JP5709238B2 - Mold with release film - Google Patents
Mold with release film Download PDFInfo
- Publication number
- JP5709238B2 JP5709238B2 JP2010017347A JP2010017347A JP5709238B2 JP 5709238 B2 JP5709238 B2 JP 5709238B2 JP 2010017347 A JP2010017347 A JP 2010017347A JP 2010017347 A JP2010017347 A JP 2010017347A JP 5709238 B2 JP5709238 B2 JP 5709238B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- release film
- molding
- nitride
- platinum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 67
- 229910052697 platinum Inorganic materials 0.000 claims description 38
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 37
- 238000000465 moulding Methods 0.000 claims description 37
- 150000004767 nitrides Chemical class 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 19
- 229910000510 noble metal Inorganic materials 0.000 claims description 19
- 239000011347 resin Substances 0.000 claims description 17
- 229920005989 resin Polymers 0.000 claims description 17
- 229910052763 palladium Inorganic materials 0.000 claims description 15
- 239000011521 glass Substances 0.000 claims description 5
- 238000001746 injection moulding Methods 0.000 claims description 5
- 238000001721 transfer moulding Methods 0.000 claims description 4
- 239000010408 film Substances 0.000 description 98
- -1 platinum nitride Chemical class 0.000 description 20
- 229910052751 metal Inorganic materials 0.000 description 19
- 239000002184 metal Substances 0.000 description 19
- 239000010931 gold Substances 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 239000011651 chromium Substances 0.000 description 14
- 239000010948 rhodium Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 10
- 229910052737 gold Inorganic materials 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 230000007547 defect Effects 0.000 description 8
- 229910052702 rhenium Inorganic materials 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 7
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 7
- 229910052804 chromium Inorganic materials 0.000 description 7
- 229910052741 iridium Inorganic materials 0.000 description 7
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 7
- 229910052762 osmium Inorganic materials 0.000 description 7
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 7
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 7
- 229910052703 rhodium Inorganic materials 0.000 description 7
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 7
- 229910052707 ruthenium Inorganic materials 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 238000005121 nitriding Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920005497 Acrypet® Polymers 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910000691 Re alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- YEWLVPDHCCERJH-UHFFFAOYSA-N [Re].[Ir] Chemical compound [Re].[Ir] YEWLVPDHCCERJH-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 1
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000004554 molding of glass Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002061 nanopillar Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/56—Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
- B29C33/68—Release sheets
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
- C03B11/084—Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
- C03B11/086—Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/14—Die top coat materials, e.g. materials for the glass-contacting layers
- C03B2215/22—Non-oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/30—Intermediate layers, e.g. graded zone of base/top material
- C03B2215/32—Intermediate layers, e.g. graded zone of base/top material of metallic or silicon material
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Description
本発明は、離型性の良好な金型を実現するための離型膜に関する。本発明は、特に、ナノメートルサイズの凹凸を持つ金型の離型性改善に有効な離型膜に関する。本発明の離型膜を有する金型は、たとえば、ナノ構造体で構成された反射防止成形品の製造、ナノピラーが形成されたバイオチップ、マイクロメートルサイズの凹凸が形成された導光板など、微細凹凸の成形において有用である。 The present invention relates to a release film for realizing a mold having good releasability. In particular, the present invention relates to a release film effective for improving the release property of a mold having nanometer-size irregularities. The mold having the release film of the present invention is, for example, a fine antireflection molded product composed of nanostructures, a biochip with nanopillars, a light guide plate with micrometer-sized irregularities, and the like. This is useful in forming irregularities.
従来より、微細な凹凸が表面に形成された金型または高い面精度が要求される金型などを用いて成形品を製造する場合、成形金型とプラスチック樹脂またはガラスなどの成形品との離型性が不十分であることに起因して、成形品に不良が発生することが問題になっている。 Conventionally, when a molded product is manufactured using a mold having fine irregularities formed on the surface or a mold that requires high surface accuracy, the mold is not separated from a molded product such as plastic resin or glass. Due to inadequate moldability, it has been a problem that defects occur in molded products.
一般に、金型と成形品との離型性を向上させるために、金型の最表面に離型層を形成することが行われている。具体的には、母材としてタングステンカーバイド(WC)を主成分とする超硬合金、またはチタンニトリド(TiN)、クロムカーバイド(Cr3C2)、アルミナ(Al2O3)を主成分とするサーメット、またはクロム(Cr)、モリブデン(Mo)、ニッケル(Ni)、コバルト(Co)、タングステン(W)、チタン(Ti)、ステンレス(SUS)、シリコンカーバイド(SiC)などで作製された金型の表面に、金属、炭化物、または窒化物からなる中間層を組み合わせ、最表面に、フッ素系の有機材料、あるいは白金(Pt),パラジウム(Pd)、イリジウム(Ir)、ロジウム(Rh),オスミウム(Os)、ルテニウム(Ru)、レニウム(Re)、タングステン(W)などの無機材料(特許文献1〜3参照)で構成される離型層を設けて、金型の離型性向上を実現している。 In general, a mold release layer is formed on the outermost surface of the mold in order to improve the mold releasability between the mold and the molded product. Specifically, a cemented carbide mainly composed of tungsten carbide (WC) as a base material, or cermet mainly composed of titanium nitride (TiN), chromium carbide (Cr 3 C 2 ), and alumina (Al 2 O 3 ). Or a mold made of chromium (Cr), molybdenum (Mo), nickel (Ni), cobalt (Co), tungsten (W), titanium (Ti), stainless steel (SUS), silicon carbide (SiC), etc. An intermediate layer made of metal, carbide, or nitride is combined on the surface, and a fluorine-based organic material or platinum (Pt), palladium (Pd), iridium (Ir), rhodium (Rh), osmium (on the outermost surface) Os), ruthenium (Ru), rhenium (Re), composed of inorganic materials such as tungsten (W) (see Patent Documents 1 to 3) That provided a release layer, thereby realizing a releasability improving the mold.
しかしながら、金型表面に微細凹凸が形成されたような複雑な金型になると、離型性の向上は、これらの手法では十分に解決されていないのが現状である。 However, the present situation is that the improvement of releasability is not sufficiently solved by these methods when the mold has a complicated mold in which fine irregularities are formed on the mold surface.
たとえば、ナノ構造体で実現できる反射防止構造(モスアイ型反射防止構造など)、光ディスク基板、グレーティングなどのナノメートルサイズの凹凸が付与された金型表面に、前述した離型膜を付与した場合、より良好な離型性(成形性)、離型膜の優れた繰り返し耐久性(薄膜の硬さ、薄膜の密着、クラッキング強度)など、全ての要求をすべて満足するものは得られていない。 For example, when the above-described release film is applied to a mold surface provided with nanometer-sized irregularities such as an antireflection structure (such as a moth-eye type antireflection structure) that can be realized with a nanostructure, an optical disk substrate, a grating, A material satisfying all the requirements such as better release properties (moldability) and excellent repeated durability of the release film (thin film hardness, thin film adhesion, cracking strength) has not been obtained.
すなわち、ナノメートルサイズの凹凸を有する金型の最表面(成形面)に有機材料からなる離型層を付与した場合には、良好な離型性を実現できる利点はある。しかしながら、有機材料からなる離型層は繰り返し耐久性が十分ではなく、成形できる回数が少ないという問題がある。一方、白金(Pt),パラジウム(Pd)、イリジウム(Ir)、ロジウム(Rh),オスミウム(Os)、ルテニウム(Ru)、レニウム(Re)、タングステン(W)などの無機材料からなる離型層においては、繰り返し耐久性などは得られるが、良好な離形性などが実現出来ないことが課題となっている。 That is, when a mold release layer made of an organic material is provided on the outermost surface (molding surface) of a mold having nanometer-sized irregularities, there is an advantage that good mold release properties can be realized. However, the release layer made of an organic material has a problem that the repetition durability is not sufficient and the number of times it can be molded is small. On the other hand, a release layer made of an inorganic material such as platinum (Pt), palladium (Pd), iridium (Ir), rhodium (Rh), osmium (Os), ruthenium (Ru), rhenium (Re), tungsten (W), etc. However, there is a problem that good releasability cannot be realized, although repeated durability can be obtained.
そのため、現在では、樹脂の離形性を改善するなどの工夫をして成形を行っている。たとえば、成形に用いる樹脂中に離形性を向上させる添加剤の充填が行われている。しかしながら、一般に金型として求められる特性として、多くの種類の樹脂で成形できることが要求されるため、これら金型自体の離形性改善が更に求められている。 For this reason, at present, molding is performed by improving the mold release property of the resin. For example, an additive for improving releasability is filled in a resin used for molding. However, since it is generally required that molds can be molded with many types of resins as characteristics required for molds, improvement of mold releasability of these molds themselves is further required.
また、上述の薄膜の他に、窒化チタン(TiN)、窒化クロム(CrN)、窒化タンタル(TaN)、窒化カーボン(CN)、窒化ニオブ(NbN)などが、優れた離形性を示す薄膜として知られている(特許文献4〜6参照)。しかしながら、これらも、微細な凹凸を持つ金型の離型性を向上する離型膜としては十分とは言えず、特に可視域の波長以下の間隔で構成されたナノメートルサイズの凹凸が表面に形成された反射防止機能付与用の金型に用いた場合には、離型性が不良になり、十分な低反射特性を有する成形品を得ることが出来ない。 In addition to the above-described thin films, titanium nitride (TiN), chromium nitride (CrN), tantalum nitride (TaN), carbon nitride (CN), niobium nitride (NbN), and the like are thin films exhibiting excellent releasability. It is known (see Patent Documents 4 to 6). However, these are also not sufficient as a release film for improving the mold releasability of a mold having fine irregularities, and nanometer-sized irregularities formed at intervals below the wavelength in the visible range are formed on the surface. When used in the formed antireflection function-providing mold, the releasability becomes poor and a molded product having sufficient low reflection characteristics cannot be obtained.
本発明は、良好な離型性と成形の繰り返し耐久性などの向上を実現し、良好な成形品を生産できる離型膜を提供するものである。特に、ナノメートルサイズの凹凸を持った金型(反射防止金型など)に対し、従来の離型膜に比べて、飛躍的に良好な離型性を実現し、かつ繰り返し耐久性を実現することを目的としている。 The present invention provides a release film that achieves good mold releasability and improved molding durability, and can produce a good molded product. In particular, for molds with irregularities of nanometer size (such as anti-reflection molds), it achieves releasably better release properties and repeatability compared to conventional release films. The purpose is that.
上記問題を解決するために、本発明では、スパッタやPVDなどの真空成膜装置で作製した貴金属の窒化物、すなわち、白金(Pt)、パラジウム(Pd)、金(Au)、ロジウム(Rh),オスミウム(Os)、ルテニウム(Ru)、イリジウム(Ir)、レニウム(Re)またはそれらの合金の窒化物を離型膜として用いた。なかでも、窒化白金(Pt−N)は、特に優れた効果を有するものである。 In order to solve the above problem, in the present invention, a noble metal nitride produced by a vacuum film forming apparatus such as sputtering or PVD, that is, platinum (Pt), palladium (Pd), gold (Au), rhodium (Rh). , Osmium (Os), ruthenium (Ru), iridium (Ir), rhenium (Re) or their alloys nitrides were used as release films. Among these, platinum nitride (Pt—N) has a particularly excellent effect.
具体的には、本出願は、以下の発明を提供するものである。
(1)貴金属の窒化物を主成分として含む金型用離形膜。
(2)前記貴金属が、白金(Pt)、パラジウム(Pd)、金(Au)、ロジウム(Rh),オスミウム(Os)、ルテニウム(Ru)、イリジウム(Ir)、レニウム(Re)およびそれらの合金からなる群から選択されることを特徴とする、(1)に記載の離形膜。
(3)前記貴金属が、白金(Pt)であることを特徴とする、(2)に記載の離形膜。
(4)前記貴金属が、パラジウム(Pd)であることを特徴とする、(2)に記載の離形膜。
(5)前記貴金属が、イリジウム(Ir)−レニウム(Re)合金であることを特徴とする、(2)に記載の離形膜。
(6)母材と、表面に凹凸が形成された超硬層と、(1)から(5)のいずれかに記載の離型膜とを有することを特徴とする金型。
(7)前記金型が、樹脂成形用またはガラス成形用の金型であることを特徴とする(6)に記載の金型。
(8)前記金型が、射出成形用、プレス成形用、キャスト成形用、トランスファー成形用またはナノインプリント成形用の金型であることを特徴とする、(7)に記載の金型。
(9)前記金型が、微細な凹凸を持つ金型であることを特徴とする、(8)に記載の金型。
(10)前記金型が、反射防止構造を形成するためのナノメートルサイズの凹凸を有する金型であることを特徴とする、(9)に記載の金型。
Specifically, this application provides the following invention.
(1) A mold release film containing a noble metal nitride as a main component.
(2) The noble metal is platinum (Pt), palladium (Pd), gold (Au), rhodium (Rh), osmium (Os), ruthenium (Ru), iridium (Ir), rhenium (Re), and alloys thereof. The release film according to (1), wherein the release film is selected from the group consisting of:
(3) The release film according to (2), wherein the noble metal is platinum (Pt).
(4) The release film according to (2), wherein the noble metal is palladium (Pd).
(5) The release film according to (2), wherein the noble metal is an iridium (Ir) -rhenium (Re) alloy.
(6) A mold having a base material, a cemented carbide layer having irregularities formed on the surface, and a release film according to any one of (1) to (5).
(7) The mold according to (6), wherein the mold is a mold for resin molding or glass molding.
(8) The mold according to (7), wherein the mold is a mold for injection molding, press molding, cast molding, transfer molding, or nanoimprint molding.
(9) The mold according to (8), wherein the mold is a mold having fine unevenness.
(10) The mold according to (9), wherein the mold is a mold having irregularities of nanometer size for forming an antireflection structure.
白金(Pt)、パラジウム(Pd)、金(Au)、ロジウム(Rh),オスミウム(Os)、ルテニウム(Ru)、イリジウム(Ir)、レニウム(Re)、それらの合金などの貴金属の窒化物を用いた本発明の離形膜は、微細な凹凸を持つ金型の離型性を向上させる離形膜として有用である。そのため、本発明の離型膜は、樹脂成形、ガラス成形に有用であり、射出成形用金型、プレス成形用金型、キャスト成形用金型、トランスファー成形用金型、ナノインプリント成形用金型に付与する離形膜として適用が可能である。 Noble metal nitrides such as platinum (Pt), palladium (Pd), gold (Au), rhodium (Rh), osmium (Os), ruthenium (Ru), iridium (Ir), rhenium (Re), and alloys thereof The release film of the present invention used is useful as a release film for improving the release property of a mold having fine irregularities. Therefore, the release film of the present invention is useful for resin molding and glass molding, and is used for injection molding dies, press molding dies, cast molding dies, transfer molding dies, and nanoimprint molding dies. It can be applied as a release film to be applied.
はじめに、各種金属および合金、ならびにそれらの窒化物からなる離型膜の離型性について詳述する。 First, the releasability of a release film made of various metals and alloys and nitrides thereof will be described in detail.
第1表に各材料からなる離型膜の純水に対する接触角を示す。純水に対する接触角は、平板シリコンウエハの表面に膜厚200nmの中間層と、膜厚200nmの各種材料の離型層とを積層したサンプルを、協和界面化学社製のDM−300を用いて測定した。一般的に、接触角が大きい程、表面エネルギーが低いため密着力は弱くなる。そのため、接触角が大きいほど離型性が良い傾向を示す。 Table 1 shows the contact angle of the release film made of each material with respect to pure water. The contact angle with respect to pure water was determined by using DM-300 manufactured by Kyowa Interface Chemical Co., Ltd., a sample in which an intermediate layer having a thickness of 200 nm and a release layer of various materials having a thickness of 200 nm were laminated on the surface of a flat silicon wafer. It was measured. In general, the greater the contact angle, the lower the surface energy and the weaker the adhesion. Therefore, the larger the contact angle, the better the releasability.
第1表によると、白金(Pt)、パラジウム(Pd)、金(Au)、イリジウム−レニウム合金(Ir−Re)については、金属または合金よりも窒化物の接触角が大きくなり、窒化による離型性の向上が得られることがわかる。そのため、従来技術の白金(Pt),パラジウム(Pd)、金(Au)、ロジウム(Rh),オスミウム(Os)、ルテニウム(Ru)、レニウム(Re)などの貴金属をそのまま離型膜として用いた場合(特許文献1〜3参照)と比較して、これらの金属は窒化することで離型性を改善できる事が分かる。また、これらの材料を主成分とする合金および混合材料でも同様の効果が期待できる。 According to Table 1, for platinum (Pt), palladium (Pd), gold (Au), and iridium-rhenium alloy (Ir-Re), the contact angle of nitride is larger than that of metal or alloy, and separation by nitriding occurs. It can be seen that improved moldability is obtained. Therefore, noble metals such as platinum (Pt), palladium (Pd), gold (Au), rhodium (Rh), osmium (Os), ruthenium (Ru), rhenium (Re), etc., are used as they are as the release film. Compared with the case (refer patent documents 1-3), it turns out that these metals can improve mold release property by nitriding. Similar effects can be expected with alloys and mixed materials containing these materials as main components.
一方、従来技術の離型膜に用いられているタングステン(W)の金属(特許文献1〜3参照)、ならびにチタン(Ti)、タンタル(Ta)およびニオブ(Nb)の窒化物(特許文献4〜7参照)について、第1表の金属および窒化物の接触角を比較した場合、窒化により必ずしも接触角が大きくなるとは限らず、むしろ減少するものも多い。このことから、これらの金属においては、窒化により離型性が向上する結果が必ずしも得られないことが分かる。 On the other hand, tungsten (W) metal (see Patent Documents 1 to 3) and nitrides of titanium (Ti), tantalum (Ta) and niobium (Nb) used in the conventional release film (Patent Document 4) When the contact angles of the metals and nitrides in Table 1 are compared, the contact angle is not necessarily increased by nitriding, but is often decreased. From this, it can be seen that these metals do not always have the result of improving the releasability by nitriding.
従って、貴金属の離型膜において、窒化により接触角が向上し、離型性の向上を図ることができることは、予想しがたい格別のことといえる。 Therefore, in the noble metal release film, the contact angle is improved by nitriding and the release property can be improved.
表1の結果から、本発明の貴金属窒化物を含む離型膜のうち、窒化白金(Pt−N)または窒化パラジウム(Pd−N)を主成分として含む離型膜、あるいは、窒化白金または窒化パラジウムを混合材料として含む離型膜は、上述の従来技術の離型膜にくらべ、特に良好な離型性が得られる事が分かる。また、金(Au)、ロジウム(Rh),オスミウム(Os)、ルテニウム(Ru)、イリジウム(Ir)、レニウム(Re)の窒化物を主成分として含む離型膜、あるいは、それら金属の窒化物を混合材料として含む離型膜でも同様の効果が確認できた。 From the results in Table 1, among the release films containing the noble metal nitride of the present invention, the release film containing platinum nitride (Pt—N) or palladium nitride (Pd—N) as a main component, or platinum nitride or nitride It can be seen that a release film containing palladium as a mixed material can provide particularly good release properties compared to the above-described conventional release films. Further, a release film containing nitrides of gold (Au), rhodium (Rh), osmium (Os), ruthenium (Ru), iridium (Ir) and rhenium (Re) as a main component, or nitrides of these metals The same effect could be confirmed with a release film containing as a mixed material.
加えて、前述の離型膜の繰り返し耐久性について、直径30mmの平板金型の表面に中間層を介して、膜厚50nmの離型膜を形成したサンプルの金型を用いて反復して成形を行い、成形回数(10,000回)による金型表面の樹脂汚染、ならびに成形不良によって発生する成形品の意匠面の点欠陥の発生から評価を行った。ここで、成形樹脂としてポリカーボネート、ゼオネックス(登録商標、シクロオレフィンポリマー樹脂)、アクリルなどを用いて評価を繰り返した。これら成形樹脂の評価を総合して、繰り返し耐久性の評価とした。 In addition, with regard to the repeated durability of the aforementioned release film, it is repeatedly formed using a sample mold in which a release film having a thickness of 50 nm is formed on the surface of a flat plate mold having a diameter of 30 mm via an intermediate layer. Then, evaluation was performed from the occurrence of resin contamination on the mold surface due to the number of moldings (10,000 times) and the occurrence of point defects on the design surface of the molded product caused by molding defects. Here, the evaluation was repeated using polycarbonate, ZEONEX (registered trademark, cycloolefin polymer resin), acrylic, and the like as the molding resin. The evaluations of these molding resins were combined to evaluate repeated durability.
本発明の貴金属の窒化物を主成分として含む離型膜は、離型膜の質量を基準として、
50%以上、好ましくは85%以上の貴金属の窒化物を含む。また、離型膜中に含まれる貴金属の窒化物は、質量比で10%以上、好ましくは30%以上の窒化物成分(N)を含むことが好ましい。本発明の離型膜は、その性能に悪影響を与えないことを条件として、微量の不純物を含んでもよい。
The release film containing the noble metal nitride of the present invention as a main component is based on the weight of the release film.
50% or more, preferably 85% or more of a noble metal nitride is included. Further, the noble metal nitride contained in the release film preferably contains a nitride component (N) of 10% or more, preferably 30% or more by mass ratio. The release film of the present invention may contain a small amount of impurities on condition that the performance is not adversely affected.
本発明の貴金属の窒化物からなる離型膜は、スパッタ法(反応性スパッタ法を含む)、PVD法などの真空成膜技術を用いて形成することができる。あるいはまた、ゾルゲル法などの他の技術を用いて貴金属の窒化物からなる離型膜を形成することができる。貴金属の窒化物の緻密な膜を形成できるという観点から、真空成膜技術を用いて離型膜を形成することが好ましい。 The release film made of the noble metal nitride of the present invention can be formed using a vacuum film formation technique such as sputtering (including reactive sputtering), PVD, or the like. Alternatively, a release film made of a noble metal nitride can be formed using other techniques such as a sol-gel method. From the viewpoint that a dense film of noble metal nitride can be formed, it is preferable to form a release film using a vacuum film forming technique.
本発明の離型膜は5nm〜200nmの膜厚を有することが望ましい。5nm未満の膜厚を有する離型膜は、離型性の向上には有効であるが、繰り返し耐久性の低下が発生する恐れがある。また、200nmを超える膜厚の離型膜においては、膜応力の影響による繰り返し耐久性の低下が発生する恐れがある。 The release film of the present invention desirably has a thickness of 5 nm to 200 nm. A release film having a film thickness of less than 5 nm is effective in improving mold release properties, but there is a risk that repeated durability will be lowered. Further, in a release film having a film thickness exceeding 200 nm, there is a risk that repeated durability may be lowered due to the influence of film stress.
本発明の離型膜を適用するための金型は、従来技術の方法で製造することができる(特許文献8および9参照)。 The metal mold | die for applying the release film of this invention can be manufactured by the method of a prior art (refer patent document 8 and 9).
次に、窒化白金膜を金型の離型膜として用いるための最良の実施形態について、可視域の波長間隔以下に制御された凹凸が表面に形成された反射防止構造作製用の金型を例に用いて、以下に詳述する。 Next, with respect to the best embodiment for using a platinum nitride film as a mold release film, an example of a mold for producing an antireflection structure in which unevenness controlled to be equal to or less than a wavelength interval in the visible range is formed on the surface And will be described in detail below.
最初に、ニッケル(Ni)、ステンレス(SUS)、タングステンカーバイド(WC)などの母材の表面に、チタン(Ti)、ニッケル(Ni)、クロム(Cr)などを用いて密着層を形成し、引き続いて超硬層を形成した。ここで、超硬層は、窒化シリコン、窒化チタン、ダイヤモンドライクカーボン(DLC)、窒化炭素などを用いて形成することが望ましい。続いて、超硬層の表面に、成形品に転写を行うためのナノメートルサイズの凹凸を形成する。反射防止構造の場合には、たとえば、300nm以下の間隔で制御された凹凸間隔で、高さ160nmの凹凸を形成する。これら超硬層へのナノメートルサイズの凹凸形成方法は、金、銀、白金、またはパラジウムのいずれかの金属、金、銀、白金、またはパラジウムのいずれかの金属を主成分とする合金、若しくは金、銀、白金、またはパラジウムのいずれかの金属酸化物を用いて加熱形成した金属ナノ粒子をマスク材料として用いて、ドライエッチング工程により超硬層をエッチングすることで、ナノメータサイズの凹凸を超硬層に作製した。ここで、非金属であるシリカコロイド、あるいは有機物の粒子などをマスク材料であるナノ粒子として用いることもできる。別法として、ナノ粒子でなく、他のリソグラフィー法で形成されるマスクを用いて超硬層のナノメートルサイズの凹凸を形成してもよい。さらなる別法として、超硬層の凹凸の形成のためのマスク材料として、アルミナのホールなどの自己組織化膜を用いることもできる。 First, an adhesion layer is formed on the surface of a base material such as nickel (Ni), stainless steel (SUS), tungsten carbide (WC) using titanium (Ti), nickel (Ni), chromium (Cr), Subsequently, a cemented carbide layer was formed. Here, the super hard layer is preferably formed using silicon nitride, titanium nitride, diamond-like carbon (DLC), carbon nitride, or the like. Subsequently, unevenness of nanometer size for transferring to the molded product is formed on the surface of the cemented carbide layer. In the case of the antireflection structure, for example, irregularities having a height of 160 nm are formed at irregularity intervals controlled at intervals of 300 nm or less. The nanometer-sized unevenness forming method on these super hard layers is a metal of any one of gold, silver, platinum, or palladium, an alloy mainly containing any of gold, silver, platinum, or palladium, or By using a metal nanoparticle heated by using a metal oxide of gold, silver, platinum, or palladium as a mask material, the carbide layer is etched by a dry etching process, so that the nanometer-sized irregularities can be increased. A hard layer was prepared. Here, non-metallic silica colloids or organic particles can be used as the nanoparticles as the mask material. As an alternative method, the nanometer-sized unevenness of the cemented carbide layer may be formed using a mask formed not by nanoparticles but by other lithography methods. As a further alternative, a self-assembled film such as an alumina hole can be used as a mask material for forming the irregularities of the cemented carbide layer.
超硬層表面にナノメートルサイズの凹凸を作製した後に、チタン(Ti)、ニッケル(Ni)、クロム(Cr)などからなる中間層を形成し、続いて窒化白金からなる離型膜を成膜することによって、ナノメートルサイズの凹凸を有し、その成形面に離型膜が形成された本発明の金型を得ることができる。同様にして、他の金属窒化物を主成分として含む離型膜を有する金型を得ることができる。 After producing nanometer-sized irregularities on the surface of the cemented carbide layer, an intermediate layer made of titanium (Ti), nickel (Ni), chromium (Cr), etc. is formed, followed by a release film made of platinum nitride. By doing so, the metal mold | die of this invention which has the unevenness | corrugation of nanometer size, and the release film was formed in the molding surface can be obtained. Similarly, a mold having a release film containing another metal nitride as a main component can be obtained.
本発明において、「ナノメートルサイズの凹凸」とは、1マイクロメートル未満の凹凸間隔および凹凸高さを有する凹凸を意味する。好ましくは、「ナノメートルサイズの凹凸」とは、700ナノメートル以下の凹凸間隔および凹凸高さを有する凹凸を意味する。より好ましくは、「ナノメートルサイズの凹凸」とは、可視域の光の波長以下である300ナノメートル以下の凹凸間隔および凹凸高さを有する凹凸を意味する。 In the present invention, “nanometer-sized unevenness” means unevenness having an unevenness interval and an unevenness height of less than 1 micrometer. Preferably, “nanometer-sized unevenness” means unevenness having an unevenness interval and an unevenness height of 700 nanometers or less. More preferably, “a nanometer-sized unevenness” means an unevenness having an unevenness interval and an unevenness height of 300 nanometers or less, which is not more than the wavelength of light in the visible range.
以上のように形成されたナノメートルサイズの凹凸を有し、その成形面に離型膜が形成された金型は、樹脂またはガラスの成形に用いることができる。上記の金型は、射出成形、プレス成形、キャスト成形、トランスファー成形、ナノインプリント成形などの技術において使用することができる。 A mold having nanometer-sized irregularities formed as described above and having a release film formed on its molding surface can be used for molding a resin or glass. Said metal mold | die can be used in techniques, such as injection molding, press molding, cast molding, transfer molding, and nanoimprint molding.
本実施例は、可視域の波長間隔以下に制御された凹凸が表面に形成された反射防止構造作製用の金型に関する。最初に、ニッケル母材表面にクロム(Cr)を用いて密着層を形成し、続いて窒化シリコンを用いて超硬層を形成した。続いて、金のナノ粒子をマスク材料とするドライエッチングによって、超硬層の表面に、100nmの凹凸間隔および160nmの凹凸高さを有する、ナノメートルサイズの凹凸を形成した。 The present embodiment relates to a mold for producing an antireflection structure in which unevenness controlled to be equal to or less than a wavelength interval in the visible range is formed on the surface. First, an adhesion layer was formed on the nickel base material surface using chromium (Cr), and then a super hard layer was formed using silicon nitride. Subsequently, nanometer-sized irregularities having an irregularity interval of 100 nm and an irregularity height of 160 nm were formed on the surface of the cemented carbide layer by dry etching using gold nanoparticles as a mask material.
超硬層表面にナノメートルサイズの凹凸を作製した後に、クロム(Cr)からなる膜厚5nmの中間層を形成し、続いて窒化白金からなる膜厚10nmの離型膜を成膜して、ナノメートルサイズの凹凸を有し、その成形面に離型膜が形成された金型を得た。ここで、反応性スパッタリング装置を用いて、中間層および窒化白金離型層を形成した。具体的には、クロムからなるターゲットを用いて、被成膜基板である超硬層にバイアス電圧を印加しながら、アルゴン雰囲気中でプラズマを発生させることにより、より緻密でピンホール(薄膜抜け)のないクロム(Cr)からなる中間層を形成した。この時の成膜圧力を0.5Paとし、成膜速度を0.3Å/秒とした。また、成膜時のRF電力は100Wであり、また基板へのバイアス電圧は25Wの条件で成膜を行った。続いて、白金ターゲットを用いて、被成膜基板である超硬層にバイアス電圧を印加しながら、窒素とアルゴン雰囲気中でプラズマを発生させ、窒素と白金とを反応させることによって、より緻密でピンホール(薄膜抜け)のない窒化白金からなる離型膜を形成した。この時の成膜圧力を0.5Paとし、成膜速度を2.9Å/秒とした。また、成膜時のRF電力は100Wであり、また基板へのバイアス電圧は25Wの条件で成膜を行った。同様の手法を用いて、第1表に示した金属または金属窒化物からなる離型膜を有する金型を製造した。ただし、金属からなる離型膜を形成する場合には、窒素を含まないアルゴン雰囲気中でスパッタ工程を行うことにより、離型膜を得た。 After producing nanometer-sized irregularities on the surface of the cemented carbide layer, an intermediate layer made of chromium (Cr) with a thickness of 5 nm is formed, and subsequently a release film made of platinum nitride with a thickness of 10 nm is formed, A mold having nanometer size irregularities and having a release film formed on the molding surface was obtained. Here, an intermediate layer and a platinum nitride release layer were formed using a reactive sputtering apparatus. Specifically, by using a target made of chromium and applying a bias voltage to the hard layer, which is the film formation substrate, while generating a plasma in an argon atmosphere, the pinhole (thin film removal) becomes more precise. An intermediate layer made of chromium (Cr) without any metal was formed. The film formation pressure at this time was 0.5 Pa, and the film formation rate was 0.3 Å / second. The film was formed under the conditions that the RF power during film formation was 100 W and the bias voltage to the substrate was 25 W. Subsequently, using a platinum target, a bias voltage is applied to the super hard layer, which is a film formation substrate, while plasma is generated in an atmosphere of nitrogen and argon, and nitrogen and platinum are reacted, thereby achieving a finer structure. A release film made of platinum nitride without pinholes (thin film loss) was formed. The film formation pressure at this time was 0.5 Pa, and the film formation rate was 2.9 K / sec. The film was formed under the conditions that the RF power during film formation was 100 W and the bias voltage to the substrate was 25 W. Using a similar method, a mold having a release film made of the metal or metal nitride shown in Table 1 was manufactured. However, when forming a release film made of metal, a release film was obtained by performing a sputtering process in an argon atmosphere not containing nitrogen.
続いて、上記のように得られた金型を用いた樹脂材料の成形を詳述する。成形には、全電動射出成形機(住友重機械工業株式会社製)を用いて、後で記述する成形条件で成形を行った。また、樹脂は、アクリペット(登録商標)VH(三菱レイヨン株式会社、アクリル樹脂)を用いた。成形には、金型温度100℃、樹脂温度280℃、保圧60mPaの条件を用いた。金型と樹脂材料との離型性が良好なほど、ナノメートルサイズの凹凸を忠実に成形することができるため、より良好な反射防止効果を実現することができる。また、反射防止効果とともに透過率も向上することから、良好な離型性を有する金型は、高透過性を示す光学レンズなどの製造に有用である。図1に、ナノメートルサイズの凹凸が表面に形成された反射防止構造作製用の金型を用い、離型膜として本発明の窒化白金膜を用いた場合、および従来技術の白金膜を用いた場合、離型膜を用いなかった場合の、成形品の光透過率を測定した結果を示した。図1において、従来の白金の離型膜を用いた結果と、本発明の窒化白金の離型膜を用いた結果を比較すると、窒化白金を離型層に用いることにより、より高透過率の成形品が得られていることが分かる。これは、金型と樹脂材料との離型性が向上した結果、良好な透過光学特性が得られたためである。また、成形を行った後の金型の表面の観察によって、ナノメートルサイズの凹凸に対する樹脂の離型性を評価した。この時のナノメートルサイズの凹凸に対する樹脂の離型性の判定基準は、意匠面の外観欠陥の発生が無く良好で、反射防止ナノ構造の金型を用いて成形した時の成形品の反射率特性が0.5%以下の場合を◎とし、意匠面の外観欠陥の発生が無く良好であるが、成形品の反射率特性が0.5%〜1%の離型膜を○、意匠面の外観欠陥の発生が無く良好であるが、成形品の反射率特性が1%〜2%の離型膜、若しくは、成形品の反射率特性が1%以下の特性を示すが、意匠面の外観欠陥の発生がある離型膜を△、意匠面の外観欠陥の発生があり、成形品の反射率特性が1%以上の離型膜を×と評価し結果を第1表に示した。 Subsequently, molding of the resin material using the mold obtained as described above will be described in detail. For the molding, molding was performed under molding conditions described later using an all-electric injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd.). As the resin, Acrypet (registered trademark) VH (Mitsubishi Rayon Co., Ltd., acrylic resin) was used. For molding, conditions of a mold temperature of 100 ° C., a resin temperature of 280 ° C., and a holding pressure of 60 mPa were used. The better the mold releasability between the mold and the resin material, the more accurately the nanometer-size irregularities can be formed, so that a better antireflection effect can be realized. In addition, since the transmittance is improved together with the antireflection effect, a mold having good releasability is useful for manufacturing an optical lens exhibiting high transmittance. FIG. 1 shows a case in which a metal mold for producing an antireflection structure having nanometer-sized irregularities formed on its surface is used, and the platinum nitride film of the present invention is used as a release film, and a conventional platinum film is used. In the case, the result of measuring the light transmittance of the molded product when no release film was used was shown. In FIG. 1, when the result of using the conventional platinum release film and the result of using the platinum nitride release film of the present invention are compared, the use of platinum nitride as the release layer increases the transmittance. It can be seen that a molded product is obtained. This is because good transmission optical characteristics were obtained as a result of improved mold release properties between the mold and the resin material. Moreover, the releasability of the resin with respect to the unevenness of nanometer size was evaluated by observing the surface of the mold after molding. The criteria for determining the releasability of the resin for nanometer-sized unevenness at this time is good without appearance defects on the design surface, and the reflectance of the molded product when molded using a mold with an antireflection nanostructure A case where the characteristic is 0.5% or less is marked as ◎, and there is no appearance defect on the design surface, which is good, but a mold release film having a reflectance property of 0.5% to 1% is indicated as ◯ This is good without appearance defects, but the molded product has a reflectance property of 1% to 2%, or the molded product has a reflectance property of 1% or less. A release film having appearance defects was evaluated as Δ, and a release film having appearance defects on the design surface and having a reflectance characteristic of 1% or more was evaluated as x, and the results are shown in Table 1.
図2に、本発明の窒化白金膜および従来例の白金膜を加熱した際の重量減を測定した結果を示す。図2に示すように、従来技術の白金を用いた場合には、耐熱性の限界は600℃程度であるのに対し、本発明の窒化白金からなる離型膜は、750℃程度までの耐熱性を有することが分かる。したがって、窒化白金からなる離型膜を用いることによって、ガラスなどのプレス成形に要求されるより高い温度での成形が可能となる。すなわち、貴金属の窒化物からなる本発明の離型膜は、離型性の向上に加えて、耐熱性の向上を達成できることが分かる。 FIG. 2 shows the results of measuring weight loss when the platinum nitride film of the present invention and the conventional platinum film are heated. As shown in FIG. 2, when platinum of the prior art is used, the heat resistance limit is about 600 ° C., whereas the release film made of platinum nitride of the present invention has a heat resistance up to about 750 ° C. It turns out that it has sex. Therefore, by using a release film made of platinum nitride, molding at a higher temperature required for press molding of glass or the like can be performed. That is, it can be seen that the release film of the present invention made of a noble metal nitride can achieve an improvement in heat resistance in addition to an improvement in the release property.
これらの結果により、窒化白金は離形膜として有用であり、金型の離型性を向上できることが分かる。特に、凹凸が微細かつ高アスペクト比(凹凸高さ/凹凸間隔が1以上)になると、一般に金型の離型性は著しく悪化するため、本発明の離型膜は、ナノメートルサイズの凹凸の転写を行うための離型膜として特に有用である。 From these results, it can be seen that platinum nitride is useful as a release film and can improve the mold release property. In particular, when the unevenness is fine and has a high aspect ratio (the unevenness height / unevenness interval is 1 or more), the mold release property of the mold is generally significantly deteriorated. Therefore, the release film of the present invention has nanometer-sized unevenness. It is particularly useful as a release film for transferring.
また、第1表に示すように、ナノメートルサイズの凹凸が形成された金型の離型膜として、図2に示した窒化白金離型膜以外にも、窒化パラジウムもまた、ナノメートルサイズの凹凸の転写を行うための離型膜として有用である。 As shown in Table 1, in addition to the platinum nitride release film shown in FIG. 2, palladium nitride is also a nanometer-sized release film as a mold release film having nanometer-size irregularities formed thereon. It is useful as a release film for transferring irregularities.
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010017347A JP5709238B2 (en) | 2010-01-28 | 2010-01-28 | Mold with release film |
PCT/JP2010/007532 WO2011092794A1 (en) | 2010-01-28 | 2010-12-24 | Release film for mold for forming fine structure, and mold equipped with same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010017347A JP5709238B2 (en) | 2010-01-28 | 2010-01-28 | Mold with release film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011152770A JP2011152770A (en) | 2011-08-11 |
JP5709238B2 true JP5709238B2 (en) | 2015-04-30 |
Family
ID=44318807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010017347A Active JP5709238B2 (en) | 2010-01-28 | 2010-01-28 | Mold with release film |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5709238B2 (en) |
WO (1) | WO2011092794A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6335812B2 (en) * | 2015-02-16 | 2018-05-30 | 三菱電機株式会社 | Mold for molding and manufacturing method thereof |
JP2017043444A (en) * | 2015-08-26 | 2017-03-02 | 横浜ゴム株式会社 | Manufacturing method of conveyor belt |
JP7210370B2 (en) * | 2019-04-26 | 2023-01-23 | 日本山村硝子株式会社 | Glass molding mold manufacturing method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62119128A (en) * | 1985-11-15 | 1987-05-30 | Matsushita Electric Ind Co Ltd | Forming of optical glass element |
JPH01115829A (en) * | 1987-10-27 | 1989-05-09 | Tanaka Kikinzoku Kogyo Kk | Forming mold for glass molded article |
JPH04265234A (en) * | 1991-02-18 | 1992-09-21 | Asahi Optical Co Ltd | Forming die for optical glass element |
JP2785888B2 (en) * | 1993-06-25 | 1998-08-13 | キヤノン株式会社 | Mold for optical element molding |
JPH07172849A (en) * | 1993-12-16 | 1995-07-11 | Matsushita Electric Ind Co Ltd | Mold for press-forming optical element and its production |
JP2004331457A (en) * | 2003-05-08 | 2004-11-25 | Pentax Corp | Molding die and its producing method |
JP4986138B2 (en) * | 2006-11-15 | 2012-07-25 | 独立行政法人産業技術総合研究所 | Method for manufacturing mold for optical element having antireflection structure |
-
2010
- 2010-01-28 JP JP2010017347A patent/JP5709238B2/en active Active
- 2010-12-24 WO PCT/JP2010/007532 patent/WO2011092794A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2011152770A (en) | 2011-08-11 |
WO2011092794A1 (en) | 2011-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI628516B (en) | Nano imprinting with reusable polymer template with metallic or oxide coating | |
JP5709238B2 (en) | Mold with release film | |
JP4739729B2 (en) | Method for manufacturing member having antireflection structure | |
CN100999383A (en) | Hard coating for glass molding and glass molding die having the hard coating | |
US20170151598A1 (en) | Imprinting Metallic Substrates at Hot Working Temperatures | |
Zhang et al. | Study on nano-graphitic carbon coating on Si mold insert for precision glass molding | |
JP2006051702A (en) | Method for manufacturing mold for molding optical element, mold for molding optical element, and optical element | |
Wei et al. | High quality anti-sticking coating based on multilayer structure | |
WO2019223109A1 (en) | Flexible nanoimprint template and manufacturing method therefor | |
WO2012157073A1 (en) | Surface-treated mold and mold surface treatment method | |
TWM275211U (en) | Mold kernel for molding glass | |
JP5579605B2 (en) | Mold and mold manufacturing method | |
JP6423056B1 (en) | Imprint mold and method for producing imprint mold | |
JP5376984B2 (en) | Mold for glass molding | |
JP4959306B2 (en) | Glass mold | |
JP2005343783A (en) | Mold | |
CN100419119C (en) | Superhard filming mold | |
JP6073624B2 (en) | Method for producing mold press mold, mold press mold, and method for producing glass optical element using the same | |
CN100370060C (en) | Mold with super hard coating | |
JP5098111B2 (en) | Method for producing mold for glass press | |
JP4720731B2 (en) | Mold | |
JP6175702B2 (en) | Carbon nanotube-containing fine crystal nickel plating film, resin molding fine mold and method | |
JP2005298325A (en) | Die having ultra-hard coating film | |
TWI337176B (en) | Mold for press-molding glass lens | |
TW200531942A (en) | Mold for molding glass optical articles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130128 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20130128 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20130128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140707 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5709238 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |