JP5708277B2 - Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery - Google Patents
Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP5708277B2 JP5708277B2 JP2011127342A JP2011127342A JP5708277B2 JP 5708277 B2 JP5708277 B2 JP 5708277B2 JP 2011127342 A JP2011127342 A JP 2011127342A JP 2011127342 A JP2011127342 A JP 2011127342A JP 5708277 B2 JP5708277 B2 JP 5708277B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- particles
- electrode active
- composite hydroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、非水系電解質二次電池用の正極活物質の前駆体であるニッケルマンガン複合水酸化物粒子とその製造方法、このニッケルマンガン複合水酸化物粒子を原料とする二次電池用正極活物質とその製造方法、および、この非水系電解質二次電池用正極活物質を正極材料として用いる非水系電解質二次電池に関する。 The present invention relates to a nickel manganese composite hydroxide particle that is a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a positive electrode active for a secondary battery using the nickel manganese composite hydroxide particle as a raw material. The present invention relates to a substance, a manufacturing method thereof, and a non-aqueous electrolyte secondary battery using the positive electrode active material for a non-aqueous electrolyte secondary battery as a positive electrode material.
近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が強く望まれている。また、モーター駆動用電源、特に輸送機器用電源の電池として高出力の二次電池の開発が強く望まれている。 In recent years, with the widespread use of portable electronic devices such as mobile phones and laptop computers, development of small and lightweight non-aqueous electrolyte secondary batteries having high energy density is strongly desired. In addition, development of a high-power secondary battery is strongly desired as a battery for a motor drive power supply, particularly a power supply for transportation equipment.
このような要求を満たす二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池は、負極および正極と電解液等で構成され、負極および正極の活物質として、リチウムを脱離および挿入することが可能な材料が用いられている。 As a secondary battery satisfying such requirements, there is a lithium ion secondary battery. A lithium ion secondary battery includes a negative electrode, a positive electrode, an electrolyte, and the like, and a material capable of desorbing and inserting lithium is used as an active material for the negative electrode and the positive electrode.
リチウムイオン二次電池については、現在研究開発が盛んに行われているところであるが、中でも、層状またはスピネル型のリチウム金属複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。 Research and development of lithium ion secondary batteries are currently being actively conducted. Among them, lithium ion secondary batteries using a layered or spinel type lithium metal composite oxide as a positive electrode material are of the 4V class. Since a high voltage can be obtained, practical use is progressing as a battery having a high energy density.
かかるリチウムイオン二次電池の正極材料として、現在、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO2)や、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO2)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3O2)、マンガンを用いたリチウムマンガン複合酸化物(LiMn2O4)などが提案されている。 As a positive electrode material of such a lithium ion secondary battery, currently, lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, lithium nickel composite oxide (LiNiO 2 ) using nickel cheaper than cobalt, lithium Nickel cobalt manganese composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), lithium manganese composite oxide using manganese (LiMn 2 O 4 ), and the like have been proposed.
これらの正極活物質の中でも、近年、埋蔵量の少ないコバルトを用いずに熱安定性に優れて高容量であるリチウムニッケルマンガン複合酸化物(LiNi0.5Mn0.5O2)が注目されている。リチウムニッケルマンガン複合酸化物(LiNi0.5Mn0.5O2)は、リチウムコバルト複合酸化物やリチウムニッケル複合酸化物などと同じく層状化合物であり、遷移金属サイトにおいてニッケルとマンガンを基本的に組成比1:1の割合で含んでいる(非特許文献1参照)。 Among these positive electrode active materials, in recent years, lithium nickel manganese composite oxide (LiNi 0.5 Mn 0.5 O 2 ) which has excellent thermal stability and high capacity without using cobalt with a small reserve is attracting attention. Lithium nickel manganese composite oxide (LiNi 0.5 Mn 0.5 O 2 ) is a layered compound similar to lithium cobalt composite oxide and lithium nickel composite oxide, and basically has a composition ratio of 1: 1 (see Non-Patent Document 1).
リチウムイオン二次電池が良好な性能(高サイクル特性、低抵抗、高出力)を得る条件として、正極中で均一で適度な粒径を有する正極活物質粒子が均一に分散していることが要求される。 As a condition for obtaining good performance (high cycle characteristics, low resistance, high output) of the lithium ion secondary battery, it is required that the positive electrode active material particles having a uniform and appropriate particle size are uniformly dispersed in the positive electrode. Is done.
これは、分散状態が不均一だと、電流の流れに偏りが生じ、電池容量が低下し反応抵抗が上昇するなどの不具合が生じるためである。なお、電池容量が低下するのは、電極内で粒子に印加される電圧が不均一となることで、充放電を繰り返すと高電圧のかかる粒子が選択的に劣化するからである。 This is because if the dispersion state is not uniform, the current flow is biased, causing problems such as a decrease in battery capacity and an increase in reaction resistance. The reason why the battery capacity is reduced is that the voltage applied to the particles in the electrode becomes non-uniform, and the particles with high voltage are selectively deteriorated when charging and discharging are repeated.
したがって、正極材料の性能を向上させるためには、上述したリチウムニッケルマンガン複合酸化物についても、均一で適度な粒径を有する正極活物質粒子が電極内に均一に分散するように製造することが必要である。 Therefore, in order to improve the performance of the positive electrode material, the above-described lithium nickel manganese composite oxide can also be manufactured so that the positive electrode active material particles having a uniform and appropriate particle diameter are uniformly dispersed in the electrode. is necessary.
電極内で分散性に偏りが生じる原因としては、例えば活物質のアルカリ度の影響が挙げられる。活物質のアルカリ度が高いと正極ペースト調製時に一般的に使用される結合材(PVDF)をアルカリが攻撃し、重合化させることでペーストがゲル化を生じてしまい、それにより活物質が均一に分散しない事態を生じることが知られている。かかる事態を防ぐ方法の一つとして、活物質のアルカリ度を低減させることが考えられる。 As a cause of the occurrence of bias in dispersibility in the electrode, for example, the influence of the alkalinity of the active material can be mentioned. When the alkalinity of the active material is high, the alkali attacks the binder (PVDF) that is generally used in the preparation of the positive electrode paste and polymerizes the paste, causing the paste to gel, thereby making the active material uniform. It is known to cause a situation that does not disperse. One way to prevent this situation is to reduce the alkalinity of the active material.
現在までに活物質のアルカリ度を低減することを目的とした提案は見当たらないが、最終製品であるリチウムイオン二次電池を高性能化するため、正極材料を形成するリチウムニッケルマンガン複合酸化物の原料となる複合水酸化物に関して、狭い粒度分布を有する粒子を得る試みとしては、様々な提案がなされている。 To date, no proposal has been made to reduce the alkalinity of the active material, but in order to improve the performance of the lithium-ion secondary battery, which is the final product, the lithium-nickel-manganese composite oxide that forms the cathode material Various attempts have been made to obtain particles having a narrow particle size distribution with respect to the composite hydroxide as a raw material.
たとえば、特許文献1には、実質的にマンガン:ニッケルが1:1である複合水酸化物粒子であって、平均粒径が5〜15μm、タップ密度が0.6〜1.4g/ml、バルク密度が0.4〜1.0g/ml、比表面積が20〜55m2/g、含有硫酸根が0.25〜0.45質量%であり、かつ、X線回折において15≦2θ≦25にあるピークの最大強度(I0)と、30≦2θ≦40にあるピークの最大強度(I1)との比(I0/I1)が、1〜6であることを特徴とする、マンガンニッケル複合水酸化物粒子が提案されている。また、その二次粒子表面および内部の構造は、一次粒子によるひだ状壁により網状を形成し、そのひだ状壁で囲まれた空間が比較的大きいとされている。 For example, Patent Document 1 discloses composite hydroxide particles substantially having a manganese: nickel ratio of 1: 1, an average particle diameter of 5 to 15 μm, a tap density of 0.6 to 1.4 g / ml, The bulk density is 0.4 to 1.0 g / ml, the specific surface area is 20 to 55 m 2 / g, the contained sulfate radical is 0.25 to 0.45% by mass, and 15 ≦ 2θ ≦ 25 in X-ray diffraction. The ratio (I 0 / I 1 ) between the maximum intensity (I 0 ) of the peak at 10 and the maximum intensity (I 1 ) of the peak at 30 ≦ 2θ ≦ 40 is 1 to 6, Manganese nickel composite hydroxide particles have been proposed. Further, the surface and the internal structure of the secondary particles are formed as a net by pleated walls of primary particles, and the space surrounded by the pleated walls is said to be relatively large.
さらに、その製造方法として、マンガンイオンの酸化の程度を一定の範囲に制御しつつ、pH値が9〜13の水溶液中で、錯化剤の存在下、マンガンとニッケルの原子比が実質的に1:1であるマンガン塩とニッケル塩の混合水溶液を、アルカリ溶液と適当な攪拌条件下で反応させて生じる粒子を共沈殿させることが開示されている。 Further, as a production method thereof, the atomic ratio of manganese to nickel is substantially increased in an aqueous solution having a pH value of 9 to 13 in the presence of a complexing agent while controlling the degree of oxidation of manganese ions within a certain range. It is disclosed to co-precipitate particles produced by reacting a 1: 1 mixed aqueous solution of manganese and nickel salts with an alkaline solution under suitable stirring conditions.
しかしながら、特許文献1のリチウムマンガンニッケル複合酸化物とその製造方法においては、粒子の構造について検討されているものの、開示されている電子顕微鏡写真からも明らかなように、得られる粒子には粗大粒子と微粒子が混在しており、粒径の均一化についての検討はなされていない。 However, in the lithium manganese nickel composite oxide of Patent Document 1 and the production method thereof, although the structure of the particles has been studied, the obtained particles are coarse particles, as is apparent from the disclosed electron micrographs. And fine particles are mixed, and no study has been made on the uniform particle size.
一方、リチウム複合酸化物の粒度分布に関して、たとえば、特許文献2には、粒度分布曲線において、その累積頻度が50%の粒径を意味する平均粒径D50が3〜15μm、最小粒径が0.5μm以上、最大粒径が50μm以下の粒度分布を有する粒子であり、かつ、その累積頻度が10%のD10と90%のD90との関係において、D10/D50が0.60〜0.90、D10/D90が0.30〜0.70であるリチウム複合酸化物が開示されている。そして、このリチウム複合酸化物は、高い充填性を有し、充放電容量特性および高出力特性に優れ、充放電負荷の大きい条件下であっても劣化しにくいので、このリチウム複合酸化物を用いれば、優れた出力特性を持ち、かつ、サイクル特性の劣化の少ないリチウムイオン非水電解液二次電池を得ることができるとの記載もある。 On the other hand, regarding the particle size distribution of the lithium composite oxide, for example, Patent Document 2 discloses that in the particle size distribution curve, the average particle size D50, which means a particle size with a cumulative frequency of 50%, is 3 to 15 μm, and the minimum particle size is 0. In the relationship between D10 having a particle size distribution of not less than 0.5 μm and a maximum particle size of not more than 50 μm and a cumulative frequency of D10 of 10% and D90 of 90%, D10 / D50 is 0.60 to 0.90. , A lithium composite oxide having D10 / D90 of 0.30 to 0.70 is disclosed. Since this lithium composite oxide has high filling properties, is excellent in charge / discharge capacity characteristics and high output characteristics, and is difficult to deteriorate even under conditions with a large charge / discharge load, this lithium composite oxide can be used. For example, there is a description that a lithium ion non-aqueous electrolyte secondary battery having excellent output characteristics and little deterioration in cycle characteristics can be obtained.
しかしながら、特許文献2に開示されているリチウム複合酸化物は、平均粒径3〜15μmに対して、最小粒径が0.5μm以上、最大粒径が50μm以下となっていることから微細粒子および粗大粒子が含まれている。そして、上記D10/D50およびD10/D90で規定される粒度分布では、粒径分布の範囲が狭いとはいえない。つまり、特許文献2のリチウム複合酸化物は、粒径均一性が十分に高い粒子であるとはいえず、かかるリチウム複合酸化物を採用しても、正極材料の性能向上は望めず、十分な性能を有するリチウムイオン非水電解液二次電池を得ることは難しい。 However, the lithium composite oxide disclosed in Patent Document 2 has a minimum particle size of 0.5 μm or more and a maximum particle size of 50 μm or less with respect to an average particle size of 3 to 15 μm. Coarse particles are included. And in the particle size distribution prescribed | regulated by said D10 / D50 and D10 / D90, it cannot be said that the range of a particle size distribution is narrow. That is, the lithium composite oxide of Patent Document 2 cannot be said to be a particle having sufficiently high particle size uniformity, and even if such a lithium composite oxide is employed, improvement in the performance of the positive electrode material cannot be expected. It is difficult to obtain a lithium ion non-aqueous electrolyte secondary battery having performance.
また、粒度分布を改善することを目的とした、複合酸化物の原料となる複合水酸化物の製造方法についても、提案がなされている。特許文献3では、非水電解質電池用正極活物質の製造方法において、2種以上の遷移金属塩を含む水溶液を、または異なる遷移金属塩の2種以上の水溶液とアルカリ溶液とを同時に反応槽に投入し、還元剤を共存させながら、または不活性ガスを通気しながら共沈させることにより、前駆体である水酸化物または酸化物を得る方法が提案されている。 A proposal has also been made for a method for producing a composite hydroxide, which is a raw material for a composite oxide, for the purpose of improving the particle size distribution. In Patent Document 3, in a method for producing a positive electrode active material for a non-aqueous electrolyte battery, an aqueous solution containing two or more transition metal salts, or two or more aqueous solutions of different transition metal salts and an alkaline solution are simultaneously used in a reaction vessel. There has been proposed a method of obtaining a precursor hydroxide or oxide by adding and coprecipitating with a reducing agent coexisting or aerated inert gas.
しかし、特許文献3の技術は、生成した結晶を分級しながら回収するものであるため、均一な粒径の生成物を得るためには、製造条件を厳密に管理する必要があると考えられ、工業的規模の生産は難しい。しかも、大きな粒径の結晶粒子は得ることができても、小径の粒子を得ることは難しい。また、分級により粒径の均一化を図っているため、均一化の程度は分級の精度を上回るものではない。 However, since the technique of Patent Document 3 is to collect the generated crystals while classifying them, it is considered that manufacturing conditions must be strictly controlled in order to obtain a product having a uniform particle size. Industrial scale production is difficult. Moreover, it is difficult to obtain small-sized particles even though large-sized crystal particles can be obtained. In addition, since the particle size is uniformed by classification, the degree of homogenization does not exceed the accuracy of classification.
以上のように、活物質のアルカリ度を低減する検討を報告した例はなく、現在のところ、工業的規模において、リチウムイオン二次電池の性能を十分に向上させ得る複合酸化物の原料となる複合水酸化物を製造することができる方法は開発されていない。つまり、活物質のアルカリ度を低減するとともに粒径均一性が高く、かつ、適度な粒径を有する正極活物質は開発されておらず、このような正極活物質とその工業的な製造方法の開発が求められている。 As described above, there is no example that reports the study of reducing the alkalinity of the active material, and at present, on an industrial scale, it becomes a raw material of a composite oxide that can sufficiently improve the performance of a lithium ion secondary battery. No method has been developed that can produce composite hydroxides. In other words, a positive electrode active material that reduces the alkalinity of the active material and has high particle size uniformity and an appropriate particle size has not been developed. Development is required.
本発明は掛かる問題点に鑑み、原料として用いると、活物質としてのアルカリ度が低減され、粒径均一性が高いリチウムニッケルマンガン複合酸化物が得られる、ニッケルマンガン複合水酸化物粒子を提供することを目的とする。 In view of the problems involved, the present invention provides nickel manganese composite hydroxide particles that, when used as a raw material, provide a lithium nickel manganese composite oxide with reduced alkalinity as an active material and high particle size uniformity. For the purpose.
また、粒度分布が均一で充填性が良好であり、電池に用いた場合に測定される正極抵抗の値を低減することが可能な非水系二次電池用正極活物質とともに、該正極活物質を用いた電気特性に優れた非水系電解質二次電池を提供することを目的とする。 In addition, the positive electrode active material, together with the positive electrode active material for non-aqueous secondary batteries, having a uniform particle size distribution and good filling properties and capable of reducing the value of the positive electrode resistance measured when used in a battery, It aims at providing the nonaqueous electrolyte secondary battery excellent in the used electrical property.
さらに、本発明においては、上記ニッケルマンガン複合水酸化物粒子および正極活物質の工業的な製造方法を提供することも目的としている。 Furthermore, an object of the present invention is to provide an industrial production method for the nickel manganese composite hydroxide particles and the positive electrode active material.
本発明者は、リチウムイオン二次電池の正極材料として用いた場合に、優れた電池特性を発揮できるリチウムニッケルマンガン複合酸化物について鋭意検討した結果、正極材料を構成するリチウムニッケルマンガン複合酸化物の原料となる複合水酸化物として、粒子内部と外周部とでMn/Ni比の異なる多層構造を有する複合水酸化物粒子を用いることで、電池特性とアルカリ度の低減を両者を成立させることができるとの知見を得た。また、原料となるニッケルマンガン複合水酸化物を、粒度分布が制御され、均一な粒度を有するものとすることで、上記粒径均一性が高いリチウムニッケルマンガン複合酸化物が得られるとの知見を得た。さらに、該ニッケルマンガン複合水酸化物は、晶析時のpHを制御して核生成工程と粒子成長工程に分離することで得られ、晶析時の途中で水溶液中のMn/Ni比を変更することで上記多層構造となるとの知見を得た。本発明は、これらの知見に基づいて完成されたものである。 As a result of intensive studies on a lithium nickel manganese composite oxide capable of exhibiting excellent battery characteristics when used as a positive electrode material of a lithium ion secondary battery, the present inventor has found that the lithium nickel manganese composite oxide constituting the positive electrode material By using composite hydroxide particles having a multilayer structure with different Mn / Ni ratios between the inside and the outer periphery of the composite hydroxide as a raw material, both battery characteristics and alkalinity reduction can be established. I learned that I can do it. Also, the knowledge that lithium nickel manganese composite oxide with high particle size uniformity can be obtained by controlling the particle size distribution of the nickel manganese composite hydroxide as a raw material and having a uniform particle size. Obtained. Furthermore, the nickel manganese composite hydroxide is obtained by controlling the pH during crystallization and separating it into a nucleation step and a particle growth step, and changes the Mn / Ni ratio in the aqueous solution during the crystallization. As a result, the inventors have obtained knowledge that the multilayer structure is obtained. The present invention has been completed based on these findings.
すなわち、本発明のニッケルマンガン複合水酸化物粒子は、非水系電解質二次電池用正極活物質の前駆体であって、
一般式:NixMnyCozMt(OH)2+α(x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦α≦0.5、Mは、Al、Ti、V、Cr、Zr、Nb、Hf、Ta、Mo、Wから選択される1種以上の添加元素)で表されるニッケルマンガン複合水酸化物であって、平均粒径が3〜11μmであり、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.55以下であり、該ニッケルマンガン複合水酸化物は球状の二次粒子であって、二次粒子内部と外周部の組成が異なる多層構造となっており、前記外周部は、二次粒子の内部の組成よりMn/Ni比が高く、一般式:Ni x Mn y Co z M t (OH) 2+α (0≦x≦0.4、0.3≦y≦1.0、0≦z≦0.4、0≦t≦0.2、x+y+z+t=1、0≦α≦0.5、Mは、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表されるニッケルマンガン複合水酸化物で構成され、該外周部の厚みが二次粒子径の5〜25%であることを特徴とする。
That is, the nickel manganese composite hydroxide particle of the present invention is a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery,
General formula: Ni x Mn y Co z M t (OH) 2 + α (x + y + z + t = 1, 0.3 ≦ x ≦ 0.7, 0.1 ≦ y ≦ 0.55, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, 0 ≦ α ≦ 0.5, M is represented by one or more additive elements selected from Al, Ti, V, Cr, Zr, Nb, Hf, Ta, Mo, and W) Nickel manganese composite hydroxide having an average particle size of 3 to 11 μm and an index indicating the spread of the particle size distribution [(d90−d10) / average particle size] is 0.55 or less, Nickel-manganese composite hydroxide is a spherical secondary particle, and has a multilayer structure in which the composition of the inside of the secondary particle is different from that of the outer periphery, and the outer periphery is made of Mn / Ni from the composition of the inside of the secondary particle. ratio is high, the general formula: Ni x Mn y Co z M t (OH) 2 + α (0 ≦ x ≦ 0.4,0.3 ≦ y 1.0, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.2, x + y + z + t = 1, 0 ≦ α ≦ 0.5, M is Al, Ti, V, Cr, Zr, Nb, Mo, Hf , One or more additive elements selected from Ta and W), and the outer peripheral portion has a thickness of 5 to 25% of the secondary particle size. To do.
前記二次粒子は、前記添加元素が均一に分布、またはその表面を前記添加元素が均一に被覆していることが好ましい。 In the secondary particles, it is preferable that the additive element is uniformly distributed , or the surface thereof is uniformly coated with the additive element.
本発明のニッケルマンガン複合水酸化物粒子の製造方法は、晶析反応によって一般式:NixMnyCozMt(OH)2+α(x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦α≦0.5、Mは、Al、Ti、V、Cr、Zr、Nb、Hf、Ta、Mo、Wから選択される1種以上の添加元素)で表される非水系電解質二次電池用正極活物質の前駆体であるニッケルマンガン複合水酸化物粒子を製造する製造方法であって、
少なくともニッケルを含有する金属化合物およびマンガンを含有する金属化合物とアンモニウムイオン供給体とを含む核生成用水溶液を、液温25℃基準で、pH値が12.0〜14.0となるように制御して核生成を行う核生成工程と、
該核生成工程において形成された核を含有する粒子成長用水溶液を、液温25℃基準で、pH値が10.5〜12.0、かつ、核生成工程におけるpH値よりも低いpH値となるように制御して、前記核を成長させる粒子成長工程と、
を備えるとともに、晶析中の外周部形成期における水溶液の液体部に含まれる金属イオンの組成比を下記一般式における組成比として、その水溶液の液体部のMn/Ni比を、内部形成期における水溶液の液体部より高くし、水溶液の液体部のMn/Ni比の変更を、晶析中に供給される全金属元素量に対して10〜90mol%の金属元素量を供給した時に行うことを特徴とする。
一般式:Ni x Mn y Co z M t (OH) 2+α
(0≦x≦0.4、0.3≦y≦1.0、0≦z≦0.4、0≦t≦0.2、x+y+z+t=1、0≦α≦0.5、Mは、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)
The method for producing nickel manganese composite hydroxide particles according to the present invention has a general formula: Ni x Mn y Co z M t (OH) 2 + α (x + y + z + t = 1, 0.3 ≦ x ≦ 0.7, 0) by crystallization reaction. 0.1 ≦ y ≦ 0.55, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, 0 ≦ α ≦ 0.5, M is Al, Ti, V, Cr, Zr, Nb, Hf, 1 or more additive elements selected from Ta, Mo, and W), and a production method for producing nickel manganese composite hydroxide particles that are precursors of a positive electrode active material for a non-aqueous electrolyte secondary battery. ,
A nucleation aqueous solution containing at least a nickel-containing metal compound and a manganese-containing metal compound and an ammonium ion supplier is controlled so that the pH value becomes 12.0 to 14.0 based on a liquid temperature of 25 ° C. A nucleation process for nucleation,
The aqueous solution for particle growth containing nuclei formed in the nucleation step has a pH value of 10.5 to 12.0 and lower than the pH value in the nucleation step on the basis of a liquid temperature of 25 ° C. A particle growth step for growing the nucleus by controlling so that
And the composition ratio of the metal ions contained in the liquid part of the aqueous solution in the outer peripheral part formation stage during crystallization as the composition ratio in the following general formula, and the Mn / Ni ratio of the liquid part of the aqueous solution in the internal formation stage It is made higher than the liquid part of the aqueous solution, and the change of the Mn / Ni ratio of the liquid part of the aqueous solution is performed when a metal element amount of 10 to 90 mol% is supplied with respect to the total metal element amount supplied during crystallization. Features.
General formula: Ni x Mn y Co z M t (OH) 2 + α
(0 ≦ x ≦ 0.4, 0.3 ≦ y ≦ 1.0, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.2, x + y + z + t = 1, 0 ≦ α ≦ 0.5, M is One or more additive elements selected from Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W)
本発明の正極活物質は、一般式:Li1+uNixMnyCozMtO2(−0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、MはAl、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表され、かつ、層状構造を有する六方晶系リチウム含有複合酸化物により構成されるリチウムニッケルマンガン複合酸化物粒子からなる正極活物質であって、平均粒径が3〜12μmであり、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.60以下であり、粒子の表層部のMn/Ni比(SMN)と内部のMn/Ni比(IMN)との比(SMN/IMN)が1.3〜50であり、アルカリ度を示すpHが10.6〜11.5であることを特徴とする。 The positive electrode active material of the present invention has a general formula: Li 1 + u Ni x Mn y Co z M t O 2 (−0.05 ≦ u ≦ 0.50, x + y + z + t = 1, 0.3 ≦ x ≦ 0.7, 0 0.1 ≦ y ≦ 0.55, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, M is selected from Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W A positive electrode active material comprising lithium nickel manganese composite oxide particles composed of a hexagonal lithium-containing composite oxide having a layered structure and having an average particle size of 3 [(D90-d10) / average particle size] is 0.60 or less, which is an index indicating the spread of the particle size distribution, and the Mn / Ni ratio (SMN) of the surface layer portion of the particle and the internal Mn / the ratio of the Ni ratio (IMN) (SMN / IMN) is 1.3 to 50, Arca pH indicating the degree is equal to or is from 10.6 to 11.5.
また、上記正極活物質の製造方法は、上記ニッケルマンガン複合水酸化物粒子の製造方法によってニッケルマンガン複合水酸化物粒子を得る複合水酸化物粒子製造工程と、該ニッケルマンガン複合水酸化物粒子を熱処理する熱処理工程と、前記熱処理後の粒子に対してリチウム化合物を混合してリチウム混合物を形成する混合工程と、該混合工程で形成された前記混合物を、酸化性雰囲気中800℃〜1000℃の温度で焼成する焼成工程とを備えることを特徴とする。 Moreover, the manufacturing method of the said positive electrode active material is the composite hydroxide particle manufacturing process which obtains nickel manganese composite hydroxide particle by the manufacturing method of the said nickel manganese composite hydroxide particle, and this nickel manganese composite hydroxide particle. A heat treatment step for heat treatment, a mixing step for mixing a lithium compound with the particles after the heat treatment to form a lithium mixture, and the mixture formed in the mixing step at 800 ° C. to 1000 ° C. in an oxidizing atmosphere. And a firing step of firing at a temperature.
前記焼成工程に際して、予め350℃〜800℃の温度で仮焼を行うことが好ましい。 In the firing step, it is preferable to perform preliminary firing at a temperature of 350 ° C. to 800 ° C. in advance.
本発明の非水系電解質二次電池は、正極が、上記非水系電解質二次電池用正極活物質によって形成されていることを特徴とするものである。 The non-aqueous electrolyte secondary battery of the present invention is characterized in that the positive electrode is formed of the positive electrode active material for a non-aqueous electrolyte secondary battery.
本発明により、粒径均一性が高く、原料として用いた場合に、活物質としてのアルカリ度が低減されるとともに、粒径均一性が高いリチウムニッケルマンガン複合酸化物が得られるニッケルマンガン複合水酸化物粒子が得られる。また、該リチウムニッケルマンガン複合酸化物からなる正極活物質は、非水系二次電池に用いた場合に高容量で、高出力を可能とするものであり、該正極活物質を含む正極で構成された非水系二次電池は、優れた電池特性を備えたものとなる。 According to the present invention, when used as a raw material, the particle size uniformity is high, and the alkalinity as an active material is reduced, and the nickel manganese composite hydroxide that provides a lithium nickel manganese composite oxide with high particle size uniformity is obtained. Product particles are obtained. Further, the positive electrode active material comprising the lithium nickel manganese composite oxide has a high capacity and high output when used in a non-aqueous secondary battery, and is composed of a positive electrode containing the positive electrode active material. The non-aqueous secondary battery is provided with excellent battery characteristics.
本発明が提供する上記ニッケルマンガン複合水酸化物粒子および正極活物質の製造方法は、いずれも容易で大規模生産に適したものであり、その工業的価値はきわめて大きい。 The nickel manganese composite hydroxide particles and the method for producing the positive electrode active material provided by the present invention are both easy and suitable for large-scale production, and their industrial value is extremely large.
本発明は、(1)非水系電解質二次電池用正極活物質の前駆体となるニッケルマンガン複合水酸化物粒子とその製造方法、(2)該ニッケルマンガン複合水酸化物粒子を用いた非水系電解質二次電池用正極活物質とその製造方法、(3)該非水系電解質二次電池用正極活物質を正極に用いた非水系電解質二次電池に関するものである。 The present invention includes (1) nickel manganese composite hydroxide particles as a precursor of a positive electrode active material for a nonaqueous electrolyte secondary battery and a method for producing the same, and (2) a nonaqueous system using the nickel manganese composite hydroxide particles. The present invention relates to a positive electrode active material for an electrolyte secondary battery and a production method thereof, and (3) a non-aqueous electrolyte secondary battery using the positive electrode active material for a non-aqueous electrolyte secondary battery as a positive electrode.
非水系電解質二次電池の性能を向上させるためには、正極に採用される非水系電解質二次電池用正極活物質の影響が大きい。かかる優れた電池特性が得られる非水系電解質二次電池用正極活物質を得るためには、その粒径と粒度分布が重要な要因であり、所望の粒径と粒度分布に調整された正極活物質が好ましい。かかる正極活物質を得るためには、その前駆体であるニッケルマンガン複合水酸化物粒子として、所望の粒径と粒度分布のものを使用する必要がある。 In order to improve the performance of the non-aqueous electrolyte secondary battery, the influence of the positive electrode active material for the non-aqueous electrolyte secondary battery employed in the positive electrode is large. In order to obtain a positive electrode active material for a non-aqueous electrolyte secondary battery capable of obtaining such excellent battery characteristics, the particle size and particle size distribution are important factors, and the positive electrode active material adjusted to a desired particle size and particle size distribution is used. Substances are preferred. In order to obtain such a positive electrode active material, it is necessary to use nickel manganese composite hydroxide particles having a desired particle diameter and particle size distribution as precursors thereof.
以下、上記(1)〜(3)の発明のそれぞれについて詳細に説明するが、最初に、本発明の最大の特徴である、ニッケルマンガン複合水酸化物粒子とその製造方法について説明する。 Hereinafter, each of the above inventions (1) to (3) will be described in detail. First, the nickel-manganese composite hydroxide particles and the production method thereof, which are the greatest features of the present invention, will be described.
(1−1)ニッケルマンガン複合水酸化物粒子
本発明のニッケルマンガン複合水酸化物粒子(以下、単に本発明の複合水酸化物粒子という)は、非水系電解質二次電池用正極活物質の前駆体であって、一般式:NixMnyCozMt(OH)2+α(x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦α≦0.5、Mは、Al、Ti、V、Cr、Zr、Nb、Hf、Ta、Mo、Wから選択される1種以上の添加元素)で表されるニッケルマンガン複合水酸化物であって、平均粒径が3〜11μmであり、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.55以下であり、該ニッケルマンガン複合水酸化物は球状の二次粒子であって、二次粒子内部と外周部の組成が異なる多層構造となっており、二次粒子の内部の組成より外周部の組成のMn/Ni比が高いことを特徴とするものである。
(1-1) Nickel-manganese composite hydroxide particles nickel manganese composite hydroxide particles of the present invention (hereinafter, simply referred to as composite hydroxide particles of the present invention), the positive electrode active material for a non-aqueous electrolyte secondary battery precursor General formula: Ni x Mn y Co z M t (OH) 2 + α (x + y + z + t = 1, 0.3 ≦ x ≦ 0.7, 0.1 ≦ y ≦ 0.55, 0 ≦ z ≦ 0 .4, 0 ≦ t ≦ 0.1, 0 ≦ α ≦ 0.5, M is one or more selected from Al, Ti, V, Cr, Zr, Nb, Hf, Ta, Mo, W Element) and has an average particle diameter of 3 to 11 μm and an index indicating the spread of the particle size distribution [(d90-d10) / average particle diameter] is 0.55. The nickel manganese composite hydroxide is a spherical secondary particle, and the inside of the secondary particle It has a multilayer structure in which the composition of the part and the peripheral part are different, and the Mn / Ni ratio of the composition of the peripheral part is higher than the composition inside the secondary particles.
(粒子組成)
本発明の複合水酸化物粒子は、その組成が、上記一般式で表されるように調整される。このような組成を有するニッケルマンガン複合水酸化物を前駆体として、リチウムニッケルマンガン複合酸化物を製造すれば、このリチウムニッケルマンガン複合酸化物を正極活物質とする電極を電池に用いた場合に、測定される正極抵抗の値を低くできるとともに、電池性能を良好なものとすることができる。
(Particle composition)
The composite hydroxide particles of the present invention are adjusted so that the composition is represented by the above general formula. When a nickel nickel composite hydroxide having such a composition is used as a precursor to produce a lithium nickel manganese composite oxide, when an electrode using the lithium nickel manganese composite oxide as a positive electrode active material is used in a battery, The measured positive electrode resistance value can be lowered, and the battery performance can be improved.
複合水酸化物粒子を原料として正極活物質を得た場合、この複合水酸化物粒子の組成比(Ni:Mn:Co:M)は、得られる正極活物質においても維持される。したがって、本発明の複合水酸化物粒子の組成比は、得ようとする正極活物質に要求される組成比と同様となるように調整される。 When a positive electrode active material is obtained using composite hydroxide particles as a raw material, the composition ratio (Ni: Mn: Co: M) of the composite hydroxide particles is also maintained in the obtained positive electrode active material. Therefore, the composition ratio of the composite hydroxide particles of the present invention is adjusted to be the same as the composition ratio required for the positive electrode active material to be obtained.
(粒子構造)。
電池としたときの放電容量は、Mn/Ni比を低くするほど高容量となり性能が良くなる。一方、活物質のアルカリ度はMn/Ni比と関係があり、Mn/Ni比が高いとアルカリ度は低く、逆にMn/Ni比が低いとアルカリ度は高くなる。すなわち、電池の特性を上げつつ、アルカリ度を低減させるには、この背反する両者を成立させる必要がある。
(Particle structure).
The discharge capacity of the battery becomes higher as the Mn / Ni ratio is lowered, and the performance is improved. On the other hand, the alkalinity of the active material is related to the Mn / Ni ratio. When the Mn / Ni ratio is high, the alkalinity is low. Conversely, when the Mn / Ni ratio is low, the alkalinity is high. That is, in order to reduce the alkalinity while improving the characteristics of the battery, it is necessary to establish both contradictory.
そこで、正極活物質全体のMn/Ni比は低くして、粒子表面のみのMn/Ni比を高くすることができれば、活物質表面のアルカリ度を低減することが期待できる。つまり、正極材料の性能を向上させて、最終製品である高性能のリチウムイオン二次電池を製造する上では、正極材料を形成するリチウムニッケルマンガン複合酸化物の原料となる複合水酸化物として、二次粒子内部より表面付近のMn/Ni比を高くすることで、内部はMn/Ni比が低く高容量で、表層部はMn/Ni比が高くアルカリ度の低い正極活物質が得られ、高容量とアルカリ度の低減を両立させることができる。 Therefore, if the Mn / Ni ratio of the whole positive electrode active material is lowered and the Mn / Ni ratio of only the particle surface can be increased, the alkalinity of the active material surface can be expected to be reduced. In other words, in producing a high-performance lithium ion secondary battery as a final product by improving the performance of the positive electrode material, as a composite hydroxide as a raw material of the lithium nickel manganese composite oxide forming the positive electrode material, By increasing the Mn / Ni ratio in the vicinity of the surface from the inside of the secondary particles, the inside has a low Mn / Ni ratio and a high capacity, and the surface layer portion has a high Mn / Ni ratio and a low alkalinity active material, Both high capacity and reduced alkalinity can be achieved.
本発明の複合水酸化物粒子においては、二次粒子内部と外周部の組成が異なる多層構造を有するように調整されている。そして、二次粒子内部の組成よりも外周部の組成のMn/Ni比が高くなるように調整されているので、正極活物質のアルカリ度を下げ、電極作製工程においてペースト化する際にゲル化反応を抑制でき、活物質、集電材が均一に分布した電極を作製することができる。一方で、内部のMn/Ni比は低く保持できるので、十分な電池容量を確保することができる。 The composite hydroxide particles of the present invention are adjusted so as to have a multilayer structure in which the composition of the secondary particles is different from that of the outer periphery. And since the Mn / Ni ratio of the composition of the outer peripheral part is adjusted to be higher than the composition inside the secondary particles, the alkalinity of the positive electrode active material is lowered, and gelation occurs when forming a paste in the electrode manufacturing process. Reaction can be suppressed, and an electrode in which an active material and a current collector are uniformly distributed can be manufactured. On the other hand, since the internal Mn / Ni ratio can be kept low, a sufficient battery capacity can be ensured.
さらに、前記二次粒子の外周部は、一般式:NixMnyCoz M t (OH)2+α(0≦x≦0.4、0.3≦y≦1.0、0≦z≦0.4、0≦t≦0.2、x+y+z+t=1、0≦α≦0.5、Mは、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表されるニッケルマンガン複合水酸化物で構成されることが好ましい。外周部を上記組成に調整することで、本発明の複合水酸化物粒子を原料として得られる正極活物質の表層部のMn/Ni比が十分に高くなり、正極活物質のアルカリ度を適正値まで下げることが可能となる。 Furthermore, the outer peripheral part of the secondary particles has a general formula: Ni x Mn y Co z M t (OH) 2 + α (0 ≦ x ≦ 0.4, 0.3 ≦ y ≦ 1.0, 0 ≦ z ≦ 0 .4 , 0 ≦ t ≦ 0.2, x + y + z + t = 1, 0 ≦ α ≦ 0.5, M is selected from Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W It is preferably composed of a nickel manganese composite hydroxide represented by an additive element of a seed or more. By adjusting the outer peripheral portion to the above composition, the Mn / Ni ratio of the surface layer portion of the positive electrode active material obtained using the composite hydroxide particles of the present invention as a raw material becomes sufficiently high, and the alkalinity of the positive electrode active material is an appropriate value. Can be lowered.
また、Mn/Ni比が高い前記外周部の厚みが二次粒子径の5〜25%であることが好ましい。外周部の厚みが、5%未満では正極活物質としたときにアルカリ度の低減効果が十分に得られない場合があり、25%を超えると、正極活物質の内部と表層部のMn/Ni比が十分でなくなり、十分なアルカリ度の低減効果を得ようとすると、電池容量が低下することがある。 Moreover, it is preferable that the thickness of the said outer peripheral part with high Mn / Ni ratio is 5 to 25% of a secondary particle diameter. If the thickness of the outer peripheral portion is less than 5%, the effect of reducing the alkalinity may not be sufficiently obtained when the positive electrode active material is used. If the thickness exceeds 25%, the inside of the positive electrode active material and the Mn / Ni in the surface layer portion may be obtained. If the ratio becomes insufficient and an attempt to obtain a sufficient alkalinity reduction effect is obtained, the battery capacity may be reduced.
前記外周部の層数は、特に制限されるものでなく、複数の層によって構成された外周部としてもよい。 The number of layers in the outer peripheral portion is not particularly limited, and may be an outer peripheral portion including a plurality of layers.
(平均粒径)
本発明の複合水酸化物粒子は、その平均粒径が、3〜11μmであり、好ましくは3〜8μmに調整されている。平均粒径を3〜11μmとすることで、本発明の複合水酸化物粒子を原料として得られる正極活物質を所定の平均粒径(3〜12μm)に調整することができる。このように、複合水酸化物粒子の粒径は、得られる正極活物質の粒径と相関するため、この正極活物質を正極材料に用いた電池の特性に影響するものである。
(Average particle size)
The composite hydroxide particles of the present invention have an average particle size of 3 to 11 μm, preferably 3 to 8 μm. By setting the average particle size to 3 to 11 μm, the positive electrode active material obtained using the composite hydroxide particles of the present invention as a raw material can be adjusted to a predetermined average particle size (3 to 12 μm). Thus, the particle size of the composite hydroxide particles correlates with the particle size of the positive electrode active material to be obtained, and therefore affects the characteristics of a battery using this positive electrode active material as the positive electrode material.
具体的には、この複合水酸化物粒子の平均粒径が3μm未満であると、得られる正極活物質の平均粒径も小さくなり、正極の充填密度が低下して、容積あたりの電池容量が低下する。逆に、上記複合水酸化物粒子の平均粒径が11μmを超えると、得られる正極活物質の比表面積が低下して、電解液との界面が減少することにより、正極の抵抗が上昇して電池の出力特性が低下する。 Specifically, if the average particle size of the composite hydroxide particles is less than 3 μm, the average particle size of the obtained positive electrode active material also decreases, the packing density of the positive electrode decreases, and the battery capacity per volume increases. descend. On the other hand, when the average particle size of the composite hydroxide particles exceeds 11 μm, the specific surface area of the obtained positive electrode active material is reduced, and the interface with the electrolytic solution is reduced, thereby increasing the resistance of the positive electrode. The output characteristics of the battery deteriorate.
(粒度分布)
本発明の複合水酸化物粒子は、その粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が、0.55以下、好ましくは0.52以下となるように調整されている。
(Particle size distribution)
The composite hydroxide particles of the present invention are adjusted so that [(d90-d10) / average particle size], which is an index indicating the spread of the particle size distribution, is 0.55 or less, preferably 0.52 or less. ing.
正極活物質の粒度分布は、原料である複合水酸化物粒子の影響を強く受けるため、複合水酸化物粒子に微粒子あるいは粗大粒子が混入していると、正極活物質にも同様の粒子が存在するようになる。すなわち、〔(d90−d10)/平均粒径〕が0.55を超え、粒度分布が広い状態であると、正極活物質にも微粒子あるいは粗大粒子が存在するようになる。 The particle size distribution of the positive electrode active material is strongly influenced by the composite hydroxide particles as the raw material. Therefore, if fine particles or coarse particles are mixed in the composite hydroxide particles, the same particles are also present in the positive electrode active material. To come. That is, when [(d90−d10) / average particle size] exceeds 0.55 and the particle size distribution is wide, fine particles or coarse particles also exist in the positive electrode active material.
微粒子が多く存在する正極活物質を用いて正極を形成した場合、微粒子の局所的な反応に起因して発熱する可能性があり、電池の安全性が低下するとともに、微粒子が選択的に劣化するため、電池のサイクル特性が悪化してしまう。一方、大径粒子が多く存在する正極活物質を用いて正極を形成した場合、電解液と正極活物質との反応面積が十分に取れず、反応抵抗の増加により電池出力が低下する。 When a positive electrode is formed using a positive electrode active material in which a large amount of fine particles are present, heat may be generated due to a local reaction of the fine particles, which decreases the safety of the battery and selectively deteriorates the fine particles. Therefore, the cycle characteristics of the battery are deteriorated. On the other hand, when a positive electrode is formed using a positive electrode active material in which a large number of large particles are present, a sufficient reaction area between the electrolytic solution and the positive electrode active material cannot be obtained, and the battery output decreases due to an increase in reaction resistance.
よって、本発明の複合水酸化物粒子において、〔(d90−d10)/平均粒径〕が0.55以下となるように調整しておけば、これを前駆体として用いて得られる正極活物質も粒度分布の範囲が狭いものとなり、その粒子径を均一化することができる。すなわち、正極活物質の粒度分布について、〔(d90−d10)/平均粒径〕が0.60以下となるようにすることができる。これにより、本発明の複合水酸化物粒子を前駆体として形成された正極活物質を正極材料として用いた電池において、良好な出力特性および高出力を達成することができる。 Therefore, in the composite hydroxide particles of the present invention, if [(d90-d10) / average particle size] is adjusted to 0.55 or less, the positive electrode active material obtained by using this as a precursor Also, the range of the particle size distribution becomes narrow, and the particle diameter can be made uniform. That is, with respect to the particle size distribution of the positive electrode active material, [(d90−d10) / average particle size] can be 0.60 or less. Thereby, in the battery using the positive electrode active material formed using the composite hydroxide particles of the present invention as a precursor as the positive electrode material, good output characteristics and high output can be achieved.
幅広い正規分布を有する複合水酸化物粒子を、分級して粒度分布の狭い複合水酸化物を得ることも考えられるが、篩いによる分級は精度が悪く困難である。また、湿式サイクロンのような装置を用いても十分に狭い粒度分布に分級することはできず、工業的な分級方法では、本発明の複合水酸化物粒子のような粒径が均一で粒度分布が狭い複合水酸化物を得ることは困難である。 It is conceivable to classify composite hydroxide particles having a wide normal distribution to obtain a composite hydroxide having a narrow particle size distribution, but classification by sieving is difficult and difficult. In addition, even with an apparatus such as a wet cyclone, it cannot be classified into a sufficiently narrow particle size distribution, and the industrial classification method has a uniform particle size distribution such as the composite hydroxide particles of the present invention. It is difficult to obtain a narrow composite hydroxide.
具体的には、攪拌機とオーバーフローパイプを備えた円筒形反応槽を用いて、組成比の硫酸ニッケルと硫酸マンガンの混合水溶液とアンモニア水を反応槽に添加しながらpHを11.5〜12.0に制御し、反応槽内が定常状態になった後、オーバーフローパイプより複合水酸化物粒子を連続的に採取し、組成がNi0.50Mn0.50(OH)2+α(0≦α≦0.5)である複合水酸化物粒子を得た。得られた複合水酸化物粒子を湿式サイクロン(ハイドロサイクロン、日本化学機械製造(株)製、NHC−1)を用いて、供給圧力を上げて粗粉を除去した後、再度、供給圧力を下げて微粒を除去したが、平均粒径8.5、〔(d90−d10)/平均粒径〕が0.67の複合水酸化物粒子しか得られなかった。 Specifically, using a cylindrical reaction vessel equipped with a stirrer and an overflow pipe, the pH was adjusted to 11.5 to 12.0 while adding a mixed aqueous solution of nickel sulfate and manganese sulfate and aqueous ammonia to the reaction vessel. After the inside of the reaction vessel is in a steady state, composite hydroxide particles are continuously collected from the overflow pipe, and the composition is Ni 0.50 Mn 0.50 (OH) 2 + α (0 ≦ α ≦ 0 .5) composite hydroxide particles were obtained. The obtained composite hydroxide particles were wet cyclone (Hydrocyclone, manufactured by Nippon Chemical Machinery Co., Ltd., NHC-1), the supply pressure was increased to remove coarse powder, and then the supply pressure was lowered again. However, only composite hydroxide particles having an average particle size of 8.5 and [(d 90 -d 10 ) / average particle size] of 0.67 were obtained.
なお、粒度分布の広がりを示す指標〔(d90−d10)/平均粒径〕において、d10は、各粒径における粒子数を粒径の小さい側から累積し、その累積体積が全粒子の合計体積の10%となる粒径を意味している。また、d90は、同様に粒子数を累積し、その累積体積が全粒子の合計体積の90%となる粒径を意味している。 In the index [(d90−d10) / average particle size] indicating the spread of the particle size distribution, d10 is the number of particles in each particle size accumulated from the smaller particle size side, and the accumulated volume is the total volume of all particles. Means a particle size of 10%. D90 means the particle diameter in which the number of particles is accumulated in the same manner and the accumulated volume is 90% of the total volume of all particles.
平均粒径や、d90、d10を求める方法は特に限定されないが、たとえば、レーザー光回折散乱式粒度分析計で測定した体積積算値から求めることができる。平均粒径としてはd50を用い、d90と同様に累積体積が全粒子体積の50%となる粒径を用いればよい。 The method for obtaining the average particle diameter and d90 and d10 is not particularly limited, but can be obtained, for example, from the volume integrated value measured with a laser light diffraction / scattering particle size analyzer. As the average particle diameter, d50 is used, and a particle diameter in which the cumulative volume is 50% of the total particle volume may be used similarly to d90.
(1−2)ニッケルマンガン複合水酸化物粒子の製造方法
本発明の複合水酸化物粒子の製造方法は、二次粒子の内部と外周部の組成を変えることができればいかなる方法であっても良く、1)バッチ式の晶析による製法、2)連続式晶析法や噴霧乾燥法、噴霧熱分解法などで作製した二次粒子に晶析する方法、3)バッチ式の晶析による製法、連続式晶析法、噴霧乾燥法、噴霧熱分解法などで作製した二次粒子に機械的にコートする方法などがある。しかしながら、本発明の複合水酸化物粒子の粒径均一性を得るためには、バッチ方式の種晶法を用いることが最適であり、バッチ方式の種晶法による製造方法を以下で説明する。
(1-2) Manufacturing method of composite hydroxide particles of the manufacturing method of the present invention a nickel-manganese composite hydroxide particles be any method if it is possible to change the composition of the inner and the outer peripheral portion of the secondary particle Child Well 1) Manufacturing method by batch crystallization, 2) Method of crystallizing secondary particles produced by continuous crystallization method, spray drying method, spray pyrolysis method, etc. 3) Manufacturing method by batch crystallization Further, there is a method of mechanically coating secondary particles produced by a continuous crystallization method, a spray drying method, a spray pyrolysis method, or the like. However, in order to obtain the particle size uniformity of the composite hydroxide particles of the present invention, it is optimal to use a batch-type seed crystal method, and a production method using the batch-type seed crystal method will be described below.
本発明の複合水酸化物粒子の製造方法は、晶析反応によってニッケルマンガン複合水酸化物粒子を製造する方法であって、a)核生成を行う核生成工程と、b)核生成工程において生成された核を成長させる粒子成長工程とから構成されている。 The method for producing composite hydroxide particles of the present invention is a method for producing nickel manganese composite hydroxide particles by a crystallization reaction, wherein a) a nucleation step for nucleation and b) a nucleation step. And a particle growth process for growing the formed nuclei.
すなわち、従来の連続晶析法では、核生成反応と粒子成長反応とが同じ槽内において同時に進行するため、得られる複合水酸化物粒子の粒度分布が広範囲となってしまう。これに対して、本発明の複合水酸化物粒子の製造方法では、主として核生成反応が生じる時間(核生成工程)と、主として粒子成長反応が生じる時間(粒子成長工程)とを明確に分離することにより、得られる複合水酸化物粒子において狭い粒度分布を達成している点に特徴がある。さらに、晶析反応時の雰囲気を制御することにより、得られる複合水酸化物粒子の粒子構造を、微粒一次粒子からなる中心部と、中心部より大きな一次粒子からなる外殻部で構成されたものとする点に特徴がある。 That is, in the conventional continuous crystallization method, since the nucleation reaction and the particle growth reaction proceed simultaneously in the same tank, the particle size distribution of the obtained composite hydroxide particles becomes wide. On the other hand, in the method for producing composite hydroxide particles of the present invention, the time mainly when the nucleation reaction occurs (nucleation process) and the time when the particle growth reaction mainly occurs (particle growth process) are clearly separated. Thus, the obtained composite hydroxide particles are characterized in that a narrow particle size distribution is achieved. Furthermore, by controlling the atmosphere during the crystallization reaction, the particle structure of the resulting composite hydroxide particles was composed of a central part composed of fine primary particles and an outer shell part composed of primary particles larger than the central part. There is a feature in the point to be.
最初に、本発明の複合水酸化物粒子の製造方法の概略を、図1に基づいて説明する。なお、図1および図2では、(A)が核生成工程に相当し、(B)が粒子成長工程に相当する。 Initially, the outline of the manufacturing method of the composite hydroxide particle of this invention is demonstrated based on FIG. In FIGS. 1 and 2, (A) corresponds to the nucleation step and (B) corresponds to the particle growth step.
(核生成工程)
図1に示すように、本発明の複合水酸化物粒子の製造方法においては、まず、ニッケルおよびマンガンを含有する複数の金属化合物を所定の割合で水に溶解させ、混合水溶液を作製する。本発明の複合水酸化物粒子の製造方法では、得られる複合水酸化物粒子における上記各金属の組成比は、混合水溶液における各金属の組成比と同様となる。
(Nucleation process)
As shown in FIG. 1, in the method for producing composite hydroxide particles of the present invention, first, a plurality of metal compounds containing nickel and manganese are dissolved in water at a predetermined ratio to produce a mixed aqueous solution. In the method for producing composite hydroxide particles of the present invention, the composition ratio of each metal in the obtained composite hydroxide particles is the same as the composition ratio of each metal in the mixed aqueous solution.
よって、混合水溶液中における各金属の組成比が、本発明の複合水酸化物粒子中における各金属の組成比と同じ組成比となるように、水に溶解させる金属化合物の割合を調節して、混合水溶液を作製する。 Therefore, the ratio of the metal compound dissolved in water is adjusted so that the composition ratio of each metal in the mixed aqueous solution is the same as the composition ratio of each metal in the composite hydroxide particles of the present invention. A mixed aqueous solution is prepared.
一方、反応槽には、水酸化ナトリウム水溶液などのアルカリ水溶液、アンモニウムイオン供給体を含むアンモニア水溶液、および水を供給して混合して水溶液を形成する。この水溶液(以下、「反応前水溶液」という)について、そのpH値を、アルカリ水溶液の供給量を調整することにより、液温25℃基準で12.0〜14.0、好ましくは12.3〜13.4の範囲となるように調節する。また、反応前水溶液中のアンモニウムイオンの濃度を、アンモニア水溶液の供給量を調整することにより、3〜25g/L、好ましくは3〜20g/Lとなるように調節する。なお、反応前水溶液の温度についても、好ましくは20〜60℃、より好ましくは35〜60℃となるように調節する。反応槽内の水溶液のpH値、アンモニウムイオンの濃度については、それぞれ一般的なpH計、イオンメータによって測定可能である。 On the other hand, an alkaline aqueous solution such as an aqueous sodium hydroxide solution, an aqueous ammonia solution containing an ammonium ion supplier, and water are supplied to the reaction vessel and mixed to form an aqueous solution. The pH value of this aqueous solution (hereinafter referred to as “pre-reaction aqueous solution”) is adjusted to 12.0 to 14.0, preferably 12.3 based on the liquid temperature of 25 ° C. by adjusting the supply amount of the alkaline aqueous solution. Adjust to the range of 13.4. The concentration of ammonium ions in the aqueous solution before reaction is adjusted to 3 to 25 g / L, preferably 3 to 20 g / L by adjusting the supply amount of the aqueous ammonia solution. The temperature of the aqueous solution before reaction is also preferably adjusted to 20 to 60 ° C, more preferably 35 to 60 ° C. About the pH value of the aqueous solution in a reaction tank, and the density | concentration of ammonium ion, it can each measure with a general pH meter and an ion meter.
反応槽内において反応前水溶液の温度およびpHが調整されると、反応前水溶液を攪拌しながら混合水溶液を反応槽内に供給する。これにより、反応槽内には、反応前水溶液と混合水溶液とが混合した、核生成工程における反応水溶液である核生成用水溶液が形成され、核生成用水溶液中において複合水酸化物の微細な核が生成されることになる。このとき、核生成用水溶液のpH値は上記範囲にあるので、生成した核はほとんど成長することなく、核の生成が優先的に生じる。 When the temperature and pH of the aqueous solution before reaction are adjusted in the reaction vessel, the mixed aqueous solution is supplied into the reaction vessel while stirring the aqueous solution before reaction. As a result, a nucleation aqueous solution, which is a reaction aqueous solution in the nucleation step, is formed in the reaction tank by mixing the pre-reaction aqueous solution and the mixed aqueous solution, and fine nuclei of the composite hydroxide are formed in the nucleation aqueous solution. Will be generated. At this time, since the pH value of the aqueous solution for nucleation is within the above range, the produced nuclei hardly grow and the nucleation is preferentially generated.
なお、混合水溶液の供給による核生成に伴って、核生成用水溶液のpH値およびアンモニウムイオンの濃度が変化するので、核生成用水溶液には、混合水溶液とともに、アルカリ水溶液、アンモニア水溶液を供給して、核生成用水溶液のpH値が液温25℃基準で12.0〜14.0の範囲、アンモニウムイオンの濃度が3〜25g/Lの範囲をそれぞれ維持するように制御する。 In addition, since the pH value and ammonium ion concentration of the aqueous solution for nucleation change with the nucleation due to the supply of the mixed aqueous solution, the alkaline aqueous solution and the aqueous ammonia solution are supplied to the aqueous solution for nucleation together with the mixed aqueous solution. The pH value of the aqueous solution for nucleation is controlled so as to maintain the range of 12.0 to 14.0 and the concentration of ammonium ion in the range of 3 to 25 g / L on the basis of the liquid temperature of 25 ° C.
上記核生成用水溶液に対する混合水溶液、アルカリ水溶液およびアンモニア水溶液の供給により、核生成用水溶液中には、連続して新しい核の生成が継続される。そして、核生成用水溶液中に、所定の量の核が生成されると、核生成工程を終了する。所定量の核が生成したか否かは、核生成用水溶液に添加した金属塩の量によって判断する。 By supplying the mixed aqueous solution, the alkaline aqueous solution and the aqueous ammonia solution to the nucleation aqueous solution, new nuclei are continuously generated in the nucleation aqueous solution. When a predetermined amount of nuclei is generated in the aqueous solution for nucleation, the nucleation step is finished. Whether or not a predetermined amount of nuclei has been generated is determined by the amount of metal salt added to the aqueous solution for nucleation.
(粒子成長工程)
核生成工程の終了後、前記核生成用水溶液のpH値を、液温25℃基準で、10.5〜12.0、好ましくは11.0〜12.0、かつ、核生成工程におけるpH値よりも低いpH値となるように調整して、粒子成長工程における反応水溶液である粒子成長用水溶液を得る。具体的には、この調整時のpHの制御は、アルカリ水溶液の供給量を調節することにより行う。
(Particle growth process)
After completion of the nucleation step, the pH value of the aqueous solution for nucleation is 10.5 to 12.0, preferably 11.0 to 12.0, based on the liquid temperature of 25 ° C., and the pH value in the nucleation step. The aqueous solution for particle growth, which is a reaction aqueous solution in the particle growth step, is obtained by adjusting to a lower pH value. Specifically, the control of the pH during the adjustment is performed by adjusting the supply amount of the alkaline aqueous solution.
粒子成長用水溶液のpH値を上記範囲とすることにより、核の生成反応よりも核の成長反応の方が優先して生じるから、粒子成長工程において、粒子成長用水溶液には、新たな核はほとんど生成することなく、核が成長(粒子成長)して、所定の粒子径を有する複合水酸化物粒子が形成される。 By setting the pH value of the aqueous solution for particle growth within the above range, the nucleus growth reaction takes precedence over the nucleus generation reaction. Therefore, in the particle growth process, new nuclei are contained in the particle growth aqueous solution. With almost no generation, the nucleus grows (particle growth) to form composite hydroxide particles having a predetermined particle size.
同様に、混合水溶液の供給による粒子成長に伴って、粒子成長用水溶液のpH値およびアンモニウムイオンの濃度が変化するので、粒子成長用水溶液にも、混合水溶液とともに、アルカリ水溶液、アンモニア水溶液を供給して、粒子成長用水溶液のpH値が液温25℃基準で10.5〜12.0の範囲、アンモニウムイオンの濃度が3〜25g/L、の範囲を維持するように制御する。 Similarly, since the pH value of the aqueous solution for particle growth and the concentration of ammonium ions change as the particles grow due to the supply of the mixed aqueous solution, an alkaline aqueous solution and an aqueous ammonia solution are supplied to the aqueous solution for particle growth together with the mixed aqueous solution. Thus, the pH value of the aqueous solution for particle growth is controlled so as to maintain the range of 10.5 to 12.0 and the concentration of ammonium ion of 3 to 25 g / L on the basis of the liquid temperature of 25 ° C.
その後、上記複合水酸化物粒子が所定の粒径まで成長した時点で、粒子成長工程を終了する。複合水酸化物粒子の粒径は、予備試験により核生成工程と粒子成長工程の各工程におけるそれぞれの反応水溶液への金属塩の添加量と得られる粒子の関係を求めておけば、各工程での金属塩の添加量から容易に判断できる。 Thereafter, when the composite hydroxide particles grow to a predetermined particle size, the particle growth step is terminated. The particle size of the composite hydroxide particles can be determined in each step by obtaining the relationship between the amount of metal salt added to each reaction aqueous solution and the resulting particles in each step of the nucleation step and particle growth step by preliminary tests. It can be easily judged from the amount of metal salt added.
以上のように、上記複合水酸化物粒子の製造方法の場合、核生成工程では核生成が優先して起こり、核の成長はほとんど生じず、逆に、粒子成長工程では核成長のみが生じ、ほとんど新しい核は生成されない。このため、核生成工程では、粒度分布の範囲が狭く均質な核を形成させることができ、また、粒子成長工程では、均質に核を成長させることができる。したがって、上記複合水酸化物粒子の製造方法では、粒度分布の範囲が狭く、均質なニッケルマンガン複合水酸化物粒子を得ることができる。 As described above, in the case of the method for producing the composite hydroxide particles, nucleation occurs preferentially in the nucleation step, and almost no nucleation occurs. Conversely, only nucleation occurs in the particle growth step, Almost no new nuclei are generated. For this reason, in the nucleation step, homogeneous nuclei with a narrow particle size distribution range can be formed, and in the particle growth step, nuclei can be grown homogeneously. Therefore, in the above method for producing composite hydroxide particles, the range of particle size distribution is narrow, and uniform nickel manganese composite hydroxide particles can be obtained.
なお、上記製造方法の場合、両工程において、金属イオンは、核または複合水酸化物粒子となって晶出するので、それぞれの反応水溶液中の金属成分に対する液体成分の割合が増加する。この場合、見かけ上、供給する混合水溶液の濃度が低下したようになり、特に粒子成長工程において、複合水酸化物粒子が十分に成長しない可能性がある。 In the case of the above production method, in both steps, the metal ions are crystallized as nuclei or composite hydroxide particles, so that the ratio of the liquid component to the metal component in each reaction aqueous solution increases. In this case, apparently, the concentration of the mixed aqueous solution to be supplied is lowered, and there is a possibility that the composite hydroxide particles are not sufficiently grown particularly in the particle growth step.
したがって、上記液体成分の増加を抑制するため、核生成工程終了後から粒子成長工程の途中で、粒子成長用水溶液中の液体成分の一部を反応槽外に排出することが好ましい。具体的には、粒子成長用水溶液に対する混合水溶液、アルカリ水溶液およびアンモニア水溶液の供給および攪拌を停止して、核や複合水酸化物粒子を沈降させて、粒子成長用水溶液の上澄み液を排出する。これにより、粒子成長用水溶液における混合水溶液の相対的な濃度を高めることができる。そして、混合水溶液の相対的な濃度が高い状態で、複合水酸化物粒子を成長させることができるので、複合水酸化物粒子の粒度分布をより狭めることができ、複合水酸化物粒子の二次粒子全体としての密度も高めることができる。 Therefore, in order to suppress the increase of the liquid component, it is preferable to discharge a part of the liquid component in the aqueous solution for particle growth to the outside of the reaction tank in the middle of the particle growth step after the nucleation step. Specifically, the supply and stirring of the mixed aqueous solution, alkaline aqueous solution and aqueous ammonia solution to the particle growth aqueous solution are stopped, the nuclei and composite hydroxide particles are allowed to settle, and the supernatant liquid of the particle growth aqueous solution is discharged. Thereby, the relative concentration of the mixed aqueous solution in the aqueous solution for particle growth can be increased. Since the composite hydroxide particles can be grown in a state in which the relative concentration of the mixed aqueous solution is high, the particle size distribution of the composite hydroxide particles can be narrowed, and the secondary particles of the composite hydroxide particles The density of the entire particle can also be increased.
また、図1に示す実施形態では、核生成工程が終了した核生成用水溶液のpHを調整して粒子成長用水溶液を形成して、核生成工程から引き続いて粒子成長工程を行っているので、粒子成長工程への移行を迅速に行うことができるという利点がある。さらに、核生成工程から粒子成長工程への移行は、反応水溶液のpHを調整するだけで移行でき、pHの調整も一時的にアルカリ水溶液の供給を停止することで容易に行うことができるという利点がある。なお、反応水溶液のpHは、金属化合物を構成する酸と同種の無機酸、たとえば、硫酸塩の場合、硫酸を反応水溶液に添加することでも調整することができる。 In the embodiment shown in FIG. 1, the pH of the aqueous solution for nucleation after completion of the nucleation step is adjusted to form an aqueous solution for particle growth, and the particle growth step is subsequently performed from the nucleation step. There is an advantage that the transition to the particle growth process can be performed quickly. Furthermore, the transition from the nucleation step to the particle growth step can be performed simply by adjusting the pH of the reaction aqueous solution, and the pH can also be easily adjusted by temporarily stopping the supply of the alkaline aqueous solution. There is. The pH of the reaction aqueous solution can also be adjusted by adding sulfuric acid to the reaction aqueous solution in the case of an inorganic acid of the same kind as the acid constituting the metal compound, for example, sulfate.
しかしながら、図2に示す別実施形態のように、核生成用水溶液とは別に、粒子成長工程に適したpH、アンモニウムイオン濃度に調整された成分調整水溶液を形成しておき、この成分調整水溶液に、別の反応槽で核生成工程を行って生成した核を含有する水溶液(核生成用水溶液、好ましくは核生成用水溶液から液体成分の一部を除去したもの)を添加して反応水溶液とし、この反応水溶液を粒子成長用水溶液として粒子成長工程を行ってもよい。 However, as in another embodiment shown in FIG. 2, a component-adjusted aqueous solution adjusted to a pH and ammonium ion concentration suitable for the particle growth step is formed separately from the aqueous solution for nucleation, and this component-adjusted aqueous solution is used. , An aqueous solution containing nuclei generated by performing a nucleation step in another reaction tank (aqueous solution for nucleation, preferably one obtained by removing a part of the liquid component from the aqueous solution for nucleation) to obtain a reaction aqueous solution, You may perform a particle growth process by making this reaction aqueous solution into the aqueous solution for particle growth.
この場合、核生成工程と粒子成長工程の分離を、より確実に行うことができるので、各工程における反応水溶液の状態を、各工程に最適な条件とすることができる。特に、粒子成長工程の開始時点から、粒子成長用水溶液のpHを最適な条件とすることができる。粒子成長工程で形成されるニッケルマンガン複合水酸化物粒子を、より粒度分布の範囲が狭く、かつ、均質なものとすることができる。 In this case, since the nucleation step and the particle growth step can be more reliably separated, the state of the reaction aqueous solution in each step can be set to an optimum condition for each step. In particular, the pH of the aqueous solution for particle growth can be set to an optimum condition from the start of the particle growth step. The nickel manganese composite hydroxide particles formed in the particle growth step can have a narrower particle size distribution range and be uniform.
次に、各工程における反応雰囲気の制御、各工程において使用する物質や溶液、反応条件について、詳細に説明する。 Next, control of the reaction atmosphere in each process, substances and solutions used in each process, and reaction conditions will be described in detail.
(pH制御)
上述のように、核生成工程においては、反応水溶液のpH値が、液温25℃基準で12.0〜14.0、好ましくは12.3〜13.4の範囲となるように制御する必要がある。pH値が14.0を超える場合、生成する核が微細になり過ぎ、反応水溶液がゲル化する問題がある。また、pH値が12.0未満では、核形成とともに核の成長反応が生じるので、形成される核の粒度分布の範囲が広くなり不均質なものとなってしまう。すなわち、核生成工程において、上述の範囲に反応水溶液のpH値を制御することで、核の成長を抑制してほぼ核生成のみを起こすことができ、形成される核も均質かつ粒度分布の範囲が狭いものとすることができる。
(PH control)
As described above, in the nucleation step, it is necessary to control the pH value of the reaction aqueous solution to be in the range of 12.0 to 14.0, preferably 12.3 to 13.4 on the basis of the liquid temperature of 25 ° C. There is. When the pH value exceeds 14.0, the produced nuclei become too fine and the reaction aqueous solution gels. On the other hand, when the pH value is less than 12.0, a nucleus growth reaction occurs together with nucleation, so that the range of the particle size distribution of the nuclei formed becomes wide and non-uniform. That is, in the nucleation step, by controlling the pH value of the reaction aqueous solution within the above range, it is possible to suppress the growth of nuclei and cause almost only nucleation. Can be narrow.
一方、粒子成長工程においては、反応水溶液のpH値が、液温25℃基準で10.5〜12.0、好ましくは11.0〜12.0の範囲となるように制御する必要がある。pH値が12.0を超える場合、あらたに生成される核が多くなり、微細2次粒子が生成するため、粒径分布が良好な水酸化物粒子が得られない。また、pH値が10.5未満では、アンモニアイオンによる溶解度が高く、析出せずに液中に残る金属イオンが増えるため、生産効率が悪化する。また、金属硫酸塩を原料として使用した場合に粒子中に残るS(イオウ)分が多くなるため好ましくない。すなわち、粒子成長工程において、上述の範囲に反応水溶液のpHを制御することで、核生成工程で生成した核の成長のみを優先的に起こさせ、新たな核形成を抑制することができ、得られるニッケルマンガン複合水酸化物粒子を均質かつ粒度分布の範囲が狭いものとすることができる。 On the other hand, in the particle growth step, it is necessary to control the pH value of the aqueous reaction solution to be in the range of 10.5 to 12.0, preferably 11.0 to 12.0 on the basis of the liquid temperature of 25 ° C. When the pH value exceeds 12.0, more nuclei are newly generated and fine secondary particles are generated, so that hydroxide particles having a good particle size distribution cannot be obtained. On the other hand, when the pH value is less than 10.5, the solubility by ammonia ions is high, and the metal ions remaining in the liquid without being precipitated increase, so that the production efficiency is deteriorated. Further, when a metal sulfate is used as a raw material, the amount of S (sulfur) remaining in the particles increases, which is not preferable. That is, in the particle growth process, by controlling the pH of the reaction aqueous solution within the above range, it is possible to preferentially cause the growth of nuclei generated in the nucleation process and suppress new nucleation. The nickel manganese composite hydroxide particles can be homogeneous and have a narrow particle size distribution range.
核生成工程および粒子成長工程のいずれにおいても、pHの変動幅は、設定値の上下0.2以内とすることが好ましい。pHの変動幅が大きい場合、核生成と粒子成長が一定とならず、粒度分布の範囲の狭い均一なニッケルマンガン複合水酸化物粒子が得られない場合がある。 In both the nucleation step and the particle growth step, the fluctuation range of the pH is preferably within 0.2 above and below the set value. When the pH fluctuation range is large, nucleation and particle growth are not constant, and uniform nickel manganese composite hydroxide particles having a narrow particle size distribution range may not be obtained.
なお、pH値が12の場合は、核生成と核成長の境界条件であるため、反応水溶液中に存在する核の有無により、核生成工程もしくは粒子成長工程のいずれかの条件とすることができる。 When the pH value is 12, it is a boundary condition between nucleation and nucleation, and therefore, it can be set as either a nucleation process or a particle growth process depending on the presence or absence of nuclei present in the reaction aqueous solution. .
すなわち、核生成工程のpH値を12より高くして多量に核生成させた後、粒子成長工程でpH値を12とすると、反応水溶液中に多量の核が存在するため、核の成長が優先して起こり、粒径分布が狭く比較的大きな粒径の前記水酸化物粒子が得られる。 That is, if the pH value in the nucleation step is higher than 12 and a large amount of nuclei are produced, and if the pH value is set to 12 in the particle growth step, a large amount of nuclei are present in the reaction aqueous solution, so the growth of nuclei takes priority Thus, the hydroxide particles having a narrow particle size distribution and a relatively large particle size can be obtained.
一方、反応水溶液中に核が存在しない状態、すなわち、核生成工程においてpH値を12とした場合、成長する核が存在しないため、核生成が優先して起こり、粒子成長工程のpH値を12より小さくすることで、生成した核が成長して良好な前記水酸化物粒子が得られる。 On the other hand, when no nuclei exist in the reaction aqueous solution, that is, when the pH value is set to 12 in the nucleation step, since no nuclei grow, nucleation occurs preferentially, and the pH value of the particle growth step is set to 12. By making it smaller, the produced | generated nucleus grows and the said hydroxide particle | grains favorable are obtained.
いずれの場合においても、粒子成長工程のpH値を核生成工程のpH値より低い値で制御すればよく、核生成と粒子成長を明確に分離するためには、粒子成長工程のpH値を核生成工程のpH値より0.5以上低くすることが好ましく、1.0以上低くすることがより好ましい。 In any case, the pH value of the particle growth process may be controlled to a value lower than the pH value of the nucleation process. To clearly separate nucleation and particle growth, the pH value of the particle growth process is It is preferably 0.5 or more lower than the pH value of the production step, more preferably 1.0 or more.
(核生成量)
核生成工程において生成する核の量は、特に限定されるものではないが、粒度分布の良好な複合水酸化物粒子を得るためには、全体量、つまり、複合水酸化物粒子を得るために供給する全金属塩の0.1%から2%とすることが好ましく、1.5%以下とすることがより好ましい。
(Nucleation amount)
The amount of nuclei generated in the nucleation step is not particularly limited, but in order to obtain composite hydroxide particles having a good particle size distribution, the total amount, that is, to obtain composite hydroxide particles. The total metal salt to be supplied is preferably 0.1% to 2%, more preferably 1.5% or less.
(複合水酸化物粒子の粒径制御)
上記複合水酸化物粒子の粒径は、粒子成長工程の時間により制御できるので、所望の粒径に成長するまで粒子成長工程を継続すれば、所望の粒径を有する複合水酸化物粒子を得ることができる。
(Controlling the particle size of composite hydroxide particles)
Since the particle size of the composite hydroxide particles can be controlled by the time of the particle growth step, if the particle growth step is continued until it grows to a desired particle size, composite hydroxide particles having the desired particle size are obtained. be able to.
また、複合水酸化物粒子の粒径は、粒子成長工程のみならず、核生成工程のpH値と核生成のために投入した原料量でも制御することができる。 Further, the particle size of the composite hydroxide particles can be controlled not only by the particle growth step but also by the pH value of the nucleation step and the amount of raw material charged for nucleation.
すなわち、核生成時のpHを高pH値側とすることにより、あるいは核生成時間を長くすることにより投入する原料量を増やし、生成する核の数を多くする。これにより、粒子成長工程を同条件とした場合でも、複合水酸化物粒子の粒径を小さくできる。一方、核生成数が少なくするように制御すれば、得られる前記複合水酸化物粒子の粒径を大きくすることができる。 That is, by increasing the pH during nucleation to the high pH value side or by increasing the nucleation time, the amount of raw material to be added is increased and the number of nuclei to be generated is increased. Thereby, even when the particle growth step is performed under the same conditions, the particle size of the composite hydroxide particles can be reduced. On the other hand, if the nucleation number is controlled to be small, the particle size of the obtained composite hydroxide particles can be increased.
(複合水酸化物粒子の粒子構造制御)
複合水酸化物粒子の組成は、反応水溶液の液体部の組成比、すなわち混合水溶液中における各金属の組成比と同じになる。したがって、二次粒子の内部の組成より外周部の組成のMn/Ni比が高い多層構造を得るためには、晶析中の外周部形成期における水溶液の液体部のMn/Ni比を、内部形成期における水溶液の液体部より高くすればよい。すなわち、供給する混合水溶液中における各金属の組成比を、核生成から成長工程において金属元素を所定の合計量を供給するまでをMn/Ni比の比較的低い複合水酸化物粒の内部の組成比とし、所定の金属元素合計量の供給後は晶析終了までは比較的Mn/Ni比が高い外周部の組成比に変更することで上記多層構造が得られる。二次粒子の内部と外周部の体積比は、供給する金属元素の合計量に比例することから、容易に制御することができる。
(Particle structure control of composite hydroxide particles)
The composition of the composite hydroxide particles child, the composition ratio of the liquid portion of the reaction solution, that is, the same as the composition ratio of each metal in the mixed aqueous solution. Therefore, in order to obtain a multilayer structure in which the Mn / Ni ratio of the outer peripheral composition is higher than the internal composition of the secondary particles, the Mn / Ni ratio of the liquid part of the aqueous solution in the outer peripheral part formation stage during crystallization is What is necessary is just to make it higher than the liquid part of the aqueous solution in a formation period. That is, the composition ratio of each metal in the mixed aqueous solution to be supplied is determined from the nucleation to the inside of the composite hydroxide grains having a relatively low Mn / Ni ratio until a predetermined total amount of metal elements is supplied in the growth process. The above multilayer structure can be obtained by changing the composition ratio of the outer peripheral portion having a relatively high Mn / Ni ratio until the completion of crystallization after the supply of the predetermined total amount of metal elements. Since the volume ratio between the inside and the outer periphery of the secondary particles is proportional to the total amount of metal elements to be supplied, it can be easily controlled.
また、混合水溶液の金属元素当たり供給速度から必要な時間を求めることができるため、上記外周部の厚みを混合水溶液を供給する時間で制御してもよく、一定速度で供給する場合には、外周部が所望の厚みとなるようにそれぞれの組成比で必要な時間晶析すればよい。
上記水溶液の液体部のMn/Ni比の変更を、晶析中に供給される全金属元素量に対して10〜90mol%の金属元素量を供給した時に行うことが好ましい。これにより、前記外周部の厚みを、好ましい範囲である二次粒子径の1.5〜25%に制御することができる。
In addition, since the required time can be obtained from the supply rate per metal element of the mixed aqueous solution, the thickness of the outer peripheral portion may be controlled by the time for supplying the mixed aqueous solution. What is necessary is just to crystallize for the time required by each composition ratio so that a part may become desired thickness.
The Mn / Ni ratio of the liquid part of the aqueous solution is preferably changed when a metal element amount of 10 to 90 mol% is supplied with respect to the total metal element amount supplied during crystallization. Thereby, the thickness of the said outer peripheral part is controllable to 1.5-25% of the secondary particle diameter which is a preferable range.
以下、反応槽内の雰囲気、反応水溶液の撹拌、金属化合物、反応水溶液中アンモニア濃度、反応温度などの条件を説明するが、核生成工程と粒子成長工程との相違点は、反応水溶液のpHを制御する範囲のみであり、反応槽内の雰囲気、反応水溶液の撹拌、金属化合物、反応液中アンモニア濃度、反応温度などの条件は、両工程において実質的に同様である。 Hereinafter, conditions such as the atmosphere in the reaction tank, stirring of the reaction aqueous solution, metal compound, ammonia concentration in the reaction aqueous solution, reaction temperature, etc. will be described. The difference between the nucleation step and the particle growth step is that the pH of the reaction aqueous solution is It is only the range to be controlled, and the conditions such as the atmosphere in the reaction vessel, the stirring of the reaction aqueous solution, the metal compound, the ammonia concentration in the reaction solution, the reaction temperature, and the like are substantially the same in both steps.
(反応雰囲気)
核生成工程においては、コバルト、マンガンの酸化を抑制して粒子を安定して生成させる観点から、反応槽内空間の酸素濃度を好ましくは10容量%以下、より好ましくは5容量%以下、さらに好ましくは1容量%以下に制御する必要がある。粒子成長工程でも酸化制御が重要であり、反応槽内空間の酸素濃度を同様に制御する必要がある。雰囲気中の酸素濃度は、たとえば、窒素、アルゴンなどの不活性ガスを用いて調整することができる。雰囲気中の酸素濃度が所定の濃度となるように調節するための手段としては、たとえば、当該雰囲気中に常に一定量の雰囲気ガスを流通させることが挙げられる。
(Reaction atmosphere)
In the nucleation step, the oxygen concentration in the reaction vessel space is preferably 10% by volume or less, more preferably 5% by volume or less, and further preferably from the viewpoint of stably generating particles by suppressing the oxidation of cobalt and manganese. Must be controlled to 1% by volume or less. Oxidation control is also important in the particle growth process, and it is necessary to similarly control the oxygen concentration in the reaction vessel space. The oxygen concentration in the atmosphere can be adjusted using, for example, an inert gas such as nitrogen or argon. As a means for adjusting the oxygen concentration in the atmosphere to be a predetermined concentration, for example, a constant amount of atmospheric gas is always circulated in the atmosphere.
(金属化合物)
金属化合物としては、目的とする金属を含有する化合物を用いる。使用する化合物は、水溶性の化合物を用いることが好ましく、硝酸塩、硫酸塩、塩酸塩などがあげられる。たとえば、硫酸ニッケル、硫酸マンガン、硫酸コバルトが好ましく用いられる。
(Metal compound)
As the metal compound, a compound containing the target metal is used. As the compound to be used, a water-soluble compound is preferably used, and examples thereof include nitrates, sulfates and hydrochlorides. For example, nickel sulfate, manganese sulfate, and cobalt sulfate are preferably used.
(添加元素)
添加元素(Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の元素)は、水溶性の化合物を用いることが好ましく、たとえば、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸ジルコニウム、硝酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、タングステン酸ナトリウム、タングステン酸アンモニウムなどを用いることができる。
(Additive elements)
The additive element (one or more elements selected from Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) is preferably a water-soluble compound. For example, titanium sulfate, peroxo Ammonium titanate, potassium potassium oxalate, vanadium sulfate, ammonium vanadate, chromium sulfate, potassium chromate, zirconium sulfate, zirconium nitrate, niobium oxalate, ammonium molybdate, sodium tungstate, ammonium tungstate, etc. can be used. .
かかる添加元素を複合水酸化物粒子の内部に均一に分散させる場合には、混合水溶液に、添加元素を含有する添加物を添加すればよく、複合水酸化物粒子の内部に添加元素を均一に分散させた状態で共沈させることができる。 When the additive element is uniformly dispersed inside the composite hydroxide particle, an additive containing the additive element may be added to the mixed aqueous solution, and the additive element is uniformly distributed inside the composite hydroxide particle. it can be co-precipitated in a dispersed state.
また、上記複合水酸化物粒子の表面を添加元素で被覆する場合には、たとえば、添加元素を含んだ水溶液で該複合水酸化物粒子をスラリー化し、所定のpHとなるように制御しつつ、前記1種以上の添加元素を含む水溶液を添加して、晶析反応により添加元素を複合水酸化物粒子表面に析出させれば、その表面を添加元素で均一に被覆することができる。この場合、添加元素を含んだ水溶液に替えて、添加元素のアルコキシド溶液を用いてもよい。さらに、上記複合水酸化物粒子に対して、添加元素を含んだ水溶液あるいはスラリーを吹き付けて乾燥させることによっても、複合水酸化物粒子の表面を添加元素で被覆することができる。また、複合水酸化物粒子と前記1種以上の添加元素を含む塩が懸濁したスラリーを噴霧乾燥させる、あるいは複合水酸化物と前記1種以上の添加元素を含む塩を固相法で混合するなどの方法により被覆することができる。 When the surface of the composite hydroxide particles is coated with an additive element, for example, the composite hydroxide particles are slurried with an aqueous solution containing the additive element and controlled to have a predetermined pH, If an aqueous solution containing one or more additive elements is added and the additive elements are precipitated on the surface of the composite hydroxide particles by a crystallization reaction, the surface can be uniformly coated with the additive elements. In this case, an alkoxide solution of the additive element may be used instead of the aqueous solution containing the additive element. Furthermore, the surface of the composite hydroxide particles can be coated with the additive element by spraying an aqueous solution or slurry containing the additive element onto the composite hydroxide particle and drying it. Also, the slurry in which the composite hydroxide particles and the salt containing one or more additional elements are suspended is spray-dried, or the composite hydroxide and the salt containing one or more additional elements are mixed by a solid phase method. It can coat | cover by methods, such as doing.
なお、表面を添加元素で被覆する場合、混合水溶液中に存在する添加元素イオンの原子数比を被覆する量だけ少なくしておくことで、得られる複合水酸化物粒子の金属イオンの原子数比と一致させることができる。また、粒子の表面を添加元素で被覆する工程は、複合水酸化物粒子を熱処理した後の粒子に対して行ってもよい。 In addition, when the surface is coated with an additive element, the atomic ratio of the metal ions of the resulting composite hydroxide particles is reduced by reducing the atomic ratio of the additive element ions present in the mixed aqueous solution by the amount to be coated. Can be matched. Moreover, you may perform the process of coat | covering the surface of particle | grains with an additive element with respect to the particle | grains after heat-processing composite hydroxide particle | grains.
(混合水溶液の濃度)
混合水溶液の濃度は、金属化合物の合計で1〜2.6mol/L、好ましくは1.5〜2.2mol/Lとすることが好ましい。混合水溶液の濃度が1mol/L未満では、反応槽当たりの晶析物量が少なくなるために生産性が低下して好ましくない。
(Concentration of mixed aqueous solution)
The concentration of the mixed aqueous solution is preferably 1 to 2.6 mol / L, more preferably 1.5 to 2.2 mol / L in total of the metal compounds. When the concentration of the mixed aqueous solution is less than 1 mol / L, the amount of crystallized product per reaction tank is decreased, and thus the productivity is not preferable.
一方、混合水溶液の塩濃度が2.6mol/Lを超えると、常温での飽和濃度を超えるため、結晶が再析出して設備の配管を詰まらせるなどの危険がある。 On the other hand, when the salt concentration of the mixed aqueous solution exceeds 2.6 mol / L, the saturated concentration at room temperature is exceeded, so there is a risk that crystals re-deposit and clog the equipment piping.
また、金属化合物は、必ずしも混合水溶液として反応槽に供給しなくてもよく、たとえば、混合すると反応して化合物が生成される金属化合物を用いる場合、全金属化合物水溶液の合計の濃度が上記範囲となるように、個別に金属化合物水溶液を調製して、個々の金属化合物の水溶液として所定の割合で同時に反応槽内に供給してもよい。 In addition, the metal compound does not necessarily have to be supplied to the reaction vessel as a mixed aqueous solution. For example, when a metal compound that reacts when mixed to produce a compound is used, the total concentration of all the metal compound aqueous solutions is within the above range. As described above, the metal compound aqueous solution may be prepared individually and supplied into the reaction vessel at a predetermined ratio simultaneously as an aqueous solution of each metal compound.
さらに、混合水溶液などや個々の金属化合物の水溶液を反応槽に供給する量は、晶析反応を終えた時点での晶析物濃度が、概ね30〜200g/L、好ましくは80〜150g/Lになるようにすることが望ましい。晶析物濃度が30g/L未満の場合には、一次粒子の凝集が不十分になることがあり、200g/Lを超える場合には、添加する混合水溶液の反応槽内での拡散が十分でなく、粒子成長に偏りが生じることがあるからである。 Further, the amount of the mixed aqueous solution and the aqueous solution of each metal compound supplied to the reaction tank is such that the concentration of the crystallized product at the time when the crystallization reaction is completed is approximately 30 to 200 g / L, preferably 80 to 150 g / L. It is desirable to become. When the crystallized substance concentration is less than 30 g / L, aggregation of primary particles may be insufficient, and when it exceeds 200 g / L, diffusion of the mixed aqueous solution to be added in the reaction vessel is sufficient. This is because the grain growth may be biased.
(アンモニア濃度)
反応水溶液中のアンモニア濃度は、好ましくは3〜25g/L、好ましくは3〜20g/Lの範囲内で一定値に保持する。
(Ammonia concentration)
The ammonia concentration in the reaction aqueous solution is preferably maintained within a range of 3 to 25 g / L, preferably 3 to 20 g / L.
アンモニアは錯化剤として作用するため、アンモニア濃度が3g/L未満であると、金属イオンの溶解度を一定に保持することができず、形状および粒径が整った板状の水酸化物一次粒子が形成されず、ゲル状の核が生成しやすいため粒度分布も広がりやすい。 Since ammonia acts as a complexing agent, if the ammonia concentration is less than 3 g / L, the solubility of metal ions cannot be kept constant, and plate-shaped hydroxide primary particles having a uniform shape and particle size Is not formed, and gel-like nuclei are easily generated, so that the particle size distribution is likely to be widened.
一方、上記アンモニア濃度が25g/Lを超える濃度では、金属イオンの溶解度が大きく、水酸化物が緻密に形成されるため、最終的に得られる非水系電解質二次電池用正極活物質も緻密な構造になり、粒径が小さく、比表面積も低くなることがある。また、金属イオンの溶解度が大きくなり過ぎると、反応水溶液中に残存する金属イオン量が増えて、組成のずれなどが起きる。 On the other hand, when the ammonia concentration exceeds 25 g / L, the solubility of metal ions is large and the hydroxide is densely formed. Therefore, the positive electrode active material for a non-aqueous electrolyte secondary battery finally obtained is also dense. The structure may be small, the particle size may be small, and the specific surface area may be low. Further, if the solubility of metal ions becomes too high, the amount of metal ions remaining in the reaction aqueous solution increases, resulting in a compositional shift or the like.
また、アンモニア濃度が変動すると、金属イオンの溶解度が変動し、均一な水酸化物粒子が形成されないため、一定値に保持することが好ましい。たとえば、アンモニア濃度は、上限と下限の幅を5g/L程度として所望の濃度に保持することが好ましい。 Further, when the ammonia concentration varies, the solubility of metal ions varies, and uniform hydroxide particles are not formed. Therefore, it is preferable to maintain a constant value. For example, the ammonia concentration is preferably maintained at a desired concentration by setting the upper and lower limits to about 5 g / L.
アンモニウムイオン供給体については、特に限定されないが、たとえば、アンモニア、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどを使用することができる。 Although it does not specifically limit about an ammonium ion supply body, For example, ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride etc. can be used.
(反応液温度)
反応槽内において、反応液の温度は、好ましくは20〜60℃以上、特に好ましくは35〜60℃に設定する。反応液の温度が20℃未満の場合、金属イオンの溶解度が低いため核発生が起こりやすく制御が難しくなる。一方、60℃を超えると、アンモニアの揮発が促進されるため、所定のアンモニア濃度を保つために、過剰のアンモニウムイオン供給体を添加しなければならならず、コスト高となる。
(Reaction temperature)
In the reaction vessel, the temperature of the reaction solution is preferably set to 20 to 60 ° C. or more, particularly preferably 35 to 60 ° C. When the temperature of the reaction solution is lower than 20 ° C., the solubility of metal ions is low, so that nucleation is likely to occur and control becomes difficult. On the other hand, when the temperature exceeds 60 ° C., volatilization of ammonia is promoted. Therefore, in order to maintain a predetermined ammonia concentration, it is necessary to add an excess ammonium ion supplier, resulting in an increase in cost.
(アルカリ水溶液)
反応水溶液中のpHを調整するアルカリ水溶液については、特に限定されるものではなく、たとえば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物水溶液を用いることができる。かかるアルカリ金属水酸化物の場合、直接、反応水溶液中に供給してもよいが、反応槽内における反応水溶液のpH制御の容易さから、水溶液として反応槽内の反応水溶液に添加することが好ましい。
(Alkaline aqueous solution)
The aqueous alkali solution for adjusting the pH in the aqueous reaction solution is not particularly limited, and for example, an aqueous alkali metal hydroxide solution such as sodium hydroxide or potassium hydroxide can be used. In the case of such an alkali metal hydroxide, it may be supplied directly into the reaction aqueous solution, but it is preferable to add it as an aqueous solution to the reaction aqueous solution in the reaction vessel for ease of pH control of the reaction aqueous solution in the reaction vessel. .
また、アルカリ水溶液を反応槽に添加する方法についても、特に限定されるものではなく、反応水溶液を十分に攪拌しながら、定量ポンプなど、流量制御が可能なポンプで、反応水溶液のpH値が所定の範囲に保持されるように、添加すればよい。 Further, the method for adding the aqueous alkaline solution to the reaction vessel is not particularly limited, and the pH value of the aqueous reaction solution is predetermined by a pump capable of controlling the flow rate, such as a metering pump, while sufficiently stirring the aqueous reaction solution. It may be added so that it is maintained in the range of.
(製造設備)
本発明の複合水酸化物粒子の製造方法では、反応が完了するまで生成物を回収しない方式の装置を用いる。たとえば、撹拌機が設置された通常に用いられるバッチ反応槽などである。かかる装置を採用すると、一般的なオーバーフローによって生成物を回収する連続晶析装置のように、成長中の粒子がオーバーフロー液と同時に回収されるという問題が生じないため、粒度分布が狭く粒径の揃った粒子を得ることができる。
(production equipment)
In the method for producing composite hydroxide particles of the present invention, an apparatus that does not recover the product until the reaction is completed is used. For example, it is a normally used batch reactor equipped with a stirrer. By adopting such an apparatus, unlike the continuous crystallization apparatus that recovers the product by a general overflow, there is no problem that the growing particles are recovered simultaneously with the overflow liquid. Uniform particles can be obtained.
また、反応雰囲気を制御する場合には、密閉式の装置などの雰囲気制御可能な装置を用いる。このような装置を用いることで、核生成反応や粒子成長反応をほぼ均一に進めることができるので、粒径分布の優れた粒子、すなわち粒度分布の範囲の狭い複合水酸化物粒子を得ることができる。 In addition, when the reaction atmosphere is controlled, a device capable of controlling the atmosphere such as a hermetically sealed device is used. By using such an apparatus, the nucleation reaction and particle growth reaction can be carried out almost uniformly, so that particles having an excellent particle size distribution, that is, composite hydroxide particles having a narrow particle size distribution range can be obtained. it can.
(2−1)非水系電解質二次電池用正極活物質
本発明の正極活物質は、一般式:Li1+uNixMnyCozMtO2(−0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、Mは添加元素であり、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表されるリチウムニッケルマンガン複合酸化物粒子であって、層状構造を有する六方晶系の結晶構造を有するものである。
(2-1) Positive electrode active material for non-aqueous electrolyte secondary battery The positive electrode active material of the present invention has a general formula: Li 1 + u Ni x Mn y Co z M t O 2 (−0.05 ≦ u ≦ 0.50 , x + y + z + t = 1, 0.3 ≦ x ≦ 0.7, 0.1 ≦ y ≦ 0.55 , 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1 , M is an additive element, Al, Ti , V, Cr, Zr, Nb, Mo, Hf, Ta, W), which is a lithium nickel manganese composite oxide particle represented by a hexagonal system having a layered structure. It has a crystal structure.
(組成)
本発明の正極活物質は、リチウムニッケルマンガン複合酸化物粒子であるが、その組成
が、以下の一般式で表されるように調整されるものである。一般式:Li1+uNixMnyCozMtO2(−0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、MはAl、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)
本発明の正極活物質においては、リチウムの過剰量を示すuが、−0.05から0.50までの範囲である。リチウムの過剰量uが−0.05未満の場合、得られた正極活物質を用いた非水系電解質二次電池における正極の反応抵抗が大きくなるため、電池の出力が低くなってしまう。また、アルカリ度が本発明の下限未満となってしまう。一方、リチウムの過剰量uが0.50を超える場合、上記正極活物質を電池の正極に用いた場合の初期放電容量が低下するとともに、正極の反応抵抗も増加してしまう。リチウムの過剰量uは、該反応抵抗をより低減させるためには0.05以上とすることが好ましく、0.20以下とすることが好ましい。
(composition)
The positive electrode active material of the present invention is lithium nickel manganese composite oxide particles whose composition is adjusted so as to be represented by the following general formula. General formula: Li 1 + u Ni x Mn y Co z M t O 2 (−0.05 ≦ u ≦ 0.50 , x + y + z + t = 1, 0.3 ≦ x ≦ 0.7, 0.1 ≦ y ≦ 0.55 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, M is one or more additive elements selected from Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W)
In the positive electrode active material of the present invention, u indicating an excess amount of lithium is in the range of −0.05 to 0.50. When the excess amount u of lithium is less than −0.05, the reaction resistance of the positive electrode in the nonaqueous electrolyte secondary battery using the obtained positive electrode active material increases, and the output of the battery decreases. Moreover, alkalinity will be less than the minimum of this invention. On the other hand, when the excessive amount u of lithium exceeds 0.50, the initial discharge capacity when the positive electrode active material is used for the positive electrode of the battery is lowered and the reaction resistance of the positive electrode is also increased. In order to further reduce the reaction resistance, the excess amount u of lithium is preferably 0.05 or more, and more preferably 0.20 or less.
さらに、本発明の正極活物質においては、表層部のMn/Ni比が内部より高いことが好ましく、表層部のMn/Ni比(SMN)と内部のMn/Ni比(IMN)との比(SMN/IMN)が1.3〜50であることが好ましい。これにより、アルカリ度を本発明の範囲とすることができる。SMN比およびIMN比は、断面SEM観察におけるEDX分析等による分析で求めることができる。 Furthermore, in the positive electrode active material of the present invention, the Mn / Ni ratio of the surface layer portion is preferably higher than the inside, and the ratio of the Mn / Ni ratio (SMN) of the surface layer portion to the internal Mn / Ni ratio (IMN) ( SMN / IMN) is preferably 1.3-50. Thereby, alkalinity can be made into the range of this invention. The SMN ratio and the IMN ratio can be obtained by analysis such as EDX analysis in cross-sectional SEM observation.
また、上記一般式で表されるように、本発明の正極活物質は、リチウムニッケルマンガン複合酸化物粒子に添加元素を含有するように調整されていることが、より好ましい。上記添加元素を含有させることで、これを正極活物質として用いた電池の耐久特性や出力特性を向上させることができる。 Moreover, as represented by the above general formula, the positive electrode active material of the present invention is more preferably adjusted so as to contain an additive element in the lithium nickel manganese composite oxide particles. By including the additive element, it is possible to improve durability characteristics and output characteristics of a battery using the additive element as a positive electrode active material.
特に、添加元素が粒子の表面または内部に均一に分布することで、粒子全体で上記効果を得ることができ、少量の添加で上記効果が得られるとともに容量の低下を抑制できる。 In particular, since the additive element is uniformly distributed on the surface or inside of the particle, the above effect can be obtained over the entire particle, and the above effect can be obtained with a small amount of addition, and a decrease in capacity can be suppressed.
さらに、より少ない添加量で効果を得るためには、粒子内部より粒子表面における添加元素の濃度を高めることが好ましい。 Furthermore, in order to obtain the effect with a smaller addition amount, it is preferable to increase the concentration of the additive element on the particle surface from the inside of the particle.
添加元素Mの原子比tが0.1を超えると、Redox反応に貢献する金属元素が減少するため、電池容量が低下するため好ましくない。したがって、添加元素Mは、上記原子比tで上記範囲となるように調整する。 When the atomic ratio t of the additive element M exceeds 0.1, the metal element contributing to the Redox reaction is decreased, which is not preferable because the battery capacity is decreased. Therefore, the additive element M is adjusted so as to fall within the above range at the atomic ratio t.
(平均粒径)
本発明の正極活物質は、平均粒径が3〜12μmであり、好ましくは3〜10μmである。平均粒径が3μm未満の場合には、タップ密度が低下して、正極を形成したときに粒子の充填密度が低下して、正極の容積あたりの電池容量が低下する。一方、平均粒径が12μmを超えると、正極活物質の比表面積が低下して、電池の電解液との界面が減少することにより、正極の抵抗が上昇して電池の出力特性が低下する。
(Average particle size)
The positive electrode active material of the present invention has an average particle size of 3 to 12 μm, preferably 3 to 10 μm. When the average particle size is less than 3 μm, the tap density decreases, and when the positive electrode is formed, the packing density of the particles decreases, and the battery capacity per positive electrode volume decreases. On the other hand, when the average particle size exceeds 12 μm, the specific surface area of the positive electrode active material is reduced, and the interface with the battery electrolyte is reduced, thereby increasing the resistance of the positive electrode and lowering the output characteristics of the battery.
したがって、本発明の正極活物質を、平均粒径が3〜12μm、好ましくは3〜10μmとなるように調整すれば、この正極活物質を正極に用いた電池では、容積あたりの電池容量を大きくすることができるとともに、高安全性、高出力などに優れた電池特性が得られる。 Therefore, if the positive electrode active material of the present invention is adjusted to have an average particle size of 3 to 12 μm, preferably 3 to 10 μm, a battery using this positive electrode active material for the positive electrode has a large battery capacity per volume. In addition, it is possible to obtain excellent battery characteristics such as high safety and high output.
(粒度分布)
本発明の正極活物質は、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.60以下であり、きわめて均質性が高いリチウムニッケルマンガン複合酸化物の二次粒子により構成される。
(Particle size distribution)
The positive electrode active material of the present invention has a [(d90-d10) / average particle size] which is an index indicating the spread of the particle size distribution of 0.60 or less, and is a secondary secondary of a lithium nickel manganese composite oxide having extremely high homogeneity. Consists of particles.
本発明の正極活物質は、その粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が、0.60以下、好ましくは0.55以下である。粒度分布が広範囲になっている場合、正極活物質に、平均粒径に対して粒径が非常に小さい微粒子や、平均粒径に対して非常に粒径の大きい粗大粒子が多く存在することになる。微粒子が多く存在する正極活物質を用いて正極を形成した場合には、微粒子の局所的な反応に起因して発熱する可能性があり、安全性が低下するとともに、微粒子が選択的に劣化するのでサイクル特性が悪化してしまう。一方、粗大粒子が多く存在する正極活物質を用いて正極を形成した場合には、電解液と正極活物質との反応面積が十分に取れず、反応抵抗の増加による電池出力が低下する。 The positive electrode active material of the present invention has an index ((d90-d10) / average particle diameter) indicating the spread of the particle size distribution of 0.60 or less, preferably 0.55 or less. When the particle size distribution is wide, there are many fine particles having a very small particle size with respect to the average particle size and coarse particles having a very large particle size with respect to the average particle size in the positive electrode active material. Become. When a positive electrode is formed using a positive electrode active material in which a large amount of fine particles are present, heat may be generated due to a local reaction of the fine particles, and safety is lowered and the fine particles are selectively deteriorated. As a result, the cycle characteristics deteriorate. On the other hand, when a positive electrode is formed using a positive electrode active material with a large amount of coarse particles, the reaction area between the electrolytic solution and the positive electrode active material is not sufficient, and the battery output is reduced due to an increase in reaction resistance.
したがって、正極活物質の粒度分布を前記指標〔(d90−d10)/平均粒径〕で0.60以下とすることで、微粒子や粗大粒子の割合を少なくすることができ、この正極活物質を正極に用いた電池は、安全性に優れ、良好なサイクル特性および電池出力を有するものとなる。なお、上記平均粒径や、d90、d10は、上述した複合水酸化物粒子に用いられているものと同様のものであり、測定も同様にして行うことができる。 Therefore, by setting the particle size distribution of the positive electrode active material to 0.60 or less with the above-mentioned index [(d90-d10) / average particle size], the proportion of fine particles and coarse particles can be reduced. The battery used for the positive electrode is excellent in safety and has good cycle characteristics and battery output. The average particle diameter, d90 and d10 are the same as those used for the composite hydroxide particles described above, and the measurement can be performed in the same manner.
(アルカリ度)
本発明の正極活物質は、アルカリ度を示すpHが10.6〜11.5である。アルカリ度は、正極活物質2gを25℃の水100ccに入れてスラリー化し、1分間撹拌した後、5分間静置したスラリーのpH値と定義される。
(Alkalinity)
The positive electrode active material of the present invention has an alkalinity pH of 10.6 to 11.5. The alkalinity is defined as the pH value of a slurry in which 2 g of the positive electrode active material is slurried in 100 cc of water at 25 ° C., stirred for 1 minute, and allowed to stand for 5 minutes.
アルカリ度を示すpHが10.6未満では、正極活物質粒子表面の余剰リチウムが少ないため、十分な容量が得られない。一方、pHが11.5を超えると、電池の正極ペースト調製時にペーストのゲル化を生じて、正極材中に活物質が均一に分散しなくなり、電池容量の低下や正極抵抗の上昇が生じる。 When the pH indicating the alkalinity is less than 10.6, there is little surplus lithium on the surface of the positive electrode active material particles, and thus a sufficient capacity cannot be obtained. On the other hand, if the pH exceeds 11.5, gelation of the paste occurs during preparation of the positive electrode paste for the battery, and the active material is not uniformly dispersed in the positive electrode material, resulting in a decrease in battery capacity and an increase in positive electrode resistance.
(2−2)非水系電解質二次電池用正極活物質の製造方法
本発明の正極活物質の製造方法は、上記平均粒径、粒度分布、粒子構造および組成となるように正極活物質を製造できるのであれば、特に限定されないが、以下の方法を採用すれば、該正極活物質をより確実に製造できるので、好ましい。
(2-2) Method for Producing Positive Electrode Active Material for Nonaqueous Electrolyte Secondary Battery The method for producing a positive electrode active material of the present invention produces a positive electrode active material so as to have the above average particle size, particle size distribution, particle structure and composition. If it can, it will not specifically limit, However, If the following method is employ | adopted, since this positive electrode active material can be manufactured more reliably, it is preferable.
本発明の正極活物質の製造方法は、図3に示すように、a)本発明の正極活物質の原料となるニッケルマンガン複合水酸化物粒子を熱処理する工程と、b)熱処理後の粒子に対してリチウム化合物を混合してリチウム混合物を形成する混合工程、c)混合工程で形成された混合物を焼成する焼成工程を含むものである。以下、各工程を説明する。 As shown in FIG. 3, the method for producing a positive electrode active material of the present invention includes a) a step of heat-treating nickel manganese composite hydroxide particles as a raw material of the positive electrode active material of the present invention, and b) On the other hand, it includes a mixing step of mixing a lithium compound to form a lithium mixture, and c) a baking step of baking the mixture formed in the mixing step. Hereinafter, each process will be described.
a)熱処理工程
熱処理工程は、上記ニッケルマンガン複合水酸化物粒子の製造方法で得たニッケルマンガン複合水酸化物粒子(以下、単に「複合水酸化物粒子」という)を105〜750℃、好ましくは105〜400℃の温度に加熱して熱処理する工程であり、複合水酸化物粒子に含有されている水分を除去している。この熱処理工程を行うことによって、粒子中に焼成工程まで残留している水分を一定量まで減少させることができる。これにより、得られる製造される正極活物質中の金属の原子数やリチウムの原子数の割合がばらつくことを防ぐことができる。
a) Heat treatment step In the heat treatment step, nickel manganese composite hydroxide particles (hereinafter, simply referred to as “composite hydroxide particles”) obtained by the method for producing nickel manganese composite hydroxide particles are 105 to 750 ° C., preferably It is a process of heating to a temperature of 105 to 400 ° C. and removing heat contained in the composite hydroxide particles. By performing this heat treatment step, the moisture remaining in the particles up to the firing step can be reduced to a certain amount. Thereby, it can prevent that the ratio of the atomic number of the metal in the positive electrode active material manufactured and the atomic number of lithium varies.
なお、正極活物質中の金属の原子数やリチウムの原子数の割合にばらつきが生じない程度に水分が除去できればよいので、必ずしもすべての複合水酸化物粒子をニッケルマンガン複合酸化物粒子(以下、単に「複合酸化物粒子」という)に転換する必要はなく、400℃以下の温度で熱処理すれば十分である。しかしながら、上記ばらつきをより少なくするためには、加熱温度を400℃以上として複合水酸化物粒子を複合酸化物粒子にすべて転換すればよい。 In addition, since it is sufficient that water can be removed to such an extent that the ratio of the number of metal atoms and the number of lithium atoms in the positive electrode active material does not vary, all composite hydroxide particles are not necessarily nickel manganese composite oxide particles (hereinafter, It is not necessary to simply convert it into “composite oxide particles”), and it is sufficient to perform heat treatment at a temperature of 400 ° C. or lower. However, in order to reduce the variation, the composite hydroxide particles may be converted into composite oxide particles by setting the heating temperature to 400 ° C. or higher.
熱処理工程において、加熱温度が105℃未満の場合、複合水酸化物粒子中の余剰水分が除去できず、上記ばらつきを抑制することができない。一方、加熱温度が750℃を超えると、熱処理により粒子が焼結して均一な粒径の複合酸化物粒子が得られない。熱処理条件による複合水酸化物粒子中に含有される金属成分を分析によって予め求めておき、リチウム化合物との比を決めておくことで、上記ばらつきを抑制することができる。 In the heat treatment step, when the heating temperature is lower than 105 ° C., excess moisture in the composite hydroxide particles cannot be removed, and the above variation cannot be suppressed. On the other hand, when the heating temperature exceeds 750 ° C., the particles are sintered by heat treatment, and complex oxide particles having a uniform particle size cannot be obtained. The dispersion | variation can be suppressed by calculating | requiring previously the metal component contained in the composite hydroxide particle by heat processing conditions by analysis, and determining ratio with a lithium compound.
熱処理を行う雰囲気は特に制限されるものではなく、非還元性雰囲気であればよいが、簡易的に行える空気気流中において行うことが好ましい。 The atmosphere in which the heat treatment is performed is not particularly limited and may be a non-reducing atmosphere, but is preferably performed in an air stream that can be easily performed.
また、熱処理時間は、特に制限されないが、1時間未満では複合水酸化物粒子の余剰水分の除去が十分に行われない場合があるので、少なくとも1時間以上が好ましく、5〜15時間がより好ましい。 In addition, the heat treatment time is not particularly limited, but if it is less than 1 hour, the excess moisture of the composite hydroxide particles may not be sufficiently removed, so at least 1 hour is preferable, and 5 to 15 hours is more preferable. .
そして、熱処理に用いられる設備は、特に限定されるものではなく、複合水酸化物粒子を非還元性雰囲気中、好ましくは、空気気流中で加熱できるものであればよく、ガス発生がない電気炉などが好適に用いられる。
b)混合工程
混合工程は、上記熱処理工程において熱処理された複合水酸化物粒子(以下、「熱処理粒子」という)などと、リチウムを含有する物質、たとえば、リチウム化合物とを混合して、リチウム混合物を得る工程である。
The equipment used for the heat treatment is not particularly limited as long as the composite hydroxide particles can be heated in a non-reducing atmosphere, preferably in an air stream, and no electric gas is generated. Etc. are preferably used.
b) Mixing step In the mixing step, the composite hydroxide particles (hereinafter referred to as “heat treated particles”) heat-treated in the above heat treatment step and a lithium-containing substance, for example, a lithium compound are mixed to obtain a lithium mixture. It is the process of obtaining.
ここで、上記熱処理粒子には、熱処理工程において残留水分を除去された複合水酸化物粒子のみならず、熱処理工程で酸化物に転換された複合酸化物粒子、もしくはこれらの混合粒子も含まれる。 Here, the heat treated particles include not only the composite hydroxide particles from which residual moisture has been removed in the heat treatment step, but also composite oxide particles converted to oxides in the heat treatment step, or mixed particles thereof.
熱処理粒子とリチウム化合物とは、リチウム混合物中のリチウム以外の金属の原子数、すなわち、ニッケル、マンガン、コバルトおよび添加元素の原子数の和(Me)と、リチウムの原子数(Li)との比(Li/Me)が、0.95〜1.5、好ましくは1〜1.35、より好ましくは1.05〜1.20となるように、混合される。すなわち、焼成工程前後でLi/Meは変化しないので、この混合工程で混合するLi/Meが正極活物質におけるLi/Meとなるため、リチウム混合物におけるLi/Meが、得ようとする正極活物質におけるLi/Meと同じになるように混合される。 The heat-treated particles and the lithium compound are a ratio of the number of atoms of metals other than lithium in the lithium mixture, that is, the sum of the number of atoms of nickel, manganese, cobalt and additive elements (Me) to the number of atoms of lithium (Li). (Li / Me) is mixed so that it may become 0.95-1.5, Preferably it is 1-1.35, More preferably, it is 1.05-1.20. That is, since Li / Me does not change before and after the firing step, Li / Me mixed in this mixing step becomes Li / Me in the positive electrode active material, so that Li / Me in the lithium mixture is to be obtained. To be the same as Li / Me.
リチウム混合物を形成するために使用されるリチウム化合物は、特に限定されるものではないが、たとえば、水酸化リチウム、硝酸リチウム、炭酸リチウム、もしくはこれらの混合物が、入手が容易であるという点で好ましい。特に、取り扱いの容易さ、品質の安定性を考慮すると、水酸化リチウムまたは炭酸リチウムもしくはそれらの混合物を用いることがより好ましい。 The lithium compound used to form the lithium mixture is not particularly limited, but for example, lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof is preferable in that it is easily available. . In particular, in view of ease of handling and quality stability, it is more preferable to use lithium hydroxide, lithium carbonate, or a mixture thereof.
なお、リチウム混合物は、焼成前に十分混合しておくことが好ましい。混合が十分でない場合には、個々の粒子間でLi/Meがばらつき、十分な電池特性が得られない間などの問題が生じる可能性がある。 The lithium mixture is preferably mixed well before firing. If the mixing is not sufficient, Li / Me varies among individual particles, and problems such as a time when sufficient battery characteristics cannot be obtained may occur.
また、混合には、一般的な混合機を使用することができ、たとえば、シェーカーミキサー、レーディゲミキサー、ジュリアミキサー、Vブレンダーなどを用いることができ、熱処理粒子などの形骸が破壊されない程度で、複合酸化物粒子とリチウムを含有する物質とが十分に混合されればよい。 Moreover, a general mixer can be used for mixing, for example, a shaker mixer, a Laedige mixer, a Julia mixer, a V blender, etc. can be used, and the shape such as heat-treated particles is not destroyed. It is sufficient that the composite oxide particles and the substance containing lithium are sufficiently mixed.
c)焼成工程
焼成工程は、上記混合工程で得られたリチウム混合物を焼成して、リチウムニッケルマンガン複合酸化物を形成する工程である。焼成工程においてリチウム混合物を焼成すると、熱処理粒子に、リチウムを含有する物質中のリチウムが拡散するので、上記リチウムニッケルマンガン複合酸化物が形成される。
c) Firing step The firing step is a step of firing the lithium mixture obtained in the mixing step to form a lithium nickel manganese composite oxide. When the lithium mixture is fired in the firing step, lithium in the lithium-containing substance is diffused into the heat-treated particles, so that the lithium nickel manganese composite oxide is formed.
(焼成温度)
リチウム混合物の焼成は、800〜1000℃で、好ましくは820〜960℃、より好ましくは850〜940℃で行われる。
焼成温度が800℃未満であると、ニッケルマンガン複合酸化物粒子中へのリチウムの拡散が十分でなく、余剰のリチウムと未反応のニッケルマンガン複合酸化物が残ったり、あるいは結晶構造が十分整わなくなったりして、電池に用いられた場合に十分な電池特性が得られない。
(Baking temperature)
Firing of the lithium mixture is performed at 800 to 1000 ° C, preferably 820 to 960 ° C, more preferably 850 to 940 ° C.
When the firing temperature is less than 800 ° C., the diffusion of lithium into the nickel manganese composite oxide particles is not sufficient, and excess lithium and unreacted nickel manganese composite oxide remain, or the crystal structure becomes insufficient. In other words, sufficient battery characteristics cannot be obtained when used in batteries.
また、1000℃を超えるとリチウムニッケルマンガン複合酸化物粒子間で激しく焼結が生じるとともに、異常粒成長を生じることから粒子が粗大となり、球状二次粒子の形態を保持できなくなる。さらに、本発明の温度範囲以外のいずれの条件で焼成を行なった場合でも、電池容量が低下するばかりか、正極抵抗の値も高くなってしまう。
(焼成時間)焼成時間のうち、所定温度での保持時間は、少なくとも1時間以上とすることが好ましく、より好ましくは、5〜15時間である。1時間未満では、リチウムニッケルマンガン複合酸化物の生成が十分に行われないことがある。
Further, when the temperature exceeds 1000 ° C., intense sintering occurs between the lithium nickel manganese composite oxide particles and abnormal grain growth occurs, so that the particles become coarse and the shape of the spherical secondary particles cannot be maintained. Furthermore, even when firing is performed under any conditions other than the temperature range of the present invention, not only the battery capacity decreases, but also the value of the positive electrode resistance increases.
(Baking time) Of the baking time, the holding time at the predetermined temperature is preferably at least 1 hour, more preferably 5 to 15 hours. If it is less than 1 hour, the lithium nickel manganese composite oxide may not be sufficiently produced.
(仮焼)
焼成工程では、特に、リチウム化合物として、水酸化リチウムや炭酸リチウムを使用した場合には、焼成する前に、焼成温度より低く、かつ、350〜800℃の温度に1〜10時間程度、好ましくは3〜6時間保持して仮焼し、引き続いて800〜1000℃で焼成することが好ましい。すなわち、水酸化リチウムや炭酸リチウムと熱処理粒子の反応温度において仮焼することが好ましい。この場合、水酸化リチウムや炭酸リチウムの上記反応温度付近で保持すれば、熱処理粒子へのリチウムの拡散が十分に行われ、均一なリチウムニッケルマンガン複合酸化物を得ることができる。
(Calcination)
In the firing step, particularly when lithium hydroxide or lithium carbonate is used as the lithium compound, it is lower than the firing temperature and at a temperature of 350 to 800 ° C. for about 1 to 10 hours, preferably before firing. It is preferable to hold for 3 to 6 hours and calcine, and subsequently to fire at 800 to 1000 ° C. That is, it is preferable to calcine at the reaction temperature of lithium hydroxide or lithium carbonate and the heat-treated particles. In this case, if the reaction temperature is maintained in the vicinity of the reaction temperature of lithium hydroxide or lithium carbonate, lithium is sufficiently diffused into the heat-treated particles, and a uniform lithium nickel manganese composite oxide can be obtained.
(焼成雰囲気)
焼成時の雰囲気は、酸化性雰囲気とするが、酸素濃度が18〜100容量%の雰囲気とすることが好ましく、上記酸素濃度の酸素と不活性ガスの混合雰囲気とすることが特に好ましい。すなわち、大気〜酸素気流中で行なうことが好ましい。酸素濃度が18容量%未満であると、酸化が十分でなく、リチウムニッケルマンガン複合酸化物の結晶性が十分でない場合がある。
(Baking atmosphere)
The atmosphere during firing is an oxidizing atmosphere, preferably an atmosphere having an oxygen concentration of 18 to 100% by volume, and particularly preferably a mixed atmosphere of oxygen having the above oxygen concentration and an inert gas. That is, it is preferable to carry out in air | atmosphere-oxygen stream. If the oxygen concentration is less than 18% by volume, the oxidation may not be sufficient and the crystallinity of the lithium nickel manganese composite oxide may not be sufficient.
なお、焼成に用いられる炉は、特に限定されるものではなく、大気〜酸素気流中で加熱できるものであればよいが、ガス発生がない電気炉が好ましく、バッチ式あるいは連続式の炉が用いられる。 The furnace used for firing is not particularly limited as long as it can be heated in the atmosphere to an oxygen stream, but an electric furnace that does not generate gas is preferable, and a batch type or continuous type furnace is used. It is done.
(解砕)
焼成によって得られたリチウムニッケルマンガン複合酸化物粒子は、凝集もしくは軽度の焼結が生じている場合がある。この場合には、解砕してもよく、これにより、リチウムニッケルマンガン複合酸化物、つまり、本発明の正極活物質を得ることができる。なお、解砕とは、焼成時に二次粒子間の焼結ネッキングなどにより生じた複数の二次粒子からなる凝集体に、機械的エネルギーを投入して、二次粒子自体をほとんど破壊することなく二次粒子を分離させて、凝集体をほぐす操作のことである。
(Disintegration)
The lithium nickel manganese composite oxide particles obtained by firing may be aggregated or slightly sintered. In this case, it may be crushed, whereby a lithium nickel manganese composite oxide, that is, the positive electrode active material of the present invention can be obtained. Note that pulverization means that mechanical energy is applied to an aggregate composed of a plurality of secondary particles generated by sintering necking between secondary particles during firing, and the secondary particles themselves are hardly destroyed. This is an operation of separating the secondary particles and loosening the aggregates.
(3)非水系電解質二次電池
本発明の非水系電解質二次電池は、図4に示すように、(2)の非水系電解質二次電池用正極活物質を用いた正極を採用したものである。
(3) Non-aqueous electrolyte secondary battery The non-aqueous electrolyte secondary battery of the present invention employs a positive electrode using the positive electrode active material for non-aqueous electrolyte secondary battery of (2), as shown in FIG. is there.
そして、かかる正極を採用したので、150mAh/g以上の高い初期放電容量、低い正極抵抗の電池となり、熱安定性および安全性も高くすることができるという効果が得られる。 Since such a positive electrode is adopted, a battery having a high initial discharge capacity of 150 mAh / g or more and a low positive electrode resistance is obtained, and the effect that the thermal stability and safety can be increased can be obtained.
まず、本発明の非水系電解質二次電池の構造を説明する。
本発明の非水系電解質二次電池(以下、単に本発明の二次電池という)は、正極の材料に本発明の非水系電解質二次電池用正極活物質(以下、単に本発明の正極活物質という)を用いた以外は、一般的な非水系電解質二次電池と実質同等の構造を有している。
First, the structure of the nonaqueous electrolyte secondary battery of the present invention will be described.
The non-aqueous electrolyte secondary battery of the present invention (hereinafter simply referred to as the secondary battery of the present invention) is a positive electrode material for the non-aqueous electrolyte secondary battery of the present invention (hereinafter simply referred to as the positive electrode active material of the present invention). The structure is substantially the same as that of a general non-aqueous electrolyte secondary battery.
具体的には、本発明の二次電池は、ケースと、このケース内に収容された正極、負極、非水系電解液およびセパレータを備えた構造を有している。より具体的にいえば、セパレータを介して正極と負極とを積層させて電極体とし、得られた電極体に非水系電解液を含浸させ、正極の正極集電体と外部に通ずる正極端子との間および、負極の負極集電体と外部に通ずる負極端子との間をそれぞれ集電用リードなどを用いて接続し、ケースに密閉することによって、本発明の二次電池は形成されているのである。 Specifically, the secondary battery of the present invention has a structure including a case, and a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator accommodated in the case. More specifically, a positive electrode and a negative electrode are laminated via a separator to form an electrode body, and the obtained electrode body is impregnated with a non-aqueous electrolyte, and a positive electrode current collector of the positive electrode and a positive electrode terminal connected to the outside are provided. The secondary battery of the present invention is formed by connecting the negative electrode current collector of the negative electrode and the negative electrode terminal communicating with the outside using a current collecting lead or the like, and sealing the case to the case. It is.
なお、本発明の二次電池の構造は、上記例に限定されないのはいうまでもなく、また、その外形も筒形や積層形など、種々の形状を採用することができる。つぎに、本発明の二次電池を構成する各部を説明する
(正極)
前述のように得られた非水系電解質二次電池用正極活物質を用いて、たとえば、以下のようにして、非水系電解質二次電池の正極を作製する。
In addition, it cannot be overemphasized that the structure of the secondary battery of this invention is not limited to the said example, Moreover, the external shape can employ | adopt various shapes, such as a cylinder shape and a laminated form. Below, each part which comprises the secondary battery of this invention is demonstrated (positive electrode).
Using the positive electrode active material for a non-aqueous electrolyte secondary battery obtained as described above, for example, a positive electrode of a non-aqueous electrolyte secondary battery is produced as follows.
まず、粉末状の正極活物質、導電材および結着剤を混合し、さらに必要に応じて活性炭や、粘度調整などの目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。その際、正極合材ペースト中のそれぞれの混合比も、非水系電解質二次電池の性能を決定する重要な要素となる。溶剤を除いた正極合材の固形分を100質量部とした場合、一般の非水系電解質二次電池の正極と同様、正極活物質の含有量を60〜95質量部とし、導電材の含有量を1〜20質量部とし、結着剤の含有量を1〜20質量部とすることが望ましい。 First, a powdered positive electrode active material, a conductive material, and a binder are mixed, and activated carbon and a target solvent such as viscosity adjustment are added as necessary, and this is kneaded to prepare a positive electrode mixture paste. . At that time, the mixing ratio in the positive electrode mixture paste is also an important factor for determining the performance of the non-aqueous electrolyte secondary battery. When the solid content of the positive electrode mixture excluding the solvent is 100 parts by mass, the content of the positive electrode active material is 60 to 95 parts by mass, and the content of the conductive material is the same as the positive electrode of a general non-aqueous electrolyte secondary battery. It is desirable that the content of the binder is 1 to 20 parts by mass and the content of the binder is 1 to 20 parts by mass.
得られた正極合材ペーストを、たとえば、アルミニウム箔製の集電体の表面に塗布し、乾燥して、溶剤を飛散させる。必要に応じ、電極密度を高めるべく、ロールプレスなどにより加圧することもある。このようにして、シート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断などをして、電池の作製に供することができる。ただし、正極の作製方法は、前記例示のものに限られることなく、他の方法によってもよい。 The obtained positive electrode mixture paste is applied to, for example, the surface of a current collector made of aluminum foil and dried to disperse the solvent. If necessary, pressurization may be performed by a roll press or the like to increase the electrode density. In this way, a sheet-like positive electrode can be produced. The sheet-like positive electrode can be cut into an appropriate size according to the target battery and used for battery production. However, the method for manufacturing the positive electrode is not limited to the above-described examples, and other methods may be used.
正極の作製に当たって、導電材としては、たとえば、黒鉛(天然黒鉛、人造黒鉛および膨張黒鉛など)や、アセチレンブラックやケッチェンブラックなどのカーボンブラック系材料を用いることができる。 In producing the positive electrode, as the conductive material, for example, graphite (natural graphite, artificial graphite, expanded graphite, and the like), and carbon black materials such as acetylene black and ketjen black can be used.
結着剤は、活物質粒子をつなぎ止める役割を果たすもので、たとえば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂およびポリアクリル酸を用いることができる。 The binder plays a role of anchoring the active material particles. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluorine rubber, ethylene propylene diene rubber, styrene butadiene, cellulosic resin, and polyacrylic are used. An acid can be used.
必要に応じ、正極活物質、導電材および活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加する。溶剤としては、具体的には、N−メチル−2−ピロリドンなどの有機溶剤を用いることができる。また、正極合材には、電気二重層容量を増加させるために、活性炭を添加することができる。 If necessary, a positive electrode active material, a conductive material, and activated carbon are dispersed, and a solvent that dissolves the binder is added to the positive electrode mixture. Specifically, an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent. Activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.
(3−b)負極
負極には、金属リチウムやリチウム合金など、あるいは、リチウムイオンを吸蔵および脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅などの金属箔集電体の表面に塗布し、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
(3-b) Negative electrode made of metal lithium, lithium alloy, or the like, or a negative electrode active material capable of inserting and extracting lithium ions, mixed with a binder, and added with a suitable solvent to form a paste The composite material is applied to the surface of a metal foil current collector such as copper, dried, and compressed to increase the electrode density as necessary.
負極活物質としては、たとえば、天然黒鉛、人造黒鉛およびフェノール樹脂などの有機化合物焼成体、およびコークスなどの炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、PVDFなどの含フッ素樹脂を用いることができ、これらの活物質および結着剤を分散させる溶剤としては、N−メチル−2−ピロリドンなどの有機溶剤を用いることができる。 As the negative electrode active material, for example, organic compound fired bodies such as natural graphite, artificial graphite and phenol resin, and powdery bodies of carbon materials such as coke can be used. In this case, a fluorine-containing resin such as PVDF can be used as the negative electrode binder, as in the case of the positive electrode, and an organic material such as N-methyl-2-pyrrolidone can be used as a solvent for dispersing these active materials and the binder. A solvent can be used.
(3−c)セパレータ
正極と負極との間には、セパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し、電解質を保持するものであり、ポリエチレンやポリプロピレンなどの薄い膜で、微少な孔を多数有する膜を用いることができる。
(3-c) Separator A separator is interposed between the positive electrode and the negative electrode. The separator separates the positive electrode and the negative electrode and retains an electrolyte, and a thin film such as polyethylene or polypropylene and a film having many minute holes can be used.
(3−d)非水系電解液
非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートおよびトリフルオロプロピレンカーボネートなどの環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートおよびジプロピルカーボネートなどの鎖状カーボネート、さらに、テトラヒドロフラン、2−メチルテトラヒドロフランおよびジメトキシエタンなどのエーテル化合物、エチルメチルスルホンやブタンスルトンなどの硫黄化合物、リン酸トリエチルやリン酸トリオクチルなどのリン化合物などから選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
(3-d) Non-aqueous electrolyte The non-aqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and dipropyl carbonate, tetrahydrofuran, 2- One kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, and phosphorus compounds such as triethyl phosphate and trioctyl phosphate are used alone or in admixture of two or more. be able to.
支持塩としては、LiPF6、LiBF4、LiClO4、LiAsF6、LiN(CF3SO2)2 、およびそれらの複合塩などを用いることができる。さらに、非水系電解液は、ラジカル捕捉剤、界面活性剤および難燃剤などを含んでいてもよい。 As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and complex salts thereof can be used. Furthermore, the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.
(3−e)電池の形状、構成
以上のように説明してきた正極、負極、セパレータおよび非水系電解液で構成される本発明の非水系電解質二次電池は、円筒形や積層形など、種々の形状にすることができる。
(3-e) Shape and Configuration of Battery The nonaqueous electrolyte secondary battery of the present invention composed of the positive electrode, the negative electrode, the separator, and the nonaqueous electrolytic solution that have been described above includes various types such as a cylindrical shape and a laminated shape. It can be made into a shape.
いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、得られた電極体に、非水系電解液を含浸させ、正極集電体と外部に通ずる正極端子との間、および、負極集電体と外部に通ずる負極端子との間を、集電用リードなどを用いて接続し、電池ケースに密閉して、非水系電解質二次電池を完成させる。 In any case, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the obtained electrode body is impregnated with a non-aqueous electrolyte and communicated with the positive electrode current collector and the outside. Connect between the positive electrode terminal and between the negative electrode current collector and the negative electrode terminal leading to the outside using a current collecting lead, etc., and seal the battery case to complete the nonaqueous electrolyte secondary battery. .
(本発明の二次電池の特性)
本発明の二次電池は、上記のごとき構成であり、上述したような正極を使用しているので、150mAh/g以上の高い初期放電容量、低い正極抵抗が得られ、高容量で高出力となる。しかも、従来のリチウムコバルト系酸化物あるいはリチウムニッケル系酸化物の正極活物質との比較においても熱安定性が高く、安全性においても優れているといえる。
(Characteristics of the secondary battery of the present invention)
The secondary battery of the present invention has the above-described configuration and uses the positive electrode as described above. Therefore, a high initial discharge capacity of 150 mAh / g or more and a low positive electrode resistance are obtained, and a high capacity and a high output are obtained. Become. Moreover, it can be said that the thermal stability is high and the safety is also excellent in comparison with a positive electrode active material of a conventional lithium cobalt oxide or lithium nickel oxide.
(本発明の二次電池の用途)
本発明の非水系電解質二次電池は、常に高容量を要求される小型携帯電子機器(ノート型パーソナルコンピュータや携帯電話端末など)の電源に好適である。
(Use of the secondary battery of the present invention)
The non-aqueous electrolyte secondary battery of the present invention is suitable for the power source of small portable electronic devices (such as notebook personal computers and cellular phone terminals) that always require a high capacity.
また、本発明の二次電池は、高出力が要求されるモーター駆動用電源としての電池にも好適である。電池は大型化すると安全性の確保が困難になり高価な保護回路が必要不可欠である。これに対して、本発明の非水系電解質二次電池は、電池が大型化することなく優れた安全性を有しているため、安全性の確保が容易になるばかりでなく、高価な保護回路を簡略化し、より低コストにできる。さらに、小型化、高出力化が可能であることから、搭載スペースに制約を受ける輸送機器用の電源として好適である。 The secondary battery of the present invention is also suitable for a battery as a power source for driving a motor that requires high output. As batteries become larger, it becomes difficult to ensure safety, and expensive protection circuits are indispensable. On the other hand, the non-aqueous electrolyte secondary battery of the present invention has excellent safety without increasing the size of the battery, so that not only ensuring safety but also an expensive protection circuit is possible. Can be simplified and the cost can be reduced. Furthermore, since it is possible to reduce the size and increase the output, it is suitable as a power source for transportation equipment that is restricted by the mounting space.
本発明の方法による複合水酸化物、また、この複合水酸化物を原料として本発明の方法によって製造した正極活物質について、平均粒径および粒度分布を確認した。
また、本発明の方法によって製造した正極活物質を用いて製造した正極を有する二次電池について、その性能(初期放電容量、サイクル容量維持率、正極抵抗比)を確認した。
以下、本発明の実施例を用いて具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。
The average particle size and particle size distribution of the composite hydroxide produced by the method of the present invention and the positive electrode active material produced by the method of the present invention using this composite hydroxide as a raw material were confirmed.
Moreover, about the secondary battery which has the positive electrode manufactured using the positive electrode active material manufactured by the method of this invention, the performance (initial discharge capacity, cycle capacity maintenance factor, positive electrode resistance ratio) was confirmed.
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
(平均粒径および粒度分布の測定)
複合水酸化物、正極活物質の平均粒径および粒度分布(〔(d90−d10)/平均粒径〕値)は、レーザー回折散乱式粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)を用いて測定した体積積算値から算出している。
また、X線回折測定(パナリティカル社製、X‘Pert PRO)により結晶構造も確認した。
また、得られた複合水酸化物および正極活物質の組成は、試料を溶解した後、ICP発光分光法により確認した。
(Measurement of average particle size and particle size distribution)
The average particle size and particle size distribution ([(d90-d10) / average particle size] value) of the composite hydroxide and the positive electrode active material are measured using a laser diffraction scattering type particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., Microtrac HRA). It is calculated from the volume integrated value measured by using.
Further, the crystal structure was also confirmed by X-ray diffraction measurement (X'Pert PRO, manufactured by Panalical).
The composition of the obtained composite hydroxide and positive electrode active material was confirmed by ICP emission spectroscopy after dissolving the sample.
(アルカリ度評価)
得られた正極活物質2gを25℃の水100ccに入れ1分間撹拌後、5分間静置したときのpH値を測定し、アルカリ度を評価した。
(Alkalinity evaluation)
2 g of the obtained positive electrode active material was placed in 100 cc of water at 25 ° C., stirred for 1 minute, measured for pH value when allowed to stand for 5 minutes, and evaluated for alkalinity.
(電池評価)
得られた非水系電解質二次電池用正極活物質の評価は、以下のように電池を作製し、充放電容量を測定することで行なった。非水系電解質二次電池用正極活物質52.5mg、アセチレンブラック15mg、およびポリテトラフッ化エチレン樹脂(PTFE)7.5mgを混合し、100MPaの圧力で直径11mm、厚さ100μmにプレス成形し、図8に示す正極(評価用電極)(1)を作製した。作製した正極(1)を真空乾燥機中120℃で12時間乾燥した。そして、この正極(1)を用いて2032型コイン電池(B)を、露点が−80℃に管理されたAr雰囲気のグローブボックス内で作製した。負極(2)には、直径17mm、厚さ1mmのLi金属を用い、電解液には、1MのLiClO4を支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(富山薬品工業株式会社製)を用いた。セパレータ(3)には膜厚25μmのポリエチレン多孔膜を用いた。また、コイン電池(B)は、ガスケット(4)を有し、正極缶(5)と負極缶(6)とでコイン状の電池に組み立てられている。
(Battery evaluation)
The obtained positive electrode active material for a non-aqueous electrolyte secondary battery was evaluated by preparing a battery and measuring the charge / discharge capacity as follows. 82.5 mg of a positive electrode active material for a non-aqueous electrolyte secondary battery, 15 mg of acetylene black, and 7.5 mg of polytetrafluoroethylene resin (PTFE) were mixed and press-molded to a diameter of 11 mm and a thickness of 100 μm at a pressure of 100 MPa. A positive electrode (evaluation electrode) (1) shown in FIG. The produced positive electrode (1) was dried in a vacuum dryer at 120 ° C. for 12 hours. And using this positive electrode (1), 2032 type coin battery (B) was produced in the glove box of Ar atmosphere where the dew point was controlled at -80 degreeC. Lithium metal having a diameter of 17 mm and a thickness of 1 mm is used for the negative electrode (2), and an equal volume mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiClO 4 as a supporting electrolyte (electrolyte) Toyama Pharmaceutical Co., Ltd.) was used. As the separator (3), a polyethylene porous film having a film thickness of 25 μm was used. The coin battery (B) has a gasket (4) and is assembled into a coin-shaped battery with a positive electrode can (5) and a negative electrode can (6).
作製したコイン電池(B)は、組立てから24時間程度放置し、開回路電圧OCV(Open Circuit Voltage)が安定した後、正極に対する電流密度を0.1mA/cm2としてカットオフ電圧が4.3Vとなるまで充電して、1時間の休止後、カットオフ電圧が3.0Vになるまで放電したときの放電容量を測定する充放電試験を行なった。充放電容量の測定には,マルチチャンネル電圧/電流発生器(株式会社アドバンテスト製、R6741A)を用いた。 The manufactured coin battery (B) is left for about 24 hours after assembly, and after the open circuit voltage OCV (Open Circuit Voltage) is stabilized, the current density with respect to the positive electrode is 0.1 mA / cm 2 and the cut-off voltage is 4.3 V. A charge / discharge test was carried out to measure the discharge capacity when the battery was discharged until the cut-off voltage reached 3.0 V after charging for 1 hour. A multi-channel voltage / current generator (manufactured by Advantest Corporation, R6741A) was used for the measurement of the charge / discharge capacity.
また、充電電位4.1Vで充電したコイン電池(B)を用いて、交流インピーダンス法により抵抗値を測定した。測定には、周波数応答アナライザおよびポテンショガルバノスタット(ソーラトロン製)を使用し、図9に示すナイキストプロットが得られる。プロットは、溶液抵抗、負極抵抗と容量、および、正極抵抗と容量を示す特性曲線の和として表れているため、等価回路を用いてフィッティング計算し、この正極抵抗の値と後述する比較例1における正極抵抗の値との比を、正極抵抗比とした。 Moreover, resistance value was measured by the alternating current impedance method using the coin battery (B) charged with the charge potential of 4.1V. For the measurement, a Nyquist plot shown in FIG. 9 is obtained by using a frequency response analyzer and a potentiogalvanostat (manufactured by Solartron). Since the plot is expressed as the sum of the characteristic curve indicating the solution resistance, the negative electrode resistance and the capacity, and the positive electrode resistance and the capacity, the fitting calculation is performed using an equivalent circuit. The ratio with the value of the positive electrode resistance was defined as the positive electrode resistance ratio.
(実施例1)
[複合水酸化物粒子製造工程]
複合水酸化物粒子は、本発明の方法を用いて、以下のように作成した。
まず、反応槽(34L)内に水を半分の量まで入れて撹拌しながら、槽内温度を40℃に設定し、反応槽に窒素ガスを流通させて非酸化性雰囲気とした。このときの反応槽内空間の酸素濃度は2.0%であった。
Example 1
[Composite hydroxide particle production process]
The composite hydroxide particles were prepared as follows using the method of the present invention.
First, the temperature in the tank was set to 40 ° C. while stirring by adding half the amount of water in the reaction tank (34L), and a nitrogen gas was passed through the reaction tank to form a non-oxidizing atmosphere. At this time, the oxygen concentration in the reaction vessel space was 2.0%.
上記反応槽内の水に25質量%水酸化ナトリウム水溶液と25質量%アンモニア水を適量加えて、液温25℃基準で槽内の反応液のpHが値12.6となるように調整した。また、反応液中アンモニア濃度は10g/Lに調節した。 Appropriate amounts of 25% by mass aqueous sodium hydroxide and 25% by mass ammonia water were added to the water in the reaction vessel, and the pH of the reaction solution in the vessel was adjusted to a value of 12.6 based on the liquid temperature of 25 ° C. The ammonia concentration in the reaction solution was adjusted to 10 g / L.
(核生成工程)
次に、硫酸ニッケル、硫酸マンガン、タングステン酸ナトリウムを水に溶かして1.9mol/Lの混合水溶液を形成した。この混合水溶液では、各金属の元素モル比が、Ni:Mn:W=0.50:0.50:0.005となるように調整した。
上記混合水溶液を、反応槽内の反応液に88ml/分で加えた。同時に、25質量%アンモニア水および25質量%水酸化ナトリウム水溶液も反応槽内の反応液に一定速度で加えていき、反応液中のアンモニア濃度を上記値に保持した状態で、液温25℃基準でpH値を12.6(核生成pH値)に制御しながら2分30秒間晶析を行って、核生成を行った。
(Nucleation process)
Next, nickel sulfate, manganese sulfate, and sodium tungstate were dissolved in water to form a 1.9 mol / L mixed aqueous solution. In this mixed aqueous solution, the element molar ratio of each metal was adjusted to be Ni: Mn: W = 0.50: 0.50: 0.005.
The mixed aqueous solution was added to the reaction solution in the reaction vessel at 88 ml / min. At the same time, 25 mass% ammonia water and 25 mass% sodium hydroxide aqueous solution are also added to the reaction liquid in the reaction tank at a constant rate, and the ammonia temperature in the reaction liquid is maintained at the above value, and the liquid temperature is 25 ° C. standard. Then, crystallization was carried out for 2 minutes and 30 seconds while controlling the pH value to 12.6 (nucleation pH value) to effect nucleation.
(粒子成長工程)
その後、反応液のpH値が液温25℃基準で11.6(粒子成長pH値)になるまで、25質量%水酸化ナトリウム水溶液の供給のみを一時停止した。
液温25℃を基準として測定するpH値として、反応液のpH値が液温25℃基準で11.6に到達した後、再度、25質量%水酸化ナトリウム水溶液の供給を再開し、pH値を11.6に制御したまま、2時間晶析を継続し粒子成長を行った。
(Particle growth process)
Thereafter, only the supply of the 25 mass% sodium hydroxide aqueous solution was temporarily stopped until the pH value of the reaction solution reached 11.6 (particle growth pH value) on the basis of the liquid temperature of 25 ° C.
After the pH value of the reaction solution reached 11.6 on the basis of the liquid temperature of 25 ° C., the supply of the 25 mass% sodium hydroxide aqueous solution was restarted again as the pH value to be measured based on the liquid temperature of 25 ° C. While controlling at 11.6, crystallization was continued for 2 hours to perform particle growth.
反応槽内が満液になったところで晶析を停止するとともに撹拌を止めて静置することで、生成物の沈殿を促した。その後、反応槽から上澄み液を半量抜き出した後、晶析を再開し、1.5時間(全金属元素供給量に対する供給量:87.6mol%)晶析を行ったところで供給する混合水溶液を各金属の元素モル比が、Ni:Mn:W=0.30:0.70:0.005となるように調整した1.9mol/Lの混合水溶液に切り替え、88ml/分で加え0.5時間晶析を継続した後(計4時間)、晶析を終了させた。そして、生成物を水洗、濾過、乾燥させると粒子が得られた。 Crystallization was stopped when the reaction tank was full, and stirring was stopped and the mixture was allowed to stand to promote precipitation of the product. Then, after extracting a half amount of the supernatant from the reaction tank, crystallization was resumed, and the mixed aqueous solution to be supplied after crystallization was carried out for 1.5 hours (amount of supply relative to the total amount of metal elements: 87.6 mol%). Switch to a 1.9 mol / L mixed aqueous solution adjusted so that the metal element molar ratio is Ni: Mn: W = 0.30: 0.70: 0.005, and add at 88 ml / min for 0.5 hours. After continuing the crystallization (total 4 hours), the crystallization was terminated. The product was washed with water, filtered, and dried to obtain particles.
得られた粒子は、Ni0.449Mn0.547W0.004(OH)2+α(0≦α≦0.5)で表される複合水酸化物粒子であった。 The obtained particles were composite hydroxide particles represented by Ni 0.449 Mn 0.547 W 0.004 (OH) 2 + α (0 ≦ α ≦ 0.5).
表1に示すように、この複合水酸化物粒子の粒度分布を測定したところ、平均粒径は4.0μmであり、(〔(d90−d10)/平均粒径〕値は0.47であった。 As shown in Table 1, when the particle size distribution of the composite hydroxide particles was measured, the average particle size was 4.0 μm, and the ([(d90−d10) / average particle size] value was 0.47. It was.
また、得られた複合水酸化物粒子のSEM(株式会社日立ハイテクノロジース製走査電子顕微鏡S−4700)観察結果であるSEM写真から、球状の二次粒子であることを確認した。また、STEM(株式会社日立ハイテクノロジース製走査透過電子顕微鏡HD2300A)により、二次粒子断面のEDX線分析を行ったところ、Mn/Ni比の高い外周部の厚みは二次粒子径の14.5%であった。 Moreover, it confirmed that it was a spherical secondary particle from the SEM photograph which is a SEM (Hitachi High-Technologies scanning electron microscope S-4700) observation result of the obtained composite hydroxide particle. Further, when EDX ray analysis of the cross section of the secondary particles was performed using STEM (scanning transmission electron microscope HD2300A manufactured by Hitachi High-Technologies Corporation), the thickness of the outer peripheral portion having a high Mn / Ni ratio was 14.2 of the secondary particle diameter. It was 5%.
(正極活物質製造工程)
前記複合水酸化物粒子を大気雰囲気中700℃で12時間の熱処理をした後、Li/M=1.35となるように炭酸リチウムを秤量し、熱処理した複合水酸化物粒子と混合して混合物を形成した。混合は、シェーカーミキサー装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて行った。
得られたこの混合物を空気(酸素:21容量%)気流中にて760℃で4時間仮焼した後、900℃で10時間焼成し、さらに解砕して正極活物質を得た。
(Cathode active material manufacturing process)
The composite hydroxide particles were heat-treated at 700 ° C. for 12 hours in the air atmosphere, and then lithium carbonate was weighed so that Li / M = 1.35, and mixed with the heat-treated composite hydroxide particles. Formed. Mixing was performed using a shaker mixer apparatus (TURBULA Type T2C manufactured by Willy et Bacofen (WAB)).
The obtained mixture was calcined at 760 ° C. for 4 hours in air (oxygen: 21% by volume), then calcined at 900 ° C. for 10 hours, and further pulverized to obtain a positive electrode active material.
図5に示すように、得られた正極活物質の粒度分布を測定したところ、平均粒径は4.3μmであり、〔(d90−d10)/平均粒径〕値は0.56であった。
また、複合水酸化物粒子と同様の方法で正極活物質のSEM観察したところ、得られた正極活物質は、略球状であり、粒径がほぼ均一に揃っていることが確認された。
As shown in FIG. 5, when the particle size distribution of the obtained positive electrode active material was measured, the average particle size was 4.3 μm, and the [(d90-d10) / average particle size] value was 0.56. .
Moreover, when SEM observation of the positive electrode active material was performed by the same method as that for the composite hydroxide particles, it was confirmed that the obtained positive electrode active material had a substantially spherical shape and a uniform particle size.
また、得られた正極活物質をCu−Kα線による粉末X線回折で分析したところ、六方晶の層状結晶リチウムニッケルマンガン複合酸化物単相であることが確認された。 Further, when the obtained positive electrode active material was analyzed by powder X-ray diffraction using Cu—Kα ray, it was confirmed to be a hexagonal layered crystal lithium nickel manganese composite oxide single phase.
そして、正極活物質は、化学分析によりLiが9.47質量%、Niが26.6質量%、Mnが30.4質量%、Wが0.74質量%の組成であり、Li1.35Ni0.449Mn0.547W0.004O2であることが確認できた。 The positive electrode active material has a composition of 9.47% by mass of Li, 26.6% by mass of Ni, 30.4% by mass of Mn, 0.74% by mass of W by chemical analysis, and Li 1.35. It was confirmed that Ni 0.449 Mn 0.547 W 0.004 O 2 .
この正極活物質のpH値は10.9であった。また、表層部のMn/Ni比と内部のMn/Ni比との比(SMN/IMN)は、複合水酸化物粒子と同様にEDX分析を行ったところ、1.5であった。 The positive electrode active material had a pH value of 10.9. Further, the ratio of the Mn / Ni ratio of the surface layer portion to the internal Mn / Ni ratio (SMN / IMN) was 1.5 when EDX analysis was performed in the same manner as the composite hydroxide particles.
(電池評価)
前記正極活物質を使用して形成された正極を有する二次電池について、充放電試験を行ったところ、表2に示すように、二次電池の初期放電容量は168.5mAh/gであった。また、正極抵抗比は、0.62であった。
(Battery evaluation)
A secondary battery having a positive electrode formed using the positive electrode active material was subjected to a charge / discharge test. As shown in Table 2, the initial discharge capacity of the secondary battery was 168.5 mAh / g. . The positive electrode resistance ratio was 0.62.
以下、実施例2〜8および比較例1〜6については、上記実施例1と変更した物質、条件のみを示す。また、実施例2〜8および比較例1〜6の各評価の結果は、表1に示した。 Hereinafter, about Examples 2-8 and Comparative Examples 1-6, only the substance and conditions which were changed with the said Example 1 are shown. The results of each evaluation of Examples 2 to 8 and Comparative Examples 1 to 6 are shown in Table 1.
(実施例2)
混合水溶液の組成をNi:Co:Mn:Zr:W=0.55:0.22:0.22:0.005:0.005からNi:Co:Mn:Zr:W=0.33:0.33:0.33:0.005:0.005に変更したこと、焼成温度を850℃としたこと以外は実施例1と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。晶析により得られた粒子は、Ni0.496 Mn 0.247 Co 0.247 Zr0.005W0.005(OH)2+α(0≦α≦0.5)で表される複合水酸化物粒子であった。また、得られた正極活物質は、化学分析によりLiが7.63重量%、Niが28.8重量%、Coが14.5重量%、Mnが13.5重量%、Zrが0.42重量%、Wが0.84重量%の組成でありLi1.1Ni0.50 Mn 0.25 Co 0.25 Zr0.005W0.005O2であることが確認された。
(Example 2)
The composition of the mixed aqueous solution was changed from Ni: Co: Mn: Zr: W = 0.55: 0.22: 0.22: 0.005: 0.005 to Ni: Co: Mn: Zr: W = 0.33: 0. .33: 0.33: 0.005: 0.005: A positive electrode active material for a nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that the firing temperature was 850 ° C. evaluated. The particles obtained by crystallization were a composite hydroxide represented by Ni 0.496 Mn 0.247 Co 0.247 Zr 0.005 W 0.005 (OH) 2 + α (0 ≦ α ≦ 0.5). It was a particle. The obtained positive electrode active material was found to have a Li analysis of 7.63 wt%, Ni 28.8 wt%, Co 14.5 wt%, Mn 13.5 wt%, and Zr 0.42 by chemical analysis. wt%, W it was confirmed that it Li 1.1 Ni 0.50 Mn 0.25 Co 0.25 Zr 0.005 W 0.005 O 2 a composition of 0.84 wt%.
表層部のMn/Ni比と内部のMn/Ni比との比(SMN/IMN)は、複合水酸化物粒子と同様にEDX分析を行ったところ、1.7であった。得られた複合水酸化物粒子のSEM写真を図5に、得られた正極活物質のSEM写真を図6にそれぞれ示す。 The ratio (SMN / IMN) of the Mn / Ni ratio in the surface layer portion and the internal Mn / Ni ratio was 1.7 when the EDX analysis was performed in the same manner as the composite hydroxide particles. FIG. 5 shows an SEM photograph of the obtained composite hydroxide particle, and FIG. 6 shows an SEM photograph of the obtained positive electrode active material.
(実施例3)
Li/M=1.05となるように混合したこと以外は実施例2と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。
(Example 3)
A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained and evaluated in the same manner as in Example 2 except that mixing was performed so that Li / M = 1.05.
(実施例4)
Li/M=1.15となるように混合したこと以外は実施例2と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。
Example 4
A positive electrode active material for a nonaqueous electrolyte secondary battery was obtained and evaluated in the same manner as in Example 2 except that mixing was performed so that Li / M = 1.15.
(実施例5)
焼成条件を925℃で10時間としたこと以外は実施例2と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。
(Example 5)
A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained and evaluated in the same manner as in Example 2 except that the firing condition was 925 ° C. for 10 hours.
(実施例6)
仮焼条件を400℃で10時間としたこと以外は実施例2と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。
(Example 6)
A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained and evaluated in the same manner as in Example 2 except that the calcining conditions were changed to 400 ° C. for 10 hours.
(実施例7)
仮焼をせず850℃、10時間で焼成したこと以外は実施例2と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。
(Example 7)
A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained and evaluated in the same manner as in Example 2 except that calcination was not carried out at 850 ° C. for 10 hours.
(実施例8)
各金属の元素モル比が、Ni:Co:Mn:Zr:W=0.66:0.165:0.165:0.005:0.005とした混合溶液で2時間晶析し、反応槽内が満液になったところで晶析を停止するとともに撹拌を止めて静置させ、反応槽から上澄み液を半量抜き出した後、供給する混合水溶液を各金属の元素モル比が、Ni:Co:Mn:Zr:W=0.33:0.33:0.33:0.005:0.005となるように調整した混合水溶液に切り替え、2時間晶析を継続した後(計4時間)、晶析を終了させたこと以外は実施例2と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。
(Example 8)
Crystallization was performed for 2 hours in a mixed solution in which the elemental molar ratio of each metal was Ni: Co: Mn: Zr: W = 0.66: 0.165: 0.165: 0.005: 0.005, and the reaction vessel When the inside is full, the crystallization is stopped and the stirring is stopped and the mixture is allowed to stand. After extracting a half amount of the supernatant from the reaction vessel, the mixed aqueous solution to be supplied has an element molar ratio of Ni: Co: After switching to a mixed aqueous solution adjusted to be Mn: Zr: W = 0.33: 0.33: 0.33: 0.005: 0.005 and continuing crystallization for 2 hours (total 4 hours), A positive electrode active material for a nonaqueous electrolyte secondary battery was obtained and evaluated in the same manner as in Example 2 except that the crystallization was completed.
(実施例9)
混合水溶液中の金属元素のモル比が、Ni:Co:Mn:Zr:W=0.685:0.1525:0.1525:0.005:0.005となるように調整して2時間晶析を継続し粒子成長を行ったあと、反応槽内が満液になったところで晶析を停止するとともに撹拌を止めて静置させ、反応槽から上澄み液を半量抜き出した後、晶析を再開し、1.5時間晶析を行ったところで供給する混合水溶液を各金属の元素モル比が、Ni:Co:Mn:Zr:W=0.33:0.33:0.33:0.005:0.005となるように調整した混合水溶液に切り替え、0.5時間晶析を継続して複合水酸化物を得たこと以外は実施例2と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。
Example 9
Crystals for 2 hours are adjusted so that the molar ratio of metal elements in the mixed aqueous solution is Ni: Co: Mn: Zr: W = 0.85: 0.1525: 0.1525: 0.005: 0.005. After crystallization and particle growth, when the reaction tank is full, crystallization is stopped, stirring is stopped and the mixture is left standing, and half of the supernatant liquid is extracted from the reaction tank, and then crystallization is resumed. In the mixed aqueous solution supplied after crystallization for 1.5 hours, the element molar ratio of each metal is Ni: Co: Mn: Zr: W = 0.33: 0.33: 0.33: 0.005. : Switched to a mixed aqueous solution adjusted to 0.005, and continued to crystallize for 0.5 hours to obtain a composite hydroxide, in the same manner as in Example 2, for a non-aqueous electrolyte secondary battery A positive electrode active material was obtained and evaluated.
(比較例1)
複合水酸化物製造工程において、金属元素がモル比でNi:Co:Mn:Zr:W=0.496:0.247:0.247:0.005:0.005となるように混合水溶液を調製して晶析終了まで供給し、組成を変更しなかった以外は実施例2と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。
(Comparative Example 1)
In the composite hydroxide production process, the mixed aqueous solution is prepared so that the metal element has a molar ratio of Ni: Co: Mn: Zr: W = 0.396: 0.247: 0.247: 0.005: 0.005. A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained and evaluated in the same manner as in Example 2 except that it was prepared and supplied until completion of crystallization and the composition was not changed.
(比較例2)
各金属の元素モル比が、Ni:Co:Mn:Zr:W=0.518:0.236:0.236:0.005:0.005とした混合溶液で2時間晶析し、反応槽内が満液になったところで晶析を停止するとともに撹拌を止めて静置させ、反応槽から上澄み液を半量抜き出した後、晶析を再開し、1.75時間(全金属元素供給量に対する供給量:93.8mol%)晶析を行ったところで供給する混合水溶液を各金属の元素モル比が、Ni:Co:Mn:Zr:W=0.33:0.33:0.33:0.005:0.005となるように調整した混合水溶液に切り替え、0.25時間晶析して混合水酸化物を得た以外は実施例2と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。
(Comparative Example 2)
Crystallization was performed for 2 hours in a mixed solution in which the elemental molar ratio of each metal was Ni: Co: Mn: Zr: W = 0.518: 0.236: 0.236: 0.005: 0.005, and the reaction vessel When the inside is full, the crystallization is stopped and the stirring is stopped and the mixture is allowed to stand. After half of the supernatant is withdrawn from the reaction vessel, the crystallization is resumed for 1.75 hours (with respect to the total amount of metal elements supplied). (Supply amount: 93.8 mol%) The mixed aqueous solution to be supplied at the time of crystallization has an element molar ratio of each metal of Ni: Co: Mn: Zr: W = 0.33: 0.33: 0.33: 0. 0.005: A positive electrode for a non-aqueous electrolyte secondary battery in the same manner as in Example 2 except that the mixed aqueous solution was adjusted to 0.005 and crystallized for 0.25 hours to obtain a mixed hydroxide. An active material was obtained and evaluated.
(比較例3)
複合水酸化物製造工程において、金属元素がモル比でNi:Co:Mn:Zr:W=0.594:0.198:0.198:0.005:0.005となるように混合水溶液を調製して晶析終了まで供給し、組成を変更しなかった以外は実施例9と同様にして、非水系電解質二次電池用正極活物質を得るとともに評価した。
(Comparative Example 3)
In the composite hydroxide production process, the mixed aqueous solution is prepared so that the metal elements are in a molar ratio of Ni: Co: Mn: Zr: W = 0.594: 0.198: 0.198: 0.005: 0.005. A positive electrode active material for a non-aqueous electrolyte secondary battery was obtained and evaluated in the same manner as in Example 9 except that it was prepared and supplied until completion of crystallization and the composition was not changed.
(比較例4)
焼成条件を1050℃で10時間としたこと以外は実施例2と同様にして、非水系電解質二次電池用正極活物質を得とともに評価した。
(Comparative Example 4)
A positive electrode active material for a nonaqueous electrolyte secondary battery was obtained and evaluated in the same manner as in Example 2 except that the firing conditions were changed to 1050 ° C. for 10 hours.
(比較例5)
Li/M=0.90とした以外は実施例2と同様にして、非水系電解質二次電池用正極活物質を得とともに評価した。
(Comparative Example 5)
A positive electrode active material for a nonaqueous electrolyte secondary battery was obtained and evaluated in the same manner as in Example 2 except that Li / M = 0.90.
(評価)
実施例1〜8の複合水酸化物粒子および正極活物質は、本発明に従った二次粒子内部の組成が傾斜した材料となっているため、アルカリ度が低く抑えられている。また、これらの正極活物質を用いた非水系電解質二次電池は、初期放電容量が高く、サイクル特性に優れ、正極抵抗も低いものとなっており、優れた特性を有した電池となっている。
(Evaluation)
Since the composite hydroxide particles and the positive electrode active materials of Examples 1 to 8 are materials in which the composition inside the secondary particles according to the present invention is inclined, the alkalinity is kept low. In addition, non-aqueous electrolyte secondary batteries using these positive electrode active materials have high initial discharge capacity, excellent cycle characteristics, low positive electrode resistance, and have excellent characteristics. .
比較例1および3では、高Mn/Ni比層がなく、比較例2では、外周部の厚みが二次粒子径の5%未満であるため、アルカリ度低減効果が発現していない。
比較例4および5は、正極活物質の製造工程が本発明に従わなかったため、良好な特性の正極活物質が得られず、これらの正極活物質を用いた非水系電解質二次電池は、正極抵抗が大きくなっており、初期放電容量が悪化している。
In Comparative Examples 1 and 3, there is no high Mn / Ni specific layer, and in Comparative Example 2, the thickness of the outer peripheral portion is less than 5% of the secondary particle diameter, and thus the alkalinity reduction effect is not exhibited.
In Comparative Examples 4 and 5, since the manufacturing process of the positive electrode active material did not comply with the present invention, positive electrode active materials having good characteristics could not be obtained, and non-aqueous electrolyte secondary batteries using these positive electrode active materials were positive electrodes The resistance has increased and the initial discharge capacity has deteriorated.
以上の結果より、本発明の製造方法を用いて、ニッケルマンガン複合水酸化物粒子および正極活物質を製造すれば、この正極活物質を用いた非水系電解質二次電池は、初期放電容量が高く、サイクル特性に優れ、正極抵抗も低いものとなり、優れた特性を有した電池となることが確認できる。 From the above results, if nickel manganese composite hydroxide particles and a positive electrode active material are produced using the production method of the present invention, the nonaqueous electrolyte secondary battery using this positive electrode active material has a high initial discharge capacity. It can be confirmed that the battery has excellent cycle characteristics and low positive electrode resistance, and has excellent characteristics.
本発明の非水系電解質二次電池は、常に高容量を要求される小型携帯電子機器(ノート型パーソナルコンピュータや携帯電話端末など)の電源に好適でる。
また、本発明の非水系電解質二次電池は、優れた安全性を有し、小型化、高出力化が可能であることから、搭載スペースに制約を受ける輸送用機器の電源として好適である。
The nonaqueous electrolyte secondary battery of the present invention is suitable for the power source of small portable electronic devices (such as notebook personal computers and mobile phone terminals) that always require a high capacity.
In addition, the nonaqueous electrolyte secondary battery of the present invention has excellent safety, and can be downsized and increased in output. Therefore, the nonaqueous electrolyte secondary battery is suitable as a power source for transportation equipment that is restricted by the mounting space.
Claims (7)
一般式:NixMnyCozMt(OH)2+α(x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦α≦0.5、Mは、Al、Ti、V、Cr、Zr、Nb、Hf、Ta、Mo、Wから選択される1種以上の添加元素)で表されるニッケルマンガン複合水酸化物であって、
平均粒径が3〜11μmであり、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.55以下であり、該ニッケルマンガン複合水酸化物は複数の一次粒子が凝集して形成された球状の二次粒子であって、二次粒子内部と外周部の組成が異なる多層構造となっており、
前記外周部は、二次粒子の内部の組成よりMn/Ni比が高く、一般式:Ni x Mn y Co z M t (OH) 2+α (0≦x≦0.4、0.3≦y≦1.0、0≦z≦0.4、0≦t≦0.2、x+y+z+t=1、0≦α≦0.5、Mは、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表されるニッケルマンガン複合水酸化物で構成され、該外周部の厚みが二次粒子径の5〜25%であることを特徴とするニッケルマンガン複合水酸化物粒子。 A precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery,
General formula: Ni x Mn y Co z M t (OH) 2 + α (x + y + z + t = 1, 0.3 ≦ x ≦ 0.7, 0.1 ≦ y ≦ 0.55, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.1, 0 ≦ α ≦ 0.5, M is represented by one or more additive elements selected from Al, Ti, V, Cr, Zr, Nb, Hf, Ta, Mo, and W) Nickel manganese composite hydroxide,
The average particle diameter is 3 to 11 μm, the index indicating the spread of the particle size distribution [(d90-d10) / average particle diameter] is 0.55 or less, and the nickel manganese composite hydroxide is a plurality of primary particles. Is a spherical secondary particle formed by agglomeration, and has a multilayer structure in which the composition of the inside and the outer periphery of the secondary particle is different,
The outer peripheral part has a Mn / Ni ratio higher than the composition inside the secondary particles, and has a general formula: Ni x Mn y Co z M t (OH) 2 + α (0 ≦ x ≦ 0.4, 0.3 ≦ y ≦ 1.0, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.2, x + y + z + t = 1, 0 ≦ α ≦ 0.5, M is Al, Ti, V, Cr, Zr, Nb, Mo, Hf , One or more additive elements selected from Ta and W), and the outer peripheral portion has a thickness of 5 to 25% of the secondary particle size. Nickel manganese composite hydroxide particles.
少なくともニッケルを含有する金属化合物およびマンガンを含有する金属化合物とアンモニウムイオン供給体とを含む核生成用水溶液を、液温25℃基準で、pH値が12.0〜14.0となるように制御して核生成を行う核生成工程と、
該核生成工程において形成された核を含有する粒子成長用水溶液を、液温25℃基準で、pH値が10.5〜12.0、かつ、核生成工程におけるpH値よりも低いpH値となるように制御して、前記核を成長させる粒子成長工程と、
を備えるとともに、晶析中の外周部形成期における水溶液の液体部に含まれる金属イオンの組成比を下記一般式における組成比として、その水溶液の液体部のMn/Ni比を、内部形成期における水溶液の液体部より高くし、水溶液の液体部のMn/Ni比の変更を、晶析中に供給される全金属元素量に対して10〜90mol%の金属元素量を供給した時に行うことを特徴とするニッケルマンガン複合水酸化物粒子の製造方法。
一般式:Ni x Mn y Co z M t (OH) 2+α
(0≦x≦0.4、0.3≦y≦1.0、0≦z≦0.4、0≦t≦0.2、x+y+z+t=1、0≦α≦0.5、Mは、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素) Depending on the crystallization reaction, the general formula: Ni x Mn y Co z M t (OH) 2 + α (x + y + z + t = 1, 0.3 ≦ x ≦ 0.7, 0.1 ≦ y ≦ 0.55, 0 ≦ z ≦ 0. 4, 0 ≦ t ≦ 0.1, 0 ≦ α ≦ 0.5, M is one or more additive elements selected from Al, Ti, V, Cr, Zr, Nb, Hf, Ta, Mo, W And a nickel manganese composite hydroxide particle that is a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery represented by:
A nucleation aqueous solution containing at least a nickel-containing metal compound and a manganese-containing metal compound and an ammonium ion supplier is controlled so that the pH value becomes 12.0 to 14.0 based on a liquid temperature of 25 ° C. A nucleation process for nucleation,
The aqueous solution for particle growth containing nuclei formed in the nucleation step has a pH value of 10.5 to 12.0 and lower than the pH value in the nucleation step on the basis of a liquid temperature of 25 ° C. A particle growth step for growing the nucleus by controlling so that
And the composition ratio of the metal ions contained in the liquid part of the aqueous solution in the outer peripheral part formation stage during crystallization as the composition ratio in the following general formula, and the Mn / Ni ratio of the liquid part of the aqueous solution in the internal formation stage It is made higher than the liquid part of the aqueous solution, and the change of the Mn / Ni ratio of the liquid part of the aqueous solution is performed when a metal element amount of 10 to 90 mol% is supplied with respect to the total metal element amount supplied during crystallization. A method for producing nickel manganese composite hydroxide particles.
General formula: Ni x Mn y Co z M t (OH) 2 + α
(0 ≦ x ≦ 0.4, 0.3 ≦ y ≦ 1.0, 0 ≦ z ≦ 0.4, 0 ≦ t ≦ 0.2, x + y + z + t = 1, 0 ≦ α ≦ 0.5, M is One or more additive elements selected from Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011127342A JP5708277B2 (en) | 2011-06-07 | 2011-06-07 | Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011127342A JP5708277B2 (en) | 2011-06-07 | 2011-06-07 | Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012256435A JP2012256435A (en) | 2012-12-27 |
JP5708277B2 true JP5708277B2 (en) | 2015-04-30 |
Family
ID=47527844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011127342A Active JP5708277B2 (en) | 2011-06-07 | 2011-06-07 | Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5708277B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101748999B1 (en) | 2016-08-01 | 2017-06-20 | (주)이엠티 | Method for Preparing Cathode Active Material Precursor for Secondary Battery |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5316726B2 (en) * | 2011-06-07 | 2013-10-16 | 住友金属鉱山株式会社 | Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery |
JP6186919B2 (en) * | 2013-06-17 | 2017-08-30 | 住友金属鉱山株式会社 | Nickel cobalt manganese composite hydroxide and method for producing the same |
JP2015037067A (en) * | 2013-08-16 | 2015-02-23 | 輔仁大學學校財團法人輔仁大學 | Lithium nickel cobalt manganese positive electrode material powder |
WO2015052775A1 (en) * | 2013-10-08 | 2015-04-16 | 株式会社日立製作所 | Lithium ion secondary battery and secondary battery system using same |
JP6278727B2 (en) * | 2014-02-04 | 2018-02-14 | 住友化学株式会社 | Method for producing coprecipitate and method for producing lithium-containing composite oxide |
JP6318956B2 (en) * | 2014-07-31 | 2018-05-09 | 住友金属鉱山株式会社 | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
JP6164332B2 (en) | 2015-04-28 | 2017-07-19 | 日亜化学工業株式会社 | Nickel-cobalt composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery |
PL3100981T3 (en) | 2015-04-28 | 2019-05-31 | Nichia Corp | Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery |
CN104993122B (en) * | 2015-05-29 | 2016-12-21 | 哈尔滨工业大学 | There is ternary precursor material, positive electrode and the preparation method of the primary particle bulk density of interior solid, outside open structure |
CN108352526B (en) * | 2015-10-28 | 2022-04-01 | 住友金属矿山株式会社 | Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, positive electrode composite material paste for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
JP7135269B2 (en) * | 2016-03-24 | 2022-09-13 | 住友金属鉱山株式会社 | Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, positive electrode mixture paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
WO2017164237A1 (en) * | 2016-03-24 | 2017-09-28 | 住友金属鉱山株式会社 | Positive-electrode active material for non-aqueous-electrolyte secondary cell and method for manufacturing same, positive-electrode material paste for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell |
JP6855752B2 (en) * | 2016-10-31 | 2021-04-07 | 住友金属鉱山株式会社 | Nickel-manganese composite hydroxide and its manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery |
JP6583359B2 (en) * | 2017-07-27 | 2019-10-02 | 住友金属鉱山株式会社 | Nickel cobalt manganese composite hydroxide |
EP3757067A4 (en) * | 2018-02-22 | 2021-12-15 | Sumitomo Metal Mining Co., Ltd. | Metal composite hydroxide and method for producing same, positive electrode active substance for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery |
EP3757066A4 (en) | 2018-02-22 | 2021-11-17 | Sumitomo Metal Mining Co., Ltd. | Metal composite hydroxide and method for producing same, positive electrode active substance for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery |
WO2019163845A1 (en) | 2018-02-22 | 2019-08-29 | 住友金属鉱山株式会社 | Metal composite hydroxide and method for producing same, positive electrode active substance for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery |
KR102288291B1 (en) * | 2018-04-12 | 2021-08-10 | 주식회사 엘지화학 | Method for producing positive electrode active material |
JP7167491B2 (en) * | 2018-05-31 | 2022-11-09 | 住友金属鉱山株式会社 | Method for producing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery |
JP6880086B2 (en) * | 2019-01-21 | 2021-06-02 | Jx金属株式会社 | Manufacturing method of oxide-based positive electrode active material for all-solid-state lithium-ion battery, oxide-based positive electrode active material for all-solid-state lithium-ion battery, and all-solid-state lithium-ion battery |
WO2020180060A1 (en) * | 2019-03-05 | 2020-09-10 | 주식회사 엘지화학 | Method for preparing cathode active material precursor for lithium secondary battery, and cathode active material precursor prepared by preparation method |
JP7215260B2 (en) * | 2019-03-15 | 2023-01-31 | 株式会社豊田自動織機 | Cathode active material showing layered rock salt structure and containing lithium, nickel, cobalt, tungsten, aluminum, zirconium and oxygen, and method for producing the same |
JP7367336B2 (en) * | 2019-04-26 | 2023-10-24 | 住友金属鉱山株式会社 | Nickel composite hydroxide, method for producing nickel composite hydroxide, positive electrode active material for lithium ion secondary batteries, method for manufacturing positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery |
WO2020218592A1 (en) | 2019-04-26 | 2020-10-29 | 住友金属鉱山株式会社 | Nickel composite hydroxide, method for producing nickel composite hydroxide, positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery |
EP4046968B1 (en) * | 2020-03-20 | 2024-08-07 | Lg Chem, Ltd. | Method of preparing positive electrode active material precursor for lithium secondary battery, positive electrode active material precursor, and positive electrode active material, positive electrode, and lithium secondary battery which are prepared by using the precursor |
US11233239B2 (en) * | 2020-03-27 | 2022-01-25 | Board Of Regents, The University Of Texas System | Low-cobalt and cobalt-free, high-energy cathode materials for lithium batteries |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3769344B2 (en) * | 1997-01-21 | 2006-04-26 | 日本化学工業株式会社 | Positive electrode composition for lithium secondary battery and lithium secondary battery |
JP3644186B2 (en) * | 1997-03-24 | 2005-04-27 | 松下電器産業株式会社 | Metal hydroxide production equipment for battery components |
JP4986381B2 (en) * | 2003-01-17 | 2012-07-25 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
JP4062169B2 (en) * | 2003-05-20 | 2008-03-19 | 株式会社日立製作所 | Positive electrode material for lithium secondary battery |
JP3991359B2 (en) * | 2003-11-20 | 2007-10-17 | 日立金属株式会社 | Cathode active material for non-aqueous lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery using the cathode active material |
JP4997700B2 (en) * | 2004-12-13 | 2012-08-08 | 三菱化学株式会社 | Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same |
US10454106B2 (en) * | 2004-12-31 | 2019-10-22 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) | Double-layer cathode active materials for lithium secondary batteries, method for preparing the active materials, and lithium secondary batteries using the active materials |
KR100822012B1 (en) * | 2006-03-30 | 2008-04-14 | 한양대학교 산학협력단 | Cathode active materials for lithium batteries, Method of preparing thereof and lithium secondary batteries comprising same |
DE102006049098B4 (en) * | 2006-10-13 | 2023-11-09 | Toda Kogyo Corp. | Powdered compounds, process for their production and their use in lithium secondary batteries |
JP2008153017A (en) * | 2006-12-15 | 2008-07-03 | Ise Chemicals Corp | Positive active material for nonaqueous electrolyte secondary battery |
TW200941804A (en) * | 2007-12-12 | 2009-10-01 | Umicore Nv | Homogeneous nanoparticle core doping of cathode material precursors |
JP5651937B2 (en) * | 2008-09-10 | 2015-01-14 | 住友金属鉱山株式会社 | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same |
-
2011
- 2011-06-07 JP JP2011127342A patent/JP5708277B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101748999B1 (en) | 2016-08-01 | 2017-06-20 | (주)이엠티 | Method for Preparing Cathode Active Material Precursor for Secondary Battery |
Also Published As
Publication number | Publication date |
---|---|
JP2012256435A (en) | 2012-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5708277B2 (en) | Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery | |
JP5316726B2 (en) | Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery | |
JP5638232B2 (en) | Non-aqueous electrolyte secondary battery positive electrode active material nickel cobalt manganese composite hydroxide particles and production method thereof, non-aqueous electrolyte secondary battery positive electrode active material and production method thereof, and non-aqueous electrolyte secondary battery | |
JP4894969B1 (en) | Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery | |
JP4915488B1 (en) | Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery | |
JP5730676B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same, and nickel cobalt manganese composite hydroxide and method for producing the same | |
JP5741932B2 (en) | Transition metal composite hydroxide as a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery | |
JP5971109B2 (en) | Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery | |
JP5877817B2 (en) | Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material | |
JP5590337B2 (en) | Manganese composite hydroxide particles, positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and production methods thereof | |
WO2012165654A1 (en) | Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material | |
JP6252383B2 (en) | Manganese cobalt composite hydroxide and method for producing the same, positive electrode active material and method for producing the same, and non-aqueous electrolyte secondary battery | |
JP5392036B2 (en) | Manganese composite hydroxide particles for non-aqueous electrolyte secondary battery positive electrode active material and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery | |
JP2011116580A5 (en) | ||
JP2012252844A5 (en) | ||
JP5776996B2 (en) | Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material | |
JP5811383B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the positive electrode active material | |
JP6318956B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP6436335B2 (en) | Transition metal composite hydroxide particles, method for producing the same, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery using the same | |
JP2011116583A5 (en) | ||
WO2018021554A1 (en) | Positive electrode active substance for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery | |
JP5392035B2 (en) | Nickel-manganese composite hydroxide particles for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery | |
JP2011116582A5 (en) | ||
JP5354112B2 (en) | Method for producing positive electrode active material for non-aqueous secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130806 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140602 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20140602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5708277 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |