JP5700143B2 - Pre-preg for press molding and method for producing molded product - Google Patents
Pre-preg for press molding and method for producing molded product Download PDFInfo
- Publication number
- JP5700143B2 JP5700143B2 JP2014000457A JP2014000457A JP5700143B2 JP 5700143 B2 JP5700143 B2 JP 5700143B2 JP 2014000457 A JP2014000457 A JP 2014000457A JP 2014000457 A JP2014000457 A JP 2014000457A JP 5700143 B2 JP5700143 B2 JP 5700143B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- mold
- resin composition
- prepreg
- press molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、プレス成形用プリプレグ、及び該プレス成形用プリプレグを用いた成形品の製造方法に関する。 The present invention relates to a prepreg for press molding and a method for producing a molded product using the prepreg for press molding.
繊維強化複合材料(以下、「FRP」という。)は、軽量かつ高強度、高剛性であるため、釣り竿やゴルフシャフト等のスポーツ・レジャー用途、自動車や航空機等の産業用途等の幅広い分野で用いられている。FRPの製造には、強化繊維等の長繊維からなる繊維補強材に樹脂を含浸した中間材料であるプリプレグを使用する方法が好適に用いられる。プリプレグを所望の形状に切断した後に賦形し、金型内で加熱硬化させることによりFRPからなる成形品を得ることができる。 Fiber-reinforced composite materials (hereinafter referred to as “FRP”) are lightweight, high-strength, and high-rigidity, so they are used in a wide range of fields such as fishing and fishing shafts and sports / leisure applications, and automotive and aircraft industrial applications. It has been. For the production of FRP, a method of using a prepreg which is an intermediate material obtained by impregnating a resin into a fiber reinforcing material composed of long fibers such as reinforcing fibers is suitably used. A molded product made of FRP can be obtained by shaping the prepreg after cutting it into a desired shape and heating and curing it in a mold.
しかしながら、一般にエポキシ樹脂系のプリプレグの成形は、成形時間が長く自動車部材のような量産性を求められる部材に使用することは難しかった。一方、高温高圧を用いるハイサイクルプレス成形は、その生産性の高さから、自動車用途に多用される成形方法として知られており、特許文献2には、プリプレグをプレス成形で成形する方法が示されている。
ハイサイクルプレス成形では、通常、100〜150℃、1〜15MPaの高温高圧条件が用いられる。これは、速硬化による硬化時間の短縮と、金型内においてプリプレグが適度に流動することによる該金型内からのガスの排出のためである。
However, in general, molding of an epoxy resin prepreg has a long molding time and is difficult to use for a member that requires mass productivity such as an automobile member. On the other hand, high cycle press molding using high temperature and high pressure is known as a molding method frequently used for automotive applications because of its high productivity.
In high cycle press molding, high temperature and high pressure conditions of 100 to 150 ° C. and 1 to 15 MPa are usually used. This is because the curing time is shortened by rapid curing and the gas is discharged from the mold due to the proper flow of the prepreg in the mold.
しかし、このように高温高圧でプレス成形する場合、プリプレグの樹脂温度が上昇することにより樹脂粘度が低下し、金型の構造によってはシアエッジ部から激しい樹脂の流出が見られる。そのため、得られた成形品の表面に樹脂が不足した樹脂枯れのような外観不良、繊維蛇行等の性能上の不良、金型内のエジェクターピンやエアー弁等への樹脂流入による金型の動作不良等の成形上の問題が生じることがあった。
一方、金型内における樹脂の流動を調整する方法としては、高粘度のエポキシ樹脂を用いたり、エポキシ樹脂に熱可塑性樹脂を添加したりする方法が示されている(例えば、特許文献1、2)。
However, when press molding is performed at such a high temperature and high pressure, the resin viscosity decreases due to an increase in the resin temperature of the prepreg, and depending on the structure of the mold, a severe resin outflow is seen from the shear edge portion. Therefore, the appearance of the molded product is insufficient on the surface of the molded product, such as resin dying, poor performance such as fiber meandering, mold operation due to resin inflow into the ejector pins, air valves, etc. in the mold There are cases where molding problems such as defects occur.
On the other hand, as a method for adjusting the flow of the resin in the mold, a method of using a high-viscosity epoxy resin or adding a thermoplastic resin to the epoxy resin is disclosed (for example,
しかし、高粘度のエポキシ樹脂を用いた場合は、常温時における樹脂粘度も高くなってしまうため、積層作業等の常温でのプリプレグの取り扱い性が著しく低下する。また、エポキシ樹脂への汎用の熱可塑性樹脂の添加は、該熱可塑性樹脂のエポキシ樹脂への溶解性が低く、また得られるエポキシ樹脂組成物のガラス転移温度(以下、「Tg」という。)の低下、硬化速度の低下等をもたらすため、ハイサイクルプレス成形に適用することが困難であった。また、エポキシ樹脂系プリプレグのハイサイクルプレス成形は一般的ではなかったため、ハイサイクルプレス成形に最適な成形温度域での樹脂の最低粘度は解明されておらず、樹脂粘度を最適粘度域にコントロールするための熱可塑性樹脂の使用法は見いだされていなかった。そのため、ハイサイクルプレス成形に適用することのできるプレス成形用プリプレグが望まれている。 However, when a high-viscosity epoxy resin is used, the resin viscosity at room temperature also increases, so that the handleability of the prepreg at room temperature such as laminating work is significantly reduced. Further, the addition of a general-purpose thermoplastic resin to the epoxy resin has low solubility of the thermoplastic resin in the epoxy resin, and the glass transition temperature (hereinafter referred to as “Tg”) of the resulting epoxy resin composition. Since it causes a decrease, a decrease in the curing rate, etc., it has been difficult to apply to high cycle press molding. In addition, high cycle press molding of epoxy resin prepregs was not common, so the minimum viscosity of the resin in the optimal molding temperature range for high cycle press molding has not been elucidated, and the resin viscosity is controlled to the optimal viscosity range. No use of thermoplastic resin has been found for this purpose. Therefore, a prepreg for press molding that can be applied to high cycle press molding is desired.
そこで本発明は、常温時における取り扱い性に優れ、かつTg及び硬化速度をほとんど低下させることなく高温高圧成形時における樹脂の過剰な流動を抑え、得られる成形品の外観不良、性能不良、及び金型の動作不良等を抑制することができるプレス成形用プリプレグを目的とする。
また、本発明では、前記プレス成形用プリプレグを用いた高い生産性の成形品の製造方法を提供する。
Therefore, the present invention is excellent in handleability at room temperature and suppresses excessive flow of the resin at the time of high-temperature and high-pressure molding with almost no decrease in Tg and curing rate, resulting in poor appearance, poor performance, and gold An object of the present invention is to provide a prepreg for press molding that can suppress malfunction of a mold.
Moreover, in this invention, the manufacturing method of the molded product of high productivity using the said prepreg for press molding is provided.
本発明のプレス成形用プリプレグは、4,4’−ジアミノジフェニルスルホンとビスフェノールA型エポキシ樹脂との予備反応物を含むエポキシ樹脂(X)100質量部と、質量平均分子量が10,000〜60,000のポリエーテルスルホン樹脂(Y)5〜15質量部と、エポキシ硬化剤(Z)5〜20質量部とを含み、100〜150℃における最低粘度が2〜20Pa・sであり、30℃における粘度が10,000〜100,000Pa・sのエポキシ樹脂組成物が、繊維補強材に含浸されたプリプレグである。
前記エポキシ樹脂(X)は、2官能性エポキシ樹脂及び3官能以上の多官能性エポキシ樹脂からなる群より選ばれた1種類以上のエポキシ樹脂であることが好ましい。
また、前記エポキシ樹脂(X)は、ビスフェノール骨格を有するエポキシ樹脂であることが好ましい。
また、前記エポキシ硬化剤(Z)は、ジシアンジアミドとウレア系の硬化剤からなることが好ましい。
また、前記ウレア系の硬化剤は、フェニルジメチルウレア又はトルエンビスジメチルウレアであることが好ましい。
また、前記繊維補強材は炭素繊維であることが好ましい。
The prepreg for press molding of the present invention comprises 100 parts by mass of an epoxy resin (X) containing a pre-reacted product of 4,4′-diaminodiphenylsulfone and a bisphenol A type epoxy resin, and a mass average molecular weight of 10,000-60, 000 polyethersulfone resin (Y) 5-15 parts by mass and epoxy curing agent (Z) 5-20 parts by mass, the minimum viscosity at 100-150 ° C. is 2-20 Pa · s, at 30 ° C. A prepreg in which a fiber reinforcing material is impregnated with an epoxy resin composition having a viscosity of 10,000 to 100,000 Pa · s.
The epoxy resin (X) is preferably one or more epoxy resins selected from the group consisting of a bifunctional epoxy resin and a trifunctional or higher polyfunctional epoxy resin.
The epoxy resin (X) is preferably an epoxy resin having a bisphenol skeleton.
The epoxy curing agent (Z) is preferably composed of dicyandiamide and a urea curing agent.
The urea-based curing agent is preferably phenyldimethylurea or toluenebisdimethylurea.
The fiber reinforcing material is preferably carbon fiber.
また、本発明の成形品の製造方法は、前記プレス成形用プリプレグを用いた成形材料を金型内で、100〜150℃、1〜15MPaの条件下で1〜20分間加熱加圧して硬化させる方法である。 Moreover, the manufacturing method of the molded article of the present invention cures the molding material using the prepreg for press molding by heating and pressurizing for 1 to 20 minutes in a mold at 100 to 150 ° C. and 1 to 15 MPa. Is the method.
本発明のプレス成形用プリプレグは、常温時における取り扱い性に優れ、かつTg及び硬化速度をほとんど低下させることなく高温高圧成形時における樹脂の過剰な流動を抑えることができる。そのため、高温高圧によるハイサイクルプレス成形であっても、得られる成形品の外観不良、性能不良、及び金型の不良等を抑制することができる。
また、本発明の製造方法によれば、高温高圧による硬化により高い生産性で成形品を得ることができる。
The press-molding prepreg of the present invention is excellent in handleability at room temperature, and can suppress excessive resin flow during high-temperature and high-pressure molding without substantially reducing Tg and curing rate. Therefore, even in the high cycle press molding at a high temperature and high pressure, it is possible to suppress the appearance defect, the performance defect, the mold defect, and the like of the obtained molded product.
Moreover, according to the manufacturing method of this invention, a molded article can be obtained with high productivity by hardening by high temperature and pressure.
<プレス成形用プリプレグ>
本発明のプレス成形用プリプレグは、エポキシ樹脂(X)、ポリエーテルスルホン(PES)樹脂(Y)、及びエポキシ硬化剤(Z)を含むエポキシ樹脂組成物を、繊維補強材に含浸したプリプレグである。本発明のプレス成形用プリプレグは、特に、高温高圧下に短時間で硬化させて成形品を得るハイサイクルプレス成形に好適に用いることができる。
<Press forming prepreg>
The prepreg for press molding of the present invention is a prepreg in which a fiber reinforcing material is impregnated with an epoxy resin composition containing an epoxy resin (X), a polyethersulfone (PES) resin (Y), and an epoxy curing agent (Z). . The prepreg for press molding of the present invention can be suitably used for high cycle press molding in which a molded product is obtained by curing in a short time under high temperature and pressure.
[エポキシ樹脂組成物]
(エポキシ樹脂(X))
エポキシ樹脂(X)としては、2官能性エポキシ樹脂、3官能以上の多官能性エポキシ樹脂が挙げられる。
2官能性エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂(例えば、ジャパンエポキシレジン(株)製のエピコート828(jER828))、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フルオレン型エポキシ樹脂、あるいはこれらを変性したエポキシ樹脂等が挙げられる。
3官能以上の多官能性エポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾール型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、テトラグリシジルアミンのようなグリシジルアミン型エポキシ樹脂、テトラキス(グリシジルオキシフェニル)エタンやトリス(グリシジルオキシメタン)のようなグリシジルエーテル型エポキシ樹脂、あるいはこれらを変性したエポキシ樹脂やこれらのエポキシ樹脂をブロム化したブロム化エポキシ樹脂が挙げられる。
これらエポキシ樹脂は、1種のみを単独で使用してもよく、2種以上を併用してもよい。
[Epoxy resin composition]
(Epoxy resin (X))
Examples of the epoxy resin (X) include bifunctional epoxy resins and trifunctional or higher polyfunctional epoxy resins.
Examples of the bifunctional epoxy resin include bisphenol A type epoxy resin (for example, Epicoat 828 (jER828) manufactured by Japan Epoxy Resin Co., Ltd.), bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, Examples thereof include naphthalene type epoxy resins, dicyclopentadiene type epoxy resins, fluorene type epoxy resins, and epoxy resins obtained by modifying these.
Examples of the trifunctional or higher polyfunctional epoxy resin include a phenol novolac type epoxy resin, a cresol type epoxy resin, a glycidylamine type epoxy resin such as tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, tetraglycidylamine, and tetrakis (glycidyl). Examples thereof include glycidyl ether type epoxy resins such as oxyphenyl) ethane and tris (glycidyloxymethane), epoxy resins obtained by modifying these, and brominated epoxy resins obtained by brominating these epoxy resins.
These epoxy resins may be used alone or in combination of two or more.
エポキシ樹脂(X)は、PES樹脂(Y)との溶解性の点から、ビスフェノール骨格を有するエポキシ樹脂であることが好ましい。 The epoxy resin (X) is preferably an epoxy resin having a bisphenol skeleton from the viewpoint of solubility with the PES resin (Y).
(ポリエーテルスルホン樹脂(Y))
PES樹脂(Y)は、エポキシ樹脂組成物の流動性を調整する役割を果たす樹脂である。
PES樹脂(Y)は、質量平均分子量が10,000〜60,000の樹脂であり、20,000〜50,000の樹脂であることが好ましい。
質量平均分子量が10,000以上であれば、エポキシ樹脂組成物の粘度が低くなりすぎることを防ぐことができ、適正な配合量でエポキシ樹脂組成物の粘度を本発明で規定する適正な粘度域とすることができる。質量平均分子量が60,000以下であれば、エポキシ樹脂への溶解が困難になり、極少量の配合でもエポキシ樹脂組成物の粘度が高くなり過ぎることを防ぐことができ、エポキシ樹脂組成物の粘度を本発明で規定する適正な粘度域とすることができる。
(Polyethersulfone resin (Y))
PES resin (Y) is resin which plays the role which adjusts the fluidity | liquidity of an epoxy resin composition.
The PES resin (Y) is a resin having a mass average molecular weight of 10,000 to 60,000, and preferably a resin having a mass average molecular weight of 20,000 to 50,000.
If the mass average molecular weight is 10,000 or more, the viscosity of the epoxy resin composition can be prevented from becoming too low, and the viscosity of the epoxy resin composition can be specified in the present invention with an appropriate blending amount. It can be. If the mass average molecular weight is 60,000 or less, it becomes difficult to dissolve in an epoxy resin, and even when a very small amount is blended, the viscosity of the epoxy resin composition can be prevented from becoming too high. The viscosity of the epoxy resin composition Can be set to an appropriate viscosity range defined in the present invention.
PES樹脂(Y)の具体例としては、例えば、BASF社製ウルトラゾーンE1010、E2020P、E3010、E6020P、S3010、S6010、住友化学製スミカエクセルPES3600P、PES4800P、PES5003P等が挙げられる。なかでも、少量の添加でエポキシ樹脂組成物の粘度を本発明の規定する適正な粘度域に調整でき、またエポキシ樹脂(X)への溶解性にも優れる点から、BASF社製E2020P(質量平均分子量32,000)であることが好ましい。 Specific examples of the PES resin (Y) include, for example, Ultra Zone E1010, E2020P, E3010, E6020P, S3010, S6010 manufactured by BASF, Sumika Excel PES3600P, PES4800P, and PES5003P manufactured by Sumitomo Chemical. Among them, the viscosity of the epoxy resin composition can be adjusted to an appropriate viscosity range defined by the present invention with a small amount of addition, and it is excellent in solubility in the epoxy resin (X). The molecular weight is preferably 32,000).
エポキシ樹脂組成物におけるPES樹脂(Y)の使用量は、エポキシ樹脂100質量部に対して5〜15質量部であり、7〜13質量部であることが好ましい。
PES樹脂(Y)の使用量を5質量部以上とすることにより、高温高圧成形時においてエポキシ樹脂組成物が流動しすぎることによる金型からの流出を抑制でき、樹脂枯れ等の表面欠陥がない成形品を得ることができる。また、PES樹脂(Y)の使用量を15質量部以下とすることにより、エポキシ樹脂への溶解が容易で、またエポキシ樹脂組成物のTgの低下、硬化速度の低下を抑制することができる。
The usage-amount of PES resin (Y) in an epoxy resin composition is 5-15 mass parts with respect to 100 mass parts of epoxy resins, and it is preferable that it is 7-13 mass parts.
By setting the usage amount of the PES resin (Y) to 5 parts by mass or more, it is possible to suppress outflow from the mold due to excessive flow of the epoxy resin composition at the time of high-temperature and high-pressure molding, and there is no surface defect such as resin withering. A molded product can be obtained. Moreover, by making the usage-amount of PES resin (Y) into 15 mass parts or less, melt | dissolution to an epoxy resin is easy, and the fall of Tg of an epoxy resin composition and the fall of a cure rate can be suppressed.
(エポキシ硬化剤)
エポキシ硬化剤(Z)は、エポキシ樹脂組成物の架橋密度や硬化速度を適切な範囲に保つ役割を果たす。
エポキシ硬化剤(Z)としては、エポキシ樹脂用の硬化剤として通常用いられているものを使用することができる。エポキシ硬化剤(Z)は、硬化性、硬化後の物性に優れる点から、アミド系の硬化剤であるジシアンジアミド(DICY)が好ましい。
具体例としては、ジャパンエポキシレジン(株)製のjERキュアーDICY15等が挙げられる。
(Epoxy curing agent)
The epoxy curing agent (Z) plays a role of keeping the crosslinking density and curing rate of the epoxy resin composition within an appropriate range.
As an epoxy hardening | curing agent (Z), what is normally used as a hardening | curing agent for epoxy resins can be used. The epoxy curing agent (Z) is preferably dicyandiamide (DICY), which is an amide-based curing agent, from the viewpoint of excellent curability and physical properties after curing.
Specific examples include jER Cure DICY15 manufactured by Japan Epoxy Resin Co., Ltd.
また、DICYを用いる場合には、ウレア系の硬化剤と併用することがより好ましい。DICYはエポキシ樹脂への溶解性がそれほど高くないため充分に溶解させるためには160℃以上の高温に加熱する必要があるが、ウレア系の硬化剤と併用することにより溶解温度を下げることができる。
ウレア系の硬化剤としては、例えば、フェニルジメチルウレア(PDMU)、トルエンビスジメチルウレア(TBDMU)等が挙げられる。
Moreover, when using DICY, it is more preferable to use together with a urea type hardening | curing agent. Since DICY is not very soluble in epoxy resin, it needs to be heated to a high temperature of 160 ° C. or higher in order to sufficiently dissolve it, but the dissolution temperature can be lowered by using it together with a urea-based curing agent. .
Examples of urea-based curing agents include phenyldimethylurea (PDMU) and toluenebisdimethylurea (TBDMU).
エポキシ樹脂組成物におけるエポキシ硬化剤(Z)の使用量は、エポキシ樹脂100質量部に対して5〜20質量部である。エポキシ硬化剤(Z)の使用量が5質量部以上であれば、架橋密度が充分になり、また充分な硬化速度が得られる。エポキシ硬化剤(Z)が20質量部以下であれば、硬化剤が過剰に存在することによる硬化樹脂の機械物性の低下や硬化樹脂の濁り等の不具合を抑制することができる。
エポキシ硬化剤(Z)として、DICY及びウレア系硬化剤(PDMU、TBDMU等)を併用する場合、それらの使用量は、エポキシ樹脂(X)100質量部に対して、DICYが2〜15質量部、ウレア系硬化剤が1〜10質量部(ただし、DICYとウレア系硬化剤の合計量が5〜20質量部である。)であることが好ましい。
The usage-amount of the epoxy hardening | curing agent (Z) in an epoxy resin composition is 5-20 mass parts with respect to 100 mass parts of epoxy resins. If the usage-amount of an epoxy hardening | curing agent (Z) is 5 mass parts or more, a crosslinking density will become enough and sufficient hardening rate will be obtained. When the epoxy curing agent (Z) is 20 parts by mass or less, it is possible to suppress problems such as a decrease in mechanical properties of the cured resin and turbidity of the cured resin due to the excessive presence of the curing agent.
As the epoxy curing agent (Z), when DICY and urea curing agent (PDMU, TBDMU, etc.) are used in combination, their use amount is 2 to 15 parts by mass with respect to 100 parts by mass of the epoxy resin (X). The urea curing agent is preferably 1 to 10 parts by mass (however, the total amount of DICY and urea curing agent is 5 to 20 parts by mass).
(その他の成分)
また、本発明におけるエポキシ樹脂組成物には、エポキシ樹脂組成物の100〜150℃における最低粘度、30℃における粘度、Tg、硬化速度等に悪影響を及ぼさない範囲内で、前記エポキシ樹脂(X)、PES樹脂(Y)、エポキシ硬化剤(Z)以外のその他の成分が含有されていてもよい。
その他の成分としては、例えば、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン等のジアミノジフェニルスルホン(DDS)、及びこれらの変性物等が挙げられる。具体例としては、和歌山精化(株)製のセイカキュアS等が挙げられる。
DDSを用いることで、優れた機械的強度及び耐熱性が得られるだけでなく、樹脂組成物の調製に使用するエポキシ樹脂の粘度を調整したり、硬化を早めたりすることができる。
(Other ingredients)
In addition, the epoxy resin composition according to the present invention includes the epoxy resin (X) within a range that does not adversely affect the minimum viscosity at 100 to 150 ° C., the viscosity at 30 ° C., Tg, and the curing rate of the epoxy resin composition. , Other components other than the PES resin (Y) and the epoxy curing agent (Z) may be contained.
Examples of other components include 3,3′-diaminodiphenylsulfone, diaminodiphenylsulfone (DDS) such as 4,4′-diaminodiphenylsulfone, and modified products thereof. Specific examples include Seika Cure S manufactured by Wakayama Seika Co., Ltd.
By using DDS, not only excellent mechanical strength and heat resistance can be obtained, but also the viscosity of the epoxy resin used for the preparation of the resin composition can be adjusted and curing can be accelerated.
また、それ以外のその他の成分としては、微粉末状のシリカ等の無機質微粒子、顔料、エラストマー、難燃剤となる水酸化アルミニウムや臭素化合物又はリン系化合物、脱泡剤、取り扱い性や柔軟性を向上させる目的のポリビニルアセタール樹脂、フェノキシ樹脂等のエポキシ樹脂に溶解する熱可塑性樹脂、硬化反応の触媒となるイミダゾール誘導体、金属錯体塩又は3級アミン化合物等が挙げられる。 Other components include inorganic fine particles such as finely divided silica, pigments, elastomers, flame retardants such as aluminum hydroxide, bromine compounds or phosphorus compounds, defoaming agents, handling properties and flexibility. Examples thereof include a thermoplastic resin that dissolves in an epoxy resin such as a polyvinyl acetal resin and a phenoxy resin, and an imidazole derivative, a metal complex salt, or a tertiary amine compound that serves as a catalyst for a curing reaction.
本発明のエポキシ樹脂組成物は、前記エポキシ樹脂(X)100質量部と、PES樹脂(Y)5〜15質量部と、エポキシ硬化剤(Z)5〜20質量部とを含有する組成物である。
本発明のエポキシ樹脂組成物は、100〜150℃における最低粘度が2〜20Pa・sである。100〜150℃における最低粘度とは、エポキシ樹脂組成物を加熱した場合に100℃から150℃までの温度範囲内における粘度(昇温粘度)の最低値を意味する。昇温粘度は、例えば、レオメトリック社製DSR−200又は同等の性能を有する装置を用いて、周波数1Hz、パラレルプレート(25mmφ、ギャップ0.5mm)で測定することができる。
100〜150℃における最低粘度を2Pa・s以上とすることにより、樹脂(エポキシ樹脂組成物)が適度な流動性を示し、高温高圧における成形時に金型内で過剰に流動することを抑えることができ、高品質な成形品が得られるとともに、金型のシアエッジ部から樹脂が流出して成形品に外観不良が生じたり、繊維蛇行が生じたりすることを抑制することができる。また、金型内のエジェクターピンやエアー弁等に樹脂が流入して金型の動作不良が生じることを防止できる。また、100〜150℃における最低粘度を20Pa・s以下とすることにより、成形時の粘度が高すぎるために、樹脂の流動が不十分になり、成形品からガスが抜け難くなって欠陥になったり、成形品に未充填部分が残ったりすることを防止できる。
本発明のエポキシ樹脂組成物の100〜150℃における最低粘度は、2〜20Pa・sであることが好ましく、3〜18Pa・sであることがより好ましい。
The epoxy resin composition of the present invention is a composition containing 100 parts by mass of the epoxy resin (X), 5 to 15 parts by mass of the PES resin (Y), and 5 to 20 parts by mass of the epoxy curing agent (Z). is there.
The epoxy resin composition of the present invention has a minimum viscosity of 2 to 20 Pa · s at 100 to 150 ° C. The minimum viscosity at 100 to 150 ° C. means the minimum value of viscosity (temperature increase viscosity) within a temperature range from 100 ° C. to 150 ° C. when the epoxy resin composition is heated. The temperature rise viscosity can be measured with a frequency of 1 Hz and a parallel plate (25 mmφ, gap 0.5 mm) using, for example, DSR-200 manufactured by Rheometric Co., Ltd. or an apparatus having equivalent performance.
By setting the minimum viscosity at 100 to 150 ° C. to 2 Pa · s or more, the resin (epoxy resin composition) exhibits appropriate fluidity, and suppresses excessive flow in the mold during molding at high temperature and high pressure. In addition, a high-quality molded product can be obtained, and it is possible to prevent the resin from flowing out from the shear edge portion of the mold, resulting in a defective appearance or a fiber meandering. Further, it is possible to prevent the mold from malfunctioning due to the resin flowing into the ejector pin, the air valve or the like in the mold. In addition, by setting the minimum viscosity at 100 to 150 ° C. to 20 Pa · s or less, the viscosity at the time of molding is too high, the resin flow becomes insufficient, and it becomes difficult for gas to escape from the molded product, resulting in a defect. Or remaining unfilled parts in the molded product can be prevented.
The minimum viscosity at 100 to 150 ° C. of the epoxy resin composition of the present invention is preferably 2 to 20 Pa · s, and more preferably 3 to 18 Pa · s.
また、本発明のエポキシ樹脂組成物は、30℃における粘度が10,000〜100,000Pa・sである。プリプレグのプレス成形においては成形前にプリプレグを所定の形状に切断し、積層してプリフォームとする場合が多いが、30℃における粘度が10,000Pa・s以上であれば、常温における積層作業でプリプレグのベタツキが少なく、良好な作業性が得られる。また、30℃における粘度が100,000Pa・s以下であれば、プリプレグが十分な柔軟性を維持しており、プリフォーム作成作業でプリプレグを金型の形状に合わせて積層していくために必要な賦形性が維持できる。
粘度は、前記昇温粘度と同様に、例えば、レオメトリック社製DSR−200又は同等の性能を有する装置を用いて、周波数1Hz、パラレルプレート(25mmφ、ギャップ0.5mm)で測定することができる。
エポキシ樹脂組成物の100〜150℃における最低粘度、及び30℃における粘度は、エポキシ樹脂(X)の種類、並びにPES樹脂(Y)、エポキシ硬化剤(Z)の種類及び使用量により調節することができる。
The epoxy resin composition of the present invention has a viscosity at 30 ° C. of 10,000 to 100,000 Pa · s. In prepreg press molding, the prepreg is often cut into a predetermined shape before molding and laminated to form a preform. However, if the viscosity at 30 ° C. is 10,000 Pa · s or more, it is possible to perform lamination at room temperature. The prepreg is less sticky and good workability is obtained. In addition, if the viscosity at 30 ° C is 100,000 Pa · s or less, the prepreg maintains sufficient flexibility, and is necessary for laminating the prepreg according to the shape of the mold in the preform creation operation. Can be maintained.
The viscosity can be measured at a frequency of 1 Hz and a parallel plate (25 mmφ, gap 0.5 mm) using, for example, a DSR-200 manufactured by Rheometric Co., Ltd. or a device having equivalent performance, similarly to the temperature rising viscosity. .
The minimum viscosity at 100 to 150 ° C. and the viscosity at 30 ° C. of the epoxy resin composition should be adjusted according to the type of epoxy resin (X), the type of PES resin (Y) and the epoxy curing agent (Z) and the amount used. Can do.
また、本発明のエポキシ樹脂組成物の硬化物Tgは、硬化温度の−30℃以上であることが好ましい。エポキシ樹脂組成物の硬化物Tgが硬化温度の−30℃以上であれば、成形型(金型)からの脱型が容易でかつ脱型後の変形が起こり難い。
また、本発明のエポキシ樹脂組成物は、硬化温度100〜150℃、成形圧力1〜15MPaの条件で加熱加圧した際に1〜20分間で硬化するものであることが好ましい。
Moreover, it is preferable that the hardened | cured material Tg of the epoxy resin composition of this invention is -30 degreeC or more of hardening temperature. If the cured product Tg of the epoxy resin composition has a curing temperature of −30 ° C. or higher, it is easy to remove the mold from the mold (mold), and deformation after demolding hardly occurs.
Moreover, it is preferable that the epoxy resin composition of this invention hardens | cures in 1 to 20 minutes, when it heat-presses on the conditions of 100-150 degreeC of hardening temperature and 1-15 MPa of molding pressures.
(エポキシ樹脂組成物の製造方法)
本発明におけるエポキシ樹脂組成物の製造方法としては、例えば、前述のエポキシ樹脂(X)、PES樹脂(Y)、エポキシ硬化剤(Z)、及び必要に応じて添加するその他の成分を適量ずつ添加して混合する方法が挙げられる。
また、その他の成分としてDDSを用いる場合には、DDSとエポキシ樹脂(X)とを予め所定粘度まで予備反応させた後に、PES樹脂(Y)及びエポキシ硬化剤(Z)と混合することもできる。所定粘度としては、例えば、90℃における粘度が4〜13Pa・sが挙げられる。
また、エポキシ硬化剤(Z)が固体である場合には、液状のエポキシ樹脂(X)に予め均一混合した後に、残りの成分と混合してもよい。
(Method for producing epoxy resin composition)
As a manufacturing method of the epoxy resin composition in the present invention, for example, the above-mentioned epoxy resin (X), PES resin (Y), epoxy curing agent (Z), and other components to be added as necessary are added in appropriate amounts. And mixing them.
In addition, when DDS is used as the other component, after preliminarily reacting DDS and epoxy resin (X) to a predetermined viscosity, they can be mixed with PES resin (Y) and epoxy curing agent (Z). . Examples of the predetermined viscosity include a viscosity at 90 ° C. of 4 to 13 Pa · s.
When the epoxy curing agent (Z) is a solid, it may be mixed with the liquid epoxy resin (X) in advance and then mixed with the remaining components.
また、これらの成分を混合する際の混合温度は、50〜65℃であることが好ましく、55〜60℃であることがより好ましい。混合温度が50℃以上であれば、前記成分の混合が容易になる。また、混合温度が65℃以下であれば、エポキシ樹脂組成物が硬化反応を起こすことを抑制しやすい。 Moreover, it is preferable that the mixing temperature at the time of mixing these components is 50-65 degreeC, and it is more preferable that it is 55-60 degreeC. When the mixing temperature is 50 ° C. or higher, mixing of the components becomes easy. Moreover, if mixing temperature is 65 degrees C or less, it will be easy to suppress that an epoxy resin composition raise | generates hardening reaction.
[繊維補強材]
本発明における繊維補強材としては、FRPの補強材として通常用いられる繊維を用いることができ、例えば、炭素繊維、ガラス繊維、アラミド繊維、ポリエステル繊維、鉱物繊維(例えば、バサルト繊維等)等が挙げられる。なかでも、軽量かつ高強度で高弾性率を有し、耐熱性、耐薬品性にも優れる点から、炭素繊維が好ましい。
炭素繊維としては、ピッチ系、ポリアクリロニトリル(PAN系)、レーヨン系等の種類が挙げられ、いずれの炭素繊維を用いてもよいが、炭素繊維の生産性の面から、PAN系炭素繊維の使用がより好ましい。
繊維補強材の形態としては、ミルドファイバー状、チョップドファイバー状、連続繊維、各種織物等の形態が挙げられる。
[Fiber reinforcement]
As the fiber reinforcing material in the present invention, fibers usually used as a reinforcing material for FRP can be used. Examples thereof include carbon fiber, glass fiber, aramid fiber, polyester fiber, mineral fiber (for example, basalt fiber) and the like. It is done. Among these, carbon fiber is preferable because it is lightweight, has high strength, has a high elastic modulus, and is excellent in heat resistance and chemical resistance.
Examples of the carbon fiber include pitch type, polyacrylonitrile (PAN type), rayon type, etc., and any carbon fiber may be used. From the viewpoint of carbon fiber productivity, the use of PAN type carbon fiber is acceptable. Is more preferable.
Examples of the form of the fiber reinforcing material include forms such as a milled fiber form, a chopped fiber form, a continuous fiber, and various woven fabrics.
[プレス成形用プリプレグの製造方法]
本発明のプレス成形用プリプレグは、これらの繊維補強材に前述のエポキシ樹脂組成物が含浸されたプリプレグである。
プレス成形用プリプレグの製造方法は、繊維補強材にエポキシ樹脂組成物を含浸させることができる方法であればよく、例えば、離型紙上に薄く塗布したエポキシ樹脂組成物と各種形態の繊維強化材とを接触させて含浸させるプリプレグ法が挙げられる。
[Method for producing prepreg for press molding]
The prepreg for press molding of the present invention is a prepreg in which these fiber reinforcing materials are impregnated with the above-described epoxy resin composition.
The press molding prepreg can be produced by any method as long as the fiber reinforcing material can be impregnated with the epoxy resin composition. For example, the epoxy resin composition thinly coated on the release paper and the fiber reinforcing material in various forms And a prepreg method in which impregnation is carried out.
以上説明した本発明のプレス成形用プリプレグは、エポキシ樹脂組成物の30℃における粘度及び100〜150℃における最低粘度を制御していることから、常温における取り扱い性に優れ、かつ成形時において金型内での樹脂の過剰な流動が抑制される。また、エポキシ樹脂組成物が上記組成であるので、エポキシ樹脂組成物のTgの低下及び硬化速度の低下を抑制することができる。そのため、高温高圧下における短時間の硬化によるハイサイクルプレス成形により、高品質な成形品を高い生産性で得ることができる。 Since the prepreg for press molding of the present invention described above controls the viscosity at 30 ° C. and the minimum viscosity at 100 to 150 ° C. of the epoxy resin composition, it is excellent in handleability at room temperature and is a mold at the time of molding. The excessive flow of the resin inside is suppressed. Moreover, since an epoxy resin composition is the said composition, the fall of Tg of an epoxy resin composition and the fall of a cure rate can be suppressed. Therefore, a high-quality molded product can be obtained with high productivity by high cycle press molding by short-time curing under high temperature and high pressure.
<成形品の製造方法>
本発明の成形品の製造方法は、前述のプレス成形用プリプレグを用いた成形材料を、金型により高温高圧で硬化させて成形することにより成形品を得る方法である。本発明の製造方法は、特に、自動車部材等の用途の成形品(FRP)のハイサイクルプレス成形に好適に用いることができる。
<Method for producing molded product>
The method for producing a molded product according to the present invention is a method for obtaining a molded product by curing and molding a molding material using the above-described prepreg for press molding with a mold at a high temperature and a high pressure. Especially the manufacturing method of this invention can be used suitably for the high cycle press molding of molded articles (FRP) for uses, such as a motor vehicle member.
[金型]
本発明の製造方法における金型としては、成形材料を高温高圧下で硬化させることのできる金型であればよく、金型を閉じた時に該金型の内部を気密に保つことのできる構造を有する金型を用いることが好ましい。ここで、気密とは、金型を満たすのに十分な量の成形材料を金型内に入れ、加圧した際にも成形材料を構成するエポキシ樹脂組成物が金型から実質的に漏れ出さないことをいう。
内部を気密に保つ金型としては、金型を締めた時に上型・下型(雄型・雌型)が接触する部分にシアエッジ構造(図1参照)やゴムシール構造を採用した金型が挙げられる。また、金型の内部を気密に保つものであれば公知のいかなる構造を採用した金型であってもよい。
[Mold]
The mold in the production method of the present invention may be a mold that can cure the molding material under high temperature and high pressure, and has a structure that can keep the inside of the mold airtight when the mold is closed. It is preferable to use a metal mold. Here, airtight means that an epoxy resin composition constituting the molding material is substantially leaked from the mold even when a sufficient amount of the molding material is filled in the mold and pressed. Say nothing.
Examples of molds that keep the interior airtight include molds that employ a shear edge structure (see Fig. 1) or a rubber seal structure where the upper and lower molds (male and female molds) come into contact when the mold is tightened. It is done. Further, a mold using any known structure may be used as long as the inside of the mold is kept airtight.
図1は、本発明の製造方法に用いることのできる金型の一実施形態例を示した断面図である。
金型1は、上型2(雌型)と下型3(雄型)とを有する。上型2には雌型シアエッジ部4が設けられており、下型3には雄型シアエッジ部5が設けられている。そして、シアエッジ構造(雌型シアエッジ部4及び雄型シアエッジ部5)により、上型2と下型3を閉じた際に金型1の内部が気密に保たれる。
FIG. 1 is a sectional view showing an embodiment of a mold that can be used in the manufacturing method of the present invention.
The
また、金型1を閉じた時に金型1の内部に残存する空気は、成形品(FRP)表面のピンホールや成形品内部のボイドの原因となる場合があるが、金型1として脱気機構を有する金型を用い、金型1の内部のすべてを成形材料で満たす際に、脱気機構を用いて脱気することにより、金型1の内部に残存する空気を効果的に脱気することが可能である。脱気機構としては、例えば、金型1の下型3に開閉可能な孔(例えば、国際公開第2004/048435号パンフレットに記載の孔)を設けて空気を金型1外部に開放する機構や、該孔に更にポンプを設け、減圧する機構等が挙げられる。この場合、脱気は、金型1の内部全てを成形材料で満たす瞬間まで開孔しておき、加圧時に閉じることにより行なわれる。
In addition, air remaining inside the
更に、成形品の成形終了後、該成形品の取り出しを容易にするために、エジェクターピンやエアー弁等の成形品を脱型する機構を金型1に取り付けることもできる。この機構は、金型1の冷却を待たずに容易に成形品を取り出すことが可能となるので大量生産に好適である。なお、脱型する機構は、エジェクターピン、エアー弁以外の従来公知のいかなる機構であっても構わない。
Furthermore, a mechanism for removing the molded product such as an ejector pin and an air valve can be attached to the
[製造方法]
以下、本発明の成形品の製造方法の実施形態の一例として、図1に例示した金型1を用いた方法について説明する。
まず、金型1をエポキシ樹脂組成物の硬化温度以上まで調温した後、下型3上に成形材料6(必要に応じてプレス成形用プリプレグ切断し、積層したもの)を配置する(図1(A))。ついで、上型2及び下型3を閉じ、加圧して成形する(図1(B))。樹脂(エポキシ樹脂組成物)は金型1の外へはほとんど流出することはなく、成形材料6は加圧されて金型1の内部の全てを満たすこととなる。
[Production method]
Hereinafter, as an example of an embodiment of a method for producing a molded article of the present invention, a method using the
First, after the
また、金型1内での樹脂の流動を抑えて成形品の繊維蛇行を抑制する点から、金型1に入れる前の成形材料6(図1(A)における成形材料6)の片面表面積を、金型1を閉じた時に成形材料6のその片面と接触する金型内部の表面積(得られる成形品の片面表面積と同じ表面積である。)に近づけておくことが好ましい。ここで、成形材料の片面表面積とは成形品を構成する2面(上型2及び下型3と接する面)のうちの一方の面の表面積であり、いずれの面についても同様のことが言える。
Further, from the viewpoint of suppressing the flow of the resin in the
具体的には、成形材料6の片面表面積S1と、金型1を閉じた時の金型内部における前記成形材料の片面との接触面の表面積S2との比S1/S2が0.8〜1であることが好ましい。
S1/S2が0.8以上であれば、金型1の内部における樹脂の流動を抑えやすいため、繊維蛇行が生じ難くなる。また、S1/S2が1以下であれば、成形材料の周縁部が金型1からはみ出して金型1を閉じる際に障害や成形品内の成形材料不足が生じたりすることを抑制しやすい。また、金型1内で成形材料が折り畳まれて繊維配向の乱れが生じることを防止しやすい。
Specifically, the ratio S 1 / S 2 between the single-sided surface area S 1 of the
If S 1 / S 2 is 0.8 or more, the flow of the resin inside the
また、特に高品質な成形品を得る場合は、成形材料6の体積及び高さについても、得られる成形品(金型を閉じた時の金型内部の形状)に近いものを用いることが好ましい。具体的には、金型の内部に入れる成形材料6の体積を得られる成形品の体積の100〜120%、成形材料6の厚みを得られる成形品の厚みの100〜150%とすることが好ましい。
金型1の内部に入れる成形材料6の体積が得られる成形品の体積の100%未満であると、成形材料6に十分な圧力がかかり難くなる。一方、金型1の内部に入れる成形材料6の体積が得られる成形品の体積の120%を超えると、金型1を閉める際に金型1の気密性が得られる以前に成形材料6が流出しやすくなる。
また、成形材料6の厚みが得られる成形品の厚みの100%未満の場合、及び150%を超える場合には、成形材料6の全面を均等に加圧することが難しくなる。ここで、成形材料6の厚み及び得られる成形品の厚みとは、それぞれ成形材料及び得られる成形品の厚みを平均した厚みである。
In particular, when obtaining a high-quality molded product, it is preferable to use a
When the volume of the
Moreover, when the thickness of the
硬化温度は、100〜150℃である。硬化温度が100℃以上であれば、充分に硬化反応を起こすことができ、高い生産性で成形品を得ることができる。また、成形温度が150℃以下であれば、樹脂粘度が低くなり過ぎることによる金型1内における樹脂の過剰な流動を抑えることができ、金型1からの樹脂の流出や繊維の蛇行を抑制できるため、高品質な成形品が得られる。
The curing temperature is 100 to 150 ° C. When the curing temperature is 100 ° C. or higher, a curing reaction can be sufficiently caused, and a molded product can be obtained with high productivity. Further, if the molding temperature is 150 ° C. or lower, excessive flow of the resin in the
また、成形時の圧力は、1〜15MPaである。圧力が1MPa以上であれば、樹脂の適度な流動が得られ、ガス抜けが悪いことによる外観不良やボイドの発生を防ぐことができ、成形材料がしっかりと金型に密着するため良好な外観品質を得ることができる。また、圧力が15MPa以下であれば、樹脂を必要以上に流動させることによる外観不良や、金型に必要以上の負荷をかけることによる変形等の問題を抑制できる。
また、本発明の製造方法における硬化時間は1〜20分間である。これにより高い生産性で優れた品質の成形品を製造することができる。
Moreover, the pressure at the time of shaping | molding is 1-15 Mpa. If the pressure is 1 MPa or more, an appropriate flow of the resin can be obtained, and appearance defects and voids due to poor gas escape can be prevented, and the molding material firmly adheres to the mold, so good appearance quality Can be obtained. Moreover, if a pressure is 15 Mpa or less, problems, such as the appearance defect by making resin flow more than necessary, and the deformation | transformation by applying a load more than necessary to a metal mold | die can be suppressed.
Moreover, the hardening time in the manufacturing method of this invention is 1 to 20 minutes. As a result, it is possible to produce a molded product of excellent quality with high productivity.
以上説明した本発明の製造方法によれば、成形時に金型に不良が生じることを抑制することができ、また外観不良、性能不良等を抑えた高品質な成形品を高い生産性で得ることができる。
なお、本発明の製造方法は、図1に例示した金型1を用いる方法には限定されない。前述の高温高圧下において短時間で硬化させることができる金型であれば、金型1以外の金型を用いる方法であってもよい。
According to the manufacturing method of the present invention described above, it is possible to suppress the occurrence of defects in the mold during molding, and to obtain a high-quality molded product with reduced appearance defects and poor performance with high productivity. Can do.
In addition, the manufacturing method of this invention is not limited to the method of using the
以下、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
<エポキシ樹脂組成物>
[各種測定方法]
本実施例における、100〜150℃における最低粘度、30℃における粘度、エポキシ樹脂組成物の硬化物Tgは以下に示す方法で測定した。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following description.
<Epoxy resin composition>
[Various measurement methods]
In this example, the minimum viscosity at 100 to 150 ° C., the viscosity at 30 ° C., and the cured product Tg of the epoxy resin composition were measured by the following methods.
(100〜150℃における最低粘度及び30℃における粘度)
装置:レオメトリックス(株)製DSR−200
測定モード:パラレルプレート(25mmφ、ギャップ0.5mm)
周波数:1Hz
温度設定:30℃から2℃/分で120℃にまで昇温しながら粘度を測定した。
最低粘度については、100℃付近で最低の粘度が確認され、それ以降粘度が上昇したため、120℃までの測定とした。
(Minimum viscosity at 100 to 150 ° C. and viscosity at 30 ° C.)
Apparatus: DSR-200 manufactured by Rheometrics Co., Ltd.
Measurement mode: Parallel plate (25mmφ, gap 0.5mm)
Frequency: 1Hz
Temperature setting: The viscosity was measured while increasing the temperature from 30 ° C. to 120 ° C. at 2 ° C./min.
About the minimum viscosity, since the minimum viscosity was confirmed in the vicinity of 100 ° C and the viscosity increased thereafter, the measurement was performed up to 120 ° C.
(エポキシ樹脂組成物の硬化物Tg)
エポキシ樹脂組成物の硬化物TgはTA Instrument社製ARS−DMA動的粘弾性測定装置を用いてASTM D4065に従って測定を行い、図4に示すように温度に対して貯蔵弾性率(G’)の対数値をプロットし、得られたG’曲線のガラス弾性領域と転移領域の各接線の交点での温度をガラス転移温度(Tg)とした。
(Hardened product Tg of epoxy resin composition)
The cured product Tg of the epoxy resin composition was measured according to ASTM D4065 using an ARS-DMA dynamic viscoelasticity measuring apparatus manufactured by TA Instrument, and the storage elastic modulus (G ′) with respect to the temperature as shown in FIG. The logarithmic value was plotted, and the temperature at the intersection of each tangent line of the glass elastic region and the transition region of the obtained G ′ curve was defined as the glass transition temperature (Tg).
(キュラストメーターによる90%キュアー時間)
装置:日合商事(株)製 キュラストメーター IIF−HT
測定モード:P.P.(ピーク測定モード)
振動数:6 CPM
振幅角度:±3°
測定温度:140℃
90%キュアー時間は日合商事(株)製キュラストメーター IIF−HTを使用し、ダイ温度140℃でのトルク値(kgf・cm)の変化を測定し、図5に示すような時間−トルク曲線を得る。ついで、該曲線からトルクが変化しなくなる最大トルク値(Tmax)を求め、測定開始からTmaxの90%のトルク値(T90)が得られる迄の経過時間(分)を90%キュアー時間(t90)とした。
(90% cure time with curast meter)
Equipment: Curator meter IIF-HT manufactured by Nigo Shoji Co., Ltd.
Measurement mode: P. (Peak measurement mode)
Frequency: 6 CPM
Amplitude angle: ± 3 °
Measurement temperature: 140 ° C
The 90% cure time is measured by using a curast meter IIF-HT manufactured by Nichiga Corp., and measuring the change in torque value (kgf · cm) at a die temperature of 140 ° C., as shown in FIG. Get a curve. Next, the maximum torque value (Tmax) at which the torque does not change is obtained from the curve, and the elapsed time (min) from the start of measurement until the torque value (T90) of 90% of Tmax is obtained is 90% cure time (t90). It was.
[原料]
エポキシ樹脂組成物の製造に用いた原料を以下に示す。
(エポキシ樹脂(X))
EP828:ビスフェノールA型エポキシ樹脂(商品名:jER828、ジャパンエポキシレジン(株)製)
(PES樹脂(Y))
E2020P:ポリエーテルスルホン(商品名ウルトラゾーンE2020P、BASF製、質量平均分子量32,000)
(エポキシ硬化剤(Z))
DICY:ジシアンジアミド(商品名:jERキュアーDICY15、ジャパンエポキシレジン(株)製)
PDMU:フェニルジメチルウレア(商品名:オミキュア94、PTIジャパン(株)製)
(その他の成分)
DDS:4,4’−ジアミノジフェニルスルホン(商品名:セイカキュアS、和歌山精化(株)製)
YP50S:フェノキシ樹脂(商品名フェノトートYP50S、東都化成(株)製、質量平均分子量50,000〜70,000)
[material]
The raw material used for manufacture of an epoxy resin composition is shown below.
(Epoxy resin (X))
EP828: Bisphenol A type epoxy resin (trade name: jER828, manufactured by Japan Epoxy Resin Co., Ltd.)
(PES resin (Y))
E2020P: Polyethersulfone (trade name Ultra Zone E2020P, manufactured by BASF, mass average molecular weight 32,000)
(Epoxy curing agent (Z))
DICY: Dicyandiamide (trade name: jER Cure DICY15, manufactured by Japan Epoxy Resin Co., Ltd.)
PDMU: Phenyldimethylurea (trade name: Omicure 94, manufactured by PTI Japan Co., Ltd.)
(Other ingredients)
DDS: 4,4′-diaminodiphenyl sulfone (trade name: Seika Cure S, manufactured by Wakayama Seika Co., Ltd.)
YP50S: Phenoxy resin (trade name phenototo YP50S, manufactured by Tohto Kasei Co., Ltd., mass average molecular weight 50,000 to 70,000)
[製造例1]
EP828とDDSとをEP828/DDS=100/9(単位:質量部)で混合し、150℃で加熱することにより、90℃における粘度が9Pa・sとなるように予備反応を行い、樹脂組成物(I)を得た。
また、EP828にDICY及びPDMUを添加して混合し、三本ロールミルを用いて均一に分散させてEP828/DICY/PDMU=11.38/6.07/4.55(単位:質量部)のペースト状の樹脂組成物(II)を得た。
更にEP828/E2020P=7/3(単位:質量部)にて混合し180℃にて均一に溶解させて樹脂組成物(III)を得た。
ついで、樹脂組成物(I)78.10質量部、樹脂組成物(II)19.75質量部、及び樹脂組成物(III)16.70質量部を混合してエポキシ樹脂組成物(A)を得た。
得られたエポキシ樹脂組成物(A)におけるPES樹脂(Y)の質量割合は、エポキシ樹脂組成物(A)中の全エポキシ樹脂(樹脂組成物(I)+樹脂組成物(II)及び(III)中のエポキシ樹脂(X))100質量部に対して5質量部であった。また、エポキシ樹脂組成物(A)におけるエポキシ硬化剤(Z)の質量割合は、エポキシ樹脂組成物(A)中の全エポキシ樹脂(樹脂組成物(I)+樹脂組成物(II)及び(III)中のエポキシ樹脂(X))100質量部に対して、9.54質量部であった。
また、得られたエポキシ樹脂組成物(A)を140℃、5分で硬化させた硬化物のTgは137℃であった。
[Production Example 1]
EP828 and DDS are mixed at EP828 / DDS = 100/9 (unit: parts by mass) and heated at 150 ° C. to perform a pre-reaction so that the viscosity at 90 ° C. becomes 9 Pa · s. (I) was obtained.
Also, DICY and PDMU are added to EP828, mixed, and uniformly dispersed using a three-roll mill, and a paste of EP828 / DICY / PDMU = 11.38 / 6.07 / 4.55 (unit: parts by mass) A resin composition (II) was obtained.
Furthermore, it mixed by EP828 / E2020P = 7/3 (unit: mass part), and it was made to melt | dissolve uniformly at 180 degreeC, and resin composition (III) was obtained.
Next, 78.10 parts by mass of the resin composition (I), 19.75 parts by mass of the resin composition (II), and 16.70 parts by mass of the resin composition (III) were mixed to obtain the epoxy resin composition (A). Obtained.
The mass ratio of the PES resin (Y) in the obtained epoxy resin composition (A) is the total epoxy resin (resin composition (I) + resin composition (II) and (III) in the epoxy resin composition (A). ) Epoxy resin (X)) in 100 parts by mass was 5 parts by mass. Moreover, the mass ratio of the epoxy curing agent (Z) in the epoxy resin composition (A) is the total epoxy resin (resin composition (I) + resin composition (II) and (III) in the epoxy resin composition (A). ) Was 9.54 parts by mass with respect to 100 parts by mass of the epoxy resin (X)).
Moreover, Tg of the hardened | cured material which hardened the obtained epoxy resin composition (A) in 140 degreeC and 5 minutes was 137 degreeC.
[製造例2]
エポキシ樹脂組成物(A)中の全エポキシ樹脂(樹脂組成物(I)+樹脂組成物(II)及び(III)中のエポキシ樹脂(X))100質量部に対するPES樹脂(Y)の質量割合を10質量部とした以外は、製造例1と同様の方法でエポキシ樹脂組成物(B)を得た。
また、得られたエポキシ樹脂組成物(B)を140℃、5分で硬化させた硬化物のTgは139℃であった。
[Production Example 2]
Mass ratio of PES resin (Y) to 100 parts by mass of total epoxy resin (resin composition (I) + epoxy resin (X) in resin composition (II) and (III)) in epoxy resin composition (A) An epoxy resin composition (B) was obtained in the same manner as in Production Example 1 except that the amount was 10 parts by mass.
Moreover, Tg of the hardened | cured material which hardened the obtained epoxy resin composition (B) in 140 degreeC and 5 minutes was 139 degreeC.
[製造例3]
PES樹脂(Y)を用いなかった以外は、製造例1と同様の方法でエポキシ樹脂組成物(C)を得た。
また、得られたエポキシ樹脂組成物(C)を140℃、5分で硬化させた硬化物のTgは139℃であった。
[Production Example 3]
An epoxy resin composition (C) was obtained in the same manner as in Production Example 1 except that the PES resin (Y) was not used.
Moreover, Tg of the hardened | cured material which hardened the obtained epoxy resin composition (C) in 140 degreeC and 5 minutes was 139 degreeC.
[製造例4]
EP828にフェノキシ樹脂YP50Sを2/1(質量部)の割合で配合し、160℃にて均一に溶解させて樹脂組成物(IV)を得た。樹脂組成物(I)71.61質量部、樹脂組成物(II)19.71質量部、及び樹脂組成物(IV)27.26質量部を55℃にて混合してエポキシ樹脂組成物(D)を得た。
得られたエポキシ樹脂組成物(D)におけるフェノキシ樹脂の質量割合は、エポキシ樹脂組成物(D)中の全エポキシ樹脂(樹脂組成物(I)+樹脂組成物(II)及び(III)中のエポキシ樹脂(X))100質量部に対して9.1質量部であった。また、エポキシ樹脂組成物(D)におけるエポキシ硬化剤(Z)の質量割合は、エポキシ樹脂組成物(D)中の全エポキシ樹脂100質量部に対して、9.49質量部であった。また、得られたエポキシ樹脂組成物(D)を140℃、10分で硬化させた硬化物のTgは131℃であった。
製造例1〜4で得られたエポキシ樹脂組成物(A)〜(D)について、100〜150℃における最低粘度と30℃における粘度を測定した結果を図2及び図3に示す。
[Production Example 4]
Phenoxy resin YP50S was blended in EP828 at a ratio of 2/1 (parts by mass) and uniformly dissolved at 160 ° C. to obtain a resin composition (IV). The resin composition (I) 71.61 parts by mass, the resin composition (II) 19.71 parts by mass, and the resin composition (IV) 27.26 parts by mass were mixed at 55 ° C. to obtain an epoxy resin composition (D )
The mass ratio of the phenoxy resin in the obtained epoxy resin composition (D) is the total epoxy resin (resin composition (I) + resin composition (II) and (III) in the epoxy resin composition (D). It was 9.1 mass parts with respect to 100 mass parts of epoxy resin (X). Moreover, the mass ratio of the epoxy curing agent (Z) in the epoxy resin composition (D) was 9.49 parts by mass with respect to 100 parts by mass of the total epoxy resin in the epoxy resin composition (D). Moreover, Tg of the hardened | cured material which hardened the obtained epoxy resin composition (D) in 140 degreeC and 10 minutes was 131 degreeC.
For the epoxy resin composition obtained in Production Example 1~4 (A) ~ (D) , it shows the results of the viscosity measured at the lowest viscosity and 30 ° C. at 100 to 150 ° C. in FIGS.
図2及び図3に示すように、PES樹脂(Y)を用いた製造例1及び2は、30℃における粘度が10,000〜100,000Pa・sの範囲内であり、かつ100℃〜150℃における最低粘度が2〜20Pa・sの範囲内であった。
また、PES樹脂(Y)を用いずにフェノキシ樹脂を用いた製造例4も、30℃における粘度が10,000〜100,000Pa・sの範囲内であり、かつ100℃〜150℃における最低粘度が2〜20Pa・sの範囲内であった。
一方、PES樹脂(Y)を用いなかった製造例3では、30℃における粘度は10,000〜100,000Pa・sの範囲内であるものの、100℃〜150℃における最低粘度が2Pa・s未満であった。
As shown in FIGS. 2 and 3 , in Production Examples 1 and 2 using PES resin (Y), the viscosity at 30 ° C. is in the range of 10,000 to 100,000 Pa · s, and 100 ° C. to 150 ° C. The minimum viscosity at 2 ° C. was in the range of 2 to 20 Pa · s.
Further, in Production Example 4 using a phenoxy resin without using the PES resin (Y), the viscosity at 30 ° C. is in the range of 10,000 to 100,000 Pa · s, and the minimum viscosity at 100 ° C. to 150 ° C. Was in the range of 2 to 20 Pa · s.
On the other hand, in Production Example 3 in which the PES resin (Y) was not used, the viscosity at 30 ° C. was in the range of 10,000 to 100,000 Pa · s, but the minimum viscosity at 100 ° C. to 150 ° C. was less than 2 Pa · s. Met.
<成形品の製造>
[実施例1]
製造例1で得られたエポキシ樹脂組成物(A)を簡易型ロールコーターで離型紙上に樹脂目付133g/m2で均一に塗布して樹脂層を形成した。ついで、前記樹脂層に三菱レイヨン(株)製3K平織り炭素繊維クロスTR3110Mを貼り付けた後、ローラーで100℃、線圧0.1MPaで加熱及び加圧してエポキシ樹脂組成物を炭素繊維に含浸させ、繊維目付が200g/m2、樹脂含有率が40質量%のプレス成形用プリプレグを作製した。
ついで、前記プレス成形用プリプレグを縦298mm×298mmに切断し、繊維の配向方向が0°と90°が交互になるように10枚(厚さ22mm、層体積195.4cm3、片面表面積S1(下面の表面積)888.0cm2)積層したプリフォームを用意した。
<Manufacture of molded products>
[Example 1]
The epoxy resin composition (A) obtained in Production Example 1 was uniformly coated on a release paper with a basis weight of 133 g / m 2 using a simple roll coater to form a resin layer. Next, 3K plain weave carbon fiber cloth TR3110M manufactured by Mitsubishi Rayon Co., Ltd. is attached to the resin layer, and then heated and pressed with a roller at 100 ° C. and a linear pressure of 0.1 MPa to impregnate the carbon fiber with the epoxy resin composition. A press molding prepreg having a fiber basis weight of 200 g / m 2 and a resin content of 40% by mass was produced.
Subsequently, the press-forming prepreg was cut into a length of 298 mm × 298 mm and 10 sheets (thickness 22 mm, layer volume 195.4 cm 3 , single-sided surface area S 1) such that the fiber orientation directions were alternately 0 ° and 90 °. (Surface area of lower surface) 888.0 cm 2 ) A laminated preform was prepared.
金型は図1に例示した金型1を用いた。金型1の下型3のプリフォームと接触する面(成形材料の厚み部分と接触する面を除く)の表面積S2は900.0cm2であった。S1/S2は、888.0/900.0=0.987であった。
金型1の上型2及び下型3を予め140℃に加熱し、下型3上に前記プリフォームを配置し、すぐに上型2を降ろして金型1を閉め、10MPaの圧力をかけて10分間加熱加圧して硬化させ、硬化後に金型1から取り出して成形品を得た。
As the mold, the
The
[実施例2]
製造例2で得られたエポキシ樹脂組成物(B)を用いた以外は実施例1と同様の方法で成形品を得た。
[Example 2]
A molded product was obtained in the same manner as in Example 1 except that the epoxy resin composition (B) obtained in Production Example 2 was used.
[比較例1]
製造例3で得られたエポキシ樹脂組成物(C)を用いた以外は実施例1と同様の方法で成形品を得た。
[Comparative Example 1]
A molded product was obtained in the same manner as in Example 1 except that the epoxy resin composition (C) obtained in Production Example 3 was used.
[比較例2]
製造例4で得られたエポキシ樹脂組成物(D)を用いた以外は実施例1と同様の方法で成形品を得た。
[Comparative Example 2]
A molded product was obtained in the same manner as in Example 1 except that the epoxy resin composition (D) obtained in Production Example 4 was used.
[評価方法]
実施例1〜2及び比較例1〜2における評価は、成形品の外観(樹脂枯れ)、金型シアエッジからの樹脂流出量、エポキシ樹脂組成物の硬化物Tg、及びキュラストメーターによる90%キュアー時間を評価することにより行った。
(成形品の樹脂枯れ)
○:全く無し
△:1〜2ヵ所
×:多数発生
(金型シアエッジからの樹脂流出量(%))
W1;成形前のプリフォームの重量(g)
W2;成形後の成形品(バリ除去後)の重量(g)
樹脂流出量(%)=(W2−W1)/W1×100
実施例1〜2及び比較例1〜2についての評価結果を表1に示す。
[Evaluation method]
Evaluations in Examples 1 and 2 and Comparative Examples 1 and 2 are the appearance of the molded product (resin withering), the amount of resin flowing out from the mold shear edge, the cured product Tg of the epoxy resin composition, and 90% cure with a curast meter. This was done by evaluating the time.
(Resin withering of molded products)
○: None at all △: 1 to 2 places ×: Many occurrences (Amount of resin outflow from mold shear edge (%))
W1: Preform weight before molding (g)
W2: Weight of molded product after molding (after deburring) (g)
Resin flow rate (%) = (W2−W1) / W1 × 100
Table 1 shows the evaluation results for Examples 1-2 and Comparative Examples 1-2.
表1に示すように、本発明のエポキシ樹脂組成物を用いた実施例1及び2では、金型のシアエッジからの樹脂流出量が抑えられており、樹脂枯れが全く生じておらず外観に優れていた。また、エポキシ樹脂組成物の硬化物Tgの値も十分に高く、90%キュアー時間も短かった。
一方、PES樹脂(Y)を用いなかった比較例1では、金型のシアエッジからの樹脂流出量が多く、樹脂枯れが多数見られ、実施例に比べて外観が劣っていた。
また、PES樹脂(Y)を用いずにフェノキシ樹脂を用いた比較例2では、金型のシアエッジからの樹脂流出量が抑えられており、樹脂枯れが全く生じなかったものの、エポキシ樹脂組成物の硬化物Tg及び90%キュアー時間が実施例に比べて劣っていた。
As shown in Table 1, in Examples 1 and 2 using the epoxy resin composition of the present invention, the amount of resin outflow from the shear edge of the mold is suppressed, and no resin withering occurs and the appearance is excellent. It was. Moreover, the value of the cured product Tg of the epoxy resin composition was sufficiently high, and the 90% cure time was short.
On the other hand, in Comparative Example 1 in which the PES resin (Y) was not used, the amount of the resin flowing out from the shear edge of the mold was large, many resin withering was seen, and the appearance was inferior to the examples.
Further, in Comparative Example 2 in which the phenoxy resin was used without using the PES resin (Y), the resin outflow amount from the shear edge of the mold was suppressed and no resin withering occurred, but the epoxy resin composition Hardened | cured material Tg and 90% cure time were inferior compared with the Example.
本発明のプレス成形用プリプレグ及び該プレス成形用プリプレグを用いた成形品の製造方法は、優れた品質の成形品を高い生産性で製造できるため、自動車部品等の用途のFRPのハイサイクルプレス成形による製造に好適に使用できる。 Since the prepreg for press molding and the method for producing a molded product using the prepreg for press molding of the present invention can produce a molded product of excellent quality with high productivity, high cycle press molding of FRP for applications such as automobile parts It can use suitably for manufacture by.
1 金型
2 上型
3 下型
6 成形材料
1
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014000457A JP5700143B2 (en) | 2014-01-06 | 2014-01-06 | Pre-preg for press molding and method for producing molded product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014000457A JP5700143B2 (en) | 2014-01-06 | 2014-01-06 | Pre-preg for press molding and method for producing molded product |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008149889A Division JP2009292976A (en) | 2008-06-06 | 2008-06-06 | Prepreg for press molding, and manufacturing method of molded article |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014058692A JP2014058692A (en) | 2014-04-03 |
JP5700143B2 true JP5700143B2 (en) | 2015-04-15 |
Family
ID=50615419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014000457A Active JP5700143B2 (en) | 2014-01-06 | 2014-01-06 | Pre-preg for press molding and method for producing molded product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5700143B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115028959A (en) * | 2022-04-22 | 2022-09-09 | 北京嘉诚瑞鑫科技有限公司 | Environment-friendly flame-retardant paint-free polyester material molded product and manufacturing method and application thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003238657A (en) * | 2002-02-14 | 2003-08-27 | Toray Ind Inc | Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material |
JP2004099814A (en) * | 2002-09-12 | 2004-04-02 | Toray Ind Inc | Prepreg and fiber-reinforced composite material |
WO2005082982A1 (en) * | 2004-02-27 | 2005-09-09 | Toray Industries, Inc. | Epoxy resin composition for carbon-fiber-reinforced composite material, prepreg, integrated molding, sheet of fiber-reinforced composite material and cabinet for electrical/electronic equipment |
-
2014
- 2014-01-06 JP JP2014000457A patent/JP5700143B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014058692A (en) | 2014-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5589265B2 (en) | Pre-preg for press molding and method for producing molded product | |
JP2009292976A (en) | Prepreg for press molding, and manufacturing method of molded article | |
JP5327964B2 (en) | Pre-preg for press molding and method for producing molded product using the same | |
TWI548514B (en) | Method for manufacturing metal composite and electronic equipment housing | |
TWI500689B (en) | Epoxy resin composition, prepreg, fiber reinforced composite material and method for manufacturing the same | |
JP6131332B2 (en) | Thermosetting resin composition, prepreg, and method for producing fiber-reinforced composite material using them | |
JP5090701B2 (en) | Partially impregnated prepreg and method for producing fiber reinforced composite material using the same | |
JP6459475B2 (en) | Prepreg and method for producing molded product | |
JP2007291235A (en) | Epoxy resin composition for fiber-reinforced composite material | |
JP2012183820A (en) | Chassis for electronic equipment | |
EP3204445B1 (en) | Carbon fibre-containing prepregs | |
KR102512809B1 (en) | Epoxy resin composition and prepreg by using the same for fiber reinforcement plastics | |
JP5112732B2 (en) | Prepreg | |
JP5700143B2 (en) | Pre-preg for press molding and method for producing molded product | |
JP5966969B2 (en) | Manufacturing method of prepreg | |
JP6600982B2 (en) | FIBER-REINFORCED PLASTIC MOLDED BODY, ITS MANUFACTURING METHOD, AND LAMINATE | |
KR102611559B1 (en) | Curable Resin System | |
CN112313261A (en) | Toughened epoxy compositions | |
JP6617367B2 (en) | Matrix material | |
KR102562027B1 (en) | Epoxy resin composition and prepreg by using the same for fiber reinforcement plastics | |
JP2004338270A (en) | Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material | |
JP2015168747A (en) | Epoxy resin composition, prepreg and manufacturing method of molding therewith | |
JP2011001442A (en) | Epoxy resin composition, fiber-reinforced composite material, and manufacturing method for fiber-reinforced composite material | |
JP5280323B2 (en) | Epoxy resin composition, prepreg and method for producing molded product using the same | |
JP6957914B2 (en) | Prepreg and carbon fiber reinforced composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140203 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140826 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20141007 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20141010 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20141113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150202 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5700143 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |