor coat layer between the inorganic thin film layer and the gas barrier resin composition layer. By having an anchor coat layer, the adhesive force between the inorganic thin film layer and the gas barrier resin composition layer can be further improved.

前記アンカーコート層は、アンカーコート剤樹脂組成物及び溶媒を含有するアンカーコート層用組成物から形成される。前記アンカーコート剤樹脂組成物としては、例えば、ウレタン系、ポリエステル系、アクリル系、チタン系、イソシアネート系、イミン系、ポリブタジエン系等の樹脂に、エポキシ系、イソシアネート系、メラミン系等の硬化剤を添加したものが挙げられる。前記溶媒(溶剤)としては、例えば、ベンゼン、トルエン等の芳香族系溶剤;メタノール、エタノール等のアルコール系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;エチレングリコールモノメチルエーテル等の多価アルコール誘導体等が挙げられる。   The anchor coat layer is formed from an anchor coat layer resin composition containing an anchor coat agent resin composition and a solvent. Examples of the anchor coating agent resin composition include urethane-based, polyester-based, acrylic-based, titanium-based, isocyanate-based, imine-based, and polybutadiene-based resins, and epoxy-based, isocyanate-based, and melamine-based curing agents. Additions can be mentioned. Examples of the solvent (solvent) include aromatic solvents such as benzene and toluene; alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ester solvents such as ethyl acetate and butyl acetate; Examples thereof include polyhydric alcohol derivatives such as glycol monomethyl ether.

また、アンカーコート剤樹脂組成物は、有機官能基を少なくとも1種類以上有するシランカップリング剤を含有することが好ましい。前記有機官能基としては、アルコキシ基、アミノ基、エポキシ基、イソシアネート基等が挙げられる。前記シランカップリング剤の添加量としては、アンカーコート剤樹脂組成物(樹脂と硬化剤とシランカップリング剤の合計100質量%)中、0.1質量%以上が好ましく、より好ましくは3質量%以上であり、10質量%以下が好ましく、より好ましくは7質量%以下である。添加量が0.1質量%以上であれば、レトルト処理後のラミネート強度がより向上する。   The anchor coating agent resin composition preferably contains a silane coupling agent having at least one organic functional group. Examples of the organic functional group include an alkoxy group, an amino group, an epoxy group, and an isocyanate group. The addition amount of the silane coupling agent is preferably 0.1% by mass or more, more preferably 3% by mass in the anchor coating agent resin composition (total 100% by mass of resin, curing agent and silane coupling agent). It is above, 10 mass% or less is preferable, More preferably, it is 7 mass% or less. If the addition amount is 0.1% by mass or more, the laminate strength after the retort treatment is further improved.

アンカーコート層の厚さは、0.05μm以上が好ましく、より好ましくは0.10μm以上、さらに好ましくは0.15μm以上であり、0.5μm以下が好ましく、より好ましくは0.3μm以下、さらに好ましくは0.25μm以下である。アンカーコート層の厚さが0.05μm以上であれば、レトルト処理によるラミネート強度の低下がより抑制され、0.5μm以下であれば、コート斑が発生せずガスバリア性がより良好となる。   The thickness of the anchor coat layer is preferably 0.05 μm or more, more preferably 0.10 μm or more, further preferably 0.15 μm or more, preferably 0.5 μm or less, more preferably 0.3 μm or less, still more preferably Is 0.25 μm or less. If the thickness of the anchor coat layer is 0.05 μm or more, a decrease in the laminate strength due to the retort treatment is further suppressed, and if it is 0.5 μm or less, coat spots do not occur and the gas barrier property becomes better.

5.プライマーコート層
本発明のガスバリア性積層フィルムにおいては、プラスチックフィルムと無機薄膜層との間に、プライマーコート層を設けてもよい。プライマーコート層を有することにより、ガスバリア性積層フィルムの平面性を向上させたり、プラスチックフィルムと無機薄膜層との接着力をより向上させることができる。
5. Primer Coat Layer In the gas barrier laminate film of the present invention, a primer coat layer may be provided between the plastic film and the inorganic thin film layer. By having the primer coat layer, the planarity of the gas barrier laminate film can be improved, and the adhesive force between the plastic film and the inorganic thin film layer can be further improved.

プライマーコート層は、プライマーコート層を構成する樹脂成分を溶解又は分散したプライマーコート層用塗工液から形成できる。プライマーコート層を構成する樹脂としては、例えば、ポリウレタン樹脂、共重合ポリエステル樹脂が挙げられる。特に、プライマーコート層を構成する樹脂として、ポリウレタン樹脂及び共重合ポリエステル樹脂を併用することが好ましい。   The primer coat layer can be formed from a primer coat layer coating solution in which a resin component constituting the primer coat layer is dissolved or dispersed. Examples of the resin constituting the primer coat layer include a polyurethane resin and a copolyester resin. In particular, it is preferable to use a polyurethane resin and a copolyester resin together as the resin constituting the primer coat layer.

6.他のフィルム等との積層
本発明のガスバリア性積層フィルムは、食品包装用途を初め、様々な用途に用いることができ、それに合わせてさらに、ヒートシール層、印刷層、他の樹脂フィルム、これらの層を接着するための接着剤層等、他の素材と積層することが出来る。積層の際には、本発明のガスバリア性積層フィルムの上に直接溶融押し出しラミネートする方法、コーティングによる方法、フィルム同士を直接又は接着剤を介してラミネートする方法等、公知の手段を採用することが出来る。また、高いバリア性が求められる場合には、本発明のガスバリア性積層フィルムを2枚以上積層することもできる。
6). Lamination with other films, etc. The gas barrier laminate film of the present invention can be used for various applications including food packaging applications, and in addition, heat seal layers, printing layers, other resin films, these It can be laminated with other materials such as an adhesive layer for bonding the layers. When laminating, it is possible to employ known means such as a method of directly melt-extrusion laminating on the gas barrier laminate film of the present invention, a method of coating, a method of laminating films directly or via an adhesive. I can do it. When high barrier properties are required, two or more gas barrier laminate films of the present invention can be laminated.

例えば、レトルトパウチ等やレトルト食品の蓋材として用いる場合には、ガスバリア性樹脂組成物層上にポリエチレンやポリプロピレン等のヒートシール層を設けることが好ましい。また、ガスバリア性樹脂組成物層とヒートシール層の間に他の樹脂フィルムを積層しても良い。他の樹脂フィルムとしてはプラスチックフィルムとして挙げたような樹脂フィルムを用いることができる。これらの積層の際には接着剤を介して積層することができる。   For example, when used as a lid material for retort pouches and retort foods, it is preferable to provide a heat seal layer such as polyethylene or polypropylene on the gas barrier resin composition layer. Further, another resin film may be laminated between the gas barrier resin composition layer and the heat seal layer. As the other resin film, the resin film mentioned as a plastic film can be used. In the case of laminating these, they can be laminated via an adhesive.

また、太陽電池用として用いる場合は、本発明のガスバリア性積層フィルムに、フッ素樹脂系フィルムや耐加水分解性ポリエステルフィルム等の耐候性フィルム、光反射性白色フィルム、黒色系の着色フィルム等を積層してバックシートとして用いることができる。あるいは、本発明のガスバリア性積層フィルム同士をガスバリア性樹脂組成物層が内側になるように積層して用いることもできる。太陽電池受光面側のフィルムとして用いる場合には、本発明のガスバリア性積層フィルムに防汚コート、反射低減コート、防眩コート、ハードコート等を設けたり、これらのコートを施した他のフィルムを積層しても良い。また、有機ELや電子ペーパー等の用途の場合にも防汚コート、反射低減コート、防眩コート、ハードコート等を設けたり、これらのコートを施した他のフィルムを積層しても良い。これらの他のコート及び他のフィルムは本発明のガスバリア性積層フィルムのどちらの面の設けても良い。   When used for solar cells, the gas barrier laminate film of the present invention is laminated with a weather-resistant film such as a fluororesin film or a hydrolysis-resistant polyester film, a light-reflective white film, a black colored film, or the like. And can be used as a backsheet. Alternatively, the gas barrier laminate films of the present invention can be laminated and used so that the gas barrier resin composition layer is on the inside. When used as a film on the light-receiving surface side of a solar cell, the gas barrier laminate film of the present invention is provided with an antifouling coat, antireflection coating, antiglare coat, hard coat, etc., or other films with these coatings applied. You may laminate. In the case of applications such as organic EL and electronic paper, an antifouling coat, a reflection reducing coat, an antiglare coat, a hard coat, etc. may be provided, or other films coated with these coats may be laminated. These other coats and other films may be provided on either side of the gas barrier laminate film of the present invention.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.

1.評価方法
1−1.ラミネートガスバリア性積層フィルムの作製
ガスバリア性積層フィルムNo.1〜23のガスバリア性樹脂組成物層(No.16ではアンカーコート層)の上に、ウレタン系2液硬化型接着剤を用いたドライラミネート法により、熱接着性樹脂として無延伸ポリプロピレンフィルム(「P1147」(厚さ70μm)、東洋紡績社製)を貼り合わせ、40℃にて4日間エージングしてラミネートガスバリア性積層フィルムを得た。なお、乾燥後の接着剤層の厚さは3μmであった。
1. Evaluation method 1-1. Preparation of laminated gas barrier laminated film On a gas barrier resin composition layer (No. 16 anchor coat layer) of 1 to 23, an unstretched polypropylene film (“ P1147 ”(thickness 70 μm), manufactured by Toyobo Co., Ltd. was bonded and aged at 40 ° C. for 4 days to obtain a laminated gas barrier laminated film. The thickness of the adhesive layer after drying was 3 μm.

1−2.水蒸気透過度測定
ラミネートガスバリア性積層フィルムについて、JIS K7129 B法に準じて、水蒸気透過度測定装置(「PERMATRAN−W 3/33MG」、MOCON社製)を用い、温度40℃、湿度100%RHの雰囲気下で水蒸気透過度を測定した。なお、ガスバリア性積層フィルムへの調湿は、プラスチックフィルム側からガスバリア性樹脂組成物層側に水蒸気が透過する方向とした。また、上記ラミネートガスバリア性積層フィルムに対して、温度121℃、気圧0.2MPa(2kgf/cm2)で30分間のレトルト処理を施した後、40℃にて1日間乾燥させたものについても、同様に水蒸気透過度を測定した。
1-2. Water Vapor Permeability Measurement For laminated gas barrier laminated films, using a water vapor permeability measuring device ("PERMATRAN-W 3 / 33MG", manufactured by MOCON) according to JIS K7129 B method, the temperature is 40 ° C and the humidity is 100% RH. The water vapor permeability was measured under an atmosphere. The humidity control on the gas barrier laminate film was such that water vapor permeated from the plastic film side to the gas barrier resin composition layer side. In addition, the laminate gas barrier laminate film was subjected to a retort treatment at a temperature of 121 ° C. and an atmospheric pressure of 0.2 MPa (2 kgf / cm 2 ) for 30 minutes and then dried at 40 ° C. for 1 day. Similarly, water vapor permeability was measured.

1−3.酸素透過度
ラミネートガスバリア性積層フィルムについて、JIS K7126−1(2006)付属書1に準じて、酸素透過度測定装置(「OX−TRAN 2/20」、MOCON社製)を用い、温度23℃、湿度65%RHの雰囲気下で酸素透過度を測定した。また、上記ラミネートガスバリア性積層フィルムに対して、温度121℃、気圧0.2MPa(2kgf/cm2)で30分間のレトルト処理を施した後、40℃にて1日間乾燥させたものについても、同様に酸素透過度を測定した。
1-3. Oxygen permeability About the laminated gas barrier laminate film, according to JIS K7126-1 (2006) appendix 1, using an oxygen permeability measuring device ("OX-TRAN 2/20", manufactured by MOCON) at a temperature of 23 ° C, The oxygen permeability was measured in an atmosphere with a humidity of 65% RH. In addition, the laminate gas barrier laminate film was subjected to a retort treatment at a temperature of 121 ° C. and an atmospheric pressure of 0.2 MPa (2 kgf / cm 2 ) for 30 minutes and then dried at 40 ° C. for 1 day. Similarly, the oxygen permeability was measured.

1−4.ラミネート強度の測定方法
ラミネートガスバリア積層フィルムを幅15mm、長さ200mmに切り出して試験片とし、温度23℃、相対湿度65%の条件下で、テンシロン万能材料試験機(「テンシロン UMT−II−500型」、東洋ボールドウイン社製)を用いてラミネート強度を測定した。なお、引張速度は200mm/分とし、ガスバリア性積層フィルムと無延伸ポリプロピレンフィルムとの間に水をつけて、剥離角度90度で剥離させたときの強度を測定した。また、上記ラミネートガスバリア性積層フィルムに対して、温度121℃、気圧0.2MPa(2kgf/cm2)で30分間のレトルト処理を施した後、40℃にて1日間乾燥させたものについても、同様にラミネート強度測定した。
1-4. Laminate Strength Measurement Method A laminate gas barrier laminate film is cut into a width of 15 mm and a length of 200 mm to form a test piece, and under the conditions of a temperature of 23 ° C. and a relative humidity of 65%, a Tensilon universal material testing machine (“Tensilon UMT-II-500 type” The laminate strength was measured using “Toyo Baldwin”. The tensile rate was 200 mm / min, and water was applied between the gas barrier laminate film and the unstretched polypropylene film, and the strength when peeled at a peel angle of 90 degrees was measured. In addition, the laminate gas barrier laminate film was subjected to a retort treatment at a temperature of 121 ° C. and an atmospheric pressure of 0.2 MPa (2 kgf / cm 2 ) for 30 minutes and then dried at 40 ° C. for 1 day. Similarly, the laminate strength was measured.

1−5.ガスバリア性樹脂組成物層の厚さ
ガスバリア性積層フィルムの試料を2mm×5mmの短冊状に切り出し、エポキシ樹脂に包埋した。包埋した試料をミクロトームで超薄切片とし、染色剤に四酸化ルテニウムを用いて染色した。観察は、透過型電子顕微鏡(日本電子社製、「JEM2100」)を使用し、加速電圧は200kV、観察倍率は5,000倍、10,000倍で観察し、ガスバリア性樹脂組成物層の厚さを測定した。
1-5. Gas Barrier Resin Composition Layer Thickness A gas barrier laminate film sample was cut into a 2 mm × 5 mm strip and embedded in an epoxy resin. The embedded sample was made into an ultrathin section with a microtome and stained with ruthenium tetroxide as a staining agent. For observation, a transmission electron microscope (“JEM2100” manufactured by JEOL Ltd.) was used, and the acceleration voltage was 200 kV, the observation magnification was 5,000 times, and 10,000 times. The thickness of the gas barrier resin composition layer Was measured.

2.準備
2−1.プラスチックフィルムの作製
極限粘度0.62(30℃、フェノール/テトラクロロエタン(質量比)=60/40)、シリカを100ppm含むポリエチレンテレフタレート(PET)を予備結晶化後、本乾燥し、Tダイを有する押出し機を用いて280℃で押出し、表面温度40℃のドラム上で急冷固化して無定形シートを得た。次に得られたシートを加熱ロールと冷却ロールの間で縦方向に100℃で4倍延伸を行い、一軸延伸PETフィルムを得た。
2. Preparation 2-1. Production of plastic film Intrinsic viscosity 0.62 (30 ° C., phenol / tetrachloroethane (mass ratio) = 60/40), polyethylene terephthalate (PET) containing 100 ppm of silica is pre-crystallized, and then this is dried and has a T-die Extrusion was carried out at 280 ° C. using an extruder, and rapidly solidified on a drum having a surface temperature of 40 ° C. to obtain an amorphous sheet. Next, the obtained sheet was stretched 4 times at 100 ° C. in the longitudinal direction between a heating roll and a cooling roll to obtain a uniaxially stretched PET film.

2−2.アンカーコート層を形成するための塗工液の調製
<調製例1>
ウレタン系の樹脂(「タケラック(登録商標) A525−S」、三井化学社製)に、イソシアネート系の硬化剤(「タケラック A−50」、三井化学社製)を添加し、溶媒に酢酸エチルを用いて、固形分濃度が6.5質量%になるよう調製した。ここに、エポキシ系シランカップリング剤(「KBM403」、信越化学工業社製)を、アンカーコート剤樹脂組成物(樹脂と硬化剤とシランカップリング剤の合計100質量%)中の含有量が5質量%となるように添加してアンカーコート層用塗工液No.1とした。
2-2. Preparation of coating solution for forming anchor coat layer <Preparation Example 1>
An isocyanate-based curing agent (Takelac A-50, manufactured by Mitsui Chemicals) is added to a urethane-based resin (Takelac (registered trademark) A525-S, manufactured by Mitsui Chemicals), and ethyl acetate is added to the solvent. The solid content concentration was adjusted to 6.5% by mass. Here, an epoxy-based silane coupling agent (“KBM403”, manufactured by Shin-Etsu Chemical Co., Ltd.) is contained in an anchor coating agent resin composition (100% by mass in total of resin, curing agent and silane coupling agent). It is added so that it becomes mass%, and the coating liquid No. It was set to 1.

<調製例2>
シランカップリング剤を、イソシアネート系シランカップリング剤(「KBE9007」、信越化学工業社製)に変更したこと以外は、調製例1と同様にしてアンカーコート層溶塗工液No.2を調製した。
<Preparation Example 2>
An anchor coat layer solution coating solution No. 1 was prepared in the same manner as in Preparation Example 1 except that the silane coupling agent was changed to an isocyanate-based silane coupling agent (“KBE9007”, manufactured by Shin-Etsu Chemical Co., Ltd.). 2 was prepared.

<調製例3>
シランカップリング剤を、アミン系シランカップリング剤(「KBM603」、信越化学工業社製)に変更したこと以外は、調製例1と同様にしてアンカーコート層溶塗工液No.3を調製した。
<Preparation Example 3>
The anchor coat layer solution coating solution No. 1 was prepared in the same manner as in Preparation Example 1 except that the silane coupling agent was changed to an amine-based silane coupling agent (“KBM603”, manufactured by Shin-Etsu Chemical Co., Ltd.). 3 was prepared.

<調製例4>
樹脂をウレタン系の樹脂(「EL−530A」、東洋モートン社製)、硬化剤を、イソシアネート系の硬化剤(「EL−530B」、東洋モートン社製)に変更したこと以外は調製例1と同様にしてアンカーコート層用塗工液No.4を調製した。
<Preparation Example 4>
Preparation Example 1 except that the resin was changed to a urethane-based resin ("EL-530A", manufactured by Toyo Morton), and the curing agent was changed to an isocyanate-based curing agent ("EL-530B", manufactured by Toyo Morton). Similarly, the coating liquid for anchor coat layer No. 4 was prepared.

<調製例5>
ウレタン系の樹脂(「タケラック(登録商標) A525−S」、三井化学社製)に、イソシアネート系の硬化剤(「タケラック A−50」、三井化学社製)を添加し、溶媒に酢酸エチルを用いて、固形分濃度が6.5質量%になるよう調製し、これをアンカーコート層用塗工液No.5とした。
<Preparation Example 5>
An isocyanate-based curing agent (Takelac A-50, manufactured by Mitsui Chemicals) is added to a urethane-based resin (Takelac (registered trademark) A525-S, manufactured by Mitsui Chemicals), and ethyl acetate is added to the solvent. The solid content concentration was adjusted to 6.5% by mass, and this was prepared as anchor coat layer coating liquid No. It was set to 5.

2−3.ガスバリア性樹脂組成物層の材料の調製
<エチレン−ビニルアルコール系共重合体溶液の調製>
精製水20.996質量部とn−プロピルアルコール(NPA)51質量部の混合溶媒に、エチレン−ビニルアルコール共重合体(商品名:「SG−525」(エチレン−酢酸ビニル共重合体をケン化して得られた重合体、エチレン比率26モル%、酢酸ビニル成分のケン化度約100%)、日本合成化学社製(以下、「EVOH」と略記することがある。))15質量部を加え、更に過酸化水素水(濃度30質量%)13質量部と硫酸鉄(FeSO4)0.004質量部を添加して撹拌下で80℃に加温し、約2時間反応させた。その後冷却してカタラーゼを3000ppmになるように添加し、残存過酸化水素を除去し、これにより固形分15質量%のほぼ透明なエチレン−ビニルアルコール系共重合体溶液(EVOH溶液)を得た。
2-3. Preparation of material for gas barrier resin composition layer <Preparation of ethylene-vinyl alcohol copolymer solution>
To a mixed solvent of 20.996 parts by mass of purified water and 51 parts by mass of n-propyl alcohol (NPA), an ethylene-vinyl alcohol copolymer (trade name: “SG-525” (saponified ethylene-vinyl acetate copolymer). 15 parts by mass of an obtained polymer, an ethylene ratio of 26 mol%, a degree of saponification of vinyl acetate component of about 100%, and a product of Nippon Synthetic Chemical Co., Ltd. (hereinafter sometimes abbreviated as “EVOH”). Further, 13 parts by mass of hydrogen peroxide (concentration: 30% by mass) and 0.004 parts by mass of iron sulfate (FeSO 4 ) were added, heated to 80 ° C. with stirring, and reacted for about 2 hours. Thereafter, the mixture was cooled and catalase was added to 3000 ppm to remove residual hydrogen peroxide, whereby an almost transparent ethylene-vinyl alcohol copolymer solution (EVOH solution) having a solid content of 15% by mass was obtained.

<ポリビニルアルコール樹脂溶液の調製>
精製水40質量%、n−プロピルアルコール(NPA)60質量%からなる混合溶剤70質量部に、完全けん化ポリビニルアルコール樹脂(商品名:「ゴーセノール(登録商標) NL−05」(けん化度99.5%以上)、日本合成化学社製)30質量部を加え溶解させ、これにより固形分30質量%の透明なポリビニルアルコール溶液を得た。
<Preparation of polyvinyl alcohol resin solution>
To 70 parts by mass of a mixed solvent composed of 40% by mass of purified water and 60% by mass of n-propyl alcohol (NPA), a completely saponified polyvinyl alcohol resin (trade name: “GOHSENOL (registered trademark) NL-05” (degree of saponification 99.5). %) Or more, and 30 parts by mass of Nippon Synthetic Chemical Co., Ltd. were added and dissolved to obtain a transparent polyvinyl alcohol solution having a solid content of 30% by mass.

<無機層状化合物分散液の調製>
無機層状化合物であるモンモリロナイト(商品名:「クニピア(登録商標) F」、クニミネ工業社製)4質量部を精製水96質量部中に攪拌しながら添加し、高圧分散装置にて圧力50MPaの設定で充分に分散させた。その後、40℃で1日間保温し固形分4質量%の無機層状化合物分散液を得た。
<Preparation of inorganic layered compound dispersion>
4 parts by mass of montmorillonite (trade name: “Kunipia (registered trademark) F”, manufactured by Kunimine Kogyo Co., Ltd.), which is an inorganic layered compound, was added to 96 parts by mass of purified water while stirring, and the pressure was set to 50 MPa with a high-pressure dispersing device. And fully dispersed. Thereafter, the mixture was kept at 40 ° C. for 1 day to obtain an inorganic layered compound dispersion having a solid content of 4% by mass.

<添加剤>
架橋剤:塩酸化ジルコニウム(商品名「ジルコゾール(登録商標) Zc−20」(固形分20質量%)、第一稀元素化学工業社製)
架橋剤:チタンラクテート(商品名:「オルガチックス(登録商標) TC−310」(固形分約45質量%)、松本製薬工業社製)
シランカップリング剤:3−グリシドキシプロピルトリエトキシシラン(商品名:「KBE−403」(固形分100質量%)、信越化学工業社製)
<Additives>
Cross-linking agent: zirconium hydrochloride (trade name “Zircosol (registered trademark) Zc-20” (solid content: 20% by mass), manufactured by Daiichi Rare Elemental Chemical Co., Ltd.)
Crosslinking agent: Titanium lactate (trade name: “Orgachix (registered trademark) TC-310” (solid content: about 45% by mass), manufactured by Matsumoto Pharmaceutical Co., Ltd.)
Silane coupling agent: 3-glycidoxypropyltriethoxysilane (trade name: “KBE-403” (solid content: 100% by mass), manufactured by Shin-Etsu Chemical Co., Ltd.)

2−4.ガスバリア性樹脂組成物層を形成するための塗工液の調製
<調製例1>
混合溶剤A(精製水:n−プロピルアルコール(質量比)=40:60)62.30質量部に、EVOH溶液を31.75質量部添加し、充分に攪拌混合した。更にこの溶液に、高速攪拌を行いながら無機層状化合物分散液5.95質量部を添加した。この分散液100質量部に対して、3質量部の陽イオン交換樹脂を添加し、イオン交換樹脂の破砕が起きない程度の攪拌速度で1時間攪拌して、陽イオンの除去を行った後、陽イオン交換樹脂のみをストレーナで濾別した。
以上の操作で得られた分散液を、更に高圧分散装置にて圧力50MPaの設定で分散処理した。分散処理した混合液97質量部に対して、添加剤としての塩酸化ジルコニウム0.75質量部、精製水0.9質量部、NPA1.35質量部を添加し混合攪拌を行い、それを255メッシュ(目開き60μm)のフィルターにて濾過し固形分5質量%のガスバリア性樹脂組成物層形成用塗工液No.1を得た。
2-4. Preparation of coating liquid for forming gas barrier resin composition layer <Preparation Example 1>
31.75 parts by mass of the EVOH solution was added to 62.30 parts by mass of the mixed solvent A (purified water: n-propyl alcohol (mass ratio) = 40: 60), and the mixture was sufficiently stirred and mixed. Further, 5.95 parts by mass of the inorganic layered compound dispersion was added to this solution while stirring at high speed. After adding 3 parts by mass of a cation exchange resin to 100 parts by mass of this dispersion and stirring for 1 hour at a stirring speed at which the ion exchange resin is not crushed to remove cations, Only the cation exchange resin was filtered off with a strainer.
The dispersion obtained by the above operation was further subjected to dispersion treatment at a pressure of 50 MPa using a high-pressure dispersion apparatus. To 97 parts by mass of the dispersed liquid mixture, 0.75 parts by mass of zirconium chloride as an additive, 0.9 parts by mass of purified water, and 1.35 parts by mass of NPA are added and stirred, and the resulting mixture is 255 mesh. It filtered with the filter (mesh 60 micrometers), and coating liquid No. for gas barrier resin composition layer formation with a solid content of 5 mass%. 1 was obtained.

<調製例2>
混合溶剤A、EVOH溶液及び無機層状化合物分散液の使用量を、混合溶剤A65.76質量部、EVOH溶液33.00質量部、無機層状化合物分散液1.24質量部に変更したこと以外は調製例1と同様にして、固形分5質量%のガスバリア性樹脂組成物層形成用塗工液No.2を得た。
<Preparation Example 2>
Prepared except that mixed solvent A, EVOH solution and inorganic layered compound dispersion were changed to 65.76 parts by weight of mixed solvent A, 33.00 parts by weight of EVOH solution, and 1.24 parts by weight of inorganic layered compound dispersion. In the same manner as in Example 1, the gas barrier resin composition layer forming coating solution No. 5 having a solid content of 5% by mass was prepared. 2 was obtained.

<調製例3>
混合溶剤A、EVOH溶液及び無機層状化合物分散液の使用量を、混合溶剤A64.00質量部、EVOH溶液32.36質量部、無機層状化合物分散液3.64質量部に変更したこと以外は調製例1と同様にして、固形分5質量%のガスバリア性樹脂組成物層形成用塗工液No.3を得た。
<Preparation Example 3>
Prepared except that mixed solvent A, EVOH solution and inorganic layered compound dispersion were changed to 64.00 parts by weight of mixed solvent A, 32.36 parts by weight of EVOH solution, and 3.64 parts by weight of inorganic layered compound dispersion. In the same manner as in Example 1, the gas barrier resin composition layer forming coating solution No. 5 having a solid content of 5% by mass was prepared. 3 was obtained.

<調製例4>
混合溶剤A、EVOH溶液及び無機層状化合物分散液の使用量を、混合溶剤A66.21質量部、EVOH溶液33.17質量部、無機層状化合物分散液0.62質量部に変更したこと以外は調製例1と同様にして、固形分5質量%のガスバリア性樹脂組成物層形成用塗工液No.4を得た。
<Preparation Example 4>
Prepared except that mixed solvent A, EVOH solution and inorganic layered compound dispersion were changed to 66.21 parts by weight of mixed solvent A, 33.17 parts by weight of EVOH solution, and 0.62 parts by weight of inorganic layered compound dispersion. In the same manner as in Example 1, the gas barrier resin composition layer forming coating solution No. 5 having a solid content of 5% by mass was prepared. 4 was obtained.

<調製例5>
混合溶剤A、EVOH溶液及び無機層状化合物分散液の使用量を、混合溶剤A60.67質量部、EVOH溶液31.15質量部、無機層状化合物分散液8.18質量部に変更したこと以外は調製例1と同様にして、固形分5質量%のガスバリア性樹脂組成物層形成用塗工液No.5を得た。
<Preparation Example 5>
Prepared except that mixed solvent A, EVOH solution and inorganic layered compound dispersion were used in amounts changed to mixed solvent A 60.67 parts by weight, EVOH solution 31.15 parts by weight, inorganic layered compound dispersion 8.18 parts by weight In the same manner as in Example 1, the gas barrier resin composition layer forming coating solution No. 5 having a solid content of 5% by mass was prepared. 5 was obtained.

<調製例6>
添加剤を3−グリシドキシプロピルトリエトキシシラン0.15質量部に、精製水及びNPAの使用量を、精製水1.14質量部、NPA1.71質量部に変更したこと以外は調製例1と同様にして、固形分5質量%のガスバリア性樹脂組成物層形成用塗工液No.6を得た。
<Preparation Example 6>
Preparation Example 1 except that the additive was changed to 0.15 parts by mass of 3-glycidoxypropyltriethoxysilane, and the amounts of purified water and NPA used were changed to 1.14 parts by mass of purified water and 1.71 parts by mass of NPA. In the same manner as described above, the gas barrier resin composition layer-forming coating solution No. 5 having a solid content of 5 mass% was used. 6 was obtained.

<調製例7>
添加剤をチタンラクテート0.33質量部に、精製水及びNPAの使用量を、精製水1.07質量部、NPA1.60質量部に変更したこと以外は調製例1と同様にして、固形分5質量%のガスバリア性樹脂組成物層形成用塗工液No.7を得た。
<Preparation Example 7>
In the same manner as in Preparation Example 1 except that the additive was changed to 0.33 parts by mass of titanium lactate, and the amounts of purified water and NPA used were changed to 1.07 parts by mass of purified water and 1.60 parts by mass of NPA. 5% by mass of gas barrier resin composition layer forming coating solution No. 7 was obtained.

<調製例8>
混合溶剤A、EVOH溶液及び無機層状化合物分散液の使用量を、混合溶剤A59.10質量部、EVOH溶液30.58質量部、無機層状化合物分散液10.32質量部に変更したこと以外は調製例1と同様にして、固形分5質量%のガスバリア性樹脂組成物層形成用塗工液No.8を得た。
<Preparation Example 8>
Prepared except that mixed solvent A, EVOH solution and inorganic layered compound dispersion were used in the amount of 59.10 parts by weight of mixed solvent A, 30.58 parts by weight of EVOH solution, and 10.32 parts by weight of inorganic layered compound dispersion. In the same manner as in Example 1, the gas barrier resin composition layer forming coating solution No. 5 having a solid content of 5% by mass was prepared. 8 was obtained.

<調製例9>
混合溶剤A61.52質量部に、EVOH溶液を32.40質量部添加し、充分に攪拌混合した。更にこの溶液に、高速攪拌を行いながら無機層状化合物分散液6.08質量部を添加した。この分散液100質量部に対して、3質量部の陽イオン交換樹脂を添加しイオン交換樹脂の破砕が起きない程度の攪拌速度で1時間攪拌して、陽イオンの除去を行った後、陽イオン交換樹脂のみをストレーナで濾別した。
以上の操作で得られた分散液を、更に高圧分散装置にて圧力50MPaの設定で分散処理した後、分散処理した混合液97質量部に対して塩酸化ジルコニウム0.25質量部と、混合溶剤A2.75質量部とを添加し混合攪拌を行い、それを255メッシュのフィルターにて濾過し固形分5質量%のガスバリア性樹脂組成物層形成用塗工液No.9を得た。
<Preparation Example 9>
32.40 parts by mass of the EVOH solution was added to 61.52 parts by mass of the mixed solvent A, and the mixture was sufficiently stirred and mixed. Further, 6.08 parts by mass of the inorganic layered compound dispersion was added to this solution while stirring at high speed. After adding 3 parts by mass of a cation exchange resin to 100 parts by mass of this dispersion and stirring for 1 hour at a stirring speed that does not cause crushing of the ion exchange resin, the cation is removed. Only the ion exchange resin was filtered off with a strainer.
The dispersion obtained by the above operation was further subjected to a dispersion treatment with a high-pressure dispersion apparatus at a pressure of 50 MPa, and then 0.25 part by mass of zirconium hydrochloride with respect to 97 parts by mass of the mixture subjected to the dispersion treatment, and a mixed solvent A 2.75 parts by mass of A was added and mixed and stirred. The mixture was filtered through a 255 mesh filter and the coating liquid No. A for forming a gas barrier resin composition layer having a solid content of 5% by mass was obtained. 9 was obtained.

<調製例10>
混合溶剤A65.02質量部に、EVOH溶液を29.46質量部添加し、充分に攪拌混合した。更にこの溶液に、高速攪拌を行いながら無機層状化合物分散液5.52質量部を添加した。この分散液100質量部に対して、3質量部の陽イオン交換樹脂を添加しイオン交換樹脂の破砕が起きない程度の攪拌速度で1時間攪拌して、陽イオンの除去を行った後、陽イオン交換樹脂のみをストレーナで濾別した。
以上の操作で得られた分散液を、更に高圧分散装置にて圧力50MPaの設定で分散処理した後、分散処理した混合液97質量部に対して塩酸化ジルコニウム2.50質量部と、混合溶剤A0.50質量部とを添加し混合攪拌を行い、それを255メッシュのフィルターにて濾過し固形分5質量%のガスバリア性樹脂組成物層形成用塗工液No.10を得た。
<Preparation Example 10>
29.46 parts by mass of the EVOH solution was added to 65.02 parts by mass of the mixed solvent A, and the mixture was sufficiently stirred and mixed. Further, 5.52 parts by mass of the inorganic layered compound dispersion was added to this solution while stirring at high speed. After adding 3 parts by mass of a cation exchange resin to 100 parts by mass of this dispersion and stirring for 1 hour at a stirring speed that does not cause crushing of the ion exchange resin, the cation is removed. Only the ion exchange resin was filtered off with a strainer.
The dispersion obtained by the above operation was further subjected to dispersion treatment at a pressure of 50 MPa with a high-pressure dispersion apparatus, and then 2.50 parts by mass of zirconium hydrochloride with respect to 97 parts by mass of the dispersion treated, mixed solvent A 0.50 part by mass of A was added and mixed and stirred. The mixture was filtered through a 255 mesh filter, and the coating liquid No. 10 was obtained.

<調製例11>(無機層状化合物なし)
混合溶剤A66.67質量部に、EVOH溶液を33.33質量部添加し、充分に攪拌混合した。更に、この溶液100質量部に対して、3質量部の陽イオン交換樹脂を添加しイオン交換樹脂の破砕が起きない程度の攪拌速度で1時間攪拌して、陽イオンの除去を行った後、陽イオン交換樹脂のみをストレーナで濾別した。
この様にして得られた混合液97質量部に対して、塩酸化ジルコニウム0.75質量部と、混合溶剤A2.25質量部とを添加し混合攪拌を行い、それを255メッシュのフィルターにて濾過し固形分5質量%のガスバリア性樹脂組成物層形成用塗工液No.11を得た。
<Preparation Example 11> (No inorganic layered compound)
33.33 parts by mass of the EVOH solution was added to 66.67 parts by mass of the mixed solvent A, and the mixture was sufficiently stirred and mixed. Further, after adding 3 parts by mass of a cation exchange resin to 100 parts by mass of this solution and stirring for 1 hour at a stirring speed that does not cause crushing of the ion exchange resin, the cation is removed. Only the cation exchange resin was filtered off with a strainer.
To 97 parts by mass of the mixed liquid thus obtained, 0.75 part by mass of zirconium hydroxide and 2.25 parts by mass of mixed solvent A were added and mixed and stirred, and this was filtered with a 255 mesh filter. Filtration and coating liquid No. 5 for forming a gas barrier resin composition layer having a solid content of 5% by mass 11 was obtained.

<調製例12>(ポリビニルアルコール樹脂使用)
混合溶剤A78.17質量部に、ポリビニルアルコール樹脂溶液を15.87質量部添加し、充分に攪拌混合した。更にこの溶液に、高速攪拌を行いながら無機層状化合物分散液5.95質量部を添加した。この分散液100質量部に対して、3質量部の陽イオン交換樹脂を添加しイオン交換樹脂の破砕が起きない程度の攪拌速度で1時間攪拌して、陽イオンの除去を行った後、陽イオン交換樹脂のみをストレーナで濾別した。
以上の操作で得られた分散液を、更に高圧分散装置にて圧力50MPaの設定で分散処理した後、分散処理した混合液97質量部に対して塩酸化ジルコニウム0.75質量部と、混合溶剤A2.25質量部とを添加し混合攪拌を行い、それを255メッシュのフィルターにて濾過し固形分5質量%のガスバリア性樹脂組成物層形成用塗工液No.12を得た。
<Preparation Example 12> (Using polyvinyl alcohol resin)
15.87 parts by mass of the polyvinyl alcohol resin solution was added to 78.17 parts by mass of the mixed solvent A, and the mixture was sufficiently stirred and mixed. Further, 5.95 parts by mass of the inorganic layered compound dispersion was added to this solution while stirring at high speed. After adding 3 parts by mass of a cation exchange resin to 100 parts by mass of this dispersion and stirring for 1 hour at a stirring speed that does not cause crushing of the ion exchange resin, the cation is removed. Only the ion exchange resin was filtered off with a strainer.
The dispersion obtained by the above operation was further subjected to a dispersion treatment with a high-pressure dispersion apparatus at a pressure of 50 MPa, and then 0.75 part by mass of zirconium hydrochloride with respect to 97 parts by mass of the dispersion-treated mixture, A2.25 parts by mass were added, mixed and stirred, filtered through a 255 mesh filter and coated with a gas barrier resin composition layer forming solution No. 5 having a solid content of 5% by mass. 12 was obtained.

<調製例13>(添加剤なし)
混合溶剤A62.30質量部に、EVOH溶液を31.75質量部添加し、充分に攪拌混合した。更にこの溶液に、高速攪拌を行いながら無機層状化合物分散液5.95質量部を添加した。この分散液100質量部に対して、3質量部の陽イオン交換樹脂を添加しイオン交換樹脂の破砕が起きない程度の攪拌速度で1時間攪拌して、陽イオンの除去を行った後、陽イオン交換樹脂のみをストレーナで濾別した。
以上の操作から得られた分散液を、更に高圧分散装置にて圧力50MPaの設定で分散処理した後、それを255メッシュのフィルターにて濾過し固形分5質量%のガスバリア性樹脂組成物層形成用塗工液No.13を得た。
<Preparation Example 13> (No additive)
31.75 parts by mass of the EVOH solution was added to 62.30 parts by mass of the mixed solvent A, and the mixture was sufficiently stirred and mixed. Further, 5.95 parts by mass of the inorganic layered compound dispersion was added to this solution while stirring at high speed. After adding 3 parts by mass of a cation exchange resin to 100 parts by mass of this dispersion and stirring for 1 hour at a stirring speed that does not cause crushing of the ion exchange resin, the cation is removed. Only the ion exchange resin was filtered off with a strainer.
The dispersion obtained from the above operation is further subjected to dispersion treatment at a pressure of 50 MPa with a high-pressure dispersion apparatus, and then filtered through a 255 mesh filter to form a gas barrier resin composition layer having a solid content of 5% by mass. Coating liquid No. 13 was obtained.

3.ガスバリア性積層フィルムの作製
<製造例1>
上記で得た一軸延伸PETフィルムを120℃の温度で4.0倍横方向に延伸し、6%の横方向の弛緩を行いながら、熱固定ゾーンの温度を225℃に設定し熱固定処理を行った。各温度での処理時間は、予熱温度100℃で3秒、延伸温度120℃で5秒、熱固定処理温度225℃で8秒行った。その後冷却し、両縁部を裁断除去することによって、厚さ12μmの二軸延伸PETフィルムを1000m以上に亘って連続的に製膜してミルロールを作製した。得られたミルロールについて、幅400mm、長さ1000mにスリットして、3インチ紙管に巻き取り、PETフィルムを得た。前記PETフィルムに、無機薄膜層として酸化ケイ素と酸化アルミニウムの二元系無機酸化物薄膜層(酸化ケイ素/酸化アルミニウムの比率(質量比)=60/40)を形成した。
3. Production of gas barrier laminate film <Production Example 1>
The uniaxially stretched PET film obtained above was stretched 4.0 times in the transverse direction at a temperature of 120 ° C., and while performing relaxation in the transverse direction of 6%, the temperature of the heat setting zone was set at 225 ° C. went. The treatment time at each temperature was 3 seconds at a preheating temperature of 100 ° C., 5 seconds at a stretching temperature of 120 ° C., and 8 seconds at a heat fixing treatment temperature of 225 ° C. After cooling, both edges were cut and removed to continuously form a biaxially stretched PET film having a thickness of 12 μm over 1000 m to produce a mill roll. The obtained mill roll was slit into a width of 400 mm and a length of 1000 m, and wound on a 3-inch paper tube to obtain a PET film. A binary inorganic oxide thin film layer of silicon oxide and aluminum oxide (ratio of silicon oxide / aluminum oxide (mass ratio) = 60/40) was formed as an inorganic thin film layer on the PET film.

ここで、無機薄膜層は、蒸着源として、3mm〜5mm程度の大きさの粒子状のSiO2(純度99.99%)とA123(純度99.9%)を用い、電子ビーム蒸着法により、酸化アルミニウムと二酸化ケイ素との二元系無機酸化物薄膜を形成した。蒸着材料は、混合せずに、2つに区切って投入した。加熱源として、EB(Electron Beam)銃を用い、A123とSiO2のそれぞれを時分割で加熱した。そのときのEB銃のエミッション電流を1.2Aとし、A123とSiO2との質量比が40:60となるように、各材料を加熱した。フィルム送り速度を30m/minとし、蒸着時の圧力を、1×10-2Paに調整した。また、蒸着時のフィルムを冷却するためのロールの温度を−10℃に調整した。このようにして得られた無機薄膜層の厚さは27nmであった。 Here, the inorganic thin film layer uses, as a deposition source, particulate SiO 2 (purity 99.99%) and A1 2 O 3 (purity 99.9%) having a size of about 3 mm to 5 mm, and electron beam deposition. By the method, a binary inorganic oxide thin film of aluminum oxide and silicon dioxide was formed. The vapor deposition material was divided into two without being mixed. An EB (Electron Beam) gun was used as a heating source, and each of A1 2 O 3 and SiO 2 was heated in a time-sharing manner. Each material was heated so that the emission current of the EB gun at that time was 1.2 A and the mass ratio of A1 2 O 3 and SiO 2 was 40:60. The film feed rate was 30 m / min, and the pressure during vapor deposition was adjusted to 1 × 10 −2 Pa. Moreover, the temperature of the roll for cooling the film at the time of vapor deposition was adjusted to -10 degreeC. The thickness of the inorganic thin film layer thus obtained was 27 nm.

無機薄膜層上にアンカーコート層用塗工液No.1をグラビアロールコート法によって塗布し乾燥させアンカーコート層を形成した。乾燥後のアンカーコート層の厚さは0.30μmであった。アンカーコート層上に、ガスバリア性樹脂組成物層形成用塗工液No.1をグラビアロールコート法によって塗布し、160℃で乾燥させガスバリア性樹脂組成物層を形成し、ガスバリア性積層フィルムNo.1を作製した。なお、乾燥後のガスバリア性樹脂組成物層の厚さは0.25μmであった。   On the inorganic thin film layer, an anchor coat layer coating solution No. 1 was applied by a gravure roll coat method and dried to form an anchor coat layer. The thickness of the anchor coat layer after drying was 0.30 μm. On the anchor coat layer, gas barrier resin composition layer forming coating solution No. 1 was applied by a gravure roll coating method and dried at 160 ° C. to form a gas barrier resin composition layer. 1 was produced. The thickness of the gas barrier resin composition layer after drying was 0.25 μm.

<製造例2〜10>
ガスバリア性樹脂組成物層形成用塗工液を、ガスバリア性樹脂組成物層形成用塗工液No.2〜10に変更したこと以外は製造例1と同様にして、ガスバリア性積層フィルムNo.2〜10を作製した。
<Production Examples 2 to 10>
The gas barrier resin composition layer forming coating solution is referred to as gas barrier resin composition layer forming coating solution no. A gas barrier laminate film No. 1 was prepared in the same manner as in Production Example 1 except that it was changed to 2-10. 2-10 were produced.

<製造例11>
酸化ケイ素と酸化アルミニウムの2元系酸化物無機薄膜層中の酸化ケイ素と酸化アルミニウムの質量比(酸化ケイ素/酸化アルミニウム)を、50/50に変更したこと以外は製造例1と同様にして、ガスバリア性積層フィルムNo.11を作製した。
<Production Example 11>
Except that the mass ratio of silicon oxide to aluminum oxide (silicon oxide / aluminum oxide) in the binary oxide inorganic thin film layer of silicon oxide and aluminum oxide was changed to 50/50, the same as in Production Example 1, Gas barrier laminate film No. 11 was produced.

<製造例12〜15>
アンカーコート層用塗工液を、アンカーコート層用塗工液No.2〜5に変更したこと以外は製造例1と同様にして、ガスバリア性積層フィルムNo.12〜15を作製した。
<Production Examples 12-15>
The coating liquid for anchor coat layer was applied as coating liquid No. for anchor coat layer. The gas barrier laminate film No. 1 was prepared in the same manner as in Production Example 1 except that it was changed to 2-5. 12-15 were produced.

<製造例16>
ガスバリア性樹脂組成物層を形成しなかったこと以外は製造例1と同様にして、ガスバリア性積層フィルムNo.16を作製した。
<Production Example 16>
A gas barrier laminate film No. 1 was prepared in the same manner as in Production Example 1 except that the gas barrier resin composition layer was not formed. 16 was produced.

<製造例17>
無機薄膜層を形成しなかったこと以外は製造例1と同様にして、ガスバリア性積層フィルムNo.17を作製した。
<Production Example 17>
A gas barrier laminate film No. 1 was prepared in the same manner as in Production Example 1 except that the inorganic thin film layer was not formed. 17 was produced.

<製造例18〜20>
ガスバリア性樹脂組成物層形成用塗工液を、ガスバリア性樹脂組成物層形成用塗工液No.11〜13に変更したこと以外は製造例1と同様にして、ガスバリア性積層フィルムNo.18〜20を作製した。
<Production Examples 18-20>
The gas barrier resin composition layer forming coating solution is referred to as gas barrier resin composition layer forming coating solution no. A gas barrier laminate film No. 1 was prepared in the same manner as in Production Example 1 except that the gas barrier laminate film was changed to 11-13. 18-20 were produced.

<製造例21>
ガスバリア性樹脂組成物層の厚さを、0.01μmに変更したこと以外は製造例1と同様にして、ガスバリア性積層フィルムNo.21を作製した。
<Production Example 21>
In the same manner as in Production Example 1 except that the thickness of the gas barrier resin composition layer was changed to 0.01 μm, the gas barrier laminate film No. 21 was produced.

<製造例22>
アンカーコート層の厚さを、0.01μmに変更したこと以外は製造例1と同様にして、ガスバリア性積層フィルムNo.22を作製した。
<Production Example 22>
A gas barrier laminate film No. 1 was prepared in the same manner as in Production Example 1 except that the thickness of the anchor coat layer was changed to 0.01 μm. 22 was produced.

<製造例23>
ガスバリア性樹脂組成物層の厚さを、0.7μmに変更したこと以外は製造例1と同様にして、ガスバリア性積層フィルムNo.23を作製した。
<Production Example 23>
In the same manner as in Production Example 1 except that the thickness of the gas barrier resin composition layer was changed to 0.7 μm, the gas barrier laminate film No. 23 was produced.

作製したガスバリア性積層フィルムNo.1〜23の構成及びこれらの評価結果を表1,2に示した。   The produced gas barrier laminate film No. The structures 1 to 23 and the evaluation results thereof are shown in Tables 1 and 2.

Figure 0005712723
Figure 0005712723

Figure 0005712723
Figure 0005712723

ガスバリア性積層フィルムNo.1〜15、22は、本発明要件を満足するものである。これらのフィルムでは、レトルト処理後においても、ラミネート強度が高く、酸素透過度及び水蒸気透過度が低い値である。これらの中で、無機薄膜層とガスバリア性樹脂組成物層との間に厚さ0.3μmのアンカーコート層を有するガスバリア性積層フィルムNo.1〜15は、レトルト処理後のラミネート強度がより優れていた。   Gas barrier laminate film No. 1 to 15 and 22 satisfy the requirements of the present invention. These films have high laminate strength and low oxygen permeability and water vapor permeability even after retorting. Among these, the gas barrier laminate film No. 1 having an anchor coat layer having a thickness of 0.3 μm between the inorganic thin film layer and the gas barrier resin composition layer. 1-15 were more excellent in the lamination strength after a retort process.

ガスバリア性積層フィルムNo.16はガスバリア性樹脂組成物層を有さないもの、ガスバリア性積層フィルムNo.17は無機薄膜層を有さないもの、ガスバリア性積層フィルムNo.18はガスバリア性樹脂組成物が無機層状化合物を含有しない場合であるが、これらはいずれも酸素透過度及び水蒸気透過度が高い値である。   Gas barrier laminate film No. No. 16 does not have a gas barrier resin composition layer. No. 17 has no inorganic thin film layer. Although 18 is a case where a gas barrier resin composition does not contain an inorganic layered compound, these are values with high oxygen permeability and water vapor permeability.

ガスバリア性積層フィルムNo.19はガスバリア性樹脂としてPVAを用いた場合であるが、レトルト処理時にガスバリア性積層フィルムと無延伸ポリプロピレンフィルムとが剥離してしまった。ガスバリア性積層フィルムNo.20はガスバリア性樹脂組成物が添加剤を含有しない場合であるが、これはレトルト処理前の酸素透過度及び水蒸気透過度が高い値を示し、且つ、ラミネート強度が非常に弱かった。   Gas barrier laminate film No. Although 19 is a case where PVA is used as a gas barrier resin, the gas barrier laminate film and the unstretched polypropylene film were peeled off during the retort treatment. Gas barrier laminate film No. No. 20 is a case where the gas barrier resin composition does not contain an additive. This showed high values of oxygen permeability and water vapor permeability before retort treatment, and the laminate strength was very weak.

ガスバリア性積層フィルムNo.21は、ガスバリア性樹脂組成物層の厚さが0.05μm未満の場合であるが、レトルト処理後の酸素透過度が高くなった。すなわち、レトルト処理後のガスバリア性が低下した。ガスバリア性積層フィルムNo.23は、ガスバリア性樹脂組成物層の厚さが0.5μmを超える場合であるが、レトルト処理後のラミネート強度が非常に弱かった。   Gas barrier laminate film No. 21 is the case where the thickness of the gas barrier resin composition layer is less than 0.05 μm, but the oxygen permeability after the retort treatment was increased. That is, the gas barrier property after the retort treatment was lowered. Gas barrier laminate film No. No. 23 is a case where the thickness of the gas barrier resin composition layer exceeds 0.5 μm, but the laminate strength after the retort treatment was very weak.

4.太陽電池バックシート用積層シートの作製
4−1.原料ポリエステル樹脂の重合
(ポリエステル樹脂(a)の重合)
エステル化反応缶を昇温し、200℃に到達した時点で、高純度テレフタル酸を86.4質量部及びエチレングリコールを64.4質量部からなるスラリーを仕込み、攪拌しながら触媒として三酸化アンチモンを0.03質量部、トリエチルアミンを0.16質量部添加した。次いで、加圧昇温を行いゲージ圧343kPa(3.5kgf/cm2)、240℃の条件で、加圧エステル化反応を行った。その後、エステル化反応缶内を常圧に戻した。
15分後、得られたエステル化反応生成物を重縮合反応缶に移送し、280℃の減圧下で固有粘度が0.65dl/gに到達するまで重縮合反応を行った。
重縮合にて得られたポリエチレンテレフタレートを常法に従ってチップ化しポリエステルを得た。この際、溶融樹脂を約275℃に保った状態で、濾過粒子サイズ(初期濾過効率95%)5μmのステンレス焼結体フィルターを用いて、樹脂中に含まれる異物を除去するために高精度濾過を行った。
4). Production of laminated sheet for solar battery backsheet 4-1. Polymerization of raw material polyester resin (polymerization of polyester resin (a))
When the temperature of the esterification reactor was raised to 200 ° C., a slurry consisting of 86.4 parts by mass of high-purity terephthalic acid and 64.4 parts by mass of ethylene glycol was charged, and antimony trioxide as a catalyst while stirring. 0.03 part by mass and 0.16 part by mass of triethylamine were added. Subsequently, the pressure was increased and the pressure esterification reaction was performed under the conditions of a gauge pressure of 343 kPa (3.5 kgf / cm 2 ) and 240 ° C. Thereafter, the inside of the esterification reaction can was returned to normal pressure.
After 15 minutes, the resulting esterification reaction product was transferred to a polycondensation reaction can and subjected to a polycondensation reaction under reduced pressure at 280 ° C. until the intrinsic viscosity reached 0.65 dl / g.
Polyethylene terephthalate obtained by polycondensation was chipped according to a conventional method to obtain polyester. At this time, in a state where the molten resin is maintained at about 275 ° C., a high-precision filtration is performed to remove foreign matters contained in the resin using a stainless sintered filter having a filtration particle size (initial filtration efficiency of 95%) of 5 μm. Went.

(ポリエステル樹脂(b)の重合)
エステル化反応缶を昇温し、200℃に到達した時点で、高純度テレフタル酸を86.4質量部及びエチレングリコールを64.4質量部からなるスラリーを仕込み、攪拌しながら触媒として三酸化アンチモンを0.03質量部、トリエチルアミンを0.16質量部、平均粒径2.5μmのシリカ粒子のエチレングリコールスラリーを、生成PETに対し、2000ppmとなるよう添加した。次いで、加圧昇温を行いゲージ圧343kPa(3.5kgf/cm2)、240℃の条件で、加圧エステル化反応を行った。その後、エステル化反応缶内を常圧に戻した。
15分後、得られたエステル化反応生成物を重縮合反応缶に移送し、280℃の減圧下で固有粘度が0.65dl/gに到達するまで重縮合反応を行った。
重縮合にて得られたポリエチレンテレフタレートを常法に従ってチップ化しポリエステルを得た。この際、溶融樹脂を約275℃に保った状態で、濾過粒子サイズ(初期濾過効率95%)20μmのステンレス焼結体フィルターを用いて、樹脂中に含まれる異物を除去するために高精度濾過を行った。
(Polymerization of polyester resin (b))
When the temperature of the esterification reactor was raised to 200 ° C., a slurry consisting of 86.4 parts by mass of high-purity terephthalic acid and 64.4 parts by mass of ethylene glycol was charged, and antimony trioxide as a catalyst while stirring. 0.03 part by mass, 0.16 part by mass of triethylamine, and an ethylene glycol slurry of silica particles having an average particle diameter of 2.5 μm were added to 2000 ppm with respect to the generated PET. Subsequently, the pressure was increased and the pressure esterification reaction was performed under the conditions of a gauge pressure of 343 kPa (3.5 kgf / cm 2 ) and 240 ° C. Thereafter, the inside of the esterification reaction can was returned to normal pressure.
After 15 minutes, the resulting esterification reaction product was transferred to a polycondensation reaction can and subjected to a polycondensation reaction under reduced pressure at 280 ° C. until the intrinsic viscosity reached 0.65 dl / g.
Polyethylene terephthalate obtained by polycondensation was chipped according to a conventional method to obtain polyester. At this time, with the molten resin kept at about 275 ° C., a high-precision filtration is performed to remove foreign substances contained in the resin by using a stainless sintered filter having a filtration particle size (initial filtration efficiency 95%) of 20 μm. Went.

4−2.ポリエステル基材フィルムの製造
ポリエステル樹脂(a)及びポリエステル樹脂(b)を、それぞれ回転型真空重合装置を用い、66Pa(0.5mmHg)の減圧下、220℃で固相重合を行い、固有粘度0.75dl/gのポリエステル樹脂(A)及びポリエステル樹脂(B)を得た。
4-2. Manufacture of polyester base film Polyester resin (a) and polyester resin (b) were each solid-phase polymerized at 220 ° C. under a reduced pressure of 66 Pa (0.5 mmHg) using a rotary vacuum polymerization apparatus. A polyester resin (A) and a polyester resin (B) of .75 dl / g were obtained.

基材フィルムの中間層用原料としてポリエステル樹脂(A)を135℃で6時間減圧乾燥(133Pa(1Torr))した後、押出機2(中間層B層用)に供給し、ポリエステル樹脂(A)とポリエステル樹脂(B)を平均粒径2.5μmのシリカ粒子濃度が0.06質量%になるように配合したものを、押出機1(外層A層用)に供給し、それぞれ285℃で溶解した。この2つのポリエステル樹脂を、それぞれステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、3層合流ブロックにて、積層し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化し、未延伸フィルムを作った。この時、A層/B層/A層の厚さの比は1.5:7:1.5となるように各押し出し機の吐出量を調整した。また、この時の押し出し機内における溶融樹脂の滞留時間は15分間であった。次にこの未延伸フィルムを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後、周速差のあるロール群で長手方向に3.5倍延伸して一軸配向PETフィルムを得た。   The polyester resin (A) as a raw material for the intermediate layer of the base film is dried under reduced pressure at 135 ° C. for 6 hours (133 Pa (1 Torr)) and then supplied to the extruder 2 (for the intermediate layer B layer). And polyester resin (B) blended so that the silica particle concentration with an average particle diameter of 2.5 μm is 0.06% by mass is supplied to the extruder 1 (for outer layer A layer) and dissolved at 285 ° C. respectively. did. These two polyester resins are filtered through a filter medium made of a sintered stainless steel (nominal filtration accuracy of 10 μm particles, 95% cut), laminated in a three-layer confluence block, extruded into a sheet form from a die, and then electrostatically The film was wound around a casting drum having a surface temperature of 30 ° C. using an applied casting method and solidified by cooling to produce an unstretched film. At this time, the discharge amount of each extruder was adjusted so that the ratio of the thickness of A layer / B layer / A layer was 1.5: 7: 1.5. At this time, the residence time of the molten resin in the extruder was 15 minutes. Next, this unstretched film was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a peripheral speed difference to obtain a uniaxially oriented PET film.

得られた一軸配向PETフィルムを引き続き、フィルムの端部をクリップで把持しながら、温度120℃の熱風ゾーンに導き(予熱工程)、幅方向に4.3倍に延伸した(横延伸工程)。次に、幅方向に延伸された幅を保ったまま、最高温度235℃で熱固定処理し、30℃の冷却工程で幅方向に3%の緩和処理を行なった。なお、予熱工程、横延伸工程、熱固定工程における炉内の熱風風速は20m/秒とし、冷却工程の冷却風風速は10m/秒とした。また、熱風及び冷却風は濾過精度1μmのフィルターを通して循環させた。こうして厚さ50μmの二軸延伸ポリエステルフィルムに被覆層が形成されたポリエステル基材フィルムを得た。   The obtained uniaxially oriented PET film was continuously guided to a hot air zone at a temperature of 120 ° C. (preheating step) while being gripped by a clip, and stretched 4.3 times in the width direction (lateral stretching step). Next, while maintaining the width stretched in the width direction, heat setting treatment was performed at a maximum temperature of 235 ° C., and 3% relaxation treatment was performed in the width direction in a cooling process at 30 ° C. In the preheating process, the transverse stretching process, and the heat setting process, the hot air speed in the furnace was 20 m / second, and the cooling air speed in the cooling process was 10 m / second. The hot air and the cooling air were circulated through a filter having a filtration accuracy of 1 μm. Thus, a polyester base film in which a coating layer was formed on a biaxially stretched polyester film having a thickness of 50 μm was obtained.

4−3.積層シートの作製
ガスバリア性積層フィルムNo.1、21及びポリエステル基材フィルムを21cm×30cmに切り、ガスバリア性積層フィルムとポリエステル基材フィルムとをガスバリア性樹脂組成物層が内側になるように2枚重ね合わせて、ドライラミネーションした。
接着剤はドライラミネーション用ポリウレタン接着剤(大日本インキ化学工業社製 製品名:LX951/KMW70)を使い、接着剤量は3.5g/m2とした。エージング条件としては、室温エージング1日後、40℃でのエージングを1日施した。
4-3. Production of laminated sheet Gas barrier laminated film No. 1 1, 21 and the polyester base film were cut into 21 cm × 30 cm, and the gas barrier laminate film and the polyester base film were overlapped with each other so that the gas barrier resin composition layer was inside, followed by dry lamination.
The adhesive used was a polyurethane adhesive for dry lamination (manufactured by Dainippon Ink & Chemicals, Inc., product name: LX951 / KMW70), and the amount of adhesive was 3.5 g / m 2 . As aging conditions, after aging at room temperature for 1 day, aging at 40 ° C. was performed for 1 day.

4−4.評価
得られた太陽電池バックシート用積層シートに対して、温度121℃、湿度100%RH、気圧0.2MPaで30分間処理した後、40℃にて1日間乾燥した。
湿熱処理後の試料について、上記ラミネートガスバリア性積層フィルムの場合と同様にして、水蒸気透過度及び酸素透過度を測定した。なお、水蒸気透過度測定において積層シートへの調湿は、ガスバリア性積層フィルムを構成するプラスチックフィルム側から無機薄膜層側に水蒸気が透過する方向とした。結果を表3に示した。
4-4. Evaluation The obtained laminated sheet for solar cell backsheet was treated at a temperature of 121 ° C., a humidity of 100% RH, and an atmospheric pressure of 0.2 MPa for 30 minutes, and then dried at 40 ° C. for 1 day.
With respect to the sample after the wet heat treatment, the water vapor permeability and the oxygen permeability were measured in the same manner as in the case of the laminated gas barrier laminate film. In the measurement of water vapor permeability, humidity adjustment to the laminated sheet was performed in such a direction that water vapor permeates from the plastic film side constituting the gas barrier laminated film to the inorganic thin film layer side. The results are shown in Table 3.

Figure 0005712723
Figure 0005712723

本発明により、酸素、水蒸気等に対する高いガスバリア性を持ちながら層間接着力が高くラミネート強度に優れたガスバリア性積層フィルムが得られる。特に、レトルト処理を行ってもガスバリア性、層間接着力の低下が少なく、各種用途に適した実用性の高いガスバリア性積層フィルムを得ることができる。また、生産安定性に優れ、均質の特性が得られやすいガスバリア性積層フィルムとなる。   According to the present invention, a gas barrier laminate film having a high gas barrier property against oxygen, water vapor, etc. and having a high interlayer adhesion and an excellent laminate strength can be obtained. In particular, even if a retort treatment is performed, the gas barrier property and interlayer adhesive force are hardly lowered, and a highly practical gas barrier laminate film suitable for various applications can be obtained. Moreover, it becomes the gas barrier laminated film which is excellent in production stability and is easy to obtain uniform characteristics.

本発明のガスバリア性フィルムは、レトルト用の食品包装にとどまらず、各種食品や医薬品、工業製品の包装用途、高温高湿の環境下に置かれたり長期の安定したガスバリア性、耐久性が求められる太陽電池、電子ペーパー、有機EL素子、半導体素子、等の工業用途にも広く用いることができる。   The gas barrier film of the present invention is not limited to food packaging for retorts, but is used for packaging of various foods, pharmaceuticals, and industrial products, and is required to be placed in a high-temperature and high-humidity environment and have long-term stable gas barrier properties and durability. It can be widely used for industrial applications such as solar cells, electronic paper, organic EL elements, and semiconductor elements.

Claims (9)

プラスチックフィルムの少なくとも一方の表面に、無機薄膜層及びガスバリア性樹脂組成物層が、他の層を介して又は介さずにこの順に積層されたガスバリア性積層フィルムのガスバリア性樹脂組成物層側に、ポリエステル基材フィルム積層されており、
前記ガスバリア性樹脂組成物層が、エチレン−ビニルアルコール系共重合体からなるガスバリア性樹脂と無機層状化合物と添加剤とからなるガスバリア性樹脂組成物から形成され、
該ガスバリア性樹脂組成物中の無機層状化合物の含有量が0.1質量%〜9.0質量%であり、かつ、前記添加剤がカップリング剤及び/又は架橋剤であり、
前記ガスバリア性樹脂組成物層の厚さが0.05μm〜0.5μmであることを特徴とする太陽電池バックシート用積層体。
On the gas barrier resin composition layer side of the gas barrier laminate film in which the inorganic thin film layer and the gas barrier resin composition layer are laminated in this order with or without other layers on at least one surface of the plastic film , Polyester base film is laminated ,
The gas barrier resin composition layer is formed from a gas barrier resin composition comprising a gas barrier resin comprising an ethylene-vinyl alcohol copolymer, an inorganic layered compound, and an additive,
The content of the inorganic layered compound in the gas barrier resin composition is 0.1% by mass to 9.0% by mass, and the additive is a coupling agent and / or a crosslinking agent,
A laminate for a solar battery back sheet, wherein the gas barrier resin composition layer has a thickness of 0.05 μm to 0.5 μm .
前記無機層状化合物が、スメクタイトである請求項1に記載の太陽電池バックシート用積層体。The laminate for a solar battery backsheet according to claim 1, wherein the inorganic layered compound is smectite. 前記カップリング剤が、有機官能基を少なくとも1種類以上有するシランカップリング剤である請求項1又は2に記載の太陽電池バックシート用積層体。The laminate for a solar cell backsheet according to claim 1 or 2, wherein the coupling agent is a silane coupling agent having at least one organic functional group. 前記架橋剤として、水素結合性基用架橋剤を含有する請求項1〜3のいずれかに記載の太陽電池バックシート用積層体。The laminated body for solar cell backsheets in any one of Claims 1-3 containing the crosslinking agent for hydrogen bondable groups as said crosslinking agent. 前記ガスバリア性樹脂組成物中の添加剤(カップリング剤及び/又は架橋剤)の合計含有量が、0.3質量%〜20質量%である請求項1〜4のいずれかに記載の太陽電池バックシート用積層体。5. The solar cell according to claim 1, wherein a total content of additives (coupling agent and / or crosslinking agent) in the gas barrier resin composition is 0.3% by mass to 20% by mass. Laminate for back sheet. 前記無機薄膜層が、無機酸化物を少なくとも含有する請求項1〜5のいずれかに記載の太陽電池バックシート用積層体。The laminate for a solar battery backsheet according to any one of claims 1 to 5, wherein the inorganic thin film layer contains at least an inorganic oxide. 前記無機薄膜層と前記ガスバリア性樹脂組成物層との間に、厚さ0.05μm〜0.5μmのアンカーコート層を有する請求項1〜6のいずれかに記載の太陽電池バックシート用積層体。The laminated body for solar cell backsheets in any one of Claims 1-6 which have an anchor-coat layer with a thickness of 0.05 micrometer-0.5 micrometer between the said inorganic thin film layer and the said gas-barrier resin composition layer. . 前記アンカーコート層を形成するためのアンカーコート剤樹脂組成物が、有機官能基を少なくとも1種類以上有するシランカップリング剤を含有している請求項7に記載の太陽電池バックシート用積層体。The laminate for a solar battery backsheet according to claim 7, wherein the anchor coat agent resin composition for forming the anchor coat layer contains a silane coupling agent having at least one organic functional group. 前記アンカーコート層を形成するためのアンカーコート剤樹脂組成物中の前記シランカップリング剤の添加量が0.1質量%〜10質量%である請求項8に記載の太陽電池バックシート用積層体。The laminate for a solar battery backsheet according to claim 8, wherein the amount of the silane coupling agent added in the anchor coat agent resin composition for forming the anchor coat layer is 0.1 mass% to 10 mass%. .
JP2011066788A 2010-03-26 2011-03-24 Laminate for solar cell backsheet Active JP5712723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011066788A JP5712723B2 (en) 2010-03-26 2011-03-24 Laminate for solar cell backsheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010073681 2010-03-26
JP2010073681 2010-03-26
JP2011066788A JP5712723B2 (en) 2010-03-26 2011-03-24 Laminate for solar cell backsheet

Publications (2)

Publication Number Publication Date
JP2011218803A JP2011218803A (en) 2011-11-04
JP5712723B2 true JP5712723B2 (en) 2015-05-07

Family

ID=45036354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011066788A Active JP5712723B2 (en) 2010-03-26 2011-03-24 Laminate for solar cell backsheet

Country Status (1)

Country Link
JP (1) JP5712723B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3681426B2 (en) * 1994-01-26 2005-08-10 住友化学株式会社 Laminated film
JP4743354B2 (en) * 1999-03-15 2011-08-10 大日本印刷株式会社 Laminated material and packaging container using the same

Also Published As

Publication number Publication date
JP2011218803A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5668459B2 (en) Gas barrier laminated film
KR101389222B1 (en) Gas-barrier multilayer film
WO2018159649A1 (en) Laminate provided with heat-sealable resin layer and polyester film having furandicarboxylic acid unit, and packaging bag
JP2011218805A (en) Gas barrier laminated film
JP2011224981A (en) Laminated film
JP5434341B2 (en) Gas barrier laminated film
KR20220104181A (en) laminated film
US20240336048A1 (en) Laminated film for forming inorganic thin film layer
JP2011218804A (en) Gas barrier laminated film, laminate gas barrier laminated film, and package
JP7359235B2 (en) laminate laminate
JP2024116150A (en) Packaging material
JP2013006283A (en) Laminated film
JP5598051B2 (en) Laminated gas barrier laminate film and package
JP5712723B2 (en) Laminate for solar cell backsheet
JP7231004B2 (en) laminate laminate
JP2012126112A (en) Gas barrier laminated film
WO2023219021A1 (en) Multilayer packaging material
JP5375014B2 (en) Gas barrier laminated film
WO2024058167A1 (en) Packaging material
EP4279270A1 (en) Multilayer film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150223

R151 Written notification of patent or utility model registration

Ref document number: 5712723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350