Nothing Special   »   [go: up one dir, main page]

JP5624494B2 - Non-contact power transmission system - Google Patents

Non-contact power transmission system Download PDF

Info

Publication number
JP5624494B2
JP5624494B2 JP2011033528A JP2011033528A JP5624494B2 JP 5624494 B2 JP5624494 B2 JP 5624494B2 JP 2011033528 A JP2011033528 A JP 2011033528A JP 2011033528 A JP2011033528 A JP 2011033528A JP 5624494 B2 JP5624494 B2 JP 5624494B2
Authority
JP
Japan
Prior art keywords
power
power receiving
receiving coils
power transmission
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011033528A
Other languages
Japanese (ja)
Other versions
JP2012175763A (en
Inventor
清貴 河島
清貴 河島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011033528A priority Critical patent/JP5624494B2/en
Publication of JP2012175763A publication Critical patent/JP2012175763A/en
Application granted granted Critical
Publication of JP5624494B2 publication Critical patent/JP5624494B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

この発明は、非接触電力伝送システムに関する。   The present invention relates to a contactless power transmission system.

従来、例えば複数の受電コイルに送電する送電コイル近傍の磁界強度を検出するセンサと、送電コイルに電力を供給する交流電源の駆動周波数を制御する制御部とを備え、駆動周波数を変化させたときのセンサの出力変化から給電効率の周波数分布を取得し、給電効率が最も高い駆動周波数によって交流電源を駆動する送電装置が知られている(例えば、特許文献1参照)。   Conventionally, for example, when a sensor that detects a magnetic field intensity in the vicinity of a power transmission coil that transmits power to a plurality of power receiving coils and a control unit that controls a drive frequency of an AC power supply that supplies power to the power transmission coil is changed and the drive frequency is changed There is known a power transmission device that acquires a frequency distribution of power supply efficiency from a change in output of the sensor and drives an AC power source at a drive frequency with the highest power supply efficiency (see, for example, Patent Document 1).

特開2010−239838号公報JP 2010-239838 A

ところで、上記従来技術に係る送電装置においては、複数の受電コイルに対して給電効率が最も高い駆動周波数が異なる場合には、複数の受電コイルの全体に対する給電効率を向上させることができない虞がある。
例えば受電コイルと送電コイルとの間の磁場および電場の共鳴により電力を伝送する共鳴型電力伝送においては、例えば図8(A)〜(C)に示すように、受信電力が最大となる最大効率周波数の値が、受電コイルと送電コイルとの間の距離(Gap)に応じて変化する。
このため、単に、特定の1つの駆動周波数を選択するだけでは、送電コイルに対する距離(Gap)が異なる複数の受電コイルの全体に対して給電効率を向上させることはできないという問題が生じる。
By the way, in the power transmission device according to the above-described prior art, when the drive frequency with the highest power supply efficiency is different for the plurality of power receiving coils, there is a possibility that the power supply efficiency for the whole of the plurality of power receiving coils cannot be improved. .
For example, in resonance type power transmission in which electric power is transmitted by resonance between a magnetic field and an electric field between a power receiving coil and a power transmitting coil, as shown in FIGS. 8A to 8C, for example, the maximum efficiency at which the received power is maximized The value of the frequency changes according to the distance (Gap) between the power receiving coil and the power transmitting coil.
For this reason, simply selecting one specific drive frequency causes a problem that the power supply efficiency cannot be improved for the entire plurality of power receiving coils having different distances (Gap) to the power transmitting coil.

本発明は上記事情に鑑みてなされたもので、複数の受電コイルの最大効率周波数が異なる場合であっても、各々の受電コイルの受電効率の低下を防止することが可能な非接触電力伝送システムを提供することを目的としている。   The present invention has been made in view of the above circumstances, and a non-contact power transmission system capable of preventing a decrease in power receiving efficiency of each power receiving coil even when the maximum efficiency frequencies of a plurality of power receiving coils are different. The purpose is to provide.

上記課題を解決して係る目的を達成するために、本発明の第1態様に係る非接触電力伝送システム(例えば、実施の形態での非接触電力伝送システム10)は、所定波形の交流電力を出力する交流電力出力手段(例えば、実施の形態での交流電源41および電力配分荷重係数算出部43および基本波形生成回路44および増幅器45)と、前記交流電力出力手段により出力された前記交流電力を共鳴現象により複数の受電コイル(例えば、実施の形態での受電コイル24)へ送電する送電コイル(例えば、実施の形態での送電コイル46)とを備える非接触電力伝送システムであって、複数の前記受電コイルに対して、各々の前記複数の受電コイルの受電効率が最大となる最大効率周波数を取得する周波数取得手段(例えば、実施の形態での共振周波数検出器29)を備え、前記交流電力出力手段は、前記所定波形の交流電力として、各々の前記複数の受電コイルの前記最大効率周波数の波形を重畳して得られる交流電力を出力し、前記交流電力出力手段は、各々の前記複数の受電コイルの前記最大効率周波数の波形の波高値を、所定の電力配分荷重係数に基づき設定するIn order to solve the above-described problems and achieve the object, the non-contact power transmission system according to the first aspect of the present invention (for example, the non-contact power transmission system 10 in the embodiment) uses AC power having a predetermined waveform. AC power output means for outputting (for example, AC power supply 41, power distribution load coefficient calculation unit 43, basic waveform generation circuit 44 and amplifier 45 in the embodiment) and the AC power output by the AC power output means. A non-contact power transmission system including a power transmission coil (for example, power transmission coil 46 in the embodiment) that transmits power to a plurality of power reception coils (for example, the power reception coil 24 in the embodiment) by a resonance phenomenon, Frequency acquisition means (for example, in the embodiment) for acquiring the maximum efficiency frequency at which the power reception efficiency of each of the plurality of power reception coils is maximized with respect to the power reception coil Comprising a vibration frequency detector 29), the AC power output unit, as the AC power of the predetermined waveform, and outputs the AC power obtained by superimposing the maximum efficiency frequency of the waveform of each of the plurality of power receiving coils, The AC power output means sets a peak value of the waveform of the maximum efficiency frequency of each of the plurality of power receiving coils based on a predetermined power distribution load coefficient .

さらに、本発明の第態様に係る非接触電力伝送システムは、各々の前記複数の受電コイルに接続された蓄電手段(例えば、実施の形態でのバッテリ21)と、該蓄電手段の残容量を取得する残容量取得手段(例えば、実施の形態での残容量検出器27)とを備え、前記交流電力出力手段は、各々の前記複数の受電コイルの前記最大効率周波数の波形の波高値を、前記蓄電手段の残容量に応じて設定する。 Furthermore, the non-contact power transmission system according to the second aspect of the present invention includes a power storage unit (for example, the battery 21 in the embodiment) connected to each of the plurality of power receiving coils, and a remaining capacity of the power storage unit. A remaining capacity acquisition means for acquiring (for example, a remaining capacity detector 27 in the embodiment), wherein the AC power output means calculates a peak value of the waveform of the maximum efficiency frequency of each of the plurality of power receiving coils, It is set according to the remaining capacity of the power storage means.

さらに、本発明の第態様に係る非接触電力伝送システムは、各々の前記複数の受電コイルを備える受電装置を使用する使用者の少なくとも要求度または負担費用を取得する取得手段(例えば、実施の形態での入力装置28)を備え、前記交流電力出力手段は、各々の前記複数の受電コイルの前記最大効率周波数の波形の波高値を、少なくとも前記要求度または前記負担費用に応じて設定する。 Furthermore, the non-contact power transmission system according to the third aspect of the present invention is an acquisition unit (for example, an implementation unit) that acquires at least a request level or a burden cost of a user who uses a power receiving device including each of the plurality of power receiving coils. The AC power output means sets the peak value of the waveform of the maximum efficiency frequency of each of the plurality of power receiving coils according to at least the required degree or the burden cost.

発明の第態様に係る非接触電力伝送システム(例えば、実施の形態での非接触電力伝送システム10)は、所定波形の交流電力を出力する交流電力出力手段(例えば、実施の形態での交流電源41および電力配分荷重係数算出部43および基本波形生成回路44および増幅器45)と、前記交流電力出力手段により出力された前記交流電力を共鳴現象により複数の受電コイル(例えば、実施の形態での受電コイル24)へ送電する送電コイル(例えば、実施の形態での送電コイル46)とを備える非接触電力伝送システムであって、複数の前記受電コイルに対して、各々の前記複数の受電コイルの受電効率が最大となる最大効率周波数を取得する周波数取得手段(例えば、実施の形態での共振周波数検出器29)と、各々の前記複数の受電コイルを備える受電装置を使用する使用者の少なくとも要求度または負担費用を取得する取得手段(例えば、実施の形態での入力装置28)と、を備え、前記交流電力出力手段は、前記所定波形の交流電力として、各々の前記複数の受電コイルの前記最大効率周波数の波形を時分割で配列して得られる交流電力を出力し、前記交流電力出力手段は、各々の前記複数の受電コイルの前記最大効率周波数の波形の前記時分割での時間幅を、少なくとも前記要求度または前記負担費用に応じて設定する。 The non-contact power transmission system according to the fourth aspect of the present invention (for example, the non-contact power transmission system 10 in the embodiment) is an AC power output unit that outputs AC power having a predetermined waveform (for example, in the embodiment). The AC power output 41, the power distribution load coefficient calculation unit 43, the basic waveform generation circuit 44, and the amplifier 45) and the AC power output by the AC power output means are subjected to a resonance phenomenon to generate a plurality of power receiving coils (for example, in the embodiment). A non-contact power transmission system including a power transmission coil (for example, power transmission coil 46 in the embodiment) that transmits power to the power reception coil 24), and each of the plurality of power reception coils with respect to the plurality of power reception coils. Frequency acquisition means (for example, the resonance frequency detector 29 in the embodiment) for acquiring the maximum efficiency frequency at which the power reception efficiency of the plurality of power reception efficiency is maximum, Comprising acquisition means for acquiring at least demanding or pocket expenses user using the power receiving device comprising a coil (e.g., the input device 28 in the embodiment) and, wherein the AC power output means of the predetermined waveform As AC power, output AC power obtained by time-sharing the waveform of the maximum efficiency frequency of each of the plurality of power receiving coils, and the AC power output means is configured to output the maximum power of each of the plurality of power receiving coils. A time width in the time division of the waveform of the efficiency frequency is set according to at least the required degree or the burden cost.

さらに、本発明の第態様に係る非接触電力伝送システムは、各々の前記複数の受電コイルに接続された蓄電手段(例えば、実施の形態でのバッテリ21)と、該蓄電手段の残容量を取得する残容量取得手段(例えば、実施の形態での残容量検出器27)とを備え、前記交流電力出力手段は、各々の前記複数の受電コイルの前記最大効率周波数の波形の前記時分割での時間幅を、前記蓄電手段の残容量に応じて設定する。 Furthermore, the non-contact power transmission system according to the fifth aspect of the present invention includes a power storage means (for example, the battery 21 in the embodiment) connected to each of the plurality of power receiving coils, and a remaining capacity of the power storage means. A remaining capacity acquisition means for acquiring (for example, a remaining capacity detector 27 in the embodiment), wherein the AC power output means is the time division of the waveform of the maximum efficiency frequency of each of the plurality of power receiving coils. Is set in accordance with the remaining capacity of the power storage means.

本発明の第1態様に係る非接触電力伝送システムによれば、送電コイルから複数の受電コイルに対して、最大効率周波数における共鳴現象によって電力伝送が行なわれることから、複数の受電コイルの最大効率周波数が異なる場合であっても、各々の受電コイルの受電効率の低下を防止することができる。   According to the non-contact power transmission system according to the first aspect of the present invention, the power transmission is performed from the power transmission coil to the plurality of power reception coils by the resonance phenomenon at the maximum efficiency frequency, and thus the maximum efficiency of the plurality of power reception coils. Even when the frequencies are different, it is possible to prevent a decrease in power receiving efficiency of each power receiving coil.

さらに複数の受電コイルに対して、同時に電力伝送を行なうことができる。 Furthermore , electric power can be transmitted simultaneously to a plurality of power receiving coils.

さらに、本発明の第態様に係る非接触電力伝送システムによれば、複数の受電コイルに対して、各々に接続された蓄電手段の残容量に応じて分配された交流電力により電力伝送を行なうことができる。 Furthermore, according to the non-contact power transmission system according to the second aspect of the present invention, power is transmitted to the plurality of power receiving coils by AC power distributed according to the remaining capacity of the power storage means connected to each of the plurality of power receiving coils. be able to.

さらに、本発明の第態様に係る非接触電力伝送システムによれば、複数の受電コイルに対して、各々を備える受電装置を使用する使用者の少なくとも要求度または負担費用に応じて分配された交流電力により電力伝送を行なうことができる。 Furthermore, according to the non-contact power transmission system according to the third aspect of the present invention, the power is distributed to the plurality of power receiving coils in accordance with at least the degree of demand or burden cost of the user who uses the power receiving device including each of the power receiving coils. Power transmission can be performed using AC power.

発明の第態様に係る非接触電力伝送システムによれば、送電コイルから複数の受電コイルに対して、最大効率周波数における共鳴現象によって電力伝送が行なわれることから、複数の受電コイルの最大効率周波数が異なる場合であっても、各々の受電コイルの受電効率の低下を防止することができる。さらに、複数の受電コイルに対して、時分割での配列に応じて、順次、電力伝送を行なうことができる。さらに、複数の受電コイルに対して、各々を備える受電装置を使用する使用者の少なくとも要求度または負担費用に応じて時分割された交流電力により電力伝送を行なうことができる。 According to the non-contact power transmission system according to the fourth aspect of the present invention, power is transmitted from the power transmission coil to the plurality of power reception coils by the resonance phenomenon at the maximum efficiency frequency, and thus the maximum efficiency of the plurality of power reception coils. Even when the frequencies are different, it is possible to prevent a decrease in power receiving efficiency of each power receiving coil. Furthermore, it is possible to sequentially transmit power to the plurality of power receiving coils in accordance with the time division arrangement. Furthermore, it is possible to perform power transmission with respect to a plurality of power receiving coils by AC power that is time-divided according to at least the degree of demand or burden cost of a user who uses the power receiving device including each of the power receiving coils.

さらに、本発明の第態様に係る非接触電力伝送システムによれば、複数の受電コイルに対して、各々に接続された蓄電手段の残容量に応じて時分割された交流電力により電力伝送を行なうことができる。 Furthermore, according to the non-contact power transmission system according to the fifth aspect of the present invention, power is transmitted to the plurality of power receiving coils by AC power that is time-divided according to the remaining capacity of the power storage means connected to each of the plurality of power receiving coils. Can be done.

本発明の実施の形態に係る非接触電力伝送システムの構成図である。It is a lineblock diagram of the non-contact electric power transmission system concerning an embodiment of the invention. 本発明の実施の形態に係る非接触電力伝送システムの一部の構成図である。It is a partial block diagram of the non-contact electric power transmission system which concerns on embodiment of this invention. 本発明の実施の形態に係る非接触電力伝送システムの基本波形生成回路により重畳される波形の波高値の例を示す図である。It is a figure which shows the example of the peak value of the waveform superimposed by the basic waveform generation circuit of the non-contact electric power transmission system which concerns on embodiment of this invention. 本発明の実施の形態に係る非接触電力伝送システムの送電コイルおよび受電コイルのQ値に応じた利得と周波数との対応関係の例を示す図である。It is a figure which shows the example of the correspondence of the gain and frequency according to the Q value of the power transmission coil of the non-contact electric power transmission system which concerns on embodiment of this invention, and a receiving coil. 本発明の実施の形態に係る非接触電力伝送システムの動作のタイミングを示す図である。It is a figure which shows the timing of operation | movement of the non-contact electric power transmission system which concerns on embodiment of this invention. 本発明の実施の形態に係る非接触電力伝送システムの動作のフローチャートである。It is a flowchart of operation | movement of the non-contact electric power transmission system which concerns on embodiment of this invention. 本発明の実施の形態の変形例に係る非接触電力伝送システムの動作のタイミングを示す図である。It is a figure which shows the timing of operation | movement of the non-contact electric power transmission system which concerns on the modification of embodiment of this invention. 共鳴型電力伝送において受電コイルと送電コイルとの間の距離(Gap)に応じて変化する最大効率周波数の値の例を示す図である。It is a figure which shows the example of the value of the maximum efficiency frequency which changes according to the distance (Gap) between a receiving coil and a power transmission coil in resonance type electric power transmission.

以下、本発明の一実施形態に係る非接触電力伝送システムについて添付図面を参照しながら説明する。
本実施の形態による非接触電力伝送システム10は、例えば図1に示すように、複数の車両11(つまり、図1に示す車両(1),…,車両(n))と、充電ステーション12とを備えて構成されている。
Hereinafter, a non-contact power transmission system according to an embodiment of the present invention will be described with reference to the accompanying drawings.
The non-contact power transmission system 10 according to the present embodiment includes, for example, as shown in FIG. 1, a plurality of vehicles 11 (that is, vehicles (1),..., Vehicles (n) shown in FIG. 1), a charging station 12, It is configured with.

この非接触電力伝送システム10は、共鳴現象を用いた共鳴型の非接触電力伝送方式により、充電ステーション12から出力される電力を複数の車両11(つまり、任意の自然数nによる車両(1),…,車両(n))に非接触で送電し、各車両11に搭載されたバッテリ21を充電可能である。   This non-contact power transmission system 10 uses a resonance-type non-contact power transmission method using a resonance phenomenon to transmit power output from the charging station 12 to a plurality of vehicles 11 (that is, vehicles (1), ..., the vehicle (n)) can be transmitted in a non-contact manner, and the battery 21 mounted on each vehicle 11 can be charged.

各車両11(車両(k);k=1,…,n;nは任意の自然数)は、例えば、バッテリ21と、車両駆動部22と、受電アンテナ23および受電コイル24と、整流回路25と、DC/DCコンバータ26と、残容量検出器27と、入力装置28と、共振周波数検出器29と、要求パラメータ算出部30と、車両無線通信部31とを備えて構成されている。   Each vehicle 11 (vehicle (k); k = 1,..., N; n is an arbitrary natural number) includes, for example, a battery 21, a vehicle driving unit 22, a power receiving antenna 23 and a power receiving coil 24, and a rectifier circuit 25. The DC / DC converter 26, the remaining capacity detector 27, the input device 28, the resonance frequency detector 29, the required parameter calculation unit 30, and the vehicle wireless communication unit 31 are configured.

車両駆動部22は、例えば、車両11の走行駆動力を発生する3相のDCブラシレスモータなどモータ(図示略)と、このモータの駆動および回生作動を制御するモータ制御装置とを備えて構成されている。
そして、モータ制御装置は、例えばトランジスタのスイッチング素子から構成され、バッテリ21と電気エネルギーの授受を行うインバータなどを備えて構成されている。
The vehicle drive unit 22 includes, for example, a motor (not shown) such as a three-phase DC brushless motor that generates a driving force for driving the vehicle 11 and a motor control device that controls driving and regenerative operation of the motor. ing.
The motor control device includes, for example, a transistor switching element, and includes an inverter that exchanges electrical energy with the battery 21.

受電アンテナ23および受電コイル24は、共鳴型の非接触電力伝送方式により充電ステーション12の送電コイル46および送電アンテナ47から伝送される電力を受信する。
なお、共鳴型の非接触電力伝送方式では、受電コイル24を備える車両11側の共振器(図示略)と送電コイル46を備える充電ステーション12側の共振器(図示略)との間の磁場および電場の共鳴により電力を伝送する。
The power receiving antenna 23 and the power receiving coil 24 receive power transmitted from the power transmitting coil 46 and the power transmitting antenna 47 of the charging station 12 by a resonance type non-contact power transmission method.
In the resonance-type non-contact power transmission method, a magnetic field between a resonator (not shown) on the vehicle 11 side including the power receiving coil 24 and a resonator (not shown) on the charging station 12 side including the power transmission coil 46 and Electric power is transmitted by electric field resonance.

つまり、充電ステーション12の送電アンテナ47には1次コイルとされる送電コイル46が近接して配置され、車両11の受電アンテナ23には2次コイルとされる受電コイル24が近接して配置されている。   That is, the power transmission coil 46 that is a primary coil is disposed close to the power transmission antenna 47 of the charging station 12, and the power reception coil 24 that is a secondary coil is disposed close to the power reception antenna 23 of the vehicle 11. ing.

そして、送電コイル46に1次電流が通電されると、電磁誘導により送電アンテナ47に誘導電流が流れ、さらに、送電アンテナ47は、送電コイル46を備える充電ステーション12側の共振器のインダクタンスおよび浮遊容量に応じた共鳴周波数で共鳴する。
これに伴い、送電アンテナ47に近接して設けられた受電アンテナ23は共鳴周波数で共鳴し、受電アンテナ23に2次電流が流れ、さらに、電磁誘導により受電アンテナ23に近接した受電コイル24に2次電流が流れる。
When a primary current is passed through the power transmission coil 46, an induced current flows through the power transmission antenna 47 by electromagnetic induction. The power transmission antenna 47 further includes inductance and floating of the resonator on the charging station 12 side including the power transmission coil 46. Resonates at a resonance frequency according to the capacity.
Accordingly, the power receiving antenna 23 provided in the vicinity of the power transmitting antenna 47 resonates at the resonance frequency, a secondary current flows through the power receiving antenna 23, and further, the power receiving coil 24 adjacent to the power receiving antenna 23 by electromagnetic induction has 2 Next current flows.

整流回路25は、受電コイル24から出力される交流電力を直流電力に変換する。
DC/DCコンバータ26は、整流回路25から出力される直流電力を、例えばバッテリ21の許容電圧などに応じて直流変換する。
なお、DC/DCコンバータ26は、省略されてもよい。
The rectifier circuit 25 converts AC power output from the power receiving coil 24 into DC power.
The DC / DC converter 26 converts direct current power output from the rectifier circuit 25 into direct current, for example, according to an allowable voltage of the battery 21 or the like.
Note that the DC / DC converter 26 may be omitted.

残容量検出器27は、例えば電流積算法などによりバッテリ21の残容量SOCを検出する。
この電流積算法では、残容量検出器27は、バッテリ21の充電電流および放電電流を所定期間毎に積算して積算充電量および積算放電量を算出し、これらの積算充電量および積算放電量を初期状態あるいは充放電開始直前の残容量に加算または減算することで現在の残容量SOCを算出する。
The remaining capacity detector 27 detects the remaining capacity SOC of the battery 21 by, for example, a current integration method.
In this current integration method, the remaining capacity detector 27 calculates the integrated charge amount and integrated discharge amount by integrating the charging current and discharge current of the battery 21 every predetermined period, and calculates the integrated charge amount and integrated discharge amount. The current remaining capacity SOC is calculated by adding or subtracting to the initial state or the remaining capacity immediately before the start of charge / discharge.

さらに、残容量検出器27は、電流積算法により算出した残容量SOCに対して、例えばバッテリ21の温度によって変化する内部抵抗などに対する所定の補正処理や端子間電圧に応じた所定の補正処理を行ない、処理結果の信号を出力する。   Furthermore, the remaining capacity detector 27 performs a predetermined correction process on the remaining capacity SOC calculated by the current integration method, for example, for an internal resistance that changes according to the temperature of the battery 21 or a predetermined correction process according to the voltage between the terminals. And output the processing result signal.

入力装置28は、運転者による入力操作に応じて、充電ステーション12からの送電によってバッテリ21を充電することに対する運転者の意思に関する情報の信号を出力する。
運転者の意思に関する情報は、例えば、運転者が充電の実行を望む度合いを数値などで示す要求度EMと、運転者が許容する充電に要する負担費用の程度を数値などで示す負担費用COとなどである。
The input device 28 outputs a signal of information related to the driver's intention to charge the battery 21 by power transmission from the charging station 12 in response to an input operation by the driver.
Information on the driver's intention includes, for example, a request level EM indicating the degree of desire of the driver to perform charging by a numerical value and the like, and a burden cost CO indicating the degree of burden cost required for the charge permitted by the driver by a numerical value and the like Etc.

共振周波数検出器29は、充電ステーション12からの送電に対して受電コイル24の受電効率が最大となる共振周波数(最大効率周波数)ω(k=1,…,n;nは任意の自然数)を検出し、検出結果の信号を出力する。 The resonance frequency detector 29 is a resonance frequency (maximum efficiency frequency) ω k (k = 1,..., N; n is an arbitrary natural number) at which the power receiving efficiency of the power receiving coil 24 is maximized with respect to power transmission from the charging station 12. Is detected and a detection result signal is output.

例えば、共振周波数検出器29は、後述するスイープ期間Taにおいて充電ステーション12からの送電の周波数が所定周波数範囲内で掃引により変更される場合に、受電コイル24の受電効率が最大となる共振周波数(最大効率周波数)ω(k=1,…,n;nは任意の自然数)を検出する。 For example, the resonance frequency detector 29 has a resonance frequency (maximum power reception efficiency of the power reception coil 24 when the frequency of power transmission from the charging station 12 is changed by sweeping within a predetermined frequency range in a later-described sweep period Ta. Maximum efficiency frequency) ω k (k = 1,..., N; n is an arbitrary natural number) is detected.

要求パラメータ算出部30は、例えば図2に示すように、残容量検出器27から出力される残容量SOCと、入力装置28から出力される要求度EMおよび負担費用COとに基づき、例えば下記数式(1)に示すように記述される要求パラメータβ(k=1,…,n;nは任意の自然数)を算出し、算出結果の信号を出力する。 For example, as shown in FIG. 2, the request parameter calculation unit 30 is based on the remaining capacity SOC output from the remaining capacity detector 27, the required degree EM and the burden cost CO output from the input device 28, for example, A required parameter β k (k = 1,..., N; n is an arbitrary natural number) described as shown in (1) is calculated, and a calculation result signal is output.

Figure 0005624494
Figure 0005624494

なお、上記数式(1)において、要求パラメータβは、残容量SOCを変数とする所定の関数f(SOC)と、要求度EMを変数とする所定の関数g(EM)と、負担費用COを変数とする所定の関数h(CO)とが加算されて得られる。 In the above equation (1), the required parameter β k includes a predetermined function f (SOC) having the remaining capacity SOC as a variable, a predetermined function g (EM) having the required degree EM as a variable, and a burden cost CO. And a predetermined function h (CO) having a variable as a variable.

車両無線通信部31は、例えば図1に示すように、充電ステーション12の無線通信部22との間の無線通信で各種の情報を送信および受信する。
例えば、車両無線通信部31は、共振周波数検出器29から出力される最大効率周波数ωおよび要求パラメータ算出部30から出力される要求パラメータβ(k=1,…,n;nは任意の自然数)を、充電ステーション12の無線通信部42に送信する。
For example, as illustrated in FIG. 1, the vehicle wireless communication unit 31 transmits and receives various types of information through wireless communication with the wireless communication unit 22 of the charging station 12.
For example, the vehicular wireless communication unit 31 may use the maximum efficiency frequency ω k output from the resonance frequency detector 29 and the required parameter β k output from the required parameter calculation unit 30 (k = 1,..., N; n is an arbitrary value) (Natural number) is transmitted to the wireless communication unit 42 of the charging station 12.

充電ステーション12は、交流電源41と、無線通信部42と、電力配分荷重係数算出部43と、基本波形生成回路44と、増幅器45と、送電コイル46および送電アンテナ47とを備えて構成されている。
なお、充電ステーション12は、例えば、複数の車両11,…,11が走行する路面や、例えば複数の車両11,…,11が駐車する施設(例えば、商業施設など)など、任意の場所に設置されてよい。
The charging station 12 includes an AC power source 41, a wireless communication unit 42, a power distribution load coefficient calculation unit 43, a basic waveform generation circuit 44, an amplifier 45, a power transmission coil 46, and a power transmission antenna 47. Yes.
The charging station 12 is installed at an arbitrary place such as a road surface on which a plurality of vehicles 11,..., 11 travels or a facility (for example, a commercial facility) where the plurality of vehicles 11,. May be.

無線通信部42は、各車両11の車両無線通信部31との間の無線通信で各種の情報を送信および受信する。
例えば、無線通信部42は、各車両11の車両無線通信部41から送信される最大効率周波数ωおよび要求パラメータβ(k=1,…,n;nは任意の自然数)を受信する。
The wireless communication unit 42 transmits and receives various types of information through wireless communication with the vehicle wireless communication unit 31 of each vehicle 11.
For example, the radio communication unit 42 receives the maximum efficiency frequency ω k and the request parameter β k (k = 1,..., N; n is an arbitrary natural number) transmitted from the vehicle radio communication unit 41 of each vehicle 11.

電力配分荷重係数算出部43は、例えば図1および図2に示すように、無電通信部42により受信された各車両11の要求パラメータβ(k=1,…,n;nは任意の自然数)に基づき、例えば下記数式(2)に示すように記述される電力配分荷重係数α(k=1,…,n;nは任意の自然数)を算出し、算出結果の信号を出力する。 For example, as shown in FIGS. 1 and 2, the power distribution load coefficient calculation unit 43 receives the request parameter β k (k = 1,..., N; n is an arbitrary natural number) received by the wireless communication unit 42. ), For example, as shown in the following formula (2), a power distribution load coefficient α k (k = 1,..., N; n is an arbitrary natural number) is calculated, and a calculation result signal is output.

Figure 0005624494
Figure 0005624494

なお、上記数式(2)において、電力配分荷重係数α(k=1,…,n;nは任意の自然数)の総和は1である。 In the above formula (2), the total sum of the power distribution load coefficients α k (k = 1,..., N; n is an arbitrary natural number) is 1.

基本波形生成回路44は、無電通信部42により受信された各車両11の最大効率周波数ω(k=1,…,n;nは任意の自然数)と、電力配分荷重係数算出部43から出力された電力配分荷重係数α(k=1,…,n;nは任意の自然数)とに基づき、例えば下記数式(3)に示すように記述されるキャリア波fcを算出し、算出結果の信号を出力する。 The basic waveform generation circuit 44 outputs the maximum efficiency frequency ω k (k = 1,..., N; n is an arbitrary natural number) of each vehicle 11 received by the wireless communication unit 42 and the power distribution load coefficient calculation unit 43. Based on the power distribution load coefficient α k (k = 1,..., N; n is an arbitrary natural number), for example, a carrier wave fc described as shown in the following equation (3) is calculated, and the calculation result Output a signal.

Figure 0005624494
Figure 0005624494

このキャリア波fcは、例えば図3に示すように、各車両11の最大効率周波数ω(k=1,…,n;nは任意の自然数)の周波数および電力配分荷重係数α(k=1,…,n;nは任意の自然数)に応じた波高値を有する波形を、複数の車両11に対して重畳して得られる波形となる。 For example, as shown in FIG. 3, the carrier wave fc includes a frequency of a maximum efficiency frequency ω k (k = 1,..., N; n is an arbitrary natural number) and a power distribution load coefficient α k (k = 1,..., N; where n is an arbitrary natural number), a waveform obtained by superimposing a waveform having a peak value on a plurality of vehicles 11.

増幅器45は、例えば図1に示すように、所定周期Tの給電期間Tbにおいては、基本波形生成回路44から出力されるキャリア波fcに応じたパルス幅変調(PWM)などよって、交流電源41から出力される交流電力を増幅し、この増幅結果の交流電力を送電コイル46に出力する。
つまり、送電コイル46に出力される交流電力は、複数の車両11の受電コイル24の最大効率周波数ω(k=1,…,n;nは任意の自然数)の波形を含む交流電力であって、複数の車両11の受電コイル24の最大効率周波数ω(k=1,…,n;nは任意の自然数)の波形を重畳して得られる交流電力となる。
For example, as shown in FIG. 1, the amplifier 45 is supplied from the AC power supply 41 by a pulse width modulation (PWM) or the like according to the carrier wave fc output from the basic waveform generation circuit 44 in a power supply period Tb of a predetermined period T. The output AC power is amplified, and the AC power resulting from the amplification is output to the power transmission coil 46.
That is, the AC power output to the power transmission coil 46 is AC power including a waveform of the maximum efficiency frequency ω k (k = 1,..., N; n is an arbitrary natural number) of the power receiving coils 24 of the plurality of vehicles 11. Thus, the AC power is obtained by superimposing the waveforms of the maximum efficiency frequencies ω k (k = 1,..., N; n is an arbitrary natural number) of the power receiving coils 24 of the plurality of vehicles 11.

また、増幅器45は、例えば、所定周期Tのスイープ期間Taにおいては、交流電源41から出力される交流電力を、例えば所定のキャリア波に応じたパルス幅変調(PWM)などよって増幅するとともに、例えば所定のキャリア波の周波数を所定周波数範囲内で掃引により変更する。
これにより、増幅器45は、所定周期Tのスイープ期間Taにおいて所定周波数範囲内で掃引により変更される周波数を有する交流電力を送電コイル46に出力する。
In addition, the amplifier 45 amplifies the AC power output from the AC power supply 41 by, for example, pulse width modulation (PWM) according to a predetermined carrier wave, for example, in the sweep period Ta having a predetermined cycle T. The frequency of a predetermined carrier wave is changed by sweeping within a predetermined frequency range.
As a result, the amplifier 45 outputs AC power having a frequency changed by sweeping within a predetermined frequency range to the power transmission coil 46 in the sweep period Ta of the predetermined period T.

送電コイル46および送電アンテナ47は、共鳴型の非接触電力伝送方式により、各車両11の受電アンテナ23および受電コイル24に送電する。   The power transmission coil 46 and the power transmission antenna 47 transmit power to the power receiving antenna 23 and the power receiving coil 24 of each vehicle 11 by a resonance type non-contact power transmission method.

なお、一般に電力伝送の性能の指標としてQ値が知られているが、例えば図4に示すように、充電ステーション12の送電コイル46のQ値は、幅広い周波数で共振状態が得られるように低く設定され、各車両11の受電コイル24のQ値は、共振状態が高められるように高く設定されてもよい。   In general, the Q value is known as an index of the performance of power transmission. For example, as shown in FIG. 4, the Q value of the power transmission coil 46 of the charging station 12 is low so that a resonance state can be obtained at a wide frequency. The Q value of the power receiving coil 24 of each vehicle 11 may be set so as to increase the resonance state.

本実施の形態による非接触充電システム10は上記構成を備えており、次に、この非接触充電システム10の動作、つまり各車両11および充電ステーション12の動作について説明する。   The contactless charging system 10 according to the present embodiment has the above-described configuration. Next, operations of the contactless charging system 10, that is, operations of the vehicles 11 and the charging station 12 will be described.

例えば図5に示すように、非接触充電システム10の充電ステーション12は、各車両11の移動状態などにおいて、所定周期Tをスイープ期間Taと送電期間Tbにより構成する。
そして、逐次繰り返される所定周期T毎において、先ず、スイープ期間Taでは、各車両11に伝送される交流電力の周波数を所定周波数範囲内で掃引により変更する。
For example, as illustrated in FIG. 5, the charging station 12 of the non-contact charging system 10 includes a predetermined period T including a sweep period Ta and a power transmission period Tb in the moving state of each vehicle 11.
Then, at each predetermined cycle T that is sequentially repeated, first, in the sweep period Ta, the frequency of the AC power transmitted to each vehicle 11 is changed by sweeping within a predetermined frequency range.

これに伴い、各車両11は、受電コイル24の受電効率が最大となる共振周波数(最大効率周波数)ω(k=1,…,n;nは任意の自然数)を検出し、さらに、残容量SOCと要求度EMおよび負担費用COとに基づき、要求パラメータβ(k=1,…,n;nは任意の自然数)を算出する。 Accordingly, each vehicle 11 detects a resonance frequency (maximum efficiency frequency) ω k (k = 1,..., N; n is an arbitrary natural number) at which the power receiving efficiency of the power receiving coil 24 is maximized, Based on the capacity SOC, the required degree EM, and the burden cost CO, the required parameter β k (k = 1,..., N; n is an arbitrary natural number) is calculated.

そして、充電ステーション12は、各車両11の要求パラメータβ(k=1,…,n;nは任意の自然数)に基づき、電力配分荷重係数α(k=1,…,n;nは任意の自然数)を算出し、さらに、各車両11の共振周波数(最大効率周波数)ωおよび電力配分荷重係数α(k=1,…,n;nは任意の自然数)に基づき、キャリア波fcを算出する。 The charging station 12 then determines the power distribution load coefficient α k (k = 1,..., N; n) based on the required parameter β k (k = 1,..., N; n is an arbitrary natural number) of each vehicle 11. An arbitrary natural number) is calculated, and further, a carrier wave based on the resonance frequency (maximum efficiency frequency) ω k and the power distribution load coefficient α k (k = 1,..., N; n is an arbitrary natural number) of each vehicle 11 fc is calculated.

次に、給電期間Tbでは、充電ステーション12は、スイープ期間Taにおいて算出したキャリア波fcに基づき、交流電源41から出力される交流電力を増幅し、この増幅結果の交流電力を各車両11に送電する。   Next, in the power supply period Tb, the charging station 12 amplifies the AC power output from the AC power supply 41 based on the carrier wave fc calculated in the sweep period Ta, and transmits the AC power resulting from the amplification to each vehicle 11. To do.

以下に、非接触充電システム10の動作について説明する。
先ず、例えば図6に示すステップS01においては、外部から入力される送電指示が有るか否かを判定する。
この判定結果が「NO」の場合には、エンドに進む。
一方、この判定結果が「YES」の場合には、ステップS02に進む。
次に、ステップS02においては、タイマー(図示略)のタイマー値tをゼロに初期化してから計時を開始する。
Below, operation | movement of the non-contact charge system 10 is demonstrated.
First, for example, in step S01 shown in FIG. 6, it is determined whether there is a power transmission instruction input from the outside.
If this determination is “NO”, the flow proceeds to the end.
On the other hand, if this determination is “YES”, the flow proceeds to step S 02.
Next, in step S02, time measurement is started after the timer value t of a timer (not shown) is initialized to zero.

次に、ステップS03においては、各車両11の受電コイル24の最大効率周波数ω(k=1,…,n;nは任意の自然数)を取得する。
次に、ステップS04においては、各車両11の残容量SOCおよび要求度EMおよび負担費用COを取得する。
Next, in step S03, the maximum efficiency frequency ω k (k = 1,..., N; n is an arbitrary natural number) of the power receiving coil 24 of each vehicle 11 is acquired.
Next, in step S04, the remaining capacity SOC, the required degree EM, and the burden cost CO of each vehicle 11 are acquired.

次に、ステップS05においては、各車両11の要求パラメータβ(k=1,…,n;nは任意の自然数)を算出する。
次に、ステップS06においては、各車両11の電力配分荷重係数α(k=1,…,n;nは任意の自然数)を算出する。
次に、ステップS07においては、キャリア波fcを算出する。
Next, in step S05, the required parameter β k (k = 1,..., N; n is an arbitrary natural number) of each vehicle 11 is calculated.
Next, in step S06, the power distribution load coefficient α k (k = 1,..., N; n is an arbitrary natural number) of each vehicle 11 is calculated.
Next, in step S07, a carrier wave fc is calculated.

次に、ステップS08においては、キャリア波fcに基づき、交流電源41から出力される交流電力を増幅する。
次に、ステップS09においては、充電ステーション12から各車両11に対して送電を開始する。
Next, in step S08, the AC power output from AC power supply 41 is amplified based on carrier wave fc.
Next, in step S09, power transmission from the charging station 12 to each vehicle 11 is started.

そして、ステップS10においては、タイマー値tは所定周期Tに到達したか否かを判定する。
この判定結果が「NO」の場合には、このステップS10の判定を繰り返し実行する。
一方、この判定結果が「YES」の場合には、ステップS11に進む。
そして、ステップS11においては、送電を停止し、上述したステップS01に戻る。
In step S10, it is determined whether or not the timer value t has reached a predetermined period T.
When the determination result is “NO”, the determination in step S10 is repeatedly executed.
On the other hand, if this determination is “YES”, the flow proceeds to step S11.
And in step S11, power transmission is stopped and it returns to step S01 mentioned above.

上述したように、本実施の形態による非接触電力伝送システム10によれば、充電ステーション12の送電コイル46から複数の車両11の受電コイル24に対して、最大効率周波数ω(k=1,…,n;nは任意の自然数)における共鳴現象によって電力伝送が行なわれる。
これにより、複数の車両11の受電コイル24の最大効率周波数が互いに異なる場合であっても、各々の受電コイル24の受電効率の低下を防止することができる。
しかも、複数の車両11の受電コイル24に対して、同時に電力伝送を行なうことができる。
As described above, according to the contactless power transmission system 10 according to the present embodiment, the maximum efficiency frequency ω k (k = 1, from the power transmission coil 46 of the charging station 12 to the power reception coils 24 of the plurality of vehicles 11. ..., n; n is an arbitrary natural number), and power transmission is performed by a resonance phenomenon.
Thereby, even if it is a case where the maximum efficiency frequency of the receiving coil 24 of the some vehicle 11 differs from each other, the fall of the receiving efficiency of each receiving coil 24 can be prevented.
In addition, power can be transmitted to the power receiving coils 24 of the plurality of vehicles 11 simultaneously.

さらに、複数の車両11の受電コイル24に対して、各車両11のバッテリ21の残容量SOCに応じて分配された交流電力により電力伝送を行なうことができる。
さらに、複数の車両11の受電コイル24に対して、各車両11の運転者の少なくとも要求度EMおよび負担費用COに応じて分配された交流電力により電力伝送を行なうことができる。
Furthermore, electric power can be transmitted to the power receiving coils 24 of the plurality of vehicles 11 by AC power distributed according to the remaining capacity SOC of the battery 21 of each vehicle 11.
Furthermore, electric power can be transmitted to the power receiving coils 24 of the plurality of vehicles 11 using AC power distributed according to at least the degree of demand EM and the burden cost CO of the driver of each vehicle 11.

なお、上述した実施の形態において、基本波形生成回路44は、各車両11の最大効率周波数ω(k=1,…,n;nは任意の自然数)の周波数および電力配分荷重係数α(k=1,…,n;nは任意の自然数)に応じた波高値を有する波形を重畳してキャリア波fcを算出するとしたが、これに限定されず、例えば任意の自然数mによる下記数式(4)に示すように記述される上述した実施の形態の変形例に係るキャリア波fcを算出し、算出結果の信号を出力してもよい。 In the above-described embodiment, the basic waveform generation circuit 44 uses the frequency of the maximum efficiency frequency ω k (k = 1,..., N; n is an arbitrary natural number) of each vehicle 11 and the power distribution load coefficient α k ( The carrier wave fc is calculated by superimposing a waveform having a peak value corresponding to k = 1,..., n; n is an arbitrary natural number), but is not limited to this. The carrier wave fc according to the modified example of the above-described embodiment described as shown in 4) may be calculated and a signal of the calculation result may be output.

Figure 0005624494
Figure 0005624494

この変形例では、基本波形生成回路44は、各車両11の最大効率周波数ω(k=1,…,n;nは任意の自然数)の周波数および互いに同一の波高値を有する複数の波形を時分割で配列してキャリア波fcを算出する。
そして、基本波形生成回路44は、時分割での各波形の時間幅を、各車両11の電力配分荷重係数α(k=1,…,n;nは任意の自然数)に応じて設定する。
In this modification, the basic waveform generation circuit 44 generates a plurality of waveforms having the frequency of the maximum efficiency frequency ω k (k = 1,..., N; n is an arbitrary natural number) of each vehicle 11 and the same peak value. The carrier wave fc is calculated by time division.
Then, the basic waveform generation circuit 44 sets the time width of each waveform in time division according to the power distribution load coefficient α k (k = 1,..., N; n is an arbitrary natural number) of each vehicle 11. .

これにより、充電ステーション12から各車両11の送電コイル46に出力される交流電力は、複数の車両11の受電コイル24の最大効率周波数ω(k=1,…,n;nは任意の自然数)の波形を含む交流電力であって、複数の車両11の受電コイル24の最大効率周波数ω(k=1,…,n;nは任意の自然数)の波形を時分割で配列して得られる交流電力となる。 Thereby, the AC power output from the charging station 12 to the power transmission coil 46 of each vehicle 11 is the maximum efficiency frequency ω k (k = 1,..., N; n is an arbitrary natural number) of the power reception coils 24 of the plurality of vehicles 11. ) Obtained by arranging the waveforms of the maximum efficiency frequency ω k (k = 1,..., N; n is an arbitrary natural number) of the receiving coils 24 of the plurality of vehicles 11 in a time-sharing manner. AC power is generated.

例えば図7に示すように、4台の車両11(車両(1),…,車両(4))に対して充電ステーション12から送電を行なう場合において、基本波形生成回路44は、先ず、車両(1)に対して最大効率周波数ωの周波数を有する所定波高値の波形を、送電開始期間Tbの開始時刻t2から電力配分荷重係数αに応じた時間幅(=α・Tb)で配置する。 For example, as shown in FIG. 7, when power is transmitted from the charging station 12 to four vehicles 11 (vehicle (1),..., Vehicle (4)), the basic waveform generation circuit 44 first sets the vehicle ( A waveform having a predetermined peak value having a frequency of the maximum efficiency frequency ω 1 with respect to 1) is arranged with a time width (= α 1 · Tb) corresponding to the power distribution load coefficient α 1 from the start time t2 of the power transmission start period Tb. To do.

次に、基本波形生成回路44は、車両(2)に対して最大効率周波数ωの周波数を有する所定波高値の波形を、送電開始期間Tb内の時刻t3から電力配分荷重係数αに応じた時間幅(=α・Tb)で配置する。なお、時刻t3は、開始時刻t2から時間幅(=α・Tb)だけ経過した時刻である。 Next, the basic waveform generation circuit 44 generates a waveform having a predetermined peak value having a frequency of the maximum efficiency frequency ω 2 for the vehicle (2) according to the power distribution load coefficient α 2 from time t3 within the power transmission start period Tb. Are arranged with a time width (= α 2 · Tb). Note that the time t3 is a time elapsed by a time width (= α 1 · Tb) from the start time t2.

次に、基本波形生成回路44は、車両(3)に対して最大効率周波数ωの周波数を有する所定波高値の波形を、送電開始期間Tb内の時刻t4から電力配分荷重係数αに応じた時間幅(=α・Tb)で配置する。なお、時刻t4は、時刻t3から時間幅(=α・Tb)だけ経過した時刻である。 Next, the basic waveform generation circuit 44 generates a waveform having a predetermined peak value having a frequency of the maximum efficiency frequency ω 3 for the vehicle (3) according to the power distribution load coefficient α 3 from the time t4 within the power transmission start period Tb. The time width is set (= α 3 · Tb). Note that the time t4 is a time elapsed by a time width (= α 2 · Tb) from the time t3.

次に、基本波形生成回路44は、車両(4)に対して最大効率周波数ωの周波数を有する所定波高値の波形を、送電開始期間Tb内の時刻t5から電力配分荷重係数αに応じた時間幅(=α・Tb)で配置する。なお、時刻t5は、時刻t4から時間幅(=α・Tb)だけ経過した時刻である。 Next, the basic waveform generation circuit 44 applies a waveform having a predetermined peak value having a frequency of the maximum efficiency frequency ω 4 to the vehicle (4) according to the power distribution load coefficient α 4 from time t5 within the power transmission start period Tb. Are arranged with a time width (= α 4 · Tb). Note that the time t5 is a time elapsed by a time width (= α 3 · Tb) from the time t4.

なお、この変形例において、基本波形生成回路44は、例えば任意の自然数mによる下記数式(5)に示すように、波形が切り替わる各境界時刻t0(例えば、図7に示す各時刻t3,t4,t5)において、隣接する波形の値が同一の値となるように設定してもよい。
また、基本波形生成回路44は、各境界時刻t0(例えば、図7に示す各時刻t2,…,t5など)において、隣接する波形が滑らかに連続するように設定してもよい。
In this modified example, the basic waveform generation circuit 44 has each boundary time t0 (for example, each time t3, t4 shown in FIG. 7) at which the waveform is switched, as shown in the following equation (5) using an arbitrary natural number m. At t5), adjacent waveform values may be set to the same value.
The basic waveform generation circuit 44 may be set so that adjacent waveforms smoothly continue at each boundary time t0 (for example, each time t2,..., T5 shown in FIG. 7).

Figure 0005624494
Figure 0005624494

なお、上述した実施の形態および変形例において、各車両11は共振周波数検出器29の代わりに、受電コイル24の最大効率周波数ω(k=1,…,n;nは任意の自然数)を推定する推定器を備えてもよい。
この推定器は、例えば各車両11と充電ステーション12との相対位置や距離などに応じて、予め記憶しているデータなどを参照して、受電コイル24の最大効率周波数ωを推定すればよい。
この場合には、所定周期Tのスイープ期間Taを省略してもよい。
In the embodiment and the modification described above, each vehicle 11 uses the maximum efficiency frequency ω k (k = 1,..., N; n is an arbitrary natural number) of the power receiving coil 24 instead of the resonance frequency detector 29. An estimator for estimation may be provided.
The estimator may estimate the maximum efficiency frequency ω k of the power receiving coil 24 with reference to data stored in advance according to the relative position or distance between each vehicle 11 and the charging station 12, for example. .
In this case, the sweep period Ta having a predetermined period T may be omitted.

なお、上述した実施の形態および変形例において、所定周期Tおよび送電期間Tbは固定値であってもよいし、あるいは、例えば複数の車両11の移動状態や充電ステーション12の送電状態などに応じて変更可能であってもよい。
例えば、複数の車両11の移動速度が速くなることに伴い、所定周期Tおよび送電期間Tbを短縮傾向に変更してもよい。
In the embodiment and the modification described above, the predetermined period T and the power transmission period Tb may be fixed values, or, for example, according to the moving state of the plurality of vehicles 11 or the power transmission state of the charging station 12. It may be changeable.
For example, the predetermined cycle T and the power transmission period Tb may be changed to a shortening tendency as the moving speed of the plurality of vehicles 11 increases.

なお、上述した実施の形態および変形例において、非接触電力伝送システム10は、所定周期Tをスイープ期間Taと送電期間Tbにより構成するとしたが、これに限定されず、例えば各車両11の停車時においては、初回の所定周期Tのみをスイープ期間Taと送電期間Tbにより構成し、これより後においては、スイープ期間Taを省略してもよい。   In the above-described embodiment and modification, the non-contact power transmission system 10 is configured to include the predetermined period T by the sweep period Ta and the power transmission period Tb. However, the present invention is not limited to this, for example, when each vehicle 11 is stopped. In this case, only the first predetermined period T may be constituted by the sweep period Ta and the power transmission period Tb, and after this, the sweep period Ta may be omitted.

つまり、複数の車両11のうち何れかが移動状態である場合にのみ、所定周期Tをスイープ期間Taと送電期間Tbにより構成してもよい。
この場合、2回目以降の所定周期Tにおいて、非接触電力伝送システム10は、初回の所定周期Tのスイープ期間Taにおいて共振周波数検出器29から出力された最大効率周波数ω(k=1,…,n;nは任意の自然数)を用いてキャリア波fcを算出する。
That is, the predetermined cycle T may be configured by the sweep period Ta and the power transmission period Tb only when any of the plurality of vehicles 11 is in a moving state.
In this case, in the second and subsequent predetermined periods T, the non-contact power transmission system 10 outputs the maximum efficiency frequency ω k (k = 1,...) Output from the resonance frequency detector 29 in the initial sweep period Ta of the predetermined period T. , N; n is an arbitrary natural number) to calculate the carrier wave fc.

さらに、この場合、非接触電力伝送システム10は、2回目以降の所定周期Tにおいて、初回の所定周期Tのスイープ期間Taにおいて共振周波数検出器29から出力された最大効率周波数ω(k=1,…,n;nは任意の自然数)および要求パラメータ算出部30から出力された要求パラメータβ(k=1,…,n;nは任意の自然数)を用いてキャリア波fcを算出してもよい。 Furthermore, in this case, the non-contact power transmission system 10 has a maximum efficiency frequency ω k (k = 1) output from the resonance frequency detector 29 in the first predetermined period T of the sweep period Ta in the second and subsequent predetermined periods T. ,..., N; n is an arbitrary natural number) and the required parameter β k output from the required parameter calculation unit 30 (k = 1,..., N; n is an arbitrary natural number) to calculate the carrier wave fc. Also good.

なお、上述した実施の形態および変形例において、要求パラメータ算出部30は、要求パラメータβ(k=1,…,n;nは任意の自然数)を、残容量SOCおよび要求度EMおよび負担費用COのうち少なくとも何れか1つのみに応じて算出してもよい。 In the embodiment and the modification described above, the required parameter calculation unit 30 calculates the required parameter β k (k = 1,..., N; n is an arbitrary natural number), the remaining capacity SOC, the required degree EM, and the burden cost. You may calculate according to only at least any one of CO.

この場合、要求パラメータβ(k=1,…,n;nは任意の自然数)は、残容量SOCおよび要求度EMおよび負担費用COのうち少なくとも何れか1つに対応する関数(つまり、関数f(SOC)および関数g(EM)および関数h(CO)のうち少なくとも何れか1つ)のみにより構成され、他の関数は上記数式(1)において省略される。 In this case, the required parameter β k (k = 1,..., N; n is an arbitrary natural number) is a function corresponding to at least one of the remaining capacity SOC, the required degree EM, and the burden cost CO (that is, the function f (SOC), function g (EM), and function h (CO) at least one of them), and the other functions are omitted in the above equation (1).

なお、上述した実施の形態および変形例において、非接触電力伝送システム10は複数の車両11と充電ステーション12とを備えて構成されているとしたが、これに限定されず、複数の車両11の代わりに、例えば複数の移動端末などを備えて構成されてもよい。   In the above-described embodiment and modification, the non-contact power transmission system 10 is configured to include the plurality of vehicles 11 and the charging station 12. However, the present invention is not limited to this. Instead, for example, a plurality of mobile terminals may be provided.

10 非接触電力伝送システム
11 車両(受電装置)
12 充電ステーション
21 バッテリ(蓄電手段)
24 受電コイル
27 残容量検出器(残容量取得手段)
28 入力装置(取得手段)
29 共振周波数検出器(周波数取得手段)
41 交流電源(交流電力出力手段)
43 電力配分荷重係数算出部(交流電力出力手段)
44 基本波形生成回路(交流電力出力手段)
45 増幅器(交流電力出力手段)
46 送電コイル
10 Non-contact power transmission system 11 Vehicle (power receiving device)
12 Charging station 21 Battery (electric storage means)
24 Power receiving coil 27 Remaining capacity detector (remaining capacity obtaining means)
28 Input device (acquisition means)
29 Resonant frequency detector (frequency acquisition means)
41 AC power supply (AC power output means)
43 Power distribution load coefficient calculation unit (AC power output means)
44 Basic waveform generation circuit (AC power output means)
45 Amplifier (AC power output means)
46 Power transmission coil

Claims (5)

所定波形の交流電力を出力する交流電力出力手段と、
前記交流電力出力手段により出力された前記交流電力を共鳴現象により複数の受電コイルへ送電する送電コイルとを備える非接触電力伝送システムであって、
複数の前記受電コイルに対して、各々の前記複数の受電コイルの受電効率が最大となる最大効率周波数を取得する周波数取得手段を備え、
前記交流電力出力手段は、前記所定波形の交流電力として、各々の前記複数の受電コイルの前記最大効率周波数の波形を重畳して得られる交流電力を出力し、
前記交流電力出力手段は、各々の前記複数の受電コイルの前記最大効率周波数の波形の波高値を、所定の電力配分荷重係数に基づき設定する、
ことを特徴とする非接触電力伝送システム。
AC power output means for outputting AC power having a predetermined waveform;
A non-contact power transmission system comprising a power transmission coil for transmitting the AC power output by the AC power output means to a plurality of power receiving coils by a resonance phenomenon,
For the plurality of power receiving coils, comprising a frequency acquisition means for acquiring a maximum efficiency frequency at which the power receiving efficiency of each of the plurality of power receiving coils is maximized,
The AC power output means outputs the AC power obtained by superimposing the waveforms of the maximum efficiency frequencies of the plurality of power receiving coils as the AC power of the predetermined waveform,
The AC power output means sets a peak value of the waveform of the maximum efficiency frequency of each of the plurality of power receiving coils based on a predetermined power distribution load coefficient.
A non-contact power transmission system characterized by that.
各々の前記複数の受電コイルに接続された蓄電手段と、
該蓄電手段の残容量を取得する残容量取得手段とを備え、
前記交流電力出力手段は、各々の前記複数の受電コイルの前記最大効率周波数の波形の波高値を、前記蓄電手段の残容量に応じて設定する
ことを特徴とする請求項1に記載の非接触電力伝送システム。
Power storage means connected to each of the plurality of power receiving coils;
A remaining capacity acquisition means for acquiring the remaining capacity of the power storage means,
The AC power output means sets the peak value of the waveform of the maximum efficiency frequency of each of the plurality of power receiving coils according to the remaining capacity of the power storage means .
The contactless power transmission system according to claim 1.
各々の前記複数の受電コイルを備える受電装置を使用する使用者の少なくとも要求度または負担費用を取得する取得手段を備え、
前記交流電力出力手段は、各々の前記複数の受電コイルの前記最大効率周波数の波形の波高値を、少なくとも前記要求度または前記負担費用に応じて設定する
ことを特徴とする請求項1または請求項2に記載の非接触電力伝送システム。
Obtaining means for obtaining at least a request level or a burden cost of a user who uses a power receiving device including each of the plurality of power receiving coils;
The AC power output means sets a peak value of the waveform of the maximum efficiency frequency of each of the plurality of power receiving coils according to at least the required degree or the burden cost .
The non-contact power transmission system according to claim 1 or claim 2, wherein
所定波形の交流電力を出力する交流電力出力手段と、
前記交流電力出力手段により出力された前記交流電力を共鳴現象により複数の受電コイルへ送電する送電コイルとを備える非接触電力伝送システムであって、
複数の前記受電コイルに対して、各々の前記複数の受電コイルの受電効率が最大となる最大効率周波数を取得する周波数取得手段と、
各々の前記複数の受電コイルを備える受電装置を使用する使用者の少なくとも要求度または負担費用を取得する取得手段と、
を備え、
前記交流電力出力手段は、前記所定波形の交流電力として、各々の前記複数の受電コイルの前記最大効率周波数の波形を時分割で配列して得られる交流電力を出力し、
前記交流電力出力手段は、各々の前記複数の受電コイルの前記最大効率周波数の波形の前記時分割での時間幅を、少なくとも前記要求度または前記負担費用に応じて設定する、
ことを特徴とする非接触電力伝送システム。
AC power output means for outputting AC power having a predetermined waveform;
A non-contact power transmission system comprising a power transmission coil for transmitting the AC power output by the AC power output means to a plurality of power receiving coils by a resonance phenomenon,
Frequency acquisition means for acquiring a maximum efficiency frequency at which the power receiving efficiency of each of the plurality of power receiving coils is maximum for the plurality of power receiving coils ,
Obtaining means for obtaining at least the degree of demand or burden cost of a user who uses a power receiving device including each of the plurality of power receiving coils;
With
The AC power output means outputs the AC power obtained by arranging the waveforms of the maximum efficiency frequencies of the plurality of power receiving coils in a time division manner as the AC power of the predetermined waveform,
The AC power output means sets a time width in the time division of the waveform of the maximum efficiency frequency of each of the plurality of power receiving coils according to at least the required degree or the burden cost.
A non-contact power transmission system characterized by that.
各々の前記複数の受電コイルに接続された蓄電手段と、
該蓄電手段の残容量を取得する残容量取得手段とを備え、
前記交流電力出力手段は、各々の前記複数の受電コイルの前記最大効率周波数の波形の前記時分割での時間幅を、前記蓄電手段の残容量に応じて設定することを特徴とする請求項に記載の非接触電力伝送システム。
Power storage means connected to each of the plurality of power receiving coils;
A remaining capacity acquisition means for acquiring the remaining capacity of the power storage means,
The AC power output means according to claim, characterized in that the time width at the time division of each of the maximum efficiency frequency of the waveform of the plurality of power receiving coil is set in accordance with the remaining capacity of the storage means 4 The contactless power transmission system described in 1.
JP2011033528A 2011-02-18 2011-02-18 Non-contact power transmission system Expired - Fee Related JP5624494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033528A JP5624494B2 (en) 2011-02-18 2011-02-18 Non-contact power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033528A JP5624494B2 (en) 2011-02-18 2011-02-18 Non-contact power transmission system

Publications (2)

Publication Number Publication Date
JP2012175763A JP2012175763A (en) 2012-09-10
JP5624494B2 true JP5624494B2 (en) 2014-11-12

Family

ID=46978138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033528A Expired - Fee Related JP5624494B2 (en) 2011-02-18 2011-02-18 Non-contact power transmission system

Country Status (1)

Country Link
JP (1) JP5624494B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014057398A (en) * 2012-09-11 2014-03-27 Panasonic Corp Storage battery management apparatus and storage battery management method
US9553473B2 (en) 2013-02-04 2017-01-24 Ossia Inc. Systems and methods for optimally delivering pulsed wireless power
JP6124656B2 (en) 2013-04-08 2017-05-10 キヤノン株式会社 Power feeding device, power feeding device control method and program
JP6201388B2 (en) * 2013-04-15 2017-09-27 日産自動車株式会社 Contactless power supply system
EP3158622B1 (en) 2014-06-20 2020-09-09 LG Electronics Inc. Wireless power transfer method, apparatus and system
WO2015194889A1 (en) * 2014-06-20 2015-12-23 Lg Electronics Inc. Wireless power transfer method, apparatus and system
KR102475095B1 (en) * 2015-10-26 2022-12-08 주식회사 위츠 Wireless power transmitter
JP6803886B2 (en) * 2018-10-04 2020-12-23 株式会社デンソー Wireless power supply
JP7547191B2 (en) * 2020-12-23 2024-09-09 本田技研工業株式会社 Charging control method and electric vehicle
CN113809835A (en) * 2021-08-11 2021-12-17 荣耀终端有限公司 Wireless charging method, device, chip, system and computer readable storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240765B2 (en) * 2008-07-09 2013-07-17 トヨタ自動車株式会社 Parking system
US9473209B2 (en) * 2008-08-20 2016-10-18 Intel Corporation Wireless power transfer apparatus and method thereof
JP5241381B2 (en) * 2008-08-25 2013-07-17 株式会社日立製作所 Power receiver
US8497658B2 (en) * 2009-01-22 2013-07-30 Qualcomm Incorporated Adaptive power control for wireless charging of devices
JP5417941B2 (en) * 2009-03-31 2014-02-19 富士通株式会社 Power transmission equipment
JP5399340B2 (en) * 2010-08-10 2014-01-29 日本電信電話株式会社 Wireless power supply method and wireless power supply system

Also Published As

Publication number Publication date
JP2012175763A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP5624494B2 (en) Non-contact power transmission system
US9666359B2 (en) Vehicle, power receiving device, power transmitting device, and contactless power supply system
US8519569B2 (en) Wireless power supply system and wireless power supply method
US10330743B2 (en) Noncontact power transmission system to detect presence of a metallic foreign matter
JP6119756B2 (en) Non-contact power supply system and power transmission device
US10008883B2 (en) Noise reducing power feed device, power reception device and power feed method
CN112740078B (en) Extended range positioning system based on foreign matter detection
JP6464520B2 (en) Non-contact power transmission device, non-contact power reception device, and non-contact power transmission system
US9254756B2 (en) Power supply device and power supply method
KR20170035920A (en) Devices, systems, and method for dynamic electric vehicle charging with position detection
KR20160147747A (en) Devices, systems, and method for power control of dynamic electric vehicle charging systems
MX2013011710A (en) Contactless electricity supply device.
JP6089464B2 (en) Non-contact power transmission device
JP5732870B2 (en) Non-contact power supply apparatus and non-contact power supply method
WO2012132413A1 (en) Power transmission system
JP2012005238A (en) Non-contact power feeding device
JP6049669B2 (en) DC power supply apparatus and DC power supply method
CN105075065A (en) Power supply device, power receiving device, and charging system
US20160114688A1 (en) Power feed device and method for acquisition of frequency characteristics
JP2013038893A (en) Power transmission system
JP5761508B2 (en) Power transmission system
JP5696674B2 (en) Electric vehicle
WO2013118368A1 (en) Charging station and relative position control method
JP5510670B2 (en) Power transmission system
JP6146620B2 (en) Non-contact power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140926

R150 Certificate of patent or registration of utility model

Ref document number: 5624494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees