Nothing Special   »   [go: up one dir, main page]

JP5785800B2 - Vapor absorption refrigerator - Google Patents

Vapor absorption refrigerator Download PDF

Info

Publication number
JP5785800B2
JP5785800B2 JP2011145550A JP2011145550A JP5785800B2 JP 5785800 B2 JP5785800 B2 JP 5785800B2 JP 2011145550 A JP2011145550 A JP 2011145550A JP 2011145550 A JP2011145550 A JP 2011145550A JP 5785800 B2 JP5785800 B2 JP 5785800B2
Authority
JP
Japan
Prior art keywords
drain
temperature
pipe
solution
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011145550A
Other languages
Japanese (ja)
Other versions
JP2013011424A (en
Inventor
聡史 百瀬
聡史 百瀬
修一郎 内田
修一郎 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011145550A priority Critical patent/JP5785800B2/en
Publication of JP2013011424A publication Critical patent/JP2013011424A/en
Application granted granted Critical
Publication of JP5785800B2 publication Critical patent/JP5785800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、蒸気を加熱源とする蒸気吸収式冷凍機に係り、特に高温再生器と低温再生器を有し且つ前記蒸気を冷却するドレンクーラを備えている二重効用の蒸気吸収式冷凍機に関する。   The present invention relates to a vapor absorption refrigerator using steam as a heating source, and more particularly to a dual-effect vapor absorption refrigerator having a high temperature regenerator and a low temperature regenerator and having a drain cooler for cooling the steam. .

高温再生器と低温再生器を有し且つ前記蒸気を冷却するドレンクーラを備えている二重効用の蒸気吸収式冷凍機としては、例えば特許文献1(特許第3724975号公報)に記載されたものがある。この特許文献1のものにおいては、吸収器から高温再生器及び低温再生器へ送られる稀溶液が流れる稀溶液配管にドレンクーラが配置されており、高温再生器で稀溶液を加熱して濃溶液に再生するために供給された蒸気は、高温再生器を出た後前記ドレンクーラにおいて、前記稀溶液と熱交換して稀溶液を加熱し、熱回収されて自らは環水された後、冷凍機外に排出されるように構成されている。   As a double effect steam absorption refrigerator having a high temperature regenerator and a low temperature regenerator and having a drain cooler for cooling the steam, for example, one described in Patent Document 1 (Japanese Patent No. 3724975) is disclosed. is there. In this Patent Document 1, a drain cooler is arranged in a rare solution pipe through which a rare solution sent from an absorber to a high temperature regenerator and a low temperature regenerator flows, and the dilute solution is heated to a concentrated solution by the high temperature regenerator. After the steam supplied for regeneration exits the high temperature regenerator, the drain cooler heats the rare solution by exchanging heat with the rare solution, recovers the heat, and circulates the water itself. It is configured to be discharged.

特許第3724975号公報Japanese Patent No. 3724975

上記特許文献1のものにおいて、前記高温再生器を出た後の蒸気ドレンの温度は100℃以上(二重効用吸収式冷凍機では一般に155℃前後)となっており、この蒸気ドレンが排出される。このため、排出されるドレンをそのままの温度で冷凍機外の大気圧雰囲気に放出すると減圧沸騰(フラッシュ)を引き起こす。この減圧沸騰を防止するため、前記ドレンクーラにおいて、蒸気ドレンを吸収器からの前記稀溶液により100℃以下まで冷却すると共に、前記稀溶液は加熱されることにより熱回収されるように構成されている。   In the thing of the said patent document 1, the temperature of the steam drain after leaving the said high temperature regenerator is 100 degreeC or more (generally around 155 degreeC with a double effect absorption refrigerator), and this steam drain is discharged | emitted. The For this reason, when the discharged drain is discharged to the atmospheric pressure atmosphere outside the refrigerator at the same temperature, vacuum boiling (flash) is caused. In order to prevent this reduced-pressure boiling, the drain cooler is configured to cool the vapor drain to 100 ° C. or less with the diluted solution from the absorber, and to recover the heat by heating the diluted solution. .

しかし、特許文献1のものでは、吸収器からの低温の稀溶液は、まず低温溶液熱交換器に入り、濃溶液と熱交換して加熱された後、前記ドレンクーラに流入する構成となっているため、ドレンクーラに流入する稀溶液温度は比較的高く(例えば90℃前後)なっており、高温再生器からの高温の蒸気ドレンを、減圧沸騰を起こさない安定した低温度(例えば90℃以下)まで冷却することは難しいという課題がある。   However, in the thing of patent document 1, the low-temperature dilute solution from an absorber first enters a low-temperature solution heat exchanger, heat-exchanges with a concentrated solution, is heated, and then flows into the drain cooler. Therefore, the temperature of the dilute solution flowing into the drain cooler is relatively high (for example, around 90 ° C.), and the high-temperature steam drain from the high-temperature regenerator is brought to a stable low temperature (for example, 90 ° C. or less) that does not cause boiling under reduced pressure. There is a problem that it is difficult to cool.

更に、特許文献1のものには、吸収器からの稀溶液を直接ドレンクーラに導いて蒸気ドレンを冷却する例も記載されているが、この例のものでは、吸収器からの低温の稀溶液を常に一定割合でドレンクーラに分岐させる構成のため、冷凍機の部分負荷(低負荷)時には蒸気ドレンを必要以上に冷却してしまい、また低温溶液熱交換器及び高温溶液熱交換器へ流れる稀溶液の流量もドレンクーラに流す分だけ少なくなってしまうため、吸収器に供給する濃溶液の温度を十分に低下させることはできず、濃溶液からの熱回収も不十分となり、部分負荷時の冷凍機効率が低下することに対する配慮が十分に為されていない。   Further, in Patent Document 1, there is also described an example in which a dilute solution from an absorber is led directly to a drain cooler to cool the vapor drain. In this example, a low-temperature dilute solution from an absorber is used. Because it is configured to always branch to the drain cooler at a constant rate, the steam drain is cooled more than necessary at the partial load (low load) of the refrigerator, and the rare solution flowing to the low temperature solution heat exchanger and the high temperature solution heat exchanger Since the flow rate is reduced by the amount that flows through the drain cooler, the temperature of the concentrated solution supplied to the absorber cannot be lowered sufficiently, and heat recovery from the concentrated solution becomes insufficient, and the efficiency of the refrigerator at partial load Is not fully considered.

本発明の目的は、高温再生器からの蒸気ドレンを、減圧沸騰を起こさない安定した温度まで確実に冷却できると共に、部分負荷時の冷凍機効率も向上できる蒸気吸収式冷凍機を得ることにある。   An object of the present invention is to obtain a vapor absorption type refrigerator that can reliably cool the steam drain from the high-temperature regenerator to a stable temperature that does not cause reduced-pressure boiling and can also improve the efficiency of the refrigerator at the time of partial load. .

上記目的を達成するため、本発明は、蒸気を加熱源とする高温再生器、低温再生器、凝縮器、蒸発器及び吸収器を備え、更に前記吸収器で冷媒蒸気を吸収した稀溶液を該吸収器から前記高温再生器及び低温再生器に送る稀溶液配管と、前記高温再生器及び低温再生器で濃縮された濃溶液を前記吸収器に送る濃溶液配管と、前記稀溶液配管を流れる稀溶液と前記濃溶液配管を流れる濃溶液とを熱交換させる低温溶液熱交換器及び高温溶液熱交換器と、前記高温再生器からの蒸気ドレンが流れるドレン配管と、該ドレン配管に設けられ蒸気ドレンを冷却するドレンクーラを備える蒸気吸収式冷凍機において、前記稀溶液配管から分岐され前記低温溶液熱交換器をバイパスするバイパス配管を設け、前記ドレンクーラは前記バイパス配管からの稀溶液と前記ドレン配管からの蒸気ドレンとを熱交換させるように構成すると共に、前記バイパス配管における前記ドレンクーラよりも上流側に設けられた流量調節弁と、前記ドレン配管に設けられ蒸気ドレンの温度を検出する温度検出器と、前記温度検出器で検出された温度に応じて前記バイパス配管の流量調節弁を調節し排出されるドレン温度を制御する制御装置を備え、前記ドレンクーラは、前記ドレン配管の下流側に配置された低温ドレンクーラと、前記ドレン配管の上流側に配置された高温ドレンクーラから構成され、前記低温ドレンクーラは、前記低温溶液熱交換器をバイパスするように前記稀溶液配管から分岐されたバイパス配管を流れる稀溶液と蒸気ドレンとを熱交換させるように構成され、前記高温ドレンクーラは、前記高温溶液熱交換器をバイパスするように前記稀溶液配管から分岐されたバイパス配管を流れる稀溶液と蒸気ドレンとを熱交換させるように構成され、前記ドレンクーラをバイパスするように、前記低温ドレンクーラと前記高温ドレンクーラとの間のドレン配管と前記低温ドレンクーラ下流側のドレン配管とを接続するドレンバイパス配管を設けると共に、前記ドレン配管の前記ドレンバイパス配管との分岐部と低温ドレンクーラ11との間、及び前記ドレンバイパス配管にはそれぞれ蒸気ドレンの流量調節弁を設けていることを特徴とする。 In order to achieve the above object, the present invention comprises a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, and an absorber that use steam as a heating source, and further comprises a rare solution that has absorbed refrigerant vapor in the absorber. A dilute solution pipe sent from the absorber to the high temperature regenerator and the low temperature regenerator; a concentrated solution pipe sending the concentrated solution concentrated in the high temperature regenerator and the low temperature regenerator to the absorber; and a rare solution flowing through the dilute solution pipe. A low temperature solution heat exchanger and a high temperature solution heat exchanger for exchanging heat between the solution and the concentrated solution flowing through the concentrated solution pipe; a drain pipe through which the steam drain from the high temperature regenerator flows; and a steam drain provided in the drain pipe In the vapor absorption type refrigerator having a drain cooler for cooling, a bypass pipe branched from the rare solution pipe and bypassing the low temperature solution heat exchanger is provided, and the drain cooler is diluted from the bypass pipe. The steam drain from the drain pipe is configured to exchange heat, and the flow control valve provided upstream of the drain cooler in the bypass pipe and the temperature of the steam drain provided in the drain pipe are detected. And a control device for controlling the drain temperature discharged by adjusting the flow rate control valve of the bypass pipe according to the temperature detected by the temperature detector, and the drain cooler is provided downstream of the drain pipe. A low-temperature drain cooler disposed on the side and a high-temperature drain cooler disposed on the upstream side of the drain pipe, and the low-temperature drain cooler is a bypass branched from the rare-solution pipe so as to bypass the low-temperature solution heat exchanger The dilute solution flowing in the pipe and the steam drain are configured to exchange heat, and the high temperature drain cooler The dilute solution flowing through the bypass pipe branched from the dilute solution pipe so as to bypass the liquid heat exchanger is configured to exchange heat with the steam drain, and the low temperature drain cooler and the high temperature are bypassed to the drain cooler. A drain bypass pipe that connects a drain pipe between the drain cooler and a drain pipe downstream of the low-temperature drain cooler is provided, and a branch portion of the drain pipe between the drain bypass pipe and the low-temperature drain cooler 11 and the drain Each bypass pipe is provided with a flow control valve for steam drain .

本発明の他の特徴は、供給される蒸気を加熱源として冷媒蒸気を溶液から分離する高温再生器と、この高温再生器で分離した冷媒蒸気を加熱源として冷媒蒸気を溶液から分離する低温再生器と、この低温再生器で分離した冷媒蒸気を液化する凝縮器と、この凝縮器で液化した冷媒を蒸気に変える蒸発器と、この蒸発器で発生した冷媒蒸気を溶液に吸収させる吸収器と、冷媒蒸気を吸収した稀溶液を前記吸収器から前記高温再生器及び低温再生器に送るための稀溶液配管と、前記高温再生器及び低温再生器で冷媒蒸気が分離されて濃縮された濃溶液を前記吸収器に送るための濃溶液配管と、前記稀溶液配管を流れる稀溶液と前記濃溶液配管を流れる濃溶液とを熱交換させる低温溶液熱交換器及び高温溶液熱交換器と、前記高温再生器から排出された蒸気ドレンが流れるドレン配管と、このドレン配管に設けられ蒸気ドレンを冷却するためのドレンクーラを備える蒸気吸収式冷凍機において、前記稀溶液配管における前記低温溶液熱交換器の上流側から分岐して前記低温溶液熱交換器の下流側の前記稀溶液配管に接続されるバイパス配管を設け、前記ドレンクーラは前記バイパス配管からの稀溶液と前記ドレン配管からの蒸気ドレンとを熱交換させるように構成すると共に、前記ドレンクーラよりも上流側の前記バイパス配管に設けられた稀溶液の流量調節弁と、前記ドレン配管に設けられ蒸気ドレンの温度を検出する温度検出器と、前記温度検出器で検出された蒸気ドレンの温度に応じて前記バイパス配管を流れる稀溶液の流量を調節して排出されるドレンの温度を制御する制御装置を備え、前記ドレンクーラは、前記ドレン配管の下流側に配置された低温ドレンクーラと、前記ドレン配管の上流側に配置された高温ドレンクーラから構成され、前記低温ドレンクーラは、前記低温溶液熱交換器をバイパスするように前記稀溶液配管から分岐されたバイパス配管を流れる稀溶液と蒸気ドレンとを熱交換させるように構成され、前記高温ドレンクーラは、前記高温溶液熱交換器をバイパスするように前記稀溶液配管から分岐されたバイパス配管を流れる稀溶液と蒸気ドレンとを熱交換させるように構成され、前記ドレンクーラをバイパスするように、前記低温ドレンクーラと前記高温ドレンクーラとの間のドレン配管と前記低温ドレンクーラ下流側のドレン配管とを接続するドレンバイパス配管を設けると共に、前記ドレン配管の前記ドレンバイパス配管との分岐部と低温ドレンクーラ11との間、及び前記ドレンバイパス配管にはそれぞれ蒸気ドレンの流量調節弁を設けていることにある。 Another feature of the present invention is a high temperature regenerator that separates refrigerant vapor from a solution using supplied steam as a heating source, and a low temperature regeneration that separates refrigerant vapor from a solution using the refrigerant vapor separated by the high temperature regenerator as a heating source. A condenser for liquefying the refrigerant vapor separated by the low-temperature regenerator, an evaporator for converting the refrigerant liquefied by the condenser into steam, and an absorber for absorbing the refrigerant vapor generated by the evaporator into the solution, A dilute solution pipe for sending the dilute solution that has absorbed the refrigerant vapor from the absorber to the high temperature regenerator and the low temperature regenerator, and a concentrated solution in which the refrigerant vapor is separated and concentrated in the high temperature regenerator and the low temperature regenerator A high temperature solution heat exchanger, a low temperature solution heat exchanger and a high temperature solution heat exchanger for exchanging heat between the concentrated solution pipe for sending the liquid to the absorber, the diluted solution flowing through the diluted solution pipe and the concentrated solution flowing through the concentrated solution pipe Discharged from the regenerator In the steam absorption refrigerator having a drain pipe through which the steam drain flows and a drain cooler provided in the drain pipe for cooling the steam drain, the branch is branched from the upstream side of the low temperature solution heat exchanger in the rare solution pipe. A bypass pipe connected to the dilute solution pipe on the downstream side of the low temperature solution heat exchanger is provided, and the drain cooler is configured to exchange heat between the dilute solution from the bypass pipe and the steam drain from the drain pipe. In addition, a flow rate control valve for a rare solution provided in the bypass pipe upstream from the drain cooler, a temperature detector provided in the drain pipe for detecting the temperature of the steam drain, and detected by the temperature detector A control device for controlling the temperature of the drain to be discharged by adjusting the flow rate of the dilute solution flowing through the bypass pipe according to the temperature of the steam drain Wherein the Dorenkura, the low-temperature Dorenkura disposed downstream of the drain pipe, is composed of arranged hot Dorenkura upstream of the drain pipe, said cold Dorenkura bypasses the low-temperature solution heat exchanger The dilute solution flowing through the bypass pipe branched from the dilute solution pipe and the steam drain are configured to exchange heat, and the high temperature drain cooler is connected to the dilute solution pipe so as to bypass the high temperature solution heat exchanger. The dilute solution flowing through the branched bypass pipe and the steam drain are configured to exchange heat, and the drain pipe between the low temperature drain cooler and the high temperature drain cooler and the downstream side of the low temperature drain cooler are bypassed so as to bypass the drain cooler. A drain bypass pipe for connecting the drain pipe and the drain pipe is provided. The flow control valve of the steam drain is provided between the branch portion of the drain bypass pipe and the low-temperature drain cooler 11 and in the drain bypass pipe .

本発明によれば、高温再生器からの蒸気ドレンを、減圧沸騰を起こさない安定した温度まで確実に冷却できると共に、部分負荷時の冷凍機効率も向上できる蒸気吸収式冷凍機を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the vapor | steam absorption type refrigerator which can cool the steam drain from a high temperature regenerator reliably to the stable temperature which does not raise | generate a pressure reduction boiling, and can also improve the refrigerator efficiency at the time of partial load can be obtained. .

本発明の蒸気吸収式冷凍機の実施例1を示すサイクル系統図である。It is a cycle system diagram which shows Example 1 of the vapor | steam absorption refrigerator of this invention. 図1の一部変形例を示す要部のサイクル系統図である。It is a cycle system | strain diagram of the principal part which shows the partial modification of FIG. 図1の他の一部変形例を示す要部のサイクル系統図である。It is a cycle system diagram of the principal part which shows the other partial modification of FIG. 本発明の蒸気吸収式冷凍機の実施例2を示すサイクル系統図である。It is a cycle system diagram which shows Example 2 of the vapor | steam absorption refrigerator of this invention. 本発明の蒸気吸収式冷凍機の実施例3を示すサイクル系統図である。It is a cycle system diagram which shows Example 3 of the vapor | steam absorption refrigerator of this invention.

以下、本発明の蒸気吸収式冷凍機の具体的実施例を図面に基づき説明する。   Hereinafter, specific examples of the vapor absorption refrigerator of the present invention will be described with reference to the drawings.

本発明の蒸気吸収式冷凍機の実施例1を図1に基づいて説明する。
図1は、本発明の実施例1に係る蒸気焚吸収冷温水機のサイクル系統図である。図において、1は蒸発器、2は吸収器、3は凝縮器、4は低温再生器、5は高温再生器、6は稀溶液ポンプ、7は濃溶液ポンプ、8は冷媒ポンプ、9は低温溶液熱交換器、10は高温溶液熱交換器、11,12はドレンクーラである。本実施例では、前記ドレンクーラを、低温ドレンクーラ11と高温ドレンクーラ12の二つのドレンクーラで構成している。なお、冷媒としては水が、溶液としては臭化リチウムがこの実施例では使用されている。
A first embodiment of the vapor absorption refrigerator according to the present invention will be described with reference to FIG.
FIG. 1 is a cycle system diagram of a steam tank absorption chiller / heater according to Embodiment 1 of the present invention. In the figure, 1 is an evaporator, 2 is an absorber, 3 is a condenser, 4 is a low temperature regenerator, 5 is a high temperature regenerator, 6 is a rare solution pump, 7 is a concentrated solution pump, 8 is a refrigerant pump, and 9 is a low temperature. A solution heat exchanger, 10 is a high temperature solution heat exchanger, and 11 and 12 are drain coolers. In this embodiment, the drain cooler is composed of two drain coolers, a low temperature drain cooler 11 and a high temperature drain cooler 12. In this embodiment, water is used as the refrigerant and lithium bromide is used as the solution.

前記蒸発器1は隔壁21により第1蒸発器1a(低段側蒸発器)と第2蒸発器1b(高段側蒸発器)に分割され、前記第1蒸発器1aの上部には冷媒分配器(冷媒散布装置)17が設置され、また前記隔壁21には前記第1蒸発器1aを流下した冷媒液を集めて第2蒸発器1bに散布する冷媒再分配器(冷媒散布装置)19が設けられている。   The evaporator 1 is divided into a first evaporator 1a (low stage side evaporator) and a second evaporator 1b (high stage side evaporator) by a partition wall 21, and a refrigerant distributor is disposed above the first evaporator 1a. (Refrigerant spraying device) 17 is installed, and the partition wall 21 is provided with a refrigerant redistributor (refrigerant spraying device) 19 that collects the coolant liquid flowing down the first evaporator 1a and sprays it to the second evaporator 1b. It has been.

前記吸収器2は、隔壁22により第1吸収器2a(低段側吸収器)と第2吸収器2b(高段側吸収器)にそれぞれ分割され、前記第1吸収器2aの上部には溶液分配器(溶液散布装置)18が設置され、また前記隔壁22には第1吸収器2aを流下した溶液を集めて第2吸収器2bに散布する溶液再分配器(溶液散布装置)20が設けられている。   The absorber 2 is divided into a first absorber 2a (low-stage side absorber) and a second absorber 2b (high-stage side absorber) by a partition wall 22, respectively, and a solution is provided above the first absorber 2a. A distributor (solution spraying device) 18 is installed, and a solution redistributor (solution spraying device) 20 for collecting the solution flowing down the first absorber 2a and spraying it on the second absorber 2b is provided on the partition wall 22. It has been.

前記第1蒸発器1aと第1吸収器2aとはエリミネータを介して冷媒蒸気が流れるように連通されており、第2蒸発器1bと第2吸収器2bもエリミネータを介して冷媒蒸気が流れるように連通されている。   The first evaporator 1a and the first absorber 2a are communicated so that refrigerant vapor flows through an eliminator, and the second evaporator 1b and the second absorber 2b also flow through refrigerant through the eliminator. It is communicated to.

前記第2蒸発器1bの下部には冷媒液溜めが設けられ、またこの冷媒液溜めの底部と前記第1蒸発器1aの上部に設置された前記冷媒分配器17とを接続する冷媒配管43が設けられており、この冷媒配管43には前記冷媒ポンプ8が設置されて、冷媒液溜め内の冷媒液を前記第1蒸発器1aの上部に設置された前記冷媒分配器17から前記第1蒸発器1a内に散布する。冷媒分配器17から散布された冷媒液は第1蒸発器1aを流下する間に蒸発器内を流れる冷水から熱を奪って蒸発し、蒸発仕切れなかった冷媒は前記冷媒再分配器19に集められ、この冷媒再分配器19から前記第2蒸発器1bに散布される。第2蒸発器1bに散布された冷媒液は該第2蒸発器1bを流下する間に蒸発器内を流れる冷水から熱を奪って蒸発し、蒸発仕切れなかった冷媒液は第2蒸発器1bの下部に貯められる。前記冷水は、冷水負荷(室内冷房負荷など)から例えば12℃の冷水が冷水入口配管24を通って蒸発器1内に設けられた蒸発器伝熱管内に供給され、蒸発器1内で冷却されて、例えば7℃の冷水となって冷水出口配管25から前記冷水負荷に再び供給される。   A refrigerant liquid reservoir is provided at the lower part of the second evaporator 1b, and a refrigerant pipe 43 connecting the bottom of the refrigerant liquid reservoir and the refrigerant distributor 17 installed at the upper part of the first evaporator 1a is provided. The refrigerant pipe 8 is installed in the refrigerant pipe 43, and the first evaporation of the refrigerant liquid in the refrigerant liquid reservoir from the refrigerant distributor 17 installed in the upper part of the first evaporator 1a. It spreads in the container 1a. The refrigerant liquid sprayed from the refrigerant distributor 17 evaporates by taking heat from the cold water flowing in the evaporator while flowing down the first evaporator 1 a, and the refrigerant that has not been partitioned off is collected in the refrigerant redistributor 19. The refrigerant redistributor 19 is sprayed on the second evaporator 1b. The refrigerant liquid sprayed on the second evaporator 1b evaporates by taking heat from the cold water flowing in the evaporator while flowing down the second evaporator 1b, and the refrigerant liquid that has not been divided by the evaporation is stored in the second evaporator 1b. Stored at the bottom. The cold water is cooled in the evaporator 1 by supplying cold water of 12 ° C., for example, from a cold water load (such as an indoor cooling load) through the cold water inlet pipe 24 into an evaporator heat transfer tube provided in the evaporator 1. Thus, for example, 7 ° C. cold water is supplied again from the cold water outlet pipe 25 to the cold water load.

前記高温再生器5及び低温再生器4で濃縮された濃溶液は、前記濃溶液ポンプ7を介して、前記第1吸収器2aの上部に設置された溶液分配器(溶液散布装置)18から散布され、第1吸収器2aを流下する間に第1蒸発器1aで蒸発した冷媒蒸気を吸収し、冷媒蒸気を吸収して濃度の薄くなった溶液は前記溶液再分配器(溶液散布装置)20に集められ、第2吸収器2bに散布される。この散布された溶液は、第2吸収器2bを流下する間に、第2蒸発器1bで蒸発した冷媒蒸気を吸収し、冷媒蒸気を吸収して更に濃度の薄くなった希溶液は、第2吸収器2bの下部に一旦貯められ、その後、前記稀溶液ポンプ(溶液循環ポンプ)6により高温再生器1及び低温再生器2に送られる。前記冷媒蒸気を吸収する際に発生する吸収熱は、吸収器2内を流れる冷却水により冷却される。この冷却水は冷却水入口配管26から吸収器2内に設けられた吸収器伝熱管内に供給され、前記吸収器2内を通過した後、前記凝縮器3を通過し、冷却水出口配管27から排出される。   The concentrated solution concentrated in the high-temperature regenerator 5 and the low-temperature regenerator 4 is sprayed from a solution distributor (solution spraying device) 18 installed above the first absorber 2a via the concentrated solution pump 7. Then, the refrigerant vapor evaporated in the first evaporator 1a while flowing down the first absorber 2a is absorbed, and the solution whose concentration is reduced by absorbing the refrigerant vapor is the solution redistributor (solution spraying device) 20 Collected in the second absorber 2b. The sprayed solution absorbs the refrigerant vapor evaporated in the second evaporator 1b while flowing down the second absorber 2b, and the diluted solution having a further reduced concentration by absorbing the refrigerant vapor is the second solution. It is once stored in the lower part of the absorber 2 b and then sent to the high temperature regenerator 1 and the low temperature regenerator 2 by the dilute solution pump (solution circulation pump) 6. Absorption heat generated when the refrigerant vapor is absorbed is cooled by cooling water flowing in the absorber 2. This cooling water is supplied from a cooling water inlet pipe 26 into an absorber heat transfer pipe provided in the absorber 2, passes through the absorber 2, passes through the condenser 3, and is then supplied to a cooling water outlet pipe 27. Discharged from.

前記冷媒ポンプ8下流側の前記冷媒配管43には、ここから分岐し前記第2吸収器2bに接続される冷媒配管44が設けられており、この冷媒配管44には制御弁(図示せず)が設けられている。
前記稀溶液ポンプ6を出た希溶液は、低温溶液熱交換器9で高温再生器5及び低温再生器4からの濃溶液と熱交換して温度上昇した後、一部は分岐されて分岐配管48を介して前記低温再生器4に送られ、残りは高温溶液熱交換器10で高温再生器5からの濃溶液と更に熱交換して温度上昇した後、高温再生器5に送られる。
The refrigerant pipe 43 on the downstream side of the refrigerant pump 8 is provided with a refrigerant pipe 44 branched from the refrigerant pump 8 and connected to the second absorber 2b. The refrigerant pipe 44 has a control valve (not shown). Is provided.
The dilute solution exiting the dilute solution pump 6 is heat-exchanged with the concentrated solution from the high-temperature regenerator 5 and the low-temperature regenerator 4 in the low-temperature solution heat exchanger 9 and then rises in temperature. The remaining temperature is sent to the low-temperature regenerator 4 through 48, and the remainder is further heat-exchanged with the concentrated solution from the high-temperature regenerator 5 in the high-temperature solution heat exchanger 10 to rise in temperature, and then sent to the high-temperature regenerator 5.

前記高温再生器5には、ボイラ39から、例えば174℃の蒸気が、蒸気流量調節弁34及び蒸気入口配管28を介して供給され、この蒸気により高温再生器5内の溶液を加熱して冷媒蒸気を発生させると共に、溶液は濃縮される。この濃縮された濃溶液は、高温再生器5から濃溶液配管54を通って前記高温溶液熱交換器10に送られ、吸収器2からの希溶液と熱交換して冷却され、低温再生器4から濃溶液配管55を介して流入する濃溶液と合流して、濃溶液ポンプ(溶液散布ポンプ)7に送られる。濃溶液ポンプ7を出た溶液は低温溶液熱交換器9で吸収器2からの希溶液と熱交換して冷却され、第1吸収器2aの上部に設置された前記溶液分配器18に送られる。   For example, steam at 174 ° C. is supplied from the boiler 39 to the high-temperature regenerator 5 through the steam flow rate adjusting valve 34 and the steam inlet pipe 28, and the solution in the high-temperature regenerator 5 is heated by this steam to generate a refrigerant. As the vapor is generated, the solution is concentrated. This concentrated concentrated solution is sent from the high temperature regenerator 5 through the concentrated solution pipe 54 to the high temperature solution heat exchanger 10, and is cooled by exchanging heat with the dilute solution from the absorber 2. To the concentrated solution flowing in through the concentrated solution pipe 55 and sent to the concentrated solution pump (solution spray pump) 7. The solution exiting the concentrated solution pump 7 is cooled by exchanging heat with the dilute solution from the absorber 2 in the low temperature solution heat exchanger 9, and sent to the solution distributor 18 installed at the upper part of the first absorber 2a. .

前記高温再生器5で発生した冷媒蒸気は、冷媒蒸気配管45を介して前記低温再生器4に送られる。この低温再生器4内には、高温再生器5からの冷媒蒸気が流れる低温再生器伝熱管46及び該低温再生器伝熱管46の上部に設置された溶液散布装置47が設置されている。この溶液散布装置47には、前記低温溶液熱交換器9の出口から分岐した希溶液の一部が分岐配管(稀溶液配管)48を介して供給され、低温再生器4内に散布される。この散布された希溶液は、前記低温再生器伝熱管46を流下する間に、高温再生器4からの冷媒蒸気により加熱されて冷媒蒸気を発生する。   The refrigerant vapor generated in the high temperature regenerator 5 is sent to the low temperature regenerator 4 through a refrigerant vapor pipe 45. In the low-temperature regenerator 4, a low-temperature regenerator heat transfer tube 46 through which refrigerant vapor from the high-temperature regenerator 5 flows and a solution spraying device 47 installed on the low-temperature regenerator heat transfer tube 46 are installed. A part of the dilute solution branched from the outlet of the low-temperature solution heat exchanger 9 is supplied to the solution sprayer 47 via a branch pipe (rare solution pipe) 48 and sprayed into the low-temperature regenerator 4. The sprayed dilute solution is heated by the refrigerant vapor from the high temperature regenerator 4 while flowing down the low temperature regenerator heat transfer tube 46 to generate refrigerant vapor.

冷媒蒸気を発生して濃度が高くなった溶液は、低温再生器4の下部に一旦貯められた後、前述したように、前記濃溶液ポンプ7の上流側で、前記高温再生器5からの濃溶液と合流して、低温溶液熱交換器9を経由し前記溶液分配器18に送られる。   After the refrigerant vapor is generated and the concentration of the solution is temporarily stored in the lower part of the low temperature regenerator 4, the concentrated solution from the high temperature regenerator 5 is upstream of the concentrated solution pump 7 as described above. The solution merges and is sent to the solution distributor 18 via the low-temperature solution heat exchanger 9.

前記高温再生器5から前記低温再生器4の低温再生器伝熱管46に送られた冷媒蒸気は、低温再生器4内を流下する希溶液を加熱して自らは凝縮し、この凝縮した冷媒液は減圧機構(図示せず)により減圧されて凝縮器3に送られる。   The refrigerant vapor sent from the high-temperature regenerator 5 to the low-temperature regenerator heat transfer tube 46 of the low-temperature regenerator 4 heats the dilute solution flowing through the low-temperature regenerator 4 to condense itself, and this condensed refrigerant liquid Is decompressed by a decompression mechanism (not shown) and sent to the condenser 3.

前記低温再生器4で発生した冷媒蒸気は、エリミネータ通路を通って前記凝縮器3に送られ、凝縮器3内を流れる冷却水により冷却されて凝縮する。凝縮した冷媒液は凝縮器3の下部に一旦溜められて、減圧機構(図示せず)を通って前記蒸発器1に送られる。   The refrigerant vapor generated in the low temperature regenerator 4 is sent to the condenser 3 through an eliminator passage, and is cooled and condensed by cooling water flowing in the condenser 3. The condensed refrigerant liquid is temporarily stored in the lower part of the condenser 3 and sent to the evaporator 1 through a pressure reducing mechanism (not shown).

前記冷水出口配管25には冷水出口温度検出器32が設けられており、この冷水出口温度検出器32で検出された温度が所定の温度範囲になるように、冷水出口温度の制御装置33により前記蒸気流量調節弁34を制御して、高温再生器5への蒸気投入量を調節する。   The cold water outlet pipe 25 is provided with a cold water outlet temperature detector 32. The cold water outlet temperature controller 33 controls the cold water outlet temperature detector 32 so that the temperature detected by the cold water outlet temperature detector 32 falls within a predetermined temperature range. The steam flow control valve 34 is controlled to adjust the amount of steam input to the high temperature regenerator 5.

ボイラ39から高温再生器5に例えば174℃で供給され、該高温再生器5で稀溶液を加熱し、例えば155℃の蒸気ドレンとなって前記高温再生器5からドレン配管29に排出される。この蒸気ドレンは、その後前記高温ドレンクーラ12、ドレン配管30及び低温ドレンクーラ11を通過して、前記吸収器2からの稀溶液の一部により、一般に90℃以下の温度、例えば55℃の温度まで冷却され、ドレン配管31を通って、大気解放されたドレンタンク38に戻される。このドレンタンク38内の水はドレンポンプ42により再び前記ボイラ39に送られて蒸気となり、前記高温再生器5に供給されるというサイクルを繰り返す。   The boiler 39 is supplied to the high-temperature regenerator 5 at 174 ° C., for example, and the dilute solution is heated by the high-temperature regenerator 5 to become steam drain at, for example, 155 ° C., and is discharged from the high-temperature regenerator 5 to the drain pipe 29. The steam drain then passes through the high-temperature drain cooler 12, the drain pipe 30, and the low-temperature drain cooler 11, and is cooled to a temperature of generally 90 ° C. or lower, for example, 55 ° C., by a part of the rare solution from the absorber 2. Then, the water is returned to the drain tank 38 released to the atmosphere through the drain pipe 31. The water in the drain tank 38 is sent again to the boiler 39 by the drain pump 42 to become steam and is supplied to the high temperature regenerator 5 to repeat the cycle.

前記低温ドレンクーラ11は、前記稀溶液ポンプ6と前記低温溶液熱交換器9との間の稀溶液配管49から分岐するバイパス配管50の途中に設けられ、ドレン配管30からの例えば115℃の蒸気ドレンと、前記バイパス配管50を流れる低温(例えば35℃)の稀溶液とを熱交換させるものである。なお、前記バイパス配管50の前記低温ドレンクーラ11出口側は前記低温再生器4に接続される前記分岐配管48に接続されている。   The low-temperature drain cooler 11 is provided in the middle of a bypass pipe 50 branched from a rare-solution pipe 49 between the dilute solution pump 6 and the low-temperature solution heat exchanger 9, for example, a steam drain of 115 ° C. from the drain pipe 30. And heat exchange with a low temperature (for example, 35 ° C.) dilute solution flowing through the bypass pipe 50. The outlet side of the low-temperature drain cooler 11 of the bypass pipe 50 is connected to the branch pipe 48 connected to the low-temperature regenerator 4.

前記高温ドレンクーラ12は、前記低温溶液熱交換器9と前記高温溶液熱交換器10との間の稀溶液配管51から分岐して前記高温溶液熱交換器10をバイパスするように設けられたバイパス配管52に設けられ、ドレン配管29からの例えば155℃の蒸気ドレンと、前記バイパス配管52を流れる例えば90℃の稀溶液とを熱交換させるものである。   The high-temperature drain cooler 12 branches from a rare solution pipe 51 between the low-temperature solution heat exchanger 9 and the high-temperature solution heat exchanger 10 and is bypass piping provided to bypass the high-temperature solution heat exchanger 10. For example, the steam drain at 155 ° C. from the drain pipe 29 and the dilute solution at 90 ° C. flowing through the bypass pipe 52 are heat-exchanged.

前記高温ドレンクーラ12を通過した後の蒸気ドレンの温度は、定格運転時など、運転条件によって100℃以上となるので、本実施例では上述したように、低温の稀溶液と熱交換させるための低温ドレンクーラ11を更に設けており、100℃以上の蒸気ドレンを低温の稀溶液と熱交換させることにより、蒸気ドレン温度を、蒸気ドレンが大気開放されても減圧沸騰を起こさない90℃以下の温度まで確実に低下させた後、冷凍機外に排出するようにしている。   Since the temperature of the steam drain after passing through the high-temperature drain cooler 12 is 100 ° C. or higher depending on operating conditions such as during rated operation, in this embodiment, as described above, a low temperature for heat exchange with a low-temperature dilute solution. A drain cooler 11 is further provided, and the steam drain temperature of 100 ° C. or higher is exchanged with a low-temperature dilute solution, so that the vapor drain temperature is reduced to 90 ° C. or lower so as not to cause boiling under reduced pressure even when the steam drain is opened to the atmosphere. After being reliably lowered, it is discharged out of the refrigerator.

このように構成することにより、前記ドレンクーラ11,12において、蒸気ドレンを稀溶液と熱交換させ、安定して低温度にすることができる。
蒸気ドレンからの熱回収量を多くするためには、低温ドレンクーラ11から出る蒸気ドレンの温度を、定格運転時で例えば55℃になるように設計する。
By comprising in this way, in the said drain coolers 11 and 12, a vapor | steam drain can be heat-exchanged with a dilute solution, and can be made low temperature stably.
In order to increase the amount of heat recovered from the steam drain, the temperature of the steam drain from the low-temperature drain cooler 11 is designed to be, for example, 55 ° C. during rated operation.

しかし、冷凍機の負荷が低下して部分負荷になると、高温再生器5を通過した後の蒸気ドレン温度は低下していき、高温ドレンクーラ12、低温ドレンクーラ11を通過した後の蒸気ドレン温度もそれに伴い低下していく。ところが、低温ドレンクーラ11で蒸気ドレンから回収した熱は前記低温再生器4へ送られる稀溶液の加熱に用いられるが、低温再生器4でのエネルギー効率は低く、成績係数(COP)は0.7程度のため、回収熱量に対する熱回収効率が低くなる。一方、本実施例のように、温度の低下した蒸気ドレンが再びボイラ39に供給されて加熱されるという閉サイクルで使用される場合、低温ドレンクーラ11で熱回収した分だけ多くの加熱量が必要になる。従って、蒸気(または温水)が閉サイクルで使用される場合、低温ドレンクーラ11での熱回収は必要最小限にすることが好ましいことがわかった。   However, when the load on the refrigerator is reduced to a partial load, the steam drain temperature after passing through the high-temperature regenerator 5 decreases, and the steam drain temperature after passing through the high-temperature drain cooler 12 and the low-temperature drain cooler 11 is also reduced. It goes down with it. However, although the heat recovered from the steam drain by the low-temperature drain cooler 11 is used for heating the rare solution sent to the low-temperature regenerator 4, the energy efficiency in the low-temperature regenerator 4 is low, and the coefficient of performance (COP) is 0.7. Therefore, the heat recovery efficiency with respect to the recovered heat amount is lowered. On the other hand, as in this embodiment, when the steam drain whose temperature has decreased is supplied to the boiler 39 and used again in a closed cycle, a large amount of heating is required for the amount of heat recovered by the low-temperature drain cooler 11. become. Therefore, it has been found that when steam (or hot water) is used in a closed cycle, it is preferable to minimize the heat recovery in the low-temperature drain cooler 11.

なお、蒸気(または水)が閉サイクルで使用されるものでない場合でも、低温ドレンクーラ11から出た温水が給湯用途などに再利用されるようなシステムの場合でも、同様に、低温ドレンクーラ11での熱回収は必要最小限にすることが好ましい。   Even when steam (or water) is not used in a closed cycle, even in a system in which hot water discharged from the low-temperature drain cooler 11 is reused for hot water supply or the like, similarly, in the low-temperature drain cooler 11 It is preferable to minimize heat recovery.

そこで、本実施例では、前記バイパス配管50の前記低温ドレンクーラ11の上流側に稀溶液の流量調節弁37を設けると共に、前記低温ドレンクーラ11と高温ドレンクーラ12との間のドレン配管30には蒸気ドレンの温度を検出する温度検出器35を設け、更に前記温度検出器35で検出された蒸気ドレンの温度に応じて前記流量調節弁37の開度を制御するドレン温度の制御装置36を設けている。このドレン温度の制御装置36は、低温ドレンクーラ11上流の蒸気ドレン温度に基づいて、前記低温ドレンクーラ11出口側のドレン温度が、減圧沸騰を起こさない安定した温度で且つ蒸気ドレンからの熱回収量もできるだけ少なくできる温度、例えば90〜55℃、好ましくは90〜80℃になるように、前記稀溶液の流量調節弁37を制御する。   Therefore, in this embodiment, a flow control valve 37 for a rare solution is provided on the upstream side of the low-temperature drain cooler 11 in the bypass pipe 50, and a steam drain is provided in the drain pipe 30 between the low-temperature drain cooler 11 and the high-temperature drain cooler 12. And a drain temperature control device 36 for controlling the opening degree of the flow rate control valve 37 in accordance with the temperature of the steam drain detected by the temperature detector 35. . This drain temperature control device 36 is based on the steam drain temperature upstream of the low-temperature drain cooler 11, the drain temperature on the outlet side of the low-temperature drain cooler 11 is a stable temperature that does not cause vacuum boiling, and the amount of heat recovered from the steam drain is also high. The dilute solution flow control valve 37 is controlled so that the temperature can be reduced as much as possible, for example, 90 to 55 ° C, preferably 90 to 80 ° C.

これにより、定格運転時には、前記低温ドレンクーラ11出口側のドレン温度が例えば90℃になるように前記流量調節弁37が制御される。また、部分負荷運転時には、前記低温ドレンクーラ11入口側のドレン温度が低下するので、その温度が例えば90℃以下であれば、ドレン温度の制御装置36は前記流量調節弁37を全閉するように制御する。従って、本実施例によれば、蒸気ドレンからの熱回収を最小限にできるから、回収熱をエネルギー効率の低い低温再生器4で消費されるのを少なくして、その熱量分だけボイラ39での投熱量を低減することができ、効率を向上できる。また、バイパス配管50に流れる稀溶液流量を必要最小限にできるので、吸収器2からの低温の稀溶液は低温溶液熱交換器9で濃溶液の冷却に有効に使用することができ、全体として蒸気吸収式冷凍機のエネルギー効率を向上できる。特に、部分負荷運転時には前記稀溶液流量調節弁37の開度が、全閉或いは小開度に制御されることにより、エネルギー効率を特に向上することができる効果が得られる。   Thereby, at the time of rated operation, the said flow control valve 37 is controlled so that the drain temperature by the side of the said low-temperature drain cooler 11 may be 90 degreeC. Further, at the time of partial load operation, the drain temperature at the inlet side of the low-temperature drain cooler 11 is lowered. Therefore, if the temperature is, for example, 90 ° C. or less, the drain temperature control device 36 fully closes the flow rate adjusting valve 37. Control. Therefore, according to the present embodiment, the heat recovery from the steam drain can be minimized, so that the recovered heat is less consumed by the low-temperature regenerator 4 with low energy efficiency, and the amount of heat is reduced by the boiler 39. The amount of heat thrown can be reduced, and the efficiency can be improved. Further, since the flow rate of the dilute solution flowing through the bypass pipe 50 can be minimized, the low temperature dilute solution from the absorber 2 can be effectively used for cooling the concentrated solution by the low temperature solution heat exchanger 9, and as a whole The energy efficiency of the vapor absorption refrigerator can be improved. In particular, during partial load operation, the opening degree of the dilute solution flow rate control valve 37 is controlled to be fully closed or a small opening degree, thereby obtaining an effect that energy efficiency can be particularly improved.

以上説明したように、本実施例によれば、高温ドレンクーラ12を通過した後の蒸気ドレンの温度を温度検出器35で計測し、冷凍機外に排出されるドレンの温度をできるだけ高く、且つ減圧沸騰を起こさない温度となるように、ドレン温度の制御装置36で稀溶液の流量調節弁37を制御して、稀溶液のバイパス流量を調節しているので、ドレンの減圧沸騰(フラッシュ)を防止しつつ、特に部分負荷時にドレン温度を必要以上に低下させることはないので、成績係数(COP)の高い蒸気吸収式冷凍機を得ることができる。   As described above, according to this embodiment, the temperature of the steam drain after passing through the high-temperature drain cooler 12 is measured by the temperature detector 35, the temperature of the drain discharged outside the refrigerator is as high as possible, and the pressure is reduced. Since the drain temperature control device 36 controls the flow control valve 37 of the diluted solution to adjust the bypass flow rate of the diluted solution so that the temperature does not cause boiling, the reduced pressure boiling (flush) of the drain is prevented. However, since the drain temperature is not lowered more than necessary particularly during partial load, a vapor absorption refrigerator having a high coefficient of performance (COP) can be obtained.

図2は、図1に示した実施例1の一部変形例で、この図2に示す例では、図1に示した低温ドレンクーラ11と高温ドレンクーラ12との間のドレン配管30の蒸気ドレン温度を検出する温度検出器35の代わりに、前記低温ドレンクーラ11下流側のドレン配管31に温度検出器35aを設け、前記低温ドレンクーラ11から出るドレンの温度を直接計測するようにしたものである。ドレン温度の制御装置36は、この低温ドレンクーラ11を通過後のドレン温度に基づいて、当該ドレン温度をできるだけ高く、且つ減圧沸騰を起こさない温度となるように、稀溶液の流量調節弁37を制御して、稀溶液のバイパス流量を調節するので、図1に示す例と同様の効果を得ることができる。しかも、図2に示す例では、低温ドレンクーラ11から出るドレンクーラの温度を直接計測して、その計測された温度が目標温度になるように稀溶液のバイパス流量(即ち、流量調節弁37の開度)を制御するから、より精度の高い温度制御が可能となる。図2において、他の構成については図1と同じであるので、同一符号を付してそれらの説明については省略する。   2 is a partial modification of the first embodiment shown in FIG. 1. In the example shown in FIG. 2, the steam drain temperature of the drain pipe 30 between the low-temperature drain cooler 11 and the high-temperature drain cooler 12 shown in FIG. Instead of the temperature detector 35 for detecting the temperature, a temperature detector 35a is provided in the drain pipe 31 downstream of the low-temperature drain cooler 11, and the temperature of the drain discharged from the low-temperature drain cooler 11 is directly measured. Based on the drain temperature after passing through the low-temperature drain cooler 11, the drain temperature control device 36 controls the flow control valve 37 of the rare solution so that the drain temperature is as high as possible and does not cause boiling under reduced pressure. Then, since the bypass flow rate of the dilute solution is adjusted, the same effect as the example shown in FIG. 1 can be obtained. In addition, in the example shown in FIG. 2, the temperature of the drain cooler exiting from the low-temperature drain cooler 11 is directly measured, and the bypass flow rate of the rare solution (that is, the opening degree of the flow control valve 37 is adjusted so that the measured temperature becomes the target temperature. ) Is controlled, temperature control with higher accuracy becomes possible. In FIG. 2, since the other configuration is the same as that in FIG.

図3は、図1に示した実施例1の更に別の一部変形例である。この例では、低温ドレンクーラ11と高温ドレンクーラ12との間のドレン配管30と、前記低温ドレンクーラ11下流側のドレン配管31とを、前記低温ドレンクーラ11をバイパスするようにドレンバイパス配管53を設けている。また、前記ドレン配管30の前記ドレンバイパス配管53との分岐部と低温ドレンクーラ11との間、及び前記ドレンバイパス配管53に、それぞれ蒸気ドレンの流量調節弁40,41が設けられている。これらの流量調節弁40,41は流量調節が可能なようにその開度を調整できる弁でも、或いは全開及び全閉にのみ制御可能な開閉弁(例えば電磁弁)で構成しても良い。前記流量調節弁40,41の開度制御は、稀溶液の流量調節弁37の開度に基づいて、制御装置36により制御されるように構成され、例えば前記稀溶液の流量調節弁37が全閉の場合には、前記流量調節弁40も全閉にし、前記流量調節弁41は全開となるように、前記制御装置36により制御される。 FIG. 3 shows still another partial modification of the first embodiment shown in FIG. In this example, a drain bypass pipe 53 is provided so that the drain pipe 30 between the low-temperature drain cooler 11 and the high-temperature drain cooler 12 and the drain pipe 31 on the downstream side of the low-temperature drain cooler 11 bypass the low-temperature drain cooler 11. . Further, steam drain flow control valves 40 and 41 are provided between the branch of the drain pipe 30 with the drain bypass pipe 53 and the low-temperature drain cooler 11 and in the drain bypass pipe 53 , respectively. These flow rate control valves 40 and 41 may be valves that can adjust the opening degree so that the flow rate can be adjusted, or open / close valves (for example, electromagnetic valves) that can be controlled only fully open and fully closed. The opening control of the flow rate adjusting valves 40 and 41 is configured to be controlled by the control device 36 based on the opening degree of the dilute solution flow rate adjusting valve 37. For example, the dilute solution flow rate adjusting valve 37 is entirely controlled. When closed, the flow control valve 40 is also fully closed, and the flow control valve 41 is controlled by the control device 36 so as to be fully open.

このように構成することにより、稀溶液の流量調節弁37が全閉となった場合の低温ドレンクーラ11内の溶液の結晶化を防止することができる。即ち、図1の場合には、稀溶液の流量調節弁37が全閉となった場合、低温ドレンクーラ11内には稀溶液が滞留することになるが、ドレン配管30からの蒸気ドレンは流れ続けるため、滞留している稀溶液は加熱されて濃縮される可能性がある。このため、冷凍機の停止時など低温ドレンクーラ11内の温度が低下した時に溶液が結晶化しないように、稀溶液の流量調節弁37が全閉となった場合には、前記流量調節弁40を全閉に、前記流量調節弁41は全開となるように、前記制御装置36により制御することで、溶液の結晶化を確実に防止できる効果が得られる。
なお、図3において、他の構成については図1と同じであるので、同一符号を付してそれらの説明については省略する。
With this configuration, it is possible to prevent crystallization of the solution in the low-temperature drain cooler 11 when the dilute solution flow control valve 37 is fully closed. That is, in the case of FIG. 1, when the flow control valve 37 for the dilute solution is fully closed, the dilute solution stays in the low-temperature drain cooler 11, but the steam drain from the drain pipe 30 continues to flow. Therefore, the staying rare solution may be heated and concentrated. For this reason, when the flow control valve 37 of the dilute solution is fully closed so that the solution does not crystallize when the temperature in the low-temperature drain cooler 11 is lowered, such as when the refrigerator is stopped, the flow control valve 40 is set. By controlling the control device 36 so that the flow control valve 41 is fully opened when fully closed, the effect of reliably preventing crystallization of the solution can be obtained.
In FIG. 3, the other components are the same as those in FIG.

図4により本発明の蒸気吸収式冷凍機の実施例2を説明する。図4において、図1と同一符号を付した部分は同一或いは相当する部分を示している。
本実施例2が図1に示した実施例1と異なる点を説明する。図1の実施例1では、低温ドレンクーラ11を設けているバイパス配管50の前記低温ドレンクーラ11出口側は低温再生器4に接続される分岐配管48に接続するように構成しているが、図4に示す実施例2では、前記分岐配管48に接続するのではなく、低温溶液熱交換器9と高温溶液熱交換器10との間の稀溶液配管51に接続するようにしたものである。また、この実施例では、前記バイパス配管50の前記稀溶液配管51への接続部を、前記分岐配管48が分岐する部分より上流側としている。
Embodiment 2 of the vapor absorption refrigerator according to the present invention will be described with reference to FIG. In FIG. 4, the parts denoted by the same reference numerals as those in FIG. 1 indicate the same or corresponding parts.
The difference between the second embodiment and the first embodiment shown in FIG. 1 will be described. In Example 1 of FIG. 1, the outlet side of the low-temperature drain cooler 11 of the bypass pipe 50 provided with the low-temperature drain cooler 11 is configured to be connected to the branch pipe 48 connected to the low-temperature regenerator 4. In the second embodiment shown in FIG. 2, the pipe is not connected to the branch pipe 48 but is connected to a rare solution pipe 51 between the low temperature solution heat exchanger 9 and the high temperature solution heat exchanger 10. Further, in this embodiment, the connection portion of the bypass pipe 50 to the dilute solution pipe 51 is located upstream from the portion where the branch pipe 48 branches.

このように構成することにより、低温ドレンクーラ11で蒸気ドレンから熱回収して温度の上昇した稀溶液は、実施例1のように前記分岐配管48を経由してその全量がエネルギー効率の悪い低温再生器4に送られるのではなく、一部はエネルギー効率の良い高温再生器5にも送られるので、蒸気ドレンからの回収熱量に対する熱回収効率が高くなり、冷凍機の成績係数をより向上できる。   With this configuration, the dilute solution whose temperature has been recovered from the steam drain by the low-temperature drain cooler 11 and whose temperature has increased via the branch pipe 48 as in the first embodiment is low-temperature regeneration with low energy efficiency. A part of the heat is not sent to the cooler 4 but is also sent to the high-temperature regenerator 5 with high energy efficiency. Therefore, the heat recovery efficiency with respect to the amount of heat recovered from the steam drain is increased, and the coefficient of performance of the refrigerator can be further improved.

なお、バイパス配管50の前記低温ドレンクーラ11出口側の前記稀溶液配管51への接続部を、前記分岐配管48が分岐する部分より下流側としても良く、この場合には低温ドレンクーラ11で蒸気ドレンから熱回収して温度の上昇した稀溶液の全量がエネルギー効率の良い高温再生器5に送られるので、熱回収効率は更に高くなり、冷凍機の成績係数を更に向上できる。   In addition, the connection part to the dilute solution pipe 51 on the outlet side of the low-temperature drain cooler 11 of the bypass pipe 50 may be downstream from the part where the branch pipe 48 branches. In this case, the low-temperature drain cooler 11 may Since the entire amount of the diluted solution whose temperature has been recovered by heat recovery is sent to the high-temperature regenerator 5 with good energy efficiency, the heat recovery efficiency is further increased and the coefficient of performance of the refrigerator can be further improved.

他の構成については、図1に示す実施例1と同様であるので、説明を省略する。
また、図2に示すように低温ドレンクーラ11の下流側のドレン配管31に温度検出器35aを設けるようにして図2と同様の制御をするようにしても良い。
Other configurations are the same as those of the first embodiment shown in FIG.
Further, as shown in FIG. 2, a temperature detector 35a may be provided in the drain pipe 31 on the downstream side of the low-temperature drain cooler 11, and the same control as in FIG. 2 may be performed.

更に、図3に示すように、低温ドレンクーラ11をバイパスする蒸気ドレンのバイパス配管53を設け、図3と同様に蒸気ドレンの流量調節弁40,41を設けて図3と同様の制御をしても良い。   Further, as shown in FIG. 3, a steam drain bypass pipe 53 for bypassing the low-temperature drain cooler 11 is provided, and steam drain flow rate adjusting valves 40 and 41 are provided as in FIG. Also good.

図5により本発明の蒸気吸収式冷凍機の実施例3を説明する。図5において、図1と同一符号を付した部分は同一或いは相当する部分を示している。
本実施例3が図1に示した実施例1と異なる点を説明する。図1の実施例1では、低温ドレンクーラ11と高温ドレンクーラ12の二つのドレンクーラを設けているが、本実施例3では一つのドレンクーラ13のみを設け、このドレンクーラ13は、稀溶液ポンプ6と低温溶液熱交換器9との間の稀溶液配管49から分岐するバイパス配管56の途中に設けられ、ドレン配管29からの例えば155℃の蒸気ドレンと、前記バイパス配管56を流れる低温(例えば35℃)の稀溶液とを熱交換させるようにし、更に前記バイパス配管56の前記ドレンクーラ13出口側は前記高温溶液熱交換器10の下流側の稀溶液配管57に接続する構成としたものである。
Embodiment 3 of the vapor absorption refrigerator according to the present invention will be described with reference to FIG. In FIG. 5, the parts denoted by the same reference numerals as those in FIG. 1 indicate the same or corresponding parts.
The difference between the third embodiment and the first embodiment shown in FIG. 1 will be described. In the first embodiment shown in FIG. 1, two drain coolers, a low-temperature drain cooler 11 and a high-temperature drain cooler 12, are provided. In this third embodiment, only one drain cooler 13 is provided. A steam drain of, for example, 155 ° C. from the drain pipe 29 and a low-temperature (eg, 35 ° C.) flowing through the bypass pipe 56 are provided in the middle of the bypass pipe 56 branched from the dilute solution pipe 49 to the heat exchanger 9. Heat is exchanged with the dilute solution, and the drain cooler 13 outlet side of the bypass pipe 56 is connected to the dilute solution pipe 57 on the downstream side of the high temperature solution heat exchanger 10.

また、蒸気ドレンの温度検出器35bが前記ドレン配管29に設けられ、蒸気ドレン温度の制御装置36は、ドレンクーラ13上流の蒸気ドレン温度、即ち高温再生器5から排出された高温の蒸気ドレンの温度を検出して、この蒸気ドレン温度に基づいて、前記ドレンクーラ13出口側のドレン温度が、減圧沸騰を起こさない安定した温度で且つ蒸気ドレンからの熱回収量もできるだけ少なくできる温度になるように、稀溶液の流量調節弁37を制御する。   Further, a steam drain temperature detector 35 b is provided in the drain pipe 29, and the steam drain temperature control device 36 is a steam drain temperature upstream of the drain cooler 13, that is, the temperature of the hot steam drain discharged from the high temperature regenerator 5. Based on this steam drain temperature, the drain temperature on the outlet side of the drain cooler 13 is a stable temperature that does not cause vacuum boiling, and a temperature that can reduce the amount of heat recovered from the steam drain as much as possible. The dilute solution flow control valve 37 is controlled.

これにより、定格運転時には、前記ドレンクーラ13出口側のドレン温度が例えば90〜80℃になるように前記流量調節弁37が制御される。また、部分負荷運転時には、前記ドレンクーラ13入口側のドレン温度が低下するので、それに応じて前記流量調節弁37の開度が小さくなるように制御し、前記ドレンクーラ13出口側のドレン温度が例えば90〜80℃になるようにする。   Thereby, at the time of rated operation, the said flow control valve 37 is controlled so that the drain temperature by the side of the said drain cooler 13 will be 90-80 degreeC, for example. Further, during the partial load operation, the drain temperature at the inlet side of the drain cooler 13 is lowered, so that the opening degree of the flow rate adjusting valve 37 is controlled accordingly, and the drain temperature at the outlet side of the drain cooler 13 is 90, for example. ˜80 ° C.

本実施例においても上記実施例1或いは実施例2と同様の効果が得られる。また、本実施例によれば、ドレンクーラ13は一つのみで良く、構成が簡単になると共に、蒸気ドレンからの回収熱はエネルギー効率の高い高温再生器5で消費されるので、その分ボイラ39での投熱量を低減することができ、効率を向上できる。更に、バイパス配管50に流れる稀溶液流量を必要最小限にできるので、吸収器2からの低温の稀溶液を、低温溶液熱交換器9及び高温溶液熱交換器10で濃溶液の冷却に有効に使用することができ、この点からも蒸気吸収式冷凍機のエネルギー効率を向上でき、特に部分負荷運転時には前記稀溶液流量調節弁37の開度を小開度に制御することにより、エネルギー効率を特に向上できる効果がある。   Also in the present embodiment, the same effect as in the first embodiment or the second embodiment can be obtained. Further, according to the present embodiment, only one drain cooler 13 is required, the configuration is simplified, and the heat recovered from the steam drain is consumed by the high-temperature regenerator 5 with high energy efficiency. The amount of heat thrown in can be reduced, and the efficiency can be improved. Furthermore, since the flow rate of the dilute solution flowing through the bypass pipe 50 can be minimized, the low temperature dilute solution from the absorber 2 can be effectively used for cooling the concentrated solution by the low temperature solution heat exchanger 9 and the high temperature solution heat exchanger 10. From this point, the energy efficiency of the vapor absorption chiller can be improved. In particular, the energy efficiency can be improved by controlling the opening of the dilute solution flow control valve 37 to a small opening during partial load operation. There is an effect that can be particularly improved.

他の構成については、図1に示す実施例1と同様であるので、説明を省略する。
また、本実施例においても、図2に示すものと同様に、ドレンクーラ13(低温ドレンクーラ11)の下流側のドレン配管31に温度検出器35aを設けるようにして図2と同様の制御をするようにしても良く、更に、図3に示すように、ドレンクーラ13(低温ドレンクーラ11)をバイパスする蒸気ドレンのバイパス配管53を設け、図3と同様に蒸気ドレンの流量調節弁40,41を設けて図3と同様の制御をしても良い。
Other configurations are the same as those of the first embodiment shown in FIG.
Also in this embodiment, similarly to the one shown in FIG. 2, the temperature detector 35a is provided in the drain pipe 31 on the downstream side of the drain cooler 13 (low temperature drain cooler 11) so as to perform the same control as in FIG. Further, as shown in FIG. 3, a steam drain bypass pipe 53 for bypassing the drain cooler 13 (low temperature drain cooler 11) is provided, and steam drain flow rate adjusting valves 40 and 41 are provided as in FIG. You may perform control similar to FIG.

1:蒸発器、1a:第1蒸発器、1b:第2蒸発器、
2:吸収器、2a:第1吸収器、2b:第2吸収器、
3:凝縮器、
4:低温再生器、5:高温再生器、
6:希溶液ポンプ、7:濃溶液ポンプ、8:冷媒ポンプ、
9:低温溶液熱交換器、10:高温溶液熱交換器、
11〜13:ドレンクーラ(11:低温ドレンクーラ、12:高温ドレンクーラ)、
17:冷媒分配器(冷媒散布装置)、18:溶液分配器(溶液散布装置)、
19:冷媒再分配器、20:溶液再分配器、
21:蒸発器隔壁、22:吸収器隔壁、
24:冷水入口配管、25:冷水出口配管、
26:冷却水入口配管、27:冷却水出口配管、
28:蒸気入口配管、
29,30,31:ドレン配管、
32:冷水出口温度検出器、33:冷水出口温度の制御装置、
34:蒸気流量調節弁、
35,35a,35b:温度検出器、
36:ドレン温度の制御装置、
37:希溶液の流量調節弁、
38:ドレンタンク、
39:ボイラ、
40,41:蒸気ドレンの流量調節弁、
42:ドレンポンプ、
43,44:冷媒配管、45:冷媒蒸気配管、
46:低温再生器伝熱管、47:溶液散布装置、
48:分岐配管(稀溶液配管)、49,51,57:稀溶液配管、
50,52,53,56:バイパス配管、
54,55:濃溶液配管。
1: evaporator, 1a: first evaporator, 1b: second evaporator,
2: absorber, 2a: first absorber, 2b: second absorber,
3: Condenser,
4: Low temperature regenerator, 5: High temperature regenerator,
6: dilute solution pump, 7: concentrated solution pump, 8: refrigerant pump,
9: Low temperature solution heat exchanger, 10: High temperature solution heat exchanger,
11-13: Drain cooler (11: low temperature drain cooler, 12: high temperature drain cooler),
17: Refrigerant distributor (refrigerant spraying device), 18: Solution distributor (solution spraying device),
19: Refrigerant redistributor, 20: Solution redistributor,
21: evaporator partition, 22: absorber partition,
24: Cold water inlet piping, 25: Cold water outlet piping,
26: Cooling water inlet piping, 27: Cooling water outlet piping,
28: Steam inlet piping,
29, 30, 31: drain piping,
32: Cold water outlet temperature detector, 33: Cold water outlet temperature control device,
34: Steam flow control valve,
35, 35a, 35b: temperature detector,
36: Drain temperature control device,
37: Flow control valve for dilute solution,
38: Drain tank,
39: Boiler,
40, 41: Steam drain flow control valve,
42: drain pump,
43, 44: Refrigerant piping, 45: Refrigerant vapor piping,
46: Low-temperature regenerator heat transfer tube, 47: Solution spraying device,
48: branch piping (diluted solution piping), 49, 51, 57: diluted solution piping,
50, 52, 53, 56: Bypass piping,
54, 55: Concentrated solution piping.

Claims (10)

蒸気を加熱源とする高温再生器、低温再生器、凝縮器、蒸発器及び吸収器を備え、更に前記吸収器で冷媒蒸気を吸収した稀溶液を該吸収器から前記高温再生器及び低温再生器に送る稀溶液配管と、前記高温再生器及び低温再生器で濃縮された濃溶液を前記吸収器に送る濃溶液配管と、前記稀溶液配管を流れる稀溶液と前記濃溶液配管を流れる濃溶液とを熱交換させる低温溶液熱交換器及び高温溶液熱交換器と、前記高温再生器からの蒸気ドレンが流れるドレン配管と、該ドレン配管に設けられ蒸気ドレンを冷却するドレンクーラを備える蒸気吸収式冷凍機において、
前記稀溶液配管から分岐され前記低温溶液熱交換器をバイパスするバイパス配管を設け、前記ドレンクーラは前記バイパス配管からの稀溶液と前記ドレン配管からの蒸気ドレンとを熱交換させるように構成すると共に、
前記バイパス配管における前記ドレンクーラよりも上流側に設けられた流量調節弁と、
前記ドレン配管に設けられ蒸気ドレンの温度を検出する温度検出器と、
前記温度検出器で検出された温度に応じて前記バイパス配管の流量調節弁を調節し排出されるドレン温度を制御する制御装置を備え
前記ドレンクーラは、前記ドレン配管の下流側に配置された低温ドレンクーラと、前記ドレン配管の上流側に配置された高温ドレンクーラから構成され、前記低温ドレンクーラは、前記低温溶液熱交換器をバイパスするように前記稀溶液配管から分岐されたバイパス配管を流れる稀溶液と蒸気ドレンとを熱交換させるように構成され、前記高温ドレンクーラは、前記高温溶液熱交換器をバイパスするように前記稀溶液配管から分岐されたバイパス配管を流れる稀溶液と蒸気ドレンとを熱交換させるように構成され、
前記ドレンクーラをバイパスするように、前記低温ドレンクーラと前記高温ドレンクーラとの間のドレン配管と前記低温ドレンクーラ下流側のドレン配管とを接続するドレンバイパス配管を設けると共に、前記ドレン配管の前記ドレンバイパス配管との分岐部と低温ドレンクーラ11との間、及び前記ドレンバイパス配管にはそれぞれ蒸気ドレンの流量調節弁を設けている
ことを特徴とする蒸気吸収式冷凍機。
A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, and an absorber that use steam as a heating source, and further, a rare solution that has absorbed refrigerant vapor in the absorber is transferred from the absorber to the high-temperature regenerator and the low-temperature regenerator. A dilute solution pipe that is sent to the high temperature regenerator and a concentrated solution pipe that sends the concentrated solution concentrated in the low temperature regenerator to the absorber, a dilute solution that flows through the dilute solution pipe, and a concentrated solution that flows through the concentrated solution pipe A low-temperature solution heat exchanger and a high-temperature solution heat exchanger for exchanging heat, a drain pipe through which steam drain from the high-temperature regenerator flows, and a steam absorption refrigerator equipped with the drain cooler provided in the drain pipe for cooling the steam drain In
A bypass pipe branched from the dilute solution pipe and bypassing the low temperature solution heat exchanger is provided, and the drain cooler is configured to exchange heat between the dilute solution from the bypass pipe and the steam drain from the drain pipe,
A flow control valve provided on the upstream side of the drain cooler in the bypass pipe;
A temperature detector provided in the drain pipe for detecting the temperature of the steam drain;
A control device for controlling the drain temperature discharged by adjusting the flow rate control valve of the bypass pipe according to the temperature detected by the temperature detector ;
The drain cooler includes a low-temperature drain cooler disposed on the downstream side of the drain pipe and a high-temperature drain cooler disposed on the upstream side of the drain pipe, and the low-temperature drain cooler bypasses the low-temperature solution heat exchanger. The dilute solution flowing through the bypass pipe branched from the dilute solution pipe is configured to exchange heat with the steam drain, and the high temperature drain cooler is branched from the dilute solution pipe to bypass the high temperature solution heat exchanger. The dilute solution flowing through the bypass pipe and the steam drain are configured to exchange heat,
A drain bypass pipe that connects a drain pipe between the low temperature drain cooler and the high temperature drain cooler and a drain pipe downstream of the low temperature drain cooler so as to bypass the drain cooler, and the drain bypass pipe of the drain pipe; A steam absorption refrigeration machine comprising a steam drain flow rate control valve provided between the branch section and the low-temperature drain cooler 11 and the drain bypass pipe .
供給される蒸気を加熱源として冷媒蒸気を溶液から分離する高温再生器と、この高温再生器で分離した冷媒蒸気を加熱源として冷媒蒸気を溶液から分離する低温再生器と、この低温再生器で分離した冷媒蒸気を液化する凝縮器と、この凝縮器で液化した冷媒を蒸気に変える蒸発器と、この蒸発器で発生した冷媒蒸気を溶液に吸収させる吸収器と、冷媒蒸気を吸収した稀溶液を前記吸収器から前記高温再生器及び低温再生器に送るための稀溶液配管と、前記高温再生器及び低温再生器で冷媒蒸気が分離されて濃縮された濃溶液を前記吸収器に送るための濃溶液配管と、前記稀溶液配管を流れる稀溶液と前記濃溶液配管を流れる濃溶液とを熱交換させる低温溶液熱交換器及び高温溶液熱交換器と、前記高温再生器から排出された蒸気ドレンが流れるドレン配管と、このドレン配管に設けられ蒸気ドレンを冷却するためのドレンクーラを備える蒸気吸収式冷凍機において、
前記稀溶液配管における前記低温溶液熱交換器の上流側から分岐して前記低温溶液熱交換器の下流側の前記稀溶液配管に接続されるバイパス配管を設け、前記ドレンクーラは前記バイパス配管からの稀溶液と前記ドレン配管からの蒸気ドレンとを熱交換させるように構成すると共に、
前記ドレンクーラよりも上流側の前記バイパス配管に設けられた稀溶液の流量調節弁と、
前記ドレン配管に設けられ蒸気ドレンの温度を検出する温度検出器と、
前記温度検出器で検出された蒸気ドレンの温度に応じて前記バイパス配管を流れる稀溶液の流量を調節して排出されるドレンの温度を制御する制御装置を備え
前記ドレンクーラは、前記ドレン配管の下流側に配置された低温ドレンクーラと、前記ドレン配管の上流側に配置された高温ドレンクーラから構成され、前記低温ドレンクーラは、前記低温溶液熱交換器をバイパスするように前記稀溶液配管から分岐されたバイパス配管を流れる稀溶液と蒸気ドレンとを熱交換させるように構成され、前記高温ドレンクーラは、前記高温溶液熱交換器をバイパスするように前記稀溶液配管から分岐されたバイパス配管を流れる稀溶液と蒸気ドレンとを熱交換させるように構成され、
前記ドレンクーラをバイパスするように、前記低温ドレンクーラと前記高温ドレンクーラとの間のドレン配管と前記低温ドレンクーラ下流側のドレン配管とを接続するドレンバイパス配管を設けると共に、前記ドレン配管の前記ドレンバイパス配管との分岐部と低温ドレンクーラ11との間、及び前記ドレンバイパス配管にはそれぞれ蒸気ドレンの流量調節弁を設けている
ことを特徴とする蒸気吸収式冷凍機。
A high-temperature regenerator that separates the refrigerant vapor from the solution using the supplied vapor as a heating source, a low-temperature regenerator that separates the refrigerant vapor from the solution using the refrigerant vapor separated by the high-temperature regenerator, and the low-temperature regenerator A condenser that liquefies the separated refrigerant vapor, an evaporator that converts the refrigerant liquefied by the condenser into vapor, an absorber that absorbs the refrigerant vapor generated in the evaporator into the solution, and a rare solution that absorbs the refrigerant vapor A dilute solution pipe from the absorber to the high temperature regenerator and the low temperature regenerator, and a concentrated solution obtained by separating and concentrating the refrigerant vapor in the high temperature regenerator and the low temperature regenerator to the absorber. A concentrated solution pipe, a low temperature solution heat exchanger and a high temperature solution heat exchanger for exchanging heat between the diluted solution flowing through the diluted solution pipe and the concentrated solution flowing through the concentrated solution pipe, and steam drain discharged from the high temperature regenerator Flow And drain pipe, in the vapor absorption refrigerator comprising Dorenkura for cooling the steam drain provided in the drain pipe,
A bypass pipe branched from the upstream side of the low-temperature solution heat exchanger in the diluted solution pipe and connected to the diluted solution pipe on the downstream side of the low-temperature solution heat exchanger is provided, and the drain cooler is connected to the rare pipe from the bypass pipe. While configured to exchange heat between the solution and the steam drain from the drain pipe,
A flow control valve for a rare solution provided in the bypass pipe upstream of the drain cooler;
A temperature detector provided in the drain pipe for detecting the temperature of the steam drain;
A control device for controlling the temperature of the drain discharged by adjusting the flow rate of the rare solution flowing through the bypass pipe according to the temperature of the steam drain detected by the temperature detector ;
The drain cooler includes a low-temperature drain cooler disposed on the downstream side of the drain pipe and a high-temperature drain cooler disposed on the upstream side of the drain pipe, and the low-temperature drain cooler bypasses the low-temperature solution heat exchanger. The dilute solution flowing through the bypass pipe branched from the dilute solution pipe is configured to exchange heat with the steam drain, and the high temperature drain cooler is branched from the dilute solution pipe to bypass the high temperature solution heat exchanger. The dilute solution flowing through the bypass pipe and the steam drain are configured to exchange heat,
A drain bypass pipe that connects a drain pipe between the low temperature drain cooler and the high temperature drain cooler and a drain pipe downstream of the low temperature drain cooler so as to bypass the drain cooler, and the drain bypass pipe of the drain pipe; A steam absorption refrigeration machine comprising a steam drain flow rate control valve provided between the branch section and the low-temperature drain cooler 11 and the drain bypass pipe .
請求項1または2に記載の蒸気吸収式冷凍機において、前記バイパス配管のドレンクーラ下流側は、前記低温溶液熱交換器と前記高温溶液熱交換器との間の稀溶液配管から分岐して前記低温再生器に接続される分岐配管に接続されていることを特徴とする蒸気吸収式冷凍機。   3. The steam absorption refrigerator according to claim 1, wherein a downstream side of the drain cooler of the bypass pipe branches from a rare solution pipe between the low temperature solution heat exchanger and the high temperature solution heat exchanger, and the low temperature A vapor absorption refrigerator that is connected to a branch pipe connected to a regenerator. 請求項1または2に記載の蒸気吸収式冷凍機において、前記バイパス配管のドレンクーラ下流側は、前記低温溶液熱交換器と前記高温溶液熱交換器との間の稀溶液配管に接続されていることを特徴とする蒸気吸収式冷凍機。   The steam absorption refrigerator according to claim 1 or 2, wherein a downstream side of the drain cooler of the bypass pipe is connected to a rare solution pipe between the low temperature solution heat exchanger and the high temperature solution heat exchanger. Vapor absorption refrigerator characterized by. 請求項4に記載の蒸気吸収式冷凍機において、前記バイパス配管のドレンクーラ下流側は、前記低温溶液熱交換器と前記高温溶液熱交換器との間の稀溶液配管であって且つ稀溶液配管から分岐して前記低温再生器に接続される分岐配管が分岐する部分よりも上流側に接続されていることを特徴とする蒸気吸収式冷凍機。 5. The vapor absorption refrigerator according to claim 4, wherein a downstream side of the drain cooler of the bypass pipe is a dilute solution pipe between the low temperature solution heat exchanger and the high temperature solution heat exchanger and from the dilute solution pipe. A steam absorption refrigerator, wherein a branch pipe that branches and is connected to the low-temperature regenerator is connected upstream of a branching portion. 請求項1〜の何れかに記載の蒸気吸収式冷凍機において、前記温度検出器は前記低温ドレンクーラよりも上流側の前記ドレン配管に設けられていることを特徴とする蒸気吸収式冷凍機。 The vapor absorption refrigerator according to any one of claims 1 to 5 , wherein the temperature detector is provided in the drain pipe upstream of the low-temperature drain cooler. 請求項1〜の何れかに記載の蒸気吸収式冷凍機において、前記温度検出器は前記低温ドレンクーラよりも下流側の前記ドレン配管に設けられていることを特徴とする蒸気吸収式冷凍機。 The vapor absorption refrigerator according to any one of claims 1 to 5 , wherein the temperature detector is provided in the drain pipe downstream of the low-temperature drain cooler. 請求項1〜5の何れかに記載の蒸気吸収式冷凍機において、前記温度検出器は前記低温ドレンクーラと前記高温ドレンクーラとの間の前記ドレン配管に設けられていることを特徴とする蒸気吸収式冷凍機。 The vapor absorption refrigerator according to any one of claims 1 to 5 , wherein the temperature detector is provided in the drain pipe between the low temperature drain cooler and the high temperature drain cooler. refrigerator. 請求項1〜の何れかに記載の蒸気吸収式冷凍機において、前記高温再生器にはボイラからの蒸気が供給され、高温再生器から排出された蒸気ドレンはドレンクーラで90〜55℃の温度に冷却されて環水された後、大気開放されたドレンタンクに流入させ、このドレンタンクからドレンポンプにより再び前記ボイラに供給されるように構成されていることを特徴とする蒸気吸収式冷凍機。 The steam absorption refrigerator according to any one of claims 1 to 8 , wherein steam from a boiler is supplied to the high temperature regenerator, and the steam drain discharged from the high temperature regenerator has a temperature of 90 to 55 ° C by a drain cooler. The steam absorption refrigerator is configured to be cooled and cooled and then flowed into a drain tank that is open to the atmosphere, and is supplied to the boiler again from the drain tank by a drain pump. . 請求項に記載の蒸気吸収式冷凍機において、高温再生器から排出された蒸気ドレンはドレンクーラで90〜80℃の温度に冷却されて環水された後、前記ドレンタンクに流入するように構成されていることを特徴とする蒸気吸収式冷凍機。 The steam absorption refrigerator according to claim 9 , wherein the steam drain discharged from the high-temperature regenerator is cooled to a temperature of 90 to 80 ° C by a drain cooler and circulated, and then flows into the drain tank. A vapor absorption refrigerator characterized by being made.
JP2011145550A 2011-06-30 2011-06-30 Vapor absorption refrigerator Active JP5785800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011145550A JP5785800B2 (en) 2011-06-30 2011-06-30 Vapor absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011145550A JP5785800B2 (en) 2011-06-30 2011-06-30 Vapor absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2013011424A JP2013011424A (en) 2013-01-17
JP5785800B2 true JP5785800B2 (en) 2015-09-30

Family

ID=47685434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011145550A Active JP5785800B2 (en) 2011-06-30 2011-06-30 Vapor absorption refrigerator

Country Status (1)

Country Link
JP (1) JP5785800B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101763796B1 (en) * 2017-02-10 2017-08-01 김경영 Absorption refrigerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5973953B2 (en) 2012-04-23 2016-08-23 株式会社神戸製鋼所 Alloyed hot-dip galvanized steel sheet for hot stamping and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184465A (en) * 1982-04-21 1983-10-27 株式会社日立製作所 Cooling device for drain from steam double effect absorption type refrigerator
JPH1038402A (en) * 1996-07-22 1998-02-13 Hitachi Ltd Steam-heating absorption type water cooler/heater
JP2001066009A (en) * 1999-08-30 2001-03-16 Hitachi Building Systems Co Ltd Method for renewing absorption chiller and heater installed in existing building and renewed absorption chiller and heater
JP2003329330A (en) * 2002-05-15 2003-11-19 Meidensha Corp Absorption refrigerating machine
JP2009287805A (en) * 2008-05-28 2009-12-10 Ebara Refrigeration Equipment & Systems Co Ltd Absorption refrigerator
JP2011047522A (en) * 2009-08-25 2011-03-10 Sanyo Electric Co Ltd Absorption refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101763796B1 (en) * 2017-02-10 2017-08-01 김경영 Absorption refrigerator

Also Published As

Publication number Publication date
JP2013011424A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
CN106482384B (en) Superposition type solution and serial double-effect lithium bromide absorption type refrigeration heat pump unit
JP2011075180A (en) Absorption type refrigerating machine
JP5390426B2 (en) Absorption heat pump device
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP5785800B2 (en) Vapor absorption refrigerator
JP5261111B2 (en) Absorption refrigerator
JP2012202589A (en) Absorption heat pump apparatus
JP6138642B2 (en) Absorption refrigerator
JP4885467B2 (en) Absorption heat pump
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP3883894B2 (en) Absorption refrigerator
JP2009287805A (en) Absorption refrigerator
JPS5812507B2 (en) Hybrid type absorption heat pump
JP6364238B2 (en) Absorption type water heater
JP3851204B2 (en) Absorption refrigerator
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JPS6148064B2 (en)
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller
JP5233715B2 (en) Absorption refrigeration system
JP2005300126A (en) Absorption type refrigerating machine
JP3811632B2 (en) Waste heat input type absorption refrigerator
JP5233716B2 (en) Absorption refrigeration system
KR101076923B1 (en) An absorption type chiller-heater respondable to the heating load conditions
JP6698297B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150727

R150 Certificate of patent or registration of utility model

Ref document number: 5785800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250