JP5619265B1 - Electromagnetic shielding material shielding performance measuring device - Google Patents
Electromagnetic shielding material shielding performance measuring device Download PDFInfo
- Publication number
- JP5619265B1 JP5619265B1 JP2013254593A JP2013254593A JP5619265B1 JP 5619265 B1 JP5619265 B1 JP 5619265B1 JP 2013254593 A JP2013254593 A JP 2013254593A JP 2013254593 A JP2013254593 A JP 2013254593A JP 5619265 B1 JP5619265 B1 JP 5619265B1
- Authority
- JP
- Japan
- Prior art keywords
- sample sheet
- sample
- electromagnetic wave
- inner conductor
- shielding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 19
- 239000004020 conductor Substances 0.000 claims abstract description 41
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 238000005259 measurement Methods 0.000 abstract description 12
- 238000000034 method Methods 0.000 abstract description 11
- 235000012489 doughnuts Nutrition 0.000 abstract description 3
- 238000002360 preparation method Methods 0.000 abstract description 3
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
- G01R29/10—Radiation diagrams of antennas
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
【課題】 従来のフランジ型同軸管法による電磁波遮蔽性能測定装置は、円筒上の外導体に、断面が円形である内導体を同心円状に配置し、このとき形成される隙間に試料を配置することになるため、試料は寸法誤差の許されないドーナツ形に成形せざるを得ない。これは、測定の準備段階での作業を面倒で煩雑なものとしており、理想的な形態とは言えなかった。【解決手段】 内導体が電磁波照射方向に対して垂直な面で二分割されており、これらの間に試料シートを配置させるものであって、厚さ1mm以下に成形された試料シートを、対向する透孔を有する一対の中空金属プレートで挟持した上で、該試料シート周縁より外側部分の空隙を塞ぐ遮蔽突起体にて該試料シートを囲繞する。【選択図】 図1PROBLEM TO BE SOLVED: To dispose an inner conductor having a circular cross section concentrically on an outer conductor on a cylinder, and to place a sample in a gap formed at this time, in a conventional apparatus for measuring electromagnetic wave shielding performance by a flanged coaxial tube method Therefore, the sample has to be formed into a donut shape that does not allow dimensional errors. This makes the work in the measurement preparation stage cumbersome and cumbersome, and is not an ideal form. An inner conductor is divided into two parts in a plane perpendicular to an electromagnetic wave irradiation direction, and a sample sheet is arranged between them, and the sample sheet formed to have a thickness of 1 mm or less is opposed to the sample sheet. After sandwiching between a pair of hollow metal plates having through holes, the sample sheet is surrounded by a shielding protrusion that closes the gap outside the periphery of the sample sheet. [Selection] Figure 1
Description
本発明は、ある電磁波遮蔽材がどの程度の遮蔽性を有するのかを、当該遮蔽材の試料を被測定物として挿入配置した上で一方側から該試料に向けて電磁波を照射し、他方側でその透過量を測定することによって測定評価するという形式の装置に関するものであり、その測定準備における作業性を向上させた装置構造に関するものである。
In the present invention, the degree of shielding of an electromagnetic wave shielding material is measured by irradiating an electromagnetic wave from one side to the sample after inserting the sample of the shielding material as an object to be measured. The present invention relates to an apparatus of the type of measuring and evaluating by measuring the amount of permeation, and to an apparatus structure that improves workability in the measurement preparation.
携帯電話端末を始めとする各種通信機器、或いはコンピュータを始めとする電子機器は、不要電波となる電磁波を発生するので、これが生活空間に入り込んで、電子回路の破壊や誤作動を引き起こす恐れがあることが知られている。そこで、この電磁波の漏出・侵入を防ぐために用いられているのが電磁波遮蔽材、電磁波シールド材などと呼ばれるものであり、多種多数の材料が開発され採用されている。一般には、銅、ニッケル、銀等の金属粉や、鉄、アルミニウム等の金属箔を混在させた導電性塗料、ステンレス繊維を分散させた導電性高分子、等々が採用されている。 Various communication devices such as mobile phone terminals or electronic devices such as computers generate electromagnetic waves that become unnecessary radio waves, which can enter living spaces and cause destruction or malfunction of electronic circuits. It is known. Therefore, what is used to prevent leakage and intrusion of electromagnetic waves is called an electromagnetic shielding material, an electromagnetic shielding material, and the like, and a large number of materials have been developed and adopted. In general, conductive powders in which metal powders such as copper, nickel and silver, metal foils such as iron and aluminum are mixed, conductive polymers in which stainless fibers are dispersed, and the like are employed.
そして、これら電磁波遮蔽材の電磁波遮蔽性能を測定するのが、電磁波遮蔽性能測定装置である。これによって、測定対象である電磁波遮蔽材試料の性能や適性を評価することになる。 An electromagnetic wave shielding performance measuring apparatus measures the electromagnetic wave shielding performance of these electromagnetic wave shielding materials. As a result, the performance and suitability of the electromagnetic wave shielding material sample to be measured are evaluated.
例えば特許第2523361号公報(特許文献1)には、そのような装置の一例が提案されている。これは、互いに突き合わされる同軸型治具片からなり、一方の治具片の内部導体を互に摺動自在に接続されたヘッド部材とリード部材とから構成し、このヘッド部材の被測定試料を貫通しての他方の治具片の内部導体ヘッド部への結合により当該試料の内周部を挾持する内部導体結合手段を設け、両治具片の外部導体間に上記試料の外周部を挾持する外部導体結合手段を設けた、という装置であって、現在広く採用されている構造の測定装置の一つである。 For example, Japanese Patent No. 2523361 (Patent Document 1) proposes an example of such an apparatus. This consists of a coaxial jig piece that is abutted against each other, and is composed of a head member and a lead member that are slidably connected to the inner conductor of one jig piece. An internal conductor coupling means is provided for holding the inner peripheral portion of the sample by coupling the other jig piece to the inner conductor head portion through the outer peripheral portion of the sample. It is an apparatus that is provided with a holding outer conductor coupling means, and is one of the measurement apparatuses having a structure that is currently widely used.
特許第2523361号公報に開示された装置では発振器側同軸線路内より伝播されてくる電磁波がシールド材試料に入射され、その電磁波の一部(シールドされなかった電磁波分)がシールド材試料の裏面側に透過される状態で測定されるために、シールド材表面側から裏面側への電磁波の伝達性を的確に示す伝達インピーダンスが測定され得るという効果をもたらす好適な装置となっている。 In the apparatus disclosed in Japanese Patent No. 2523361, an electromagnetic wave propagated from the inside of the oscillator-side coaxial line is incident on the shield material sample, and a part of the electromagnetic wave (the electromagnetic wave component not shielded) is on the back side of the shield material sample. Therefore, it is a suitable device that brings about an effect that a transfer impedance that accurately indicates the transferability of electromagnetic waves from the front surface side to the back surface side of the shield material can be measured.
なお装置は、電磁波遮蔽材の遮蔽性能を測定するものであるので、装置自体が厳重な遮蔽をされている必要がある。そして漏洩の可能性は、どのような規格の装置であっても通常、装置単体で問題となることはない。実は、遮蔽されているとは言い難い部分が見られるのは、試料を実装した状態においてである。 Since the device measures the shielding performance of the electromagnetic wave shielding material, the device itself needs to be strictly shielded. The possibility of leakage does not normally cause a problem with any device of any standard. Actually, it is in a state where the sample is mounted that a portion that is hardly shielded is seen.
元来フランジ型同軸管法による電磁波遮蔽性能測定装置は、その名称の通り、フランジ部分を設けることによって、それまでの同軸管法装置による測定時における試料の扱いにくさを改良する手法として提案されたものである。しかしながら、簡便な装置として提案されたフランジ型同軸管法による装置においても、円筒上の外導体に、断面が円形である内導体を同心円状に配置し、このとき形成される隙間に試料を配置することになるため、試料は寸法誤差の許されないドーナツ形に成形せざるを得ない。成形の際試料の加工が不完全であると、ドーナツ形に成形された試料と同軸管壁面との間に隙間があれば試料を通過しない電磁波が存在することになるし、余剰部分があれば外導体内側と内導体に低抵抗で接触させることができなくなり抵抗の大きい箇所から電磁波が漏えいすることになる。その結果正確な評価ができないことになる。そのため、測定段階での作業性は良好であるものの、その準備段階での作業である試料の形状加工には高い精度が求められるのが、フランジ型同軸管法による電磁波遮蔽性能測定の実情であった。
Originally, as the name suggests, the apparatus for measuring electromagnetic shielding performance by the flanged coaxial tube method has been proposed as a technique to improve the handling difficulty of the sample at the time of measurement using the coaxial tube method apparatus by providing a flange portion. It is a thing. However, even in the apparatus using the flanged coaxial tube method proposed as a simple apparatus, the inner conductor having a circular cross section is arranged concentrically on the outer conductor on the cylinder, and the sample is arranged in the gap formed at this time. Therefore, the sample has to be formed into a donut shape that does not allow dimensional errors. If the processing of the sample is incomplete during molding, there will be electromagnetic waves that do not pass through the sample if there is a gap between the doughnut-shaped sample and the wall surface of the coaxial tube, and if there is an excess part The inside of the outer conductor and the inner conductor cannot be brought into contact with a low resistance, and electromagnetic waves leak from a portion having a high resistance. As a result, accurate evaluation cannot be performed. Therefore, although workability at the measurement stage is good, high accuracy is required for the shape processing of the sample, which is the work at the preparation stage, in the actual situation of electromagnetic shielding performance measurement by the flanged coaxial tube method. It was.
そこで本発明者らは上記点に鑑み鋭意研究の結果、遂に本発明を成したものであり、その特徴とするところは、内導体が電磁波照射方向に対して垂直な面で二分割されており、これらの間に試料シートを配置させるものであって、厚さ1mm以下に成形された試料シートを、対向する透孔を有する一対の中空金属プレートで挟持した上で、該試料シート周縁より外側部分の空隙を塞ぐ遮蔽突起体にて該試料シートを囲繞する、という点にある。 Therefore, the present inventors finally made the present invention as a result of intensive studies in view of the above points, and the feature is that the inner conductor is divided into two parts in a plane perpendicular to the electromagnetic wave irradiation direction. A sample sheet is arranged between them, and the sample sheet formed to have a thickness of 1 mm or less is sandwiched between a pair of hollow metal plates having opposing through holes, and outside the periphery of the sample sheet. The sample sheet is surrounded by a shielding protrusion that closes the gap in the part.
従来であれば、中央に、内導体を貫通させる孔を備え、外縁部分は外導体の内面に沿うドーナツ形状に試料を加工する、ことが必要であったが、本発明によればこれが省略できる。また、隙間や重複の存在に起因する測定誤差発生の可能性が激減することになる。 Conventionally, it has been necessary to provide a hole through the inner conductor at the center and process the sample into a donut shape along the inner surface of the outer conductor at the outer edge portion, but this can be omitted according to the present invention. . In addition, the possibility of measurement errors due to the presence of gaps and overlaps is drastically reduced.
本発明装置においては、対向する一対の中空金属プレートで挟持するという手法で試料シートを設置するものであり、内導体に嵌め込むというものではない。そしてこの一対の金属プレートプレートには、透孔が設けられており、入射された電磁波はこの透孔を通過して他方の金属プレートに至る。その際該金属プレートは試料シートを挟持しているので、入射電磁波の全量が試料シートを通過することになる。これが本発明の原理である。 In the apparatus of the present invention, the sample sheet is installed by a method of sandwiching between a pair of opposed hollow metal plates, and is not fitted into the inner conductor. The pair of metal plate plates are provided with through holes, and the incident electromagnetic wave passes through the through holes and reaches the other metal plate. At this time, since the metal plate sandwiches the sample sheet, the entire amount of incident electromagnetic waves passes through the sample sheet. This is the principle of the present invention.
本発明では内導体が試料シート部分で分断された形となる。ゆえにフランジ接合の際に位置ズレを起こしやすくなるという欠点はある。しかし使用する試料シートは、透孔を覆うことさえできればどのような形状であっても良いという極めて高い利点を有する。
但し試料シートの厚みに関しては全く自由というわけではなく、1mm以下とする。厚みが1mmを超えてしまうようであれば、厚み断面から漏出する電磁波量が測定誤差を招く危険性があるからである。また、本装置において内導体は、一体のものではなく、二分割され試料シートを挟着する形で接合されるために、該試料シートの厚み分だけ離反することになる。
In the present invention, the inner conductor is divided at the sample sheet portion. Therefore, there is a drawback that misalignment is likely to occur during flange joining. However, the sample sheet to be used has a very high advantage that it can have any shape as long as it can cover the through holes.
However, the thickness of the sample sheet is not completely free and is 1 mm or less. This is because if the thickness exceeds 1 mm, the amount of electromagnetic waves leaking from the thickness section may cause a measurement error. Further, in the present apparatus, the inner conductor is not integrated, but is divided into two parts and joined in such a manner as to sandwich the sample sheet, and therefore, the inner conductor is separated by the thickness of the sample sheet.
金属プレートの材質に関しては特に限定するものではなく、従来のフランジ型同軸管法による装置に採用されているフランジと同様のもので良い。形状に関しては、外導体内周部分が中空のものである。 The material of the metal plate is not particularly limited, and may be the same as the flange employed in the conventional flange type coaxial tube method. Regarding the shape, the inner peripheral portion of the outer conductor is hollow.
これら一対の金属プレートの片方の、試料シートの周縁に相当する部分には遮蔽突起体が配置されており、これにて該試料シートは囲繞されている。この遮蔽突起体は、該試料シート内に入り込んだ電磁波を、シート厚み方向から外側に漏えいした場合にこれを装置外へ放出させず、反射させ再度試料シート内へ入射させるという機能を持つ。これによって電磁波漏えいは防止され測定値の信頼性が増す。既述した通り、電磁波漏洩の可能性は、装置単体の状態ではなく、試料を実装した状態においてであるが、その傾向は周波数レンジが高くなると更に顕著となる。
遮蔽突起体の構造・形状については特段の限定はしない。外導体のフランジ部分に挟まれる部分に設けられるため厚みに対する制限があるので、そうした点をカバーする必要はある。
A shielding protrusion is disposed on a portion of one of the pair of metal plates corresponding to the peripheral edge of the sample sheet, thereby surrounding the sample sheet. The shielding projection has a function of reflecting the electromagnetic wave that has entered the sample sheet and then incident again into the sample sheet without emitting it to the outside of the apparatus when it leaks outward from the sheet thickness direction. This prevents electromagnetic leakage and increases the reliability of the measured value. As described above, the possibility of leakage of electromagnetic waves is not in the state of a single device but in a state where a sample is mounted, but this tendency becomes more prominent as the frequency range becomes higher.
There is no particular limitation on the structure and shape of the shielding protrusion. Since it is provided at the portion sandwiched between the flange portions of the outer conductor, there is a limitation on the thickness, and it is necessary to cover such a point.
本発明は、内導体が電磁波照射方向に対して垂直な面で二分割されており、これらの間に試料シートを配置させるものであって、厚さ1mm以下に成形された試料シートを、対向する透孔を有する一対の中空金属プレートで挟持した上で、該試料シート周縁より外側部分の空隙を塞ぐ遮蔽突起体にて該試料シートを囲繞するものであることを特徴とするものであり、以下述べる如き効果を有する極めて高度な発明である。 In the present invention, the inner conductor is divided into two parts in a plane perpendicular to the electromagnetic wave irradiation direction, and the sample sheet is arranged between them, and the sample sheet formed to have a thickness of 1 mm or less is opposed to the sample sheet. The sample sheet is surrounded by a shielding protrusion that closes a gap on the outer side of the sample sheet periphery after being sandwiched between a pair of hollow metal plates having through holes to be formed, This is an extremely advanced invention having the following effects.
(1) 内導体の外周と、外導体の内周の隙間部分に試料シートを嵌めこむという形式ではなく、金独プレートに試料シートを挟むようにし、且つ、内導体も電磁波照射方向に対して垂直な面で二分割されているので、試料シート外形を正確に加工しておく必要がない。
(2) 試料シートの外周外側には、遮蔽突起体が配置されているので、ここから電磁波が漏洩する可能性がほぼなくなり、測定精度が増す。
(1) The sample sheet is not inserted into the gap between the outer circumference of the inner conductor and the inner circumference of the outer conductor. Since it is divided into two by a vertical surface, it is not necessary to accurately process the outer shape of the sample sheet.
(2) Since the shielding protrusion is disposed on the outer periphery of the sample sheet, there is almost no possibility of leakage of electromagnetic waves, and the measurement accuracy is increased.
図1及び図2は、本発明に係る電磁波遮蔽材の遮蔽性能測定装置1(以下本発明装置1という)の一例の、要部構造を示すための模式断面図である。図より明らかなように本発明装置1は、内導体2と外導体3にて構成されるものであるが、図1に示すように外導体3の一部に設けられた金属プレートであるフランジ31a、31b部分で内導体2と外導体3のいずれもが二分割されている。
FIG. 1 and FIG. 2 are schematic cross-sectional views showing an essential structure of an example of a shielding performance measuring
分割された状態でこれらの間隙部分に、測定対象である試料シートSをセットする。セット後には図2の如き状態となる。円柱状である内導体2の外側に同心に円筒状の外導体3が配置されるという同軸管法装置の基本は踏襲しているものの、本発明装置1において試料シートSは、内導体の外周と外導体の内周の隙間Z部分の形状に精確に合致するようにカットして嵌めこむ、という必要がないことが分かる。
In the divided state, the sample sheet S to be measured is set in these gap portions. After setting, the state is as shown in FIG. Although the basics of the coaxial tube apparatus in which the cylindrical
試料シートSをセットした後、フランジ31a・31bを合体一体化させる(一体化のための機構は描出を省略している)。試料シートSの厚みは1mm以下であり、照射された電磁波のごく一部は試料シートSに入射された後、そのまま通過して測定側端部に至らず、外周端面から外部に漏出することになる。漏出量は測定誤差を招くことになるが、本発明装置1の場合には試料シートSの外側に遮蔽突起体4が配置されているので再度試料シートSに入射され余さず測定されることになる。
After setting the sample sheet S, the
図3(a)(b)は、遮蔽突起体4の一例を示すものである。本例の遮蔽突起体4は、板ばね状突起41を多数配置したものである。内導体2は円柱状、外導体3は円筒状であるが、フランジ31a・31bは正方形状となっている。各板ばね状突起41は、試料シートSの厚さが1mm以内であれば、フランジ31a・31bを合体一体化させたときに必ず対向面に接触するという機能を有している。これにより、試料シートSの厚さの変化にも対応できることになる。本発明者が試作実験した範囲では、厚みが1mmを超える試料シートSを用いて、周波数レンジが例えば1〜6GHzといった幅広い周波数帯を測定することが可能な装置においては、周波数が増すと測定誤差が無視できなくなった。
3A and 3B show an example of the shielding
図4は、本発明装置1の概形を示すものであり、これに基づいて測定方法の一例を説明する。なお装置には不可欠であっても本発明にとっては重要でない装置等については描出を省略している。
(1) フランジ31aと31bを対向させ、試料シートSを装着させない状態でこれらを押圧し、できるだけ密着するようにする。
(2) 送信機と受信機を接続し、希望の周波数において適宜送信出力を調整し、その時の受信レベル(V1 )を記録しておく。
(3) 次に片方(上側)のフランジ31aを一旦外し、フランジ31bの中央位置に試料シートSをセットした後、再度受信レベル(V2 )を記録する。
(4) 遮蔽性能(SE)は、試料シート非挿入時と挿入時のレベル差となり次式で求める。
FIG. 4 shows an outline of the
(1) The
(2) Connect the transmitter and the receiver, adjust the transmission output as appropriate at the desired frequency, and record the reception level (V 1 ) at that time.
(3) Next, one side (upper side)
(4) The shielding performance (SE) is a level difference between when the sample sheet is not inserted and when the sample sheet is inserted.
1 本発明に係る電磁波遮蔽材の遮蔽性能測定装置
2 内導体
3 外導体
31a フランジ(上側)
31b フランジ(下側)
4 遮蔽突起体
41 板ばね状突起
S 試料シート
Z 内導体の外周と外導体の内周の隙間
DESCRIPTION OF
31b Flange (lower side)
4 Shielding
Claims (1)
The inner conductor and the outer conductor are divided into two parts on one surface perpendicular to the electromagnetic wave irradiation direction, and the sample sheet is disposed between them, and is formed to a thickness of 1 mm or less and has no holes. A large number of leaf spring-shaped shields that sandwich a sample sheet between a pair of hollow metal plates , which are flanges provided on the outer conductor and have opposing through holes, and close the gaps on the outer side of the periphery of the sample sheet An apparatus for measuring shielding performance of an electromagnetic wave shielding material, characterized in that the sample sheet is surrounded by a protrusion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013254593A JP5619265B1 (en) | 2013-12-10 | 2013-12-10 | Electromagnetic shielding material shielding performance measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013254593A JP5619265B1 (en) | 2013-12-10 | 2013-12-10 | Electromagnetic shielding material shielding performance measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5619265B1 true JP5619265B1 (en) | 2014-11-05 |
JP2015114137A JP2015114137A (en) | 2015-06-22 |
Family
ID=51904330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013254593A Active JP5619265B1 (en) | 2013-12-10 | 2013-12-10 | Electromagnetic shielding material shielding performance measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5619265B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108508242A (en) * | 2018-07-03 | 2018-09-07 | 中国人民解放军61489部队 | A kind of flange coaxial device for Materials ' Shielding Effectiveness test |
CN109521458A (en) * | 2018-11-21 | 2019-03-26 | 中国标准化研究院 | The test device and method of shielding property |
CN109669076A (en) * | 2019-02-02 | 2019-04-23 | 唐山学院 | A kind of multi-functional anti-electromagnetic radiation performance tester and its application method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5928673A (en) * | 1982-08-09 | 1984-02-15 | Agency Of Ind Science & Technol | Device for measuring electromagnetic shielding effect |
JPH03128467A (en) * | 1988-12-15 | 1991-05-31 | Aichi Pref Gov | Evaluation device for measuring electromagnetic wave shield characteristic |
JPH03172776A (en) * | 1989-12-01 | 1991-07-26 | Mitsubishi Cable Ind Ltd | Transfer impedance measuring device for electromagnetic wave shielding material |
-
2013
- 2013-12-10 JP JP2013254593A patent/JP5619265B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5928673A (en) * | 1982-08-09 | 1984-02-15 | Agency Of Ind Science & Technol | Device for measuring electromagnetic shielding effect |
JPH03128467A (en) * | 1988-12-15 | 1991-05-31 | Aichi Pref Gov | Evaluation device for measuring electromagnetic wave shield characteristic |
JPH03172776A (en) * | 1989-12-01 | 1991-07-26 | Mitsubishi Cable Ind Ltd | Transfer impedance measuring device for electromagnetic wave shielding material |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108508242A (en) * | 2018-07-03 | 2018-09-07 | 中国人民解放军61489部队 | A kind of flange coaxial device for Materials ' Shielding Effectiveness test |
CN108508242B (en) * | 2018-07-03 | 2024-02-09 | 中国人民解放军61489部队 | Flange coaxial device for testing shielding effectiveness of material |
CN109521458A (en) * | 2018-11-21 | 2019-03-26 | 中国标准化研究院 | The test device and method of shielding property |
CN109521458B (en) * | 2018-11-21 | 2023-11-24 | 中国标准化研究院 | Device and method for testing radiation protection performance |
CN109669076A (en) * | 2019-02-02 | 2019-04-23 | 唐山学院 | A kind of multi-functional anti-electromagnetic radiation performance tester and its application method |
Also Published As
Publication number | Publication date |
---|---|
JP2015114137A (en) | 2015-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5619265B1 (en) | Electromagnetic shielding material shielding performance measuring device | |
EP2717024B1 (en) | Ultrasonic transducer and ultrasonic flow-meter | |
JP2012078361A (en) | Method and system for measuring passive intermodulation | |
US10897840B2 (en) | Shield box, shield box assembly and apparatus for testing a semiconductor device | |
US7075798B2 (en) | Flexible isolation device that shields EMI sensitive devices from outside interference | |
SE543044C2 (en) | A contactless antenna measurement device | |
TW201507376A (en) | Millimeter wave measurement fixture for integrated circuit device under test | |
CN104316769A (en) | Device and method for testing microwave surface resistance distribution of high-temperature superconducting thin film | |
Karami et al. | An experimental validation of partial discharge localization using electromagnetic time reversal | |
JP2012145456A (en) | Electromagnetic wave shield performance evaluation method | |
CN108089223B (en) | Neutron detection device and system | |
US11360117B1 (en) | Waveguide integrated circuit testing | |
Krzysztofik et al. | Some Consideration on Shielding Effectiveness Testing by Means of the Nested Reverberation Chambers. | |
CN208314033U (en) | Insulating part and its probe base applied to probe base | |
KR101952035B1 (en) | Non-contact antenna coupler for RF inspection | |
KR101994995B1 (en) | Apparatus and method for measuring electro-magnetic characteristics | |
CN101424719A (en) | Method for shielding capacity test of glasses for preventing electromagnetic radiation and device for implementing the method | |
Han et al. | Shielding Effectiveness Evaluation of Enclosure on PCB by Nesting Cavities Test Method | |
CN109521458B (en) | Device and method for testing radiation protection performance | |
JP4526968B2 (en) | Material constant measuring jig | |
JP2537680B2 (en) | Measuring method of transmission impedance of electromagnetic shield material | |
CN209390076U (en) | A kind of near-field communication detection device | |
JP2008034761A (en) | Electromagnetic shield room system using electromagnetic shield material of double structure | |
KR100236180B1 (en) | Electromagnetic wave shielding function measuring method and its apparatus for iron plate | |
CN202916359U (en) | Radio frequency leakage test device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140910 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5619265 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |