Nothing Special   »   [go: up one dir, main page]

JP5762053B2 - Dye-sensitized solar cell, method for producing the same, dye-sensitized solar cell module and method for producing the same - Google Patents

Dye-sensitized solar cell, method for producing the same, dye-sensitized solar cell module and method for producing the same Download PDF

Info

Publication number
JP5762053B2
JP5762053B2 JP2011044674A JP2011044674A JP5762053B2 JP 5762053 B2 JP5762053 B2 JP 5762053B2 JP 2011044674 A JP2011044674 A JP 2011044674A JP 2011044674 A JP2011044674 A JP 2011044674A JP 5762053 B2 JP5762053 B2 JP 5762053B2
Authority
JP
Japan
Prior art keywords
dye
sensitized solar
electrode
solar cell
connection member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011044674A
Other languages
Japanese (ja)
Other versions
JP2012182038A (en
Inventor
芳泰 磯部
芳泰 磯部
松井 浩志
浩志 松井
岡田 顕一
顕一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2011044674A priority Critical patent/JP5762053B2/en
Priority to CN201280003962.1A priority patent/CN103229350B/en
Priority to PCT/JP2012/054861 priority patent/WO2012118050A1/en
Priority to EP12752945.1A priority patent/EP2683021B1/en
Publication of JP2012182038A publication Critical patent/JP2012182038A/en
Priority to US14/015,094 priority patent/US9330854B2/en
Application granted granted Critical
Publication of JP5762053B2 publication Critical patent/JP5762053B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、色素増感太陽電池、その製造方法、色素増感太陽電池モジュール及びその製造方法に関する。   The present invention relates to a dye-sensitized solar cell, a manufacturing method thereof, a dye-sensitized solar cell module, and a manufacturing method thereof.

色素増感太陽電池モジュールは、複数個の直列且つ電気的に接続された色素増感太陽電池を備えている。各色素増感太陽電池は作用極と、これに対向する対極と、これらを接合させる封止部とを有しており、作用極は、透明基板と、その上に形成された透明導電膜と、透明導電膜の上に設けられる酸化物半導体層とを有する。   The dye-sensitized solar cell module includes a plurality of dye-sensitized solar cells connected in series and electrically. Each dye-sensitized solar cell has a working electrode, a counter electrode facing the working electrode, and a sealing portion for joining them, and the working electrode includes a transparent substrate and a transparent conductive film formed thereon. And an oxide semiconductor layer provided over the transparent conductive film.

このような色素増感太陽電池モジュールにおいて、複数の色素増感太陽電池を直列に接続する方法として、従来、特許文献1に記載の方法が知られている。特許文献1に記載の方法では、チタン対極のうち作用極とは反対側の面であって封止部の外周より外側の領域に、他の色素増感太陽電池と接続するための銅又はニッケルからなる接続端子が接合される一方、隣接する色素増感太陽電池の透明導電膜上にも接続端子が接合され、これらの接続端子同士が導電線を介して接続されている。そして、特許文献1には、銅又はニッケルからなる接続端子をチタン対極に接合する方法として、接続端子によってチタン対極を加圧しながら、接続端子に超音波を印加することによりチタン対極に接続端子を接合する方法が記載されている。なお、接続端子をチタン対極のうち作用極とは反対側の面に接合するのは、隣接する色素増感太陽電池から又は外部からの電子をチタン対極を通じて電解質に注入するためである。   In such a dye-sensitized solar cell module, as a method of connecting a plurality of dye-sensitized solar cells in series, a method described in Patent Document 1 has been conventionally known. In the method described in Patent Document 1, copper or nickel for connecting to another dye-sensitized solar cell in a region on the opposite side of the working electrode from the titanium counter electrode and outside the outer periphery of the sealing portion. On the other hand, a connection terminal is also bonded onto a transparent conductive film of an adjacent dye-sensitized solar cell, and these connection terminals are connected to each other via a conductive wire. In Patent Document 1, as a method of joining a connection terminal made of copper or nickel to a titanium counter electrode, the connection terminal is connected to the titanium counter electrode by applying ultrasonic waves to the connection terminal while pressurizing the titanium counter electrode with the connection terminal. A method of joining is described. The reason why the connection terminal is joined to the surface of the titanium counter electrode opposite to the working electrode is to inject electrons from the adjacent dye-sensitized solar cell or from the outside into the electrolyte through the titanium counter electrode.

国際公開第2009/133689号International Publication No. 2009/13389

しかし、上記特許文献1に記載の方法は以下の課題を有していた。   However, the method described in Patent Document 1 has the following problems.

すなわち、上記特許文献1記載の方法では、チタン対極のうち作用極とは反対側の面であって封止部の外周より外側の領域に銅又はニッケルからなる接続端子が接合される。このため、チタン対極のうちのごく小さなスペースに端子を接合しなければならず、接続強度が必ずしも十分とは言えない。このため、この色素増感太陽電池を有する色素増感太陽電池モジュールは接続信頼性の点で改善の余地があった。   That is, in the method described in Patent Document 1, a connection terminal made of copper or nickel is bonded to a region of the titanium counter electrode opposite to the working electrode and outside the outer periphery of the sealing portion. For this reason, a terminal must be joined to a very small space of the titanium counter electrode, and the connection strength is not necessarily sufficient. For this reason, the dye-sensitized solar cell module having this dye-sensitized solar cell has room for improvement in terms of connection reliability.

接続信頼性を高めるためには、チタン対極における作用極と反対側の表面のうち、封止部の外周より内側の領域、すなわち酸化物半導体層の直上部に接続端子を設けることも考えられる。   In order to improve the connection reliability, it is conceivable to provide a connection terminal in a region inside the outer periphery of the sealing portion, that is, directly above the oxide semiconductor layer, on the surface of the titanium counter electrode opposite to the working electrode.

しかし、その場合には、接続端子の接合箇所が酸化物半導体層に近づくことになるため、酸化物半導体層に担持された光増感色素が劣化するおそれがある。   However, in that case, since the joint portion of the connection terminal approaches the oxide semiconductor layer, the photosensitizing dye carried on the oxide semiconductor layer may be deteriorated.

そこで、光増感色素の劣化を抑制しながら、優れた接続信頼性を有する色素増感太陽電池の製造方法が求められている。   Therefore, a method for producing a dye-sensitized solar cell having excellent connection reliability while suppressing deterioration of the photosensitizing dye is required.

本発明は上記事項に鑑みてなされたものであり、光増感色素の劣化を抑制しながら優れた接続信頼性を有する色素増感太陽電池、その製造方法、色素増感太陽電池モジュール及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above matters, a dye-sensitized solar cell having excellent connection reliability while suppressing deterioration of a photosensitizing dye, a manufacturing method thereof, a dye-sensitized solar cell module, and a manufacturing thereof. It aims to provide a method.

本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、以下の発明により上記課題を解決し得ることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by the following invention.

すなわち、本発明は、複数の色素増感太陽電池を直列且つ電気的に接続してなる色素増感太陽電池モジュールの製造方法において、前記複数の色素増感太陽電池を直列且つ電気的に接続する接続工程を含み、前記色素増感太陽電池を、透明基板及び前記透明基板上に設けられる透明導電膜を有する第1電極、並びに、不動態膜を形成する金属からなる金属基板を含む第2電極を準備する準備工程と、前記第1電極又は第2電極に酸化物半導体層を形成する酸化物半導体層形成工程と、前記酸化物半導体層に光増感色素を担持する色素担持工程と、前記酸化物半導体層上に電解質を配置する電解質配置工程と、前記第1電極と前記第2電極とを対向させて封止部により前記電解質を封止する封止工程と、前記第2電極の前記金属基板上であって前記第1電極と反対側に前記金属基板よりも低い抵抗を有する金属からなる直線状の接続部材を、前記第2電極のうち前記封止部の内側領域を通り前記封止部を越えて前記金属基板から張り出して固定する接続部材固定工程とを含む色素増感太陽電池の製造方法であって、前記接続部材固定工程において、前記接続部材を抵抗溶接により前記金属基板に接合することにより前記金属基板上に前記接続部材を固定する、色素増感太陽電池の製造方法によって製造し、前記接続工程において、隣り合う2つの色素増感太陽電池のうち一方の色素増感太陽電池の前記第2電極に設けられた前記接続部材を、前記金属基板から他方の色素増感太陽電池側に張り出した状態で、前記他方の色素増感太陽電池の前記第1電極に設けられた端子と接続する色素増感太陽電池モジュールの製造方法である。
That is, the present invention provides a method for producing a dye-sensitized solar cell module in which a plurality of dye-sensitized solar cells are connected in series and electrically, and the plurality of dye-sensitized solar cells are connected in series and electrically. A second electrode including a metal substrate made of a metal forming a passive film, and a first electrode having a transparent substrate and a transparent conductive film provided on the transparent substrate. A preparation step for preparing the oxide semiconductor layer forming step for forming an oxide semiconductor layer on the first electrode or the second electrode, a dye carrying step for carrying a photosensitizing dye on the oxide semiconductor layer, An electrolyte disposing step of disposing an electrolyte on the oxide semiconductor layer; a sealing step of sealing the electrolyte by a sealing portion with the first electrode and the second electrode facing each other; and the second electrode On a metal substrate The serial straight connecting member made of a metal having a lower resistance than the metal substrate on the side opposite to the first electrode, beyond upper the street the sealing portion on the inner region of the sealing portion of the second electrode wherein a connecting member fixing process and the method for manufacturing a dye-sensitized solar cell comprising of fixing to exit tension of a metal substrate, in the connecting member fixing process, bonded to the metal substrate by resistance welding the connecting member Te The connection member is fixed on the metal substrate by the manufacturing method of the dye-sensitized solar cell, and in the connecting step, one of the two dye-sensitized solar cells adjacent to each other A terminal provided on the first electrode of the other dye-sensitized solar cell in a state in which the connection member provided on the second electrode projects from the metal substrate to the other dye-sensitized solar cell side; Connect It is a manufacturing method of a dye-sensitized solar cell module.

この製造方法によれば、色素増感太陽電池が上述した製造方法で製造されることで、光増感色素の劣化が十分に抑制され且つ優れた接続信頼性を有する色素増感太陽電池が得られる。このため、接続工程において、第2電極の金属基板と、隣の色素増感太陽電池の第1電極の端子とを接続すると、優れた光電変換特性及び接続信頼性を有する色素増感太陽電池モジュールを得ることができる。またこの製造方法によれば、接続部材固定工程において、金属基板よりも低い抵抗を有する接続部材を抵抗溶接によって金属基板に接合することにより金属基板上に接続部材を固定する。ここで、抵抗溶接は、2本の電極を接続部材及び金属基板又はそのいずれか一方に押し当てて、両者間に電流を流すことにより、接続部材と金属基板との接触部分で熱を発生させ、この熱により接続部材及び金属基板の両方を溶融させて両者を接続させる方法である。このとき、熱は金属基板と接続部材の接触部分のみにしか発生しない。また、抵抗溶接においては、電流を流す時間は短時間(数ミリ秒)であるため、熱が発生する時間も短い。このため、熱が加えられる場所を局所領域に抑えることができる。従って、封止工程の後、第2電極の金属基板上に接続部材を固定する場合でも、酸化物半導体層に担持された光増感色素の劣化を十分に抑制することができる。
According to this manufacturing method, the dye-sensitized solar cell is manufactured by the above-described manufacturing method, thereby obtaining a dye-sensitized solar cell in which deterioration of the photosensitizing dye is sufficiently suppressed and having excellent connection reliability. It is done. For this reason, when the metal substrate of the second electrode and the terminal of the first electrode of the adjacent dye-sensitized solar cell are connected in the connecting step, the dye-sensitized solar cell module having excellent photoelectric conversion characteristics and connection reliability. Can be obtained. According to this manufacturing method, the connecting member fixing process to fix the connecting member on the metal substrate by joining a metal substrate connecting member by a resistance welding which has a lower resistance than the metal substrate. Here, resistance welding generates heat at the contact portion between the connection member and the metal substrate by pressing the two electrodes against the connection member and / or the metal substrate and passing an electric current between them. In this method, both the connecting member and the metal substrate are melted by this heat to connect them. At this time, heat is generated only at the contact portion between the metal substrate and the connecting member. Further, in resistance welding, the time for supplying current is short (several milliseconds), so the time for generating heat is also short. For this reason, the place where heat is applied can be suppressed to a local region. Therefore, even when the connection member is fixed on the metal substrate of the second electrode after the sealing step, the deterioration of the photosensitizing dye carried on the oxide semiconductor layer can be sufficiently suppressed.

さらに接続部材固定工程により、金属基板と接続部材とを溶融させて接合させるため、両者の間に合金部が形成される。このため、金属基板と接続部材との接合強度が大きくなり、得られた複数の色素増感太陽電池を直列に接続させて色素増感太陽電池モジュールを製造する場合に、優れた接続信頼性を有する色素増感太陽電池モジュールを得ることができる。また第2電極と接続部材との間に合金部が設けられることで、第2電極と接続部材との間の接触抵抗も低下させることができる。また本発明の製造方法では、接続部材を抵抗溶接により金属基板に接合することで、熱が加えられる場所を局所領域に抑えることができるため、接続部材を封止部の内側領域に固定することも可能である。この場合、接続部材から電解質までの間で、接続部材よりも抵抗の大きい金属基板を通る距離を短縮させることが可能となり、接続部材と電解質との間の抵抗を小さくすることが可能となる。   Further, in the connecting member fixing step, the metal substrate and the connecting member are melted and joined, so that an alloy portion is formed between them. For this reason, the bonding strength between the metal substrate and the connection member is increased, and excellent connection reliability is obtained when a plurality of dye-sensitized solar cells obtained are connected in series to manufacture a dye-sensitized solar cell module. A dye-sensitized solar cell module can be obtained. Moreover, the contact resistance between a 2nd electrode and a connection member can also be reduced by providing an alloy part between a 2nd electrode and a connection member. Moreover, in the manufacturing method of this invention, since the place where heat is applied can be restrained to a local area | region by joining a connection member to a metal substrate by resistance welding, fixing a connection member to the inner area | region of a sealing part. Is also possible. In this case, the distance between the connecting member and the electrolyte that passes through the metal substrate having a larger resistance than that of the connecting member can be shortened, and the resistance between the connecting member and the electrolyte can be reduced.

前記接続部材固定工程においては、抵抗溶接を、前記金属基板のうち前記第1電極とは反対側の表面に前記接続部材を接触させた状態で、2つの抵抗溶接用の電極をそれぞれ、前記接続部材、及び、前記金属基板の前記表面に当接させることによって行うことが好ましい。   In the connection member fixing step, two electrodes for resistance welding are connected in the state in which the connection member is brought into contact with the surface of the metal substrate opposite to the first electrode in resistance welding. It is preferable that the contact is made by contacting the member and the surface of the metal substrate.

この場合、第2電極と接続部材とを抵抗溶接により接続する際に、2つの抵抗溶接用電極を第2電極の金属基板のうち第1電極側の表面に押し当てずに済む。このため、金属基板のうち第1電極側の表面における変形を十分に防止することができる。また第2電極の金属基板のうち第1電極側の表面に抵抗溶接用電極の溶着を防止できるという利点もある。   In this case, when the second electrode and the connection member are connected by resistance welding, it is not necessary to press the two resistance welding electrodes against the surface on the first electrode side of the metal substrate of the second electrode. For this reason, the deformation | transformation in the surface at the side of the 1st electrode among metal substrates can fully be prevented. There is also an advantage that welding of the resistance welding electrode can be prevented on the surface of the metal substrate of the second electrode on the first electrode side.

前記接続部材固定工程において、抵抗溶接を3〜20m秒行うことが好ましい。   In the connecting member fixing step, resistance welding is preferably performed for 3 to 20 milliseconds.

この場合、合金部の厚さが適度になり、接続部材と金属基板との間で接合強度と抵抗の両方がより良好となる。   In this case, the thickness of the alloy portion becomes appropriate, and both the bonding strength and the resistance are improved between the connection member and the metal substrate.

前記接続部材の厚さは9〜200μmであることが好ましい。   The thickness of the connecting member is preferably 9 to 200 μm.

この場合、接続部材の厚さが9μm以上であると、9μm未満である場合に比べて強度が十分に向上し、抵抗溶接に際して変形しにくくなる。一方、接続部材の厚さが、200μm以下であると、200μmを超える場合に比べてより短時間で第2電極と接続部材とを接続できる。また第2電極のうち第1電極と反対側の表面の凹凸を少なくすることができ、平坦な面上に安定して設置できる。   In this case, when the thickness of the connection member is 9 μm or more, the strength is sufficiently improved as compared with the case where the thickness is less than 9 μm, and the connection member is not easily deformed during resistance welding. On the other hand, when the thickness of the connecting member is 200 μm or less, the second electrode and the connecting member can be connected in a shorter time than when the thickness exceeds 200 μm. Moreover, the unevenness | corrugation of the surface on the opposite side to a 1st electrode among 2nd electrodes can be decreased, and it can install stably on a flat surface.

前記第2電極の厚さは9〜200μmであることが好ましい。第2電極の厚さが9μm以上であると、9μm未満である場合に比べて第2電極の強度がより大きいため、抵抗溶接に際して変形しにくくなる。一方、第2電極の厚さが、200μm以下であると、200μmを超える場合に比べてより短時間で第2電極と接続部材とを接続できる。また第2電極に可撓性を持たせることができる。   The thickness of the second electrode is preferably 9 to 200 μm. If the thickness of the second electrode is 9 μm or more, the strength of the second electrode is greater than when the thickness is less than 9 μm. On the other hand, when the thickness of the second electrode is 200 μm or less, the second electrode and the connection member can be connected in a shorter time than when the thickness exceeds 200 μm. Further, the second electrode can be flexible.

上記接続工程において、隣り合う2つの色素増感太陽電池のうち一方の色素増感太陽電池の前記接続部材と、他方の色素増感太陽電池の前記第1電極に設けられた前記端子とを抵抗溶接により直接接続することが好ましい。   In the connecting step, the connecting member of one dye-sensitized solar cell of two adjacent dye-sensitized solar cells and the terminal provided on the first electrode of the other dye-sensitized solar cell are resisted. It is preferable to connect directly by welding.

この場合、隣り合う2つの色素増感太陽電池のうち一方の色素増感太陽電池の接続部材と、他方の色素増感太陽電池の第1電極の端子とを、はんだ等を用いる場合に比べて、簡便に接合させることができるとともに、接続強度を向上させることがき、接触抵抗も低下させることができる。また、抵抗溶接は、一方の色素増感太陽電池の接続部材と、他方の色素増感太陽電池の第1電極の端子とを接合する際、抵抗溶接用の電極を局所的に当てて行うため、熱が局所的にしか発生しない。このため、はんだ等を用いて接合を行う場合に比べて、酸化物半導体層に担持された色素や封止部の劣化がより十分に抑制される。   In this case, the connecting member of one dye-sensitized solar cell of the two adjacent dye-sensitized solar cells and the terminal of the first electrode of the other dye-sensitized solar cell are compared with the case where solder or the like is used. In addition to being able to be easily joined, the connection strength can be improved and the contact resistance can also be reduced. Further, resistance welding is performed by locally applying an electrode for resistance welding when joining the connecting member of one dye-sensitized solar cell and the terminal of the first electrode of the other dye-sensitized solar cell. , Heat is generated only locally. For this reason, compared with the case where it joins using solder etc., degradation of the pigment and the sealing part carried by the oxide semiconductor layer is suppressed more fully.

また本発明は、複数の色素増感太陽電池を直列且つ電気的に接続してなる色素増感太陽電池モジュールであって、前記色素増感太陽電池が、透明基板及び前記透明基板上に設けられる透明導電膜を有する第1電極と、不動態膜を形成する金属からなる金属基板を含む第2電極と、前記第1電極又は第2電極に設けられる酸化物半導体層と、前記第1電極と前記第2電極との間に設けられる電解質と、前記第1電極及び前記第2電極を接合させる封止部と、前記第2電極のうち前記第1電極と反対側の表面に設けられ、前記金属基板の金属よりも低い抵抗を有する金属からなる直線状の接続部材とを備えており、前記色素増感太陽電池において、前記第2電極と前記接続部材との間に、前記金属基板の金属と前記接続部材の金属との合金からなる合金部が設けられ、隣り合う2つの色素増感太陽電池のうち一方の色素増感太陽電池の前記第2電極に設けられた前記接続部材と、他方の色素増感太陽電池の前記第1電極に設けられた端子とが接続され、前記接続部材が、前記第2電極のうち前記封止部の内側領域を通り前記封止部を越えて前記金属基板から前記他方の色素増感太陽電池側まで張り出している色素増感太陽電池モジュールである。 Moreover, this invention is a dye-sensitized solar cell module formed by electrically connecting a plurality of dye-sensitized solar cells in series, and the dye-sensitized solar cell is provided on the transparent substrate and the transparent substrate. A first electrode having a transparent conductive film; a second electrode including a metal substrate made of a metal forming a passive film; an oxide semiconductor layer provided on the first electrode or the second electrode; the first electrode; An electrolyte provided between the second electrode, a sealing portion for joining the first electrode and the second electrode, and a surface of the second electrode opposite to the first electrode; A linear connecting member made of a metal having a lower resistance than that of the metal of the metal substrate, and in the dye-sensitized solar cell, the metal of the metal substrate is interposed between the second electrode and the connecting member. And an alloy of the connecting member metal. The connection member provided on the second electrode of one dye-sensitized solar cell of two adjacent dye-sensitized solar cells provided with an alloy part, and the first electrode of the other dye-sensitized solar cell to be a terminal provided to connect the connection member, the second the other dye-sensitized solar from the metal substrate beyond upper street the sealing portion on the inner region of the sealing portion of the electrode This is a dye-sensitized solar cell module extending to the battery side.

この色素増感太陽電池モジュールによれば、個々の色素増感太陽電池が色素の劣化が十分に抑制され且つ優れた接続信頼性を有する。このため、優れた光電変換特性及び接続信頼性を有する色素増感太陽電池モジュールが実現される。またこの発明によれば、第2電極と接続部材との間に、第2電極の金属と接続部材の金属との合金からなる合金部が設けられているため、第2電極と接続部材との接続強度が大きくなり、優れた接続信頼性が得られる。また第2電極と接続部材との間に合金部が設けられることで、第2電極と接続部材との間の接触抵抗も低下させることができる。
According to this dye-sensitized solar cell module, each dye-sensitized solar cell has sufficiently suppressed deterioration of the dye and has excellent connection reliability. For this reason, the dye-sensitized solar cell module which has the outstanding photoelectric conversion characteristic and connection reliability is implement | achieved. According to this invention, since the alloy part made of an alloy of the metal of the second electrode and the metal of the connection member is provided between the second electrode and the connection member, the second electrode and the connection member Connection strength is increased, and excellent connection reliability is obtained. Moreover, the contact resistance between a 2nd electrode and a connection member can also be reduced by providing an alloy part between a 2nd electrode and a connection member.

上記色素増感太陽電池モジュールにおいて、前記接続部材と前記端子との間に、前記接続部材を構成する金属と前記端子を構成する金属との合金からなる合金部が設けられていることが好ましい。
Te above dye-sensitized solar cell module odor, between the said connecting member terminals, it is preferable that an alloy portion formed of an alloy of a metal constituting the terminals and the metal constituting the connecting member is provided .

この場合、端子と接続部材との接続強度が大きくなり、優れた接続信頼性が得られる。また端子と接続部材との間に合金部が設けられることで、端子と接続部材との間の接触抵抗も低下させることができる。   In this case, the connection strength between the terminal and the connection member is increased, and excellent connection reliability is obtained. Moreover, the contact resistance between a terminal and a connection member can also be reduced by providing an alloy part between a terminal and a connection member.

本発明によれば、光増感色素の劣化が十分に抑制され、優れた接続信頼性を有する色素増感太陽電池、その製造方法、色素増感太陽電池モジュール及びその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, degradation of a photosensitizing dye is fully suppressed and the dye-sensitized solar cell which has the outstanding connection reliability, its manufacturing method, a dye-sensitized solar cell module, and its manufacturing method are provided.

本発明の色素増感太陽電池モジュールの一実施形態を示す部分断面図である。It is a fragmentary sectional view which shows one Embodiment of the dye-sensitized solar cell module of this invention. 図1の部分拡大図である。It is the elements on larger scale of FIG. 図1の接続部材を金属基板に接合している工程を示す部分断面図である。It is a fragmentary sectional view which shows the process of joining the connection member of FIG. 1 to the metal substrate. 本発明の色素増感太陽電池モジュールの他の実施形態を示す部分断面図である。It is a fragmentary sectional view which shows other embodiment of the dye-sensitized solar cell module of this invention.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<第1実施形態> まず本発明の色素増感太陽電池モジュールの第1実施形態について説明する。図1は、本発明の色素増感太陽電池モジュールの一実施形態を示す部分断面図である。   First Embodiment First, a first embodiment of the dye-sensitized solar cell module of the present invention will be described. FIG. 1 is a partial cross-sectional view showing an embodiment of the dye-sensitized solar cell module of the present invention.

図1に示すように、色素増感太陽電池モジュール100は、複数(図1では2つ)の色素増感太陽電池50を有し、複数の色素増感太陽電池50は直列且つ電気的に接続されている。以下、説明の便宜上、色素増感太陽電池モジュール100において隣り合う2つの色素増感太陽電池50を色素増感太陽電池50A,50Bと呼ぶことがある。   As shown in FIG. 1, the dye-sensitized solar cell module 100 has a plurality (two in FIG. 1) of dye-sensitized solar cells 50, and the plurality of dye-sensitized solar cells 50 are connected in series and electrically. Has been. Hereinafter, for convenience of explanation, two adjacent dye-sensitized solar cells 50 in the dye-sensitized solar cell module 100 may be referred to as dye-sensitized solar cells 50A and 50B.

まず色素増感太陽電池50Aについて説明する。   First, the dye-sensitized solar cell 50A will be described.

色素増感太陽電池50Aは、作用極10と、作用極10に対向する対極20と、作用極10及び対極20を接合させる封止部30と、作用極10、対極20及び環状の封止部30によって形成されるセル空間に充填される電解質40とを備えている。   The dye-sensitized solar cell 50A includes a working electrode 10, a counter electrode 20 facing the working electrode 10, a sealing portion 30 that joins the working electrode 10 and the counter electrode 20, and the working electrode 10, the counter electrode 20, and an annular sealing portion. 30 and an electrolyte 40 filled in a cell space formed by 30.

作用極10は、透明基板11及び透明基板11の上に設けられる透明導電膜12からなる透明導電性基板15と、透明導電性基板15の透明導電膜12の上に設けられる酸化物半導体層13と、透明導電膜12の上において酸化物半導体層13の各々を包囲するように設けられる配線部17とを有している。配線部17は、透明導電膜12上に設けられる集電配線14と、集電配線14を覆う配線保護層16とを有している。酸化物半導体層13には光増感色素が担持されている。また、透明導電膜12上であって封止部30の外側には、集電配線14に接続される端子90が設けられ、端子90の上にははんだ70が設けられている。本実施形態では、透明導電性基板15によって第1電極が構成されている。   The working electrode 10 includes a transparent substrate 11 and a transparent conductive substrate 15 made of a transparent conductive film 12 provided on the transparent substrate 11, and an oxide semiconductor layer 13 provided on the transparent conductive film 12 of the transparent conductive substrate 15. And a wiring portion 17 provided so as to surround each of the oxide semiconductor layers 13 on the transparent conductive film 12. The wiring portion 17 includes a current collecting wiring 14 provided on the transparent conductive film 12 and a wiring protective layer 16 that covers the current collecting wiring 14. A photosensitizing dye is supported on the oxide semiconductor layer 13. A terminal 90 connected to the current collector wiring 14 is provided on the transparent conductive film 12 and outside the sealing portion 30, and a solder 70 is provided on the terminal 90. In the present embodiment, the first electrode is constituted by the transparent conductive substrate 15.

色素増感太陽電池50Aの透明基板11は、色素増感太陽電池モジュール100における全色素増感太陽電池50A及び50Bにおいて共通の透明基板となっている。   The transparent substrate 11 of the dye-sensitized solar cell 50A is a transparent substrate common to all the dye-sensitized solar cells 50A and 50B in the dye-sensitized solar cell module 100.

一方、対極20は、不動態を形成する金属基板21と金属基板21の作用極10側に設けられて触媒反応を促進する触媒層22とを備えている。また対極20の金属基板21には、作用極10とは反対側の表面に、金属基板21よりも低い抵抗を有する接続部材60が設けられている。本実施形態では、接続部材60は、金属基板21の一部にのみ設けられている。ここで、図2に示すように、接続部材60と対極20の金属基板21との間には、金属基板21を構成する金属と接続部材60を構成する金属との合金からなる合金部65が設けられている。また図1に示すように、接続部材60の上には、はんだ70が設けられている。本実施形態では、対極20によって第2電極が構成されている。   On the other hand, the counter electrode 20 includes a metal substrate 21 that forms a passive state and a catalyst layer 22 that is provided on the working electrode 10 side of the metal substrate 21 and promotes a catalytic reaction. A connecting member 60 having a lower resistance than the metal substrate 21 is provided on the surface of the counter electrode 20 opposite to the working electrode 10 on the metal substrate 21. In the present embodiment, the connection member 60 is provided only on a part of the metal substrate 21. Here, as shown in FIG. 2, between the connection member 60 and the metal substrate 21 of the counter electrode 20, there is an alloy portion 65 made of an alloy of the metal constituting the metal substrate 21 and the metal constituting the connection member 60. Is provided. As shown in FIG. 1, solder 70 is provided on the connection member 60. In the present embodiment, the second electrode is constituted by the counter electrode 20.

色素増感太陽電池50Aの隣りの色素増感太陽電池50Bも、色素増感太陽電池50Aと同一の構成を有している。   The dye-sensitized solar cell 50B adjacent to the dye-sensitized solar cell 50A also has the same configuration as the dye-sensitized solar cell 50A.

そして、色素増感太陽電池50Aと色素増感太陽電池50Bとは導電線80によって接続されている。具体的には、導電線80の一端は、色素増感太陽電池50Aの接続部材60にはんだ70によって接続され、導電線80の他端は、色素増感太陽電池50Bの端子90にはんだ70によって接続されている。   The dye-sensitized solar cell 50A and the dye-sensitized solar cell 50B are connected by a conductive wire 80. Specifically, one end of the conductive wire 80 is connected to the connecting member 60 of the dye-sensitized solar cell 50A by the solder 70, and the other end of the conductive wire 80 is connected to the terminal 90 of the dye-sensitized solar cell 50B by the solder 70. It is connected.

色素増感太陽電池モジュール100によれば、対極20と接続部材60との間に、対極20の金属基板を構成する金属と接続部材60の金属との合金からなる合金部65が設けられている。このため、対極20と接続部材60との接続強度が大きくなり、優れた接続信頼性を有する。対極20と接続部材60との間に合金部65が設けられることで、対極20と接続部材60との間の接触抵抗も低下させることができる。   According to the dye-sensitized solar cell module 100, the alloy part 65 made of an alloy of the metal constituting the metal substrate of the counter electrode 20 and the metal of the connection member 60 is provided between the counter electrode 20 and the connection member 60. . For this reason, the connection strength between the counter electrode 20 and the connection member 60 is increased, and the connection reliability is excellent. By providing the alloy part 65 between the counter electrode 20 and the connection member 60, the contact resistance between the counter electrode 20 and the connection member 60 can also be reduced.

以下、作用極10、光増感色素、対極20、封止部30、電解質40、接続部材60、はんだ70、導電線80および端子90について詳細に説明する。   Hereinafter, the working electrode 10, the photosensitizing dye, the counter electrode 20, the sealing portion 30, the electrolyte 40, the connection member 60, the solder 70, the conductive wire 80, and the terminal 90 will be described in detail.

(作用極)
作用極10は、上述したように、透明基板11及び透明基板11上に設けられる透明導電膜12から成る透明導電性基板15と、透明導電性基板15の透明導電膜12上に設けられ、光増感色素が担持される多孔質酸化物半導体層13とを備える。
(Working electrode)
As described above, the working electrode 10 is provided on the transparent conductive substrate 15 including the transparent substrate 11 and the transparent conductive film 12 provided on the transparent substrate 11, and the transparent conductive film 12 of the transparent conductive substrate 15. And a porous oxide semiconductor layer 13 on which a sensitizing dye is supported.

透明基板11は、光透過性の材料からなる基板により構成される。このような材料としては、ガラス、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)などが挙げられ、通常、光電変換素子の透明基材として用いられる材料であればいかなるものでも用いることができる。透明基板11は、これらの中から電解質40への耐性などを考慮して適宜選択される。また、透明基板11は、できる限り光透過性に優れる基材が好ましく、光透過率が90%以上の基材がより好ましい。   The transparent substrate 11 is composed of a substrate made of a light transmissive material. Examples of such materials include glass, polyethylene terephthalate (PET), polycarbonate (PC), polyethersulfone (PES), polyethylene naphthalate (PEN), and are usually used as a transparent substrate for photoelectric conversion elements. Any material can be used. The transparent substrate 11 is appropriately selected from these in consideration of resistance to the electrolyte 40 and the like. Further, the transparent substrate 11 is preferably a base material that is as excellent in light transmittance as possible, and more preferably a base material having a light transmittance of 90% or more.

透明導電膜12は、作用極10の透明性を著しく損なわない構造とするために、導電性金属酸化物からなる薄膜であることが好ましい。このような導電性金属酸化物としては、例えば、酸化インジウムスズ(ITO)、フッ素添加酸化スズ(FTO)、酸化スズ(SnO)などが挙げられる。また、透明導電膜12は、単層でも、異なる導電性金属酸化物で構成される複数の層の積層体で構成されてもよい。透明導電膜12が単層で構成される場合、透明導電膜12は、成膜が容易かつ製造コストが安価であるという観点から、ITO、FTOが好ましく、また、高い耐熱性及び耐薬品性を有する観点から、FTOで構成されることがより好ましい。 The transparent conductive film 12 is preferably a thin film made of a conductive metal oxide so that the transparency of the working electrode 10 is not significantly impaired. Examples of such conductive metal oxides include indium tin oxide (ITO), fluorine-added tin oxide (FTO), and tin oxide (SnO 2 ). Further, the transparent conductive film 12 may be a single layer or a laminate of a plurality of layers made of different conductive metal oxides. When the transparent conductive film 12 is composed of a single layer, the transparent conductive film 12 is preferably ITO or FTO from the viewpoint of easy film formation and low manufacturing cost, and has high heat resistance and chemical resistance. From the viewpoint of having, it is more preferable that it is composed of FTO.

また、透明導電膜12が複数の層で構成される積層体により構成されると、各層の特性を反映させることが可能となることから好ましい。中でも、ITOからなる膜にFTOからなる膜が積層されてなる積層膜であることが好ましい。この場合、高い導電性、耐熱性及び耐薬品性を持つ透明導電膜12が実現でき、可視域における光の吸収量が少なく、導電率が高い透明導電性基板を構成することができる。また、透明導電膜12の厚さは例えば0.01μm〜2μmの範囲にすればよい。   Moreover, it is preferable that the transparent conductive film 12 is formed of a laminated body including a plurality of layers because the characteristics of each layer can be reflected. Among these, a laminated film in which a film made of FTO is laminated on a film made of ITO is preferable. In this case, the transparent conductive film 12 having high conductivity, heat resistance, and chemical resistance can be realized, and a transparent conductive substrate with low light absorption in the visible range and high conductivity can be configured. The thickness of the transparent conductive film 12 may be in the range of 0.01 μm to 2 μm, for example.

多孔質酸化物半導体層13を形成する酸化物半導体としては、特に限定されず、通常、光電変換素子用の多孔質酸化物半導体層を形成するのに用いられるものであれば、いかなるものでも用いることができる。このような酸化物半導体としては、例えば、酸化チタン(TiO)、シリカ(SiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)、チタン酸ストロンチウム(SrTiO)酸化インジウム(In)、酸化ジルコニウム(ZrO)、酸化タリウム(Ta)、酸化ランタン(La)、酸化イットリウム(Y)、酸化ホルミウム(Ho)、酸化ビスマス(Bi)、酸化セリウム(CeO)、酸化アルミニウム(Al)が挙げられる。これらは単独で又は2種以上を組み合わせて使用することができる。 The oxide semiconductor for forming the porous oxide semiconductor layer 13 is not particularly limited, and any oxide semiconductor can be used as long as it is usually used for forming a porous oxide semiconductor layer for a photoelectric conversion element. be able to. Examples of such an oxide semiconductor include titanium oxide (TiO 2 ), silica (SiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), and niobium oxide (Nb 2 O). 5 ), strontium titanate (SrTiO 3 ) indium oxide (In 3 O 3 ), zirconium oxide (ZrO 2 ), thallium oxide (Ta 2 O 5 ), lanthanum oxide (La 2 O 3 ), yttrium oxide (Y 2 O 3 ), holmium oxide (Ho 2 O 3 ), bismuth oxide (Bi 2 O 3 ), cerium oxide (CeO 2 ), and aluminum oxide (Al 2 O 3 ). These can be used alone or in combination of two or more.

これら酸化物半導体の粒子の平均粒径は1〜1000nmであることが、色素で覆われた酸化物半導体の表面積が大きくなり、即ち光電変換を行う場が広くなり、より多くの電子を生成することができることから好ましい。また、多孔質酸化物半導体層13は、粒度分布の異なる酸化物半導体粒子を積層させて構成されることが好ましい。この場合、半導体層内で繰り返し光の反射を起こさせることが可能となり、多孔質酸化物半導体層13の外部へ逃がす入射光を少なくして、効率よく光を電子に変換することができる。多孔質酸化物半導体層13の厚さは、例えば0.5〜50μmとすればよい。なお、多孔質酸化物半導体層13は、異なる材料からなる複数の酸化物半導体の積層体で構成することもできる。   The average particle diameter of these oxide semiconductor particles is 1-1000 nm, the surface area of the oxide semiconductor covered with the dye is increased, that is, the field for photoelectric conversion is increased, and more electrons are generated. This is preferable. The porous oxide semiconductor layer 13 is preferably configured by stacking oxide semiconductor particles having different particle size distributions. In this case, light can be repeatedly reflected in the semiconductor layer, and incident light that escapes to the outside of the porous oxide semiconductor layer 13 can be reduced, and light can be efficiently converted into electrons. The thickness of the porous oxide semiconductor layer 13 may be, for example, 0.5 to 50 μm. In addition, the porous oxide semiconductor layer 13 can also be comprised with the laminated body of the some oxide semiconductor which consists of a different material.

光増感色素としては、ビピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポリフィリン、フタロシアニンなどの含金属錯体、エオシン、ローダミン、メロシアニンなどの有機色素などが挙げられ、これらの中から、用途、使用半導体に適した挙動を示すものを特に限定なく選ぶことができる。具体的には、N3、N719、ブラックダイ(Black dye)などを使用することができる。   Examples of the photosensitizing dye include a ruthenium complex containing a bipyridine structure, a terpyridine structure or the like as a ligand, a metal-containing complex such as polyphylline or phthalocyanine, and an organic dye such as eosin, rhodamine or merocyanine. The thing which shows the behavior suitable for a use and a semiconductor to be used can be selected without particular limitation. Specifically, N3, N719, a black dye, or the like can be used.

(対極)
対極20は、不動態を形成する金属基板21と、還元反応を促進する触媒層22とで構成される。不動態を形成する金属基板21を構成する金属としては、例えばチタン、ニッケル、ニオブ、アルミニウム、タングステン、SUSなどの電解質40に耐久性を有するものを用いることができる。触媒層22は、白金や炭素などからなる。
(Counter electrode)
The counter electrode 20 includes a metal substrate 21 that forms a passive state and a catalyst layer 22 that promotes a reduction reaction. As the metal constituting the metal substrate 21 that forms the passivity, for example, a material having durability in the electrolyte 40 such as titanium, nickel, niobium, aluminum, tungsten, or SUS can be used. The catalyst layer 22 is made of platinum or carbon.

(封止部)
封止部30は、作用極10と対極20とを連結しており、作用極10と対極20との間の電解質40は、封止部30によって包囲されることで封止される。封止部30を構成する材料としては、例えばアイオノマー、エチレン−ビニル酢酸無水物共重合体、エチレン−メタクリル酸共重合体、エチレン−ビニルアルコール共重合体、紫外線硬化樹脂、及び、ビニルアルコール重合体が挙げられる。なお、封止部30は樹脂のみで構成されてもよいし、樹脂と無機フィラーとで構成されていてもよい。
(Sealing part)
The sealing part 30 connects the working electrode 10 and the counter electrode 20, and the electrolyte 40 between the working electrode 10 and the counter electrode 20 is sealed by being surrounded by the sealing part 30. Examples of the material constituting the sealing portion 30 include ionomer, ethylene-vinyl acetic anhydride copolymer, ethylene-methacrylic acid copolymer, ethylene-vinyl alcohol copolymer, ultraviolet curable resin, and vinyl alcohol polymer. Is mentioned. In addition, the sealing part 30 may be comprised only with resin, and may be comprised with resin and an inorganic filler.

(電解質)
電解質40は、多孔質酸化物半導体層13内に電解液を含浸させてなるものか、または、多孔質酸化物半導体層13内に電解液を含浸させた後に、この電解液を適当なゲル化剤を用いてゲル化(擬固体化)して、多孔質酸化物半導体層13と一体に形成されてなるもの、あるいは、イオン性液体、酸化物半導体粒子若しくは導電性粒子を含むゲル状の電解質を用いることができる。
(Electrolytes)
The electrolyte 40 is formed by impregnating the porous oxide semiconductor layer 13 with an electrolytic solution, or after impregnating the porous oxide semiconductor layer 13 with the electrolytic solution, the electrolytic solution is appropriately gelled. Gelled (quasi-solidified) using an agent and formed integrally with the porous oxide semiconductor layer 13, or a gel electrolyte containing an ionic liquid, oxide semiconductor particles, or conductive particles Can be used.

上記電解液としては、ヨウ素、ヨウ化物イオン、ターシャリ−ブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解されてなるものが用いられる。この電解液をゲル化する際に用いられるゲル化剤としては、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などが挙げられる。   As said electrolyte solution, what melt | dissolved electrolyte components, such as an iodine, iodide ion, and tertiary butyl pyridine, in organic solvents, such as ethylene carbonate and methoxyacetonitrile, is used. Examples of the gelling agent used for gelling the electrolytic solution include polyvinylidene fluoride, a polyethylene oxide derivative, and an amino acid derivative.

上記イオン性液体としては、特に限定されるものではないが、室温で液体であり、四級化された窒素原子を有する化合物をカチオンまたはアニオンとした常温溶融性塩が挙げられる。常温溶融性塩のカチオンとしては、四級化イミダゾリウム誘導体、四級化ピリジニウム誘導体、四級化アンモニウム誘導体などが挙げられる。常温溶融塩のアニオンとしては、BF 、PF 、F(HF) 、ビストリフルオロメチルスルホニルイミド[N(CFSO ]、ヨウ化物イオンなどが挙げられる。イオン性液体の具体例としては、四級化イミダゾリウム系カチオンとヨウ化物イオンまたはビストリフルオロメチルスルホニルイミドイオンなどからなる塩類を挙げることができる。 Although it does not specifically limit as said ionic liquid, Room temperature meltable salt which is a liquid at room temperature and made the compound which has the quaternized nitrogen atom into a cation or an anion is mentioned. Examples of the cation of the room temperature melting salt include quaternized imidazolium derivatives, quaternized pyridinium derivatives, quaternized ammonium derivatives and the like. Examples of the anion of the room temperature molten salt include BF 4 , PF 6 , F (HF) n , bistrifluoromethylsulfonylimide [N (CF 3 SO 2 ) 2 ], iodide ions, and the like. Specific examples of the ionic liquid include salts composed of a quaternized imidazolium cation and iodide ion or bistrifluoromethylsulfonylimide ion.

上記酸化物半導体粒子としては、物質の種類や粒子サイズなどは特に限定されないが、イオン性液体を主体とする電解液との混和性に優れ、この電解液をゲル化させるようなものが用いられる。また、酸化物半導体粒子は、電解質40の導電性を低下させることがなく、電解質40に含まれる他の共存成分に対する化学的安定性に優れることが必要である。特に、電解質40がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合であっても、酸化物半導体粒子は、酸化反応による劣化を生じないものが好ましい。   The oxide semiconductor particles are not particularly limited in terms of the type and particle size of the substance, but those that are excellent in miscibility with an electrolytic solution mainly composed of an ionic liquid and that gel the electrolytic solution are used. . In addition, the oxide semiconductor particles are required to have excellent chemical stability against other coexisting components contained in the electrolyte 40 without reducing the conductivity of the electrolyte 40. In particular, even when the electrolyte 40 includes a redox pair such as iodine / iodide ions or bromine / bromide ions, the oxide semiconductor particles are preferably those that do not deteriorate due to an oxidation reaction.

このような酸化物半導体粒子としては、TiO、SnO、WO、ZnO、Nb、In、ZrO、Ta、La、SrTiO、Y、Ho、Bi、CeO、Alからなる群から選択される1種または2種以上の混合物が好ましく、二酸化チタン微粒子(ナノ粒子)が特に好ましい。この二酸化チタンの平均粒径は2nm〜1000nm程度が好ましい。 Examples of such oxide semiconductor particles include TiO 2 , SnO 2 , WO 3 , ZnO, Nb 2 O 5 , In 2 O 3 , ZrO 2 , Ta 2 O 5 , La 2 O 3 , SrTiO 3 , Y 2 O. 3 , Ho 2 O 3 , Bi 2 O 3 , CeO 2 , Al 2 O 3 are preferably selected from one or a mixture of two or more, and titanium dioxide fine particles (nanoparticles) are particularly preferable. The average particle diameter of the titanium dioxide is preferably about 2 nm to 1000 nm.

上記導電性粒子としては、導電体や半導体など、導電性を有する粒子が用いられる。この導電性粒子の比抵抗の範囲は、好ましくは1.0×10−2Ω・cm以下であり、より好ましくは、1.0×10−3Ω・cm以下である。また、導電性粒子の種類や粒子サイズなどは特に限定されないが、イオン性液体を主体とする電解液との混和性に優れ、この電解液をゲル化するようなものが用いられる。このような導電性粒子には、電解質40中において導電性が低下しにくく、電解質40に含まれる他の共存成分に対する化学的安定性に優れることが求められる。特に、電解質40がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合でも、酸化反応などによる劣化を生じないものが好ましい。 As the conductive particles, conductive particles such as conductors and semiconductors are used. The range of the specific resistance of the conductive particles is preferably 1.0 × 10 −2 Ω · cm or less, and more preferably 1.0 × 10 −3 Ω · cm or less. Further, the type and particle size of the conductive particles are not particularly limited, and those that are excellent in miscibility with an electrolytic solution mainly composed of an ionic liquid and that gel the electrolytic solution are used. Such conductive particles are required to have excellent chemical stability with respect to other coexisting components contained in the electrolyte 40 because the conductivity is not easily lowered in the electrolyte 40. In particular, even when the electrolyte 40 contains an oxidation-reduction pair such as iodine / iodide ions or bromine / bromide ions, an electrolyte that does not deteriorate due to an oxidation reaction or the like is preferable.

このような導電性粒子としては、カーボンを主体とする物質からなるものが挙げられ、具体例としては、カーボンナノチューブ、カーボンファイバ、カーボンブラックなどの粒子を例示できる。これらの物質の製造方法はいずれも公知であり、また、市販品を用いることもできる。   Examples of such conductive particles include those composed mainly of carbon, and specific examples include particles such as carbon nanotubes, carbon fibers, and carbon black. All methods for producing these substances are known, and commercially available products can also be used.

(接続部材)
対極20における作用極10側とは反対側の表面、すなわち第1電極10の金属基板21の表面には、接続部材60が形成される。接続部材60は、2つの色素増感太陽電池50同士を接続するためのものである。接続部材60を構成する金属としては、対極20よりも低い抵抗を有する金属が用いられる。このような金属としては、銅、銀、ニッケルなどが挙げられるが、導電性及びはんだ濡れ性に優れることから、銅を用いることが好ましい。
(Connecting member)
A connection member 60 is formed on the surface of the counter electrode 20 opposite to the working electrode 10 side, that is, on the surface of the metal substrate 21 of the first electrode 10. The connection member 60 is for connecting the two dye-sensitized solar cells 50 to each other. As the metal constituting the connection member 60, a metal having a resistance lower than that of the counter electrode 20 is used. Examples of such a metal include copper, silver, nickel, and the like. However, it is preferable to use copper because it is excellent in conductivity and solder wettability.

接続部材60は、対極20のうち電解質40に対向する部分に設けられていることが好ましい。この場合、接続部材60から電解質40までの間で、接続部材60よりも抵抗の大きい金属基板21を通る距離を短縮させることが可能となり、接続部材60と電解質40との間の抵抗を小さくすることが可能となる。   The connecting member 60 is preferably provided in a portion of the counter electrode 20 that faces the electrolyte 40. In this case, it is possible to shorten the distance passing through the metal substrate 21 having a resistance higher than that of the connection member 60 between the connection member 60 and the electrolyte 40, thereby reducing the resistance between the connection member 60 and the electrolyte 40. It becomes possible.

(はんだ) はんだ70としては、例えば高融点はんだを用いることができる。高融点はんだは、融点が200℃以上(例えば210℃以上)であるものである。このような高融点はんだとしては、Sn−Cu系、Sn−Ag系、Sn−Ag−Cu系、Sn−Au系、Sn−Sb系、Sn−Pb系(Pb含有量は例えば85質量%超)などを挙げることができる。これらのうち1つを単独で使用してもよいし、2以上を併用してもよい。   (Solder) As the solder 70, for example, a high melting point solder can be used. The high melting point solder has a melting point of 200 ° C. or higher (for example, 210 ° C. or higher). As such a high melting point solder, Sn-Cu type, Sn-Ag type, Sn-Ag-Cu type, Sn-Au type, Sn-Sb type, Sn-Pb type (Pb content is more than 85% by mass, for example) ) And the like. One of these may be used alone, or two or more may be used in combination.

またはんだ70としては、高融点はんだより融点が低いはんだ(以下、低融点はんだということがある)を用いることも可能である。低融点はんだとしては、例えば融点が200℃未満であるものを用いるのが好適である。このようなはんだとしては、共晶タイプ(例えばSn−Pb等)や、鉛フリータイプ(例えばSn−Ag、Sn−Cu、Sn−Ag−Cu、Sn−Zn、Sn−Zn―B等)などが挙げられる。   As the solder 70, it is also possible to use a solder having a lower melting point than the high melting point solder (hereinafter sometimes referred to as a low melting point solder). As the low melting point solder, for example, a solder having a melting point of less than 200 ° C. is preferably used. Examples of such solder include eutectic type (for example, Sn-Pb), lead-free type (for example, Sn-Ag, Sn-Cu, Sn-Ag-Cu, Sn-Zn, Sn-Zn-B). Is mentioned.

低融点はんだを使用することによって、導電線80と接続部材60とのはんだ付けの際に多孔質酸化物半導体層13に担持される光増感色素や、電解質40が高温になることが抑制でき、光増感色素や電解質40が劣化することが抑制できる。   By using the low melting point solder, it is possible to suppress the photosensitizing dye carried on the porous oxide semiconductor layer 13 or the electrolyte 40 from becoming high temperature when the conductive wire 80 and the connection member 60 are soldered. Further, deterioration of the photosensitizing dye and the electrolyte 40 can be suppressed.

(導電線)
導電線80を構成する材料としては、例えば金、銀、銅、白金、アルミニウムなどの金属が挙げられる。
(Conductive wire)
Examples of the material constituting the conductive wire 80 include metals such as gold, silver, copper, platinum, and aluminum.

次に、図1に示す色素増感太陽電池モジュール100の製造方法について説明する。   Next, the manufacturing method of the dye-sensitized solar cell module 100 shown in FIG. 1 is demonstrated.

まず作用極10と対極20とを準備する(準備工程)。   First, the working electrode 10 and the counter electrode 20 are prepared (preparation process).

作用極10は、次の工程により得ることができる。最初に透明基板11の一方の面上に透明導電膜12を形成し、透明導電性基板15を得る。   The working electrode 10 can be obtained by the following process. First, a transparent conductive film 12 is formed on one surface of the transparent substrate 11 to obtain a transparent conductive substrate 15.

透明基板11上に透明導電膜12を形成する方法としては、例えば、スパッタリング法、CVD(化学気相成長)法、スプレー熱分解法(SPD法)、蒸着法などの薄膜形成法が挙げられる。なかでも、スプレー熱分解法が好ましい。透明導電膜12を、スプレー熱分解法により形成することで、容易にヘーズ率を制御することができる。また、スプレー熱分解法は、真空システムが不要なため、製造工程の簡素化低コスト化を図ることができるので好ましい。   Examples of the method for forming the transparent conductive film 12 on the transparent substrate 11 include thin film formation methods such as sputtering, CVD (chemical vapor deposition), spray pyrolysis (SPD), and vapor deposition. Of these, the spray pyrolysis method is preferable. By forming the transparent conductive film 12 by spray pyrolysis, the haze rate can be easily controlled. Further, the spray pyrolysis method is preferable because a vacuum system is unnecessary, and thus the manufacturing process can be simplified and the cost can be reduced.

次に、対極20における透明導電膜12上に多孔質酸化物半導体層13を形成する(酸化物半導体層形成工程)。   Next, the porous oxide semiconductor layer 13 is formed on the transparent conductive film 12 in the counter electrode 20 (oxide semiconductor layer forming step).

多孔質酸化物半導体層13を形成する方法としては、例えば、市販の酸化物半導体粒子を所望の分散媒に分散させた分散液、あるいは、ゾル−ゲル法により調製できるコロイド溶液を、必要に応じて所望の添加剤を添加した後、スクリーンプリント法、インクジェットプリント法、ロールコート法、ドクターブレード法、スプレー塗布法など公知の塗布方法により塗布した後、加熱処理などにて空隙を形成させ多孔質化する方法などを適用することができる。   As a method for forming the porous oxide semiconductor layer 13, for example, a dispersion in which commercially available oxide semiconductor particles are dispersed in a desired dispersion medium or a colloidal solution that can be prepared by a sol-gel method is used as necessary. After adding a desired additive, the coating is performed by a known coating method such as a screen printing method, an ink jet printing method, a roll coating method, a doctor blade method, or a spray coating method, and then a void is formed by heat treatment or the like. It is possible to apply a method to make it.

次に、作用極10上に形成される端子90は、例えば、銀ペーストを印刷等により塗布し、加熱・焼成させて形成される。   Next, the terminal 90 formed on the working electrode 10 is formed, for example, by applying a silver paste by printing or the like, and heating and baking.

次に、多孔質酸化物半導体層13に光増感色素を担持させる(色素担持工程)。   Next, a photosensitizing dye is supported on the porous oxide semiconductor layer 13 (dye supporting process).

多孔質酸化物半導体層13に光増感色素を担持させる方法としては、まず、色素担持用の色素溶液、例えば、アセトニトリルとt−ブタノールを容積比で1:1とした溶媒に対して極微量のN3色素粉末を加えて調整した溶液を予め準備しておく。   As a method for supporting the photosensitizing dye on the porous oxide semiconductor layer 13, first, a dye solution for supporting the dye, for example, a trace amount with respect to a solvent in which acetonitrile and t-butanol are 1: 1 in volume ratio. A solution prepared by adding N3 dye powder was prepared in advance.

次に、シャーレ状の容器内に入れた光増感色素を溶媒として含有する溶液中に、別途電気炉にて120〜150℃程度に加熱処理をし、多孔質酸化物半導体層13が形成された作用極10を浸した状態とし、暗所にて一昼夜(およそ20時間)浸漬する。その後、光増感色素を含有する溶液から多孔質酸化物半導体層13が形成された作用極10を取り出し、アセトニトリルとt−ブタノールからなる混合溶液を用い洗浄する。これによって、光増感色素を担持した多孔質酸化物半導体層13を有する作用極10を得る。   Next, in a solution containing a photosensitizing dye as a solvent in a petri dish-like container, heat treatment is separately performed at about 120 to 150 ° C. in an electric furnace to form the porous oxide semiconductor layer 13. The working electrode 10 is immersed, and immersed in a dark place day and night (approximately 20 hours). Thereafter, the working electrode 10 on which the porous oxide semiconductor layer 13 is formed is taken out of the solution containing the photosensitizing dye, and washed with a mixed solution of acetonitrile and t-butanol. As a result, the working electrode 10 having the porous oxide semiconductor layer 13 carrying the photosensitizing dye is obtained.

一方、対極20を準備するには、まず、不動態を形成する金属基板21を準備する。そして、準備した金属基板21の表面上に白金などからなる触媒層22を形成する。触媒層22の形成は、スパッタリング法などにより形成する。これにより金属基板21と触媒層22とを有する対極20を得ることができる。   On the other hand, to prepare the counter electrode 20, first, a metal substrate 21 that forms a passive state is prepared. Then, a catalyst layer 22 made of platinum or the like is formed on the surface of the prepared metal substrate 21. The catalyst layer 22 is formed by a sputtering method or the like. Thereby, the counter electrode 20 having the metal substrate 21 and the catalyst layer 22 can be obtained.

次に、多孔質酸化物半導体層13の上に電解質40を塗布して電解質40を配置する(電解質配置工程)。   Next, the electrolyte 40 is apply | coated on the porous oxide semiconductor layer 13, and the electrolyte 40 is arrange | positioned (electrolyte arrangement | positioning process).

次に、作用極10と対極20とを対向させて、封止部30により電解質40を封止する(封止工程)。   Next, the working electrode 10 and the counter electrode 20 are opposed to each other, and the electrolyte 40 is sealed by the sealing portion 30 (sealing process).

このためにはまず、作用極10の上に、封止部30となるための樹脂またはその前駆体を形成する。このとき樹脂またはその前駆体は、作用極10の多孔質酸化物半導体層13を包囲する様に形成する。樹脂が熱可塑性樹脂である場合は、溶融させた樹脂を作用極10上に塗布した後に室温で自然冷却するか、フィルム状の樹脂を作用極10に接触させ、外部の熱源によって樹脂を加熱溶融させた後に室温で自然冷却することにより樹脂を得ることができる。熱可塑性の樹脂としては、例えばアイオノマーやエチレン−メタクリル酸共重合体が用いられる。樹脂が紫外線硬化樹脂である場合は、樹脂の前駆体である紫外線硬化性樹脂を作用極10上に塗布する。樹脂が水溶性樹脂である場合は、樹脂を含む水溶液を作用極10上に塗布する。水溶性の樹脂として、例えばビニルアルコール重合体が用いられる。   For this purpose, first, a resin or its precursor for forming the sealing portion 30 is formed on the working electrode 10. At this time, the resin or its precursor is formed so as to surround the porous oxide semiconductor layer 13 of the working electrode 10. When the resin is a thermoplastic resin, the molten resin is applied on the working electrode 10 and then naturally cooled at room temperature, or a film-like resin is brought into contact with the working electrode 10 and the resin is heated and melted by an external heat source. Then, the resin can be obtained by natural cooling at room temperature. As the thermoplastic resin, for example, an ionomer or an ethylene-methacrylic acid copolymer is used. When the resin is an ultraviolet curable resin, an ultraviolet curable resin that is a precursor of the resin is applied on the working electrode 10. When the resin is a water-soluble resin, an aqueous solution containing the resin is applied on the working electrode 10. For example, a vinyl alcohol polymer is used as the water-soluble resin.

次に、対極20の上に封止部30となるための樹脂またはその前駆体を形成する。対極20上の樹脂またはその前駆体は、作用極10と対極20とを対向させる際に、作用極10上の樹脂またはその前駆体と重なる位置に形成する。また、対極20上の樹脂またはその前駆体の形成は、作用極10の上に形成される樹脂またはその前駆体と同様にして行えば良い。   Next, a resin or a precursor thereof for forming the sealing portion 30 is formed on the counter electrode 20. The resin or its precursor on the counter electrode 20 is formed at a position overlapping with the resin or its precursor on the working electrode 10 when the working electrode 10 and the counter electrode 20 face each other. The resin on the counter electrode 20 or its precursor may be formed in the same manner as the resin or its precursor formed on the working electrode 10.

次に、作用極10上の樹脂またはその前駆体で包囲された領域に電解質40を充填する。   Next, the electrolyte 40 is filled in a region surrounded by the resin or its precursor on the working electrode 10.

そして、作用極10と対極20とを対向させ、対極20上の樹脂と作用極11とを重ね合わせる。その後、減圧環境下において、樹脂が熱可塑性樹脂である場合は、樹脂を加熱溶融させ、作用極10と対極20とを接着させる。こうして封止部30が得られる。樹脂が紫外線硬化樹脂である場合は、対極20上の樹脂の紫外線硬化性樹脂と作用極10とを重ね合わせた後に紫外線により、紫外線硬化性樹脂を硬化させ、封止部30が得られる。樹脂が水溶性樹脂である場合は、積層体を形成した後に室温にて触指乾燥させた後、低湿環境下で乾燥させ、封止部30が得られる。   Then, the working electrode 10 and the counter electrode 20 are opposed to each other, and the resin on the counter electrode 20 and the working electrode 11 are overlapped. Thereafter, when the resin is a thermoplastic resin in a reduced pressure environment, the resin is heated and melted to bond the working electrode 10 and the counter electrode 20 together. In this way, the sealing part 30 is obtained. When the resin is an ultraviolet curable resin, the ultraviolet curable resin of the resin on the counter electrode 20 and the working electrode 10 are overlapped, and then the ultraviolet curable resin is cured by ultraviolet rays, whereby the sealing portion 30 is obtained. When the resin is a water-soluble resin, after the laminate is formed, the finger is dried at room temperature and then dried in a low-humidity environment, whereby the sealing portion 30 is obtained.

次に、対極20における金属基板21のうち作用極10とは反対側の表面上に、金属基板21よりも低い抵抗を有する接続部材60を固定する(接続部材固定工程)。   Next, the connection member 60 having a lower resistance than that of the metal substrate 21 is fixed on the surface of the counter electrode 20 opposite to the working electrode 10 in the metal substrate 21 (connection member fixing step).

金属基板21に対する接続部材60の固定は以下のようにして行う。まず、対極20における作用極10とは反対側の表面上に、接続部材60を配置する。   The connection member 60 is fixed to the metal substrate 21 as follows. First, the connection member 60 is disposed on the surface of the counter electrode 20 opposite to the working electrode 10.

次に、抵抗溶接により、金属基板21と接続部材60とを接合する。ここで、図3に示すように、抵抗溶接は、2本の抵抗溶接用電極110A,110Bを接続部材60及び金属基板21に押し当てるか、接続部材60及び金属基板21のいずれか一方に押し当て、両者間に電流を流すことにより、接続部材60と金属基板21との接触部分で熱を発生させ、この熱により接続部材60及び金属基板21の両方を溶融させて両者を接続させる方法である。このとき、熱は金属基板21と接続部材60の接触部分のみにしか発生しない。また、抵抗溶接においては、電流を流す時間は短時間(数ミリ秒)であるため、熱が発生する時間も短い。このため、熱が加えられる場所を局所領域に抑えることができる。従って、封止工程の後、対極20の金属基板21上に接続部材60を形成する場合でも、酸化物半導体層13に担持された光増感色素の劣化を十分に抑制することができる。   Next, the metal substrate 21 and the connection member 60 are joined by resistance welding. Here, as shown in FIG. 3, resistance welding is performed by pressing the two resistance welding electrodes 110 </ b> A and 110 </ b> B against the connection member 60 and the metal substrate 21, or pressing either the connection member 60 or the metal substrate 21. By applying a current between them, heat is generated at the contact portion between the connection member 60 and the metal substrate 21, and both the connection member 60 and the metal substrate 21 are melted by this heat to connect the two. is there. At this time, heat is generated only at the contact portion between the metal substrate 21 and the connection member 60. Further, in resistance welding, the time for supplying current is short (several milliseconds), so the time for generating heat is also short. For this reason, the place where heat is applied can be suppressed to a local region. Therefore, even when the connection member 60 is formed on the metal substrate 21 of the counter electrode 20 after the sealing step, deterioration of the photosensitizing dye carried on the oxide semiconductor layer 13 can be sufficiently suppressed.

またこのとき、金属基板21は不動態を形成しているため、金属基板21より低い抵抗を有する接続部材60を使用すると、抵抗溶接に際して、金属基板21と接続部材60との間での接触抵抗が大きくなる。このため、金属基板21と接続部材60とが互いに接触する部分が熱により溶融しやすくなる。そして、2本の電極110A,110Bの間に印加する電圧をオフにすると、溶融した部分が凝固して合金部65を形成する。従って、金属基板21と接続部材60との接合強度を十分に向上させることができる。このため、得られた複数の色素増感太陽電池50を直列に接続させて色素増感太陽電池モジュール100を製造する場合に、優れた接続信頼性を有する色素増感太陽電池モジュール100を得ることができる。また対極20の金属基板21と接続部材60との間に合金部65が設けられることで、対極20と接続部材60との間の接触抵抗も低下させることができる。また接続部材60を抵抗溶接により金属基板21に接合することで、熱が加えられる場所を局所領域に抑えることができるため、接続部材60を封止部30の内側領域に固定することも可能である。この場合、接続部材60から電解質40までの間で、接続部材60よりも抵抗の大きい金属基板21を通る距離を短縮させることが可能となり、接続部材60と電解質40との間の抵抗を小さくすることが可能となる。   At this time, since the metal substrate 21 forms a passive state, when the connection member 60 having a lower resistance than that of the metal substrate 21 is used, the contact resistance between the metal substrate 21 and the connection member 60 during resistance welding. Becomes larger. For this reason, the part where the metal substrate 21 and the connection member 60 are in contact with each other is easily melted by heat. When the voltage applied between the two electrodes 110 </ b> A and 110 </ b> B is turned off, the melted portion is solidified to form the alloy portion 65. Therefore, the bonding strength between the metal substrate 21 and the connection member 60 can be sufficiently improved. For this reason, when manufacturing the dye-sensitized solar cell module 100 by connecting the obtained several dye-sensitized solar cells 50 in series, obtaining the dye-sensitized solar cell module 100 which has the outstanding connection reliability. Can do. Moreover, the contact resistance between the counter electrode 20 and the connection member 60 can also be reduced by providing the alloy part 65 between the metal substrate 21 of the counter electrode 20 and the connection member 60. Further, by joining the connecting member 60 to the metal substrate 21 by resistance welding, a place where heat is applied can be suppressed to a local region, so that the connecting member 60 can be fixed to the inner region of the sealing portion 30. is there. In this case, it is possible to shorten the distance passing through the metal substrate 21 having a resistance higher than that of the connection member 60 between the connection member 60 and the electrolyte 40, thereby reducing the resistance between the connection member 60 and the electrolyte 40. It becomes possible.

また図3に示すように、接続部材60を対極20の金属基板21に固定する際には、抵抗溶接を、金属基板21のうち作用極10とは反対側の表面に接続部材60を接触させた状態で、2つの抵抗溶接用の電極110A,110Bをそれぞれ、接続部材60、及び、金属基板21の表面に当接させることによって行うことが好ましい。   As shown in FIG. 3, when fixing the connection member 60 to the metal substrate 21 of the counter electrode 20, resistance welding is performed by bringing the connection member 60 into contact with the surface of the metal substrate 21 opposite to the working electrode 10. In this state, the two resistance welding electrodes 110A and 110B are preferably brought into contact with the connection member 60 and the surface of the metal substrate 21, respectively.

この場合、対極20と接続部材60とを抵抗溶接により接続する際に、2つの抵抗溶接用電極110A,100Bを対極20の金属基板21のうち作用極10側の表面に押し当てずに済む。このため、金属基板21のうち作用極10側の表面における変形を十分に防止することができる。また金属基板21のうち作用極10側の表面への抵抗溶接用電極110A,110Bの溶着を防止できるという利点もある。   In this case, when the counter electrode 20 and the connection member 60 are connected by resistance welding, the two resistance welding electrodes 110A and 100B do not need to be pressed against the surface of the metal substrate 21 of the counter electrode 20 on the working electrode 10 side. For this reason, the deformation | transformation in the surface by the side of the working electrode 10 among metal substrates 21 can fully be prevented. In addition, there is an advantage that welding of the resistance welding electrodes 110A and 110B to the surface of the metal substrate 21 on the working electrode 10 side can be prevented.

また抵抗溶接は3〜20m秒行うことが好ましく、5〜7m秒行うことがより好ましい。この場合、対極20と接続部材60との接続強度をより十分に向上させることができると共に、合金部65の厚さが適度になり、接続部材60と金属基板21との間の抵抗をより十分に低くすることができる。   The resistance welding is preferably performed for 3 to 20 milliseconds, more preferably 5 to 7 milliseconds. In this case, the connection strength between the counter electrode 20 and the connection member 60 can be improved more sufficiently, the thickness of the alloy portion 65 becomes appropriate, and the resistance between the connection member 60 and the metal substrate 21 is more sufficiently increased. Can be lowered.

対極20の厚さは特に制限されるものではないが、9〜200μmであることが好ましく、20〜100μmであることがより好ましい。対極20の厚さが9μm以上であると、9μm未満である場合に比べて強度が十分に向上し、抵抗溶接に際して変形しにくくなる。一方、対極20の厚さが、200μm以下であると、200μmを超える場合に比べて、より短時間で対極20と接続部材60とを接続できる。また対極20に可撓性を持たせることができる。   The thickness of the counter electrode 20 is not particularly limited, but is preferably 9 to 200 μm, and more preferably 20 to 100 μm. When the thickness of the counter electrode 20 is 9 μm or more, the strength is sufficiently improved as compared with the case where the thickness is less than 9 μm, and deformation during resistance welding becomes difficult. On the other hand, when the thickness of the counter electrode 20 is 200 μm or less, the counter electrode 20 and the connection member 60 can be connected in a shorter time than when the counter electrode 20 exceeds 200 μm. Further, the counter electrode 20 can be flexible.

接続部材60の厚さも特に制限されるものではないが、9〜200μmであることが好ましく、20〜100μmであることがより好ましい。   The thickness of the connection member 60 is not particularly limited, but is preferably 9 to 200 μm, and more preferably 20 to 100 μm.

この場合、接続部材60の厚さが9μm以上であると、9μm未満である場合に比べて強度が十分に向上し、抵抗溶接に際して変形しにくくなる。一方、接続部材60の厚さが、200μm以下であると、200μmを超える場合に比べてより短時間で対極20と接続部材60とを接続できる。また対極20のうち作用極10と反対側の表面の凹凸を少なくすることができ、平坦な面上に安定して設置できる。   In this case, when the thickness of the connection member 60 is 9 μm or more, the strength is sufficiently improved as compared with the case where the thickness is less than 9 μm, and the connection member 60 is not easily deformed during resistance welding. On the other hand, when the thickness of the connecting member 60 is 200 μm or less, the counter electrode 20 and the connecting member 60 can be connected in a shorter time than when the thickness exceeds 200 μm. Moreover, the unevenness | corrugation of the surface on the opposite side to the working electrode 10 among the counter electrodes 20 can be decreased, and it can install stably on a flat surface.

2つの抵抗溶接用電極110A,110B間に印加する電流は、接続部材60と金属基板21との組合せにも依存するため一概には言えないが、通常は0.5〜5kAであり、1〜3kAであることが好ましい。   Although the current applied between the two resistance welding electrodes 110A and 110B depends on the combination of the connecting member 60 and the metal substrate 21, it cannot be generally stated, but is usually 0.5 to 5 kA and 1 to 3 kA. Preferably there is.

また電流の印加時間も一概には言えないが、通常は3〜20ミリ秒であり、5〜10ミリ秒であることが好ましい。   Also, the current application time cannot be generally specified, but is usually 3 to 20 milliseconds, preferably 5 to 10 milliseconds.

さらに抵抗溶接用電極間の間隔も一概には言えないが、通常は、0.5〜20mmであり、1〜10mm秒であることが好ましい。   Furthermore, although the distance between the electrodes for resistance welding cannot be generally specified, it is usually 0.5 to 20 mm, and preferably 1 to 10 mm seconds.

次に、はんだ70を接続部材60に接触させ、溶融させた後に冷却する。こうしてはんだ70を接続部材60に接合させる。また端子90の上にもはんだ70を接触させ、溶融させた後に冷却する。こうしてはんだ70を端子90に接合させる。   Next, the solder 70 is brought into contact with the connecting member 60 and melted, and then cooled. In this way, the solder 70 is joined to the connection member 60. Also, the solder 70 is brought into contact with the terminal 90 and melted, and then cooled. In this way, the solder 70 is joined to the terminal 90.

こうして、図1に示す色素増感太陽電池50Aを得る。   In this way, the dye-sensitized solar cell 50A shown in FIG. 1 is obtained.

そして、同様にして、色素増感太陽電池50Bを作製する。   Similarly, the dye-sensitized solar cell 50B is manufactured.

次に、リード線等の導電線80を用意し、導電線80によって色素増感太陽電池50A,50Bを接続する。具体的には、導電線80の一端を、はんだ70を溶融させながら接触させ、接続部材60にはんだ70によって固定する。次に、導電線80の他端を、はんだ70を溶融させながら接触させ、端子90にはんだ70によって固定する。   Next, conductive wires 80 such as lead wires are prepared, and the dye-sensitized solar cells 50 </ b> A and 50 </ b> B are connected by the conductive wires 80. Specifically, one end of the conductive wire 80 is brought into contact with the solder 70 while being melted, and is fixed to the connection member 60 with the solder 70. Next, the other end of the conductive wire 80 is brought into contact with the solder 70 while being melted, and is fixed to the terminal 90 with the solder 70.

こうして色素増感太陽電池モジュール100が得られる。   Thus, the dye-sensitized solar cell module 100 is obtained.

上記色素増感太陽電池モジュール100の製造方法によれば、色素増感太陽電池50が上述した製造方法で製造されることで、光増感色素の劣化が十分に抑制され且つ優れた接続信頼性を有する色素増感太陽電池50が得られる。このため、接続工程において、対極20の金属基板21と、隣の色素増感太陽電池50の作用極10の端子90とを接続すると、優れた光電変換特性及び接続信頼性を有する色素増感太陽電池モジュール100を得ることができる。   According to the method for manufacturing the dye-sensitized solar cell module 100, the dye-sensitized solar cell 50 is manufactured by the above-described manufacturing method, so that deterioration of the photosensitizing dye is sufficiently suppressed and excellent connection reliability is achieved. A dye-sensitized solar cell 50 having the following can be obtained. For this reason, in the connection step, when the metal substrate 21 of the counter electrode 20 and the terminal 90 of the working electrode 10 of the adjacent dye-sensitized solar cell 50 are connected, the dye-sensitized solar having excellent photoelectric conversion characteristics and connection reliability. The battery module 100 can be obtained.

<第2実施形態>
次に、本発明の色素増感太陽電池モジュールの第2実施形態について説明する。なお、第1実施形態と同一又は同等の構成要素には同一符号を付し、重複する説明を省略する。
Second Embodiment
Next, a second embodiment of the dye-sensitized solar cell module of the present invention will be described. In addition, the same code | symbol is attached | subjected to the component same or equivalent to 1st Embodiment, and the overlapping description is abbreviate | omitted.

図4は、本発明の色素増感太陽電池モジュールの第2実施形態を示す断面図である。本実施形態の色素増感太陽電池モジュール200は、対極、及び、色素増感太陽電池50A,50B間の接続状態の点で第1実施形態の色素増感太陽電池モジュール100と相違する。   FIG. 4 is a cross-sectional view showing a second embodiment of the dye-sensitized solar cell module of the present invention. The dye-sensitized solar cell module 200 of the present embodiment is different from the dye-sensitized solar cell module 100 of the first embodiment in terms of the counter electrode and the connection state between the dye-sensitized solar cells 50A and 50B.

すなわち、図4に示すように、本実施形態の色素増感太陽電池モジュール200において、色素増感太陽電池50は、対極20の金属基板21のうち作用極10と反対側の表面に固定される接続部材260を更に有している。本実施形態では、接続部材260は、金属基板21の一部に直線状に設けられている。接続部材260は金属からなる。そして、この接続部材260の縁部260aが封止部30を越えて隣の色素増感太陽電池50側に張出して、端子90に直接接合されている
That is, as shown in FIG. 4, in the dye-sensitized solar cell module 200 of the present embodiment, the dye-sensitized solar cell 50 </ b > B is fixed to the surface of the counter electrode 20 on the side opposite to the working electrode 10. The connecting member 260 is further provided. In the present embodiment, the connection member 260 is linearly provided on a part of the metal substrate 21. The connecting member 260 is made of metal. Then, the edge 260a of the connecting member 260 Te overhanging the 50 A side dye-sensitized solar cell of the next beyond the sealing portion 30 are bonded directly to the terminal 90.

この場合、はんだ等を用いて接続部材260と端子90とを接合する場合に比べて、隣り合う色素増感太陽電池50間を十分に小さい抵抗で接続することが可能になるため、電圧降下がほとんど起こらない。また端子90から流れ込む電子を、金属基板21より抵抗の低い接続部材260を通して電解質40に近づけることが可能となるため、接続部材260から電解質40までの抵抗を小さくすることも可能となる。   In this case, since it becomes possible to connect between the dye-sensitized solar cells 50 adjacent to each other with a sufficiently small resistance as compared with the case where the connecting member 260 and the terminal 90 are joined using solder or the like, the voltage drop is reduced. It hardly happens. In addition, since electrons flowing from the terminal 90 can be brought close to the electrolyte 40 through the connection member 260 having a lower resistance than the metal substrate 21, the resistance from the connection member 260 to the electrolyte 40 can be reduced.

このとき、対極20の金属基板21への接続部材260の固定は、抵抗溶接により行うことができる。具体的には、金属基板21のうち作用極10と反対側の表面に、2つの抵抗溶接用電極の両方を押し当て、2つの抵抗溶接用電極間に電圧を印加すればよい。   At this time, the connection member 260 can be fixed to the metal substrate 21 of the counter electrode 20 by resistance welding. Specifically, both the two resistance welding electrodes may be pressed against the surface of the metal substrate 21 opposite to the working electrode 10 to apply a voltage between the two resistance welding electrodes.

このように対極220の金属基板21に接続部材260を形成する場合でも、第1実施形態と同様、多孔質酸化物半導体層13に担持された光増感色素の劣化を十分に抑制することができる。さらに得られる色素増感太陽電池モジュール200の接続信頼性を向上させることができる。   Even when the connection member 260 is formed on the metal substrate 21 of the counter electrode 220 as described above, the deterioration of the photosensitizing dye carried on the porous oxide semiconductor layer 13 can be sufficiently suppressed as in the first embodiment. it can. Furthermore, the connection reliability of the dye-sensitized solar cell module 200 obtained can be improved.

また接続部材260の縁部260aと端子90との接続も、抵抗溶接により行うことが好ましい。   Further, the connection between the edge 260a of the connection member 260 and the terminal 90 is preferably performed by resistance welding.

この場合、隣り合う2つの色素増感太陽電池50A,50Bのうち一方の色素増感太陽電池50の対極20に設けた接続部材260の縁部260aと、他方の色素増感太陽電池50Bの透明導電性基板15に設けた端子90とを、はんだ等を用いることなく、簡便に接合させることができるとともに、接続強度を向上させることがき、接触抵抗も低下させることができる。また、抵抗溶接は、一方の色素増感太陽電池50Aの接続部材260と、他方の色素増感太陽電池50Bの透明導電性基板15の端子90とを接合する際、抵抗溶接用の電極を局所的に当てて行うため、熱が局所的にしか発生しない。このため、はんだ等を用いて接合を行う場合に比べて、酸化物半導体層13に担持された色素や封止部の劣化がより十分に抑制される。なお、接続部材260の縁部260aと端子90との抵抗溶接も、上記と同様、2つの抵抗溶接用電極を接続部材260の表面に押し当てて、2つの抵抗溶接用電極間に電圧を印加すればよい。   In this case, the edge 260a of the connecting member 260 provided on the counter electrode 20 of one of the two dye-sensitized solar cells 50A and 50B adjacent to the other and the transparent of the other dye-sensitized solar cell 50B. The terminal 90 provided on the conductive substrate 15 can be simply joined without using solder or the like, the connection strength can be improved, and the contact resistance can also be reduced. In resistance welding, when the connecting member 260 of one dye-sensitized solar cell 50A and the terminal 90 of the transparent conductive substrate 15 of the other dye-sensitized solar cell 50B are joined, the electrode for resistance welding is locally used. Heat is generated locally, so heat is generated only locally. For this reason, compared with the case where it joins using solder etc., degradation of the pigment carried by oxide semiconductor layer 13 and a sealing part is controlled more fully. Note that resistance welding between the edge portion 260a of the connection member 260 and the terminal 90 also applies a voltage between the two resistance welding electrodes by pressing the two resistance welding electrodes against the surface of the connection member 260 in the same manner as described above. do it.

本発明は、上記実施形態に限定されるものではない。例えば上記第1及び第2実施形態では、酸化物半導体層13は、透明導電膜12の上に設けられているが、金属基板21の上に設けられてもよい。この場合、酸化物半導体層13と金属基板21とで作用極が構成され、透明基板11と透明導電膜12とで対極が構成される。   The present invention is not limited to the above embodiment. For example, although the oxide semiconductor layer 13 is provided on the transparent conductive film 12 in the first and second embodiments, it may be provided on the metal substrate 21. In this case, the oxide semiconductor layer 13 and the metal substrate 21 constitute a working electrode, and the transparent substrate 11 and the transparent conductive film 12 constitute a counter electrode.

以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。   Hereinafter, the content of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
まず表面の寸法が50mm×50mmで厚さ4mmのガラスからなる透明基板の表面上に、FTOからなる厚さ1μmの透明導電膜を形成してなる透明導電性基板を用意した。そして、透明導電膜に対しエッチングによりパターニングを行った。
Example 1
First, a transparent conductive substrate was prepared by forming a 1 μm thick transparent conductive film made of FTO on the surface of a transparent substrate made of glass having a surface dimension of 50 mm × 50 mm and a thickness of 4 mm. Then, the transparent conductive film was patterned by etching.

次に、透明導電膜上に、酸化物半導体層形成用ペースト(Solaronix社製、Ti Nanoxide-T)を、スクリーン印刷機で塗布及び乾燥を3回繰り返した後、電気炉にて500℃で1時間焼結して多孔質酸化物半導体層を形成した。   Next, an oxide semiconductor layer forming paste (manufactured by Solaronix, Ti Nanoxide-T) was repeatedly applied and dried three times with a screen printing machine on the transparent conductive film, and then 1 ° C. at 500 ° C. in an electric furnace. The porous oxide semiconductor layer was formed by time sintering.

次に、厚膜用の市販の銀ペーストを用い、上記多孔質酸化物半導体層を包囲するように透明導電膜上に塗布した後、乾燥させた。この塗布及び乾燥をスクリーン印刷機にて3回繰り返して行った。その後、電気炉にて500℃で1時間焼結した。次に、さらに、電解質が接触する領域に、配線を保護するガラスペーストを塗布した後、乾燥させた。この塗布及び乾燥を3回繰り返し、電気炉にて1時間焼結させた。こうして作用極を得た。   Next, using a commercially available silver paste for thick film, it was applied on the transparent conductive film so as to surround the porous oxide semiconductor layer, and then dried. This application and drying were repeated three times with a screen printer. Then, it sintered at 500 degreeC with the electric furnace for 1 hour. Next, a glass paste for protecting the wiring was further applied to a region where the electrolyte was in contact, and then dried. This application and drying were repeated three times and sintered in an electric furnace for 1 hour. Thus, a working electrode was obtained.

そして、上記のようにして得られた作用極を、1:1(体積比)で混合したアセトニトリル及びtert−ブタノールの混合溶媒を含み、ルテニウム色素(N719)の濃度を0.3mMとした色素溶液の中に浸漬させ、その色素を多孔質半導体層に吸着させた後に上記混合溶媒で余分な色素を洗い流し、乾燥させることで、光増感色素を多孔質半導体層に吸着させた。
The working solution obtained as described above contains a mixed solvent of acetonitrile and tert-butanol mixed at 1: 1 (volume ratio), and a dye solution having a ruthenium dye (N719) concentration of 0.3 mM. Then, the dye was adsorbed on the porous semiconductor layer, and then the excess dye was washed away with the mixed solvent and dried to adsorb the photosensitizing dye to the porous semiconductor layer.

一方、対極は、以下のようにして準備した。   On the other hand, the counter electrode was prepared as follows.

即ちはじめに厚さ200μmのTi板を用意し、このTi板に、三次元RFスパッタ装置を用いてPtを蒸着させ、対極を得た。   First, a Ti plate having a thickness of 200 μm was prepared, and Pt was vapor-deposited on the Ti plate using a three-dimensional RF sputtering apparatus to obtain a counter electrode.

次に、作用極の上に、エチレン−メタクリル酸共重合体(商品名:ニュクレル、三井・デュポンポリケミカル社製)からなる四角環状の樹脂シート(幅2mm、厚さ50μm)を配置し、この樹脂シートを150℃で加熱溶融することにより作用極の上に固定した。   Next, a quadrangular annular resin sheet (width 2 mm, thickness 50 μm) made of an ethylene-methacrylic acid copolymer (trade name: Nucrel, manufactured by Mitsui DuPont Polychemical Co., Ltd.) is placed on the working electrode. The resin sheet was fixed on the working electrode by heating and melting at 150 ° C.

次に、作用極上であって封止部の内側に、メトキシアセトニトリルを溶媒とする揮発性電解質を注入した。   Next, a volatile electrolyte using methoxyacetonitrile as a solvent was injected on the working electrode and inside the sealing portion.

そして、対極を、触媒膜を作用極に向けた状態で封止部と重ね合わせ、対極及び作用極の周縁部を熱圧着した。こうして、色素増感太陽電池を得た。   Then, the counter electrode was overlapped with the sealing portion with the catalyst film facing the working electrode, and the peripheral portions of the counter electrode and the working electrode were thermocompression bonded. Thus, a dye-sensitized solar cell was obtained.

次に、対極のうち作用極と反対側の表面上に、厚さ100μmで、20mm×50mmの寸法を有する銅からなる接続部材を配し、接続部材と対極のチタン箔とを抵抗溶接により接合させた。抵抗溶接は、2つの電極をそれぞれチタン箔、接続部材のそれぞれに押し当て、抵抗溶接用電極の間に1.0kAの電流を10ミリ秒間印加した。このとき、2つの抵抗溶接用電極間の間隔は5mmとした。   Next, on the surface of the counter electrode opposite to the working electrode, a connecting member made of copper having a thickness of 100 μm and a dimension of 20 mm × 50 mm is arranged, and the connecting member and the counter electrode titanium foil are joined by resistance welding. I let you. In resistance welding, two electrodes were pressed against the titanium foil and the connection member, respectively, and a current of 1.0 kA was applied between the resistance welding electrodes for 10 milliseconds. At this time, the distance between the two resistance welding electrodes was 5 mm.

次に、Sn-Ag-Cu系からなるはんだを接続部材に接触させ、溶融させた後に冷却した。こうしてはんだを接続部材に接合させた。同様に、端子の上にもはんだを接触させ、溶融させた後に冷却した。こうしてはんだを端子に接合させた。   Next, the Sn—Ag—Cu-based solder was brought into contact with the connecting member, melted, and then cooled. In this way, the solder was joined to the connecting member. Similarly, the solder was brought into contact with the terminals, and after being melted, it was cooled. Thus, the solder was joined to the terminal.

こうして、色素増感太陽電池を得た。   Thus, a dye-sensitized solar cell was obtained.

上記と同様にして、他の3個の色素増感太陽電池も作製した。   In the same manner as described above, other three dye-sensitized solar cells were also produced.

次に、リード線を用意し、リード線によって色素増感太陽電池を接続した。具体的には、リード線の一端を、はんだを溶融させながら接触させ、接続部材にはんだによって固定した。次に、リード線の他端を、はんだを溶融させながら接触させ、端子にはんだによって固定した。こうして色素増感太陽電池モジュールを得た。   Next, lead wires were prepared, and dye-sensitized solar cells were connected by the lead wires. Specifically, one end of the lead wire was brought into contact with the solder while being melted, and fixed to the connecting member with the solder. Next, the other end of the lead wire was brought into contact while melting the solder, and was fixed to the terminal with the solder. Thus, a dye-sensitized solar cell module was obtained.

(比較例1)
接続部材を超音波振動を加えながらチタン箔に接合させたこと以外は実施例1と同様にして色素増感太陽電池モジュールを作製した。
(Comparative Example 1)
A dye-sensitized solar cell module was produced in the same manner as in Example 1 except that the connecting member was joined to the titanium foil while applying ultrasonic vibration.

さらに実施例1及び比較例1で得られた色素増感太陽電池モジュールについて、接続信頼性を調べた。接続信頼性は、JIS C8938 A-1に定義された温度サイクル試験を200サイクル行った。なお、溶接部の剥離の有無を評価項目とし、剥離の無い物を合格とした。   Further, connection reliability of the dye-sensitized solar cell modules obtained in Example 1 and Comparative Example 1 was examined. For connection reliability, the temperature cycle test defined in JIS C8938 A-1 was performed 200 cycles. In addition, the presence or absence of the peeling of a weld part was made into the evaluation item, and the thing without peeling was set as the pass.

また実施例1及び比較例1で得られた色素増感太陽電池モジュールについて、色素の劣化について調べた。色素の劣化は、肉眼により、色素の色が接合前と接合後で変わったか否かで判断し、明らかに変色している場合には、劣化ありと判定した。

Figure 0005762053
The dye-sensitized solar cell modules obtained in Example 1 and Comparative Example 1 were examined for deterioration of the dye. The deterioration of the dye was judged by the naked eye based on whether or not the color of the dye had changed before and after bonding. When the color was clearly changed, it was determined that there was deterioration.
Figure 0005762053

表1に示すように、実施例1で得られた色素増感太陽電池モジュールは、比較例1の色素増感太陽電池モジュールに比べて、接続強度が大きく、温度サイクル試験後においても剥離がないことが分かった。なお、比較例1については、剥離に伴い、抵抗が増加していることが分かった。また実施例1では色素の劣化が見られなかったのに対し、比較例1では色素の劣化が見られた。   As shown in Table 1, the dye-sensitized solar cell module obtained in Example 1 has higher connection strength than the dye-sensitized solar cell module of Comparative Example 1, and does not peel even after the temperature cycle test. I understood that. In addition, about the comparative example 1, it turned out that resistance has increased with peeling. In Example 1, no deterioration of the dye was observed, whereas in Comparative Example 1, deterioration of the dye was observed.

10…作用極
11…透明基板
12…透明導電膜
13…酸化物半導体層
15…透明導電性基板(第1電極)
60,260…接続部材
20,320…対極(第2電極)
21…金属基板
30…封止部
50,50A,50B…色素増感太陽電池
100,200…色素増感太陽電池モジュール

DESCRIPTION OF SYMBOLS 10 ... Working electrode 11 ... Transparent substrate 12 ... Transparent conductive film 13 ... Oxide semiconductor layer 15 ... Transparent conductive substrate (1st electrode)
60, 260 ... connecting member 20, 320 ... counter electrode (second electrode)
DESCRIPTION OF SYMBOLS 21 ... Metal substrate 30 ... Sealing part 50, 50A, 50B ... Dye-sensitized solar cell 100, 200 ... Dye-sensitized solar cell module

Claims (8)

複数の色素増感太陽電池を直列且つ電気的に接続してなる色素増感太陽電池モジュールの製造方法において、
前記複数の色素増感太陽電池を直列且つ電気的に接続する接続工程を含み、
前記色素増感太陽電池を、
透明基板及び前記透明基板上に設けられる透明導電膜を有する第1電極、並びに、不動態膜を形成する金属からなる金属基板を含む第2電極を準備する準備工程と、
前記第1電極又は第2電極に酸化物半導体層を形成する酸化物半導体層形成工程と、
前記酸化物半導体層に光増感色素を担持する色素担持工程と、
前記酸化物半導体層上に電解質を配置する電解質配置工程と、
前記第1電極と前記第2電極とを対向させて封止部により前記電解質を封止する封止工程と、
前記第2電極の前記金属基板上であって前記第1電極と反対側の表面に前記金属基板よりも低い抵抗を有する金属からなる直線状の接続部材を、前記第2電極のうち前記封止部の内側領域を通り前記封止部を越えて前記金属基板から張り出して固定する接続部材固定工程とを含む色素増感太陽電池の製造方法であって、前記接続部材固定工程において、前記接続部材を抵抗溶接により前記金属基板に接合することにより前記金属基板上に前記接続部材を固定する色素増感太陽電池の製造方法によって製造し、
前記接続工程において、隣り合う2つの色素増感太陽電池のうち一方の色素増感太陽電池の前記第2電極に設けられた前記接続部材を、前記金属基板から他方の色素増感太陽電池側に張り出した状態で、前記他方の色素増感太陽電池の前記第1電極に設けられた端子と接続する色素増感太陽電池モジュールの製造方法。
In the method for producing a dye-sensitized solar cell module in which a plurality of dye-sensitized solar cells are electrically connected in series,
A connection step of electrically connecting the plurality of dye-sensitized solar cells in series and
The dye-sensitized solar cell,
Preparing a first electrode having a transparent substrate and a transparent conductive film provided on the transparent substrate, and a second electrode including a metal substrate made of a metal forming a passive film;
An oxide semiconductor layer forming step of forming an oxide semiconductor layer on the first electrode or the second electrode;
A dye carrying step of carrying a photosensitizing dye on the oxide semiconductor layer;
An electrolyte disposing step of disposing an electrolyte on the oxide semiconductor layer;
A sealing step of sealing the electrolyte by a sealing portion with the first electrode and the second electrode facing each other;
A linear connecting member made of a metal having a lower resistance than the metal substrate on the surface of the second electrode opposite to the first electrode on the metal substrate is sealed in the second electrode. a method of manufacturing a dye-sensitized solar cell and a connection member fixing step of the upper inner region of the part beyond the upper as the sealing portion and fixed to exit tension of the metal substrate, in the connecting member fixing step , Manufactured by a method for manufacturing a dye-sensitized solar cell for fixing the connection member on the metal substrate by joining the connection member to the metal substrate by resistance welding,
In the connection step, the connection member provided on the second electrode of one dye-sensitized solar cell of two adjacent dye-sensitized solar cells is moved from the metal substrate to the other dye-sensitized solar cell side. The manufacturing method of the dye-sensitized solar cell module connected with the terminal provided in the said 1st electrode of said other dye-sensitized solar cell in the overhanging state.
前記接続工程において、隣り合う2つの色素増感太陽電池のうち一方の色素増感太陽電池の前記接続部材と、他方の色素増感太陽電池の前記第1電極に設けられた前記端子とを抵抗溶接により直接接続する請求項1に記載の色素増感太陽電池モジュールの製造方法。   In the connecting step, the connecting member of one dye-sensitized solar cell of two adjacent dye-sensitized solar cells and the terminal provided on the first electrode of the other dye-sensitized solar cell are resisted. The manufacturing method of the dye-sensitized solar cell module of Claim 1 directly connected by welding. 前記接続部材固定工程において、抵抗溶接を、前記金属基板の上に前記接続部材を接触させた状態で、2つの電極をそれぞれ、前記接続部材の表面、及び、前記金属基板の表面に当接させることによって行う、請求項1又は2に記載の色素増感太陽電池モジュールの製造方法。   In the connecting member fixing step, in resistance welding, the two electrodes are brought into contact with the surface of the connecting member and the surface of the metal substrate, respectively, with the connecting member in contact with the metal substrate. The manufacturing method of the dye-sensitized solar cell module of Claim 1 or 2 performed by this. 前記接続部材固定工程において、抵抗溶接を3〜20ミリ秒行う、請求項1〜3のいずれか一項に記載の色素増感太陽電池モジュールの製造方法。   The manufacturing method of the dye-sensitized solar cell module as described in any one of Claims 1-3 which performs resistance welding for 3 to 20 milliseconds in the said connection member fixing process. 前記接続部材の厚さが9〜200μmである、請求項1〜4のいずれか一項に記載の色素増感太陽電池モジュールの製造方法。   The manufacturing method of the dye-sensitized solar cell module as described in any one of Claims 1-4 whose thickness of the said connection member is 9-200 micrometers. 前記第2電極の厚さが9〜200μmである、請求項1〜5のいずれか一項に記載の色素増感太陽電池モジュールの製造方法。   The manufacturing method of the dye-sensitized solar cell module as described in any one of Claims 1-5 whose thickness of a said 2nd electrode is 9-200 micrometers. 複数の色素増感太陽電池を直列且つ電気的に接続してなる色素増感太陽電池モジュールであって、
前記色素増感太陽電池が、
透明基板及び前記透明基板上に設けられる透明導電膜を有する第1電極と、
不動態膜を形成する金属からなる金属基板を含む第2電極と、
前記第1電極又は第2電極に設けられる酸化物半導体層と、
前記第1電極と前記第2電極との間に設けられる電解質と、
前記第1電極及び前記第2電極を接合させる封止部と、
前記第2電極のうち前記第1電極と反対側の表面に設けられ、前記金属基板の金属よりも低い抵抗を有する金属からなる直線状の接続部材とを備えており、
前記色素増感太陽電池において、前記第2電極と前記接続部材との間に、前記金属基板の金属と前記接続部材の金属との合金からなる合金部が設けられ、
隣り合う2つの色素増感太陽電池のうち一方の色素増感太陽電池の前記第2電極に設けられた前記接続部材と、他方の色素増感太陽電池の前記第1電極に設けられた端子とが接続され、
前記接続部材が、前記第2電極のうち前記封止部の内側領域を通り前記封止部を越えて前記金属基板から前記他方の色素増感太陽電池側まで張り出している色素増感太陽電池モジュール。
A dye-sensitized solar cell module formed by electrically connecting a plurality of dye-sensitized solar cells in series,
The dye-sensitized solar cell is
A first electrode having a transparent substrate and a transparent conductive film provided on the transparent substrate;
A second electrode including a metal substrate made of a metal that forms a passive film;
An oxide semiconductor layer provided on the first electrode or the second electrode;
An electrolyte provided between the first electrode and the second electrode;
A sealing portion for joining the first electrode and the second electrode;
A linear connection member made of a metal having a resistance lower than that of the metal of the metal substrate, provided on the surface of the second electrode opposite to the first electrode;
In the dye-sensitized solar cell, an alloy portion made of an alloy of a metal of the metal substrate and a metal of the connection member is provided between the second electrode and the connection member.
Of the two adjacent dye-sensitized solar cells, the connection member provided on the second electrode of one dye-sensitized solar cell, and a terminal provided on the first electrode of the other dye-sensitized solar cell; Is connected,
Said connecting member, wherein the sealing portion of the dye-sensitized solar on inner regions beyond upper street the sealing portion protrudes from the metal substrate to the other dye-sensitized solar cell side of the second electrode Battery module.
前記接続部材と前記端子との間に、前記接続部材を構成する金属と前記端子を構成する金属との合金からなる合金部が設けられている、請求項7に記載の色素増感太陽電池モジュール。
The dye-sensitized solar cell module according to claim 7, wherein an alloy portion made of an alloy of a metal constituting the connection member and a metal constituting the terminal is provided between the connection member and the terminal. .
JP2011044674A 2011-03-02 2011-03-02 Dye-sensitized solar cell, method for producing the same, dye-sensitized solar cell module and method for producing the same Expired - Fee Related JP5762053B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011044674A JP5762053B2 (en) 2011-03-02 2011-03-02 Dye-sensitized solar cell, method for producing the same, dye-sensitized solar cell module and method for producing the same
CN201280003962.1A CN103229350B (en) 2011-03-02 2012-02-28 Dye-sensitized solar cell, its manufacture method, dye-sensitized solar cell module and its manufacture method
PCT/JP2012/054861 WO2012118050A1 (en) 2011-03-02 2012-02-28 Dye-sensitized solar cell and process of manufacturing same, and dye-sensitized solar cell module and process of manufacturing same
EP12752945.1A EP2683021B1 (en) 2011-03-02 2012-02-28 Dye-sensitized solar cell module and process of manufacturing same
US14/015,094 US9330854B2 (en) 2011-03-02 2013-08-30 Dye-sensitized solar cell and process of manufacturing same, dye-sensitized solar cell module and process of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011044674A JP5762053B2 (en) 2011-03-02 2011-03-02 Dye-sensitized solar cell, method for producing the same, dye-sensitized solar cell module and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012182038A JP2012182038A (en) 2012-09-20
JP5762053B2 true JP5762053B2 (en) 2015-08-12

Family

ID=47013069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011044674A Expired - Fee Related JP5762053B2 (en) 2011-03-02 2011-03-02 Dye-sensitized solar cell, method for producing the same, dye-sensitized solar cell module and method for producing the same

Country Status (1)

Country Link
JP (1) JP5762053B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3164183B2 (en) * 1993-08-06 2001-05-08 キヤノン株式会社 Photovoltaic element and module
JPH07202241A (en) * 1993-12-28 1995-08-04 Mitsubishi Electric Corp Solar battery, mounting method and manufacture thereof
JP2004079823A (en) * 2002-08-20 2004-03-11 Mitsubishi Heavy Ind Ltd Sealing structure, solar cell module using the same, sealing method and the same for solar cell module
JP5430970B2 (en) * 2008-04-28 2014-03-05 株式会社フジクラ Method for manufacturing photoelectric conversion element and method for manufacturing photoelectric conversion element module
JP5351553B2 (en) * 2008-04-28 2013-11-27 株式会社フジクラ Photoelectric conversion element module

Also Published As

Publication number Publication date
JP2012182038A (en) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5230481B2 (en) Photoelectric conversion element
JP5430971B2 (en) Method for manufacturing photoelectric conversion element and method for manufacturing photoelectric conversion element module
JP5430970B2 (en) Method for manufacturing photoelectric conversion element and method for manufacturing photoelectric conversion element module
JP5351553B2 (en) Photoelectric conversion element module
US9330854B2 (en) Dye-sensitized solar cell and process of manufacturing same, dye-sensitized solar cell module and process of manufacturing same
EP2287961A1 (en) Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
JP5412136B2 (en) Photoelectric conversion element
JP5451106B2 (en) Photoelectric conversion element module
JP5762053B2 (en) Dye-sensitized solar cell, method for producing the same, dye-sensitized solar cell module and method for producing the same
JP5706786B2 (en) Method for producing dye-sensitized solar cell
JP2010198834A (en) Method for manufacturing photoelectric conversion element module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150609

R150 Certificate of patent or registration of utility model

Ref document number: 5762053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees