Nothing Special   »   [go: up one dir, main page]

JP5610881B2 - Composite material mold and manufacturing method thereof - Google Patents

Composite material mold and manufacturing method thereof Download PDF

Info

Publication number
JP5610881B2
JP5610881B2 JP2010151219A JP2010151219A JP5610881B2 JP 5610881 B2 JP5610881 B2 JP 5610881B2 JP 2010151219 A JP2010151219 A JP 2010151219A JP 2010151219 A JP2010151219 A JP 2010151219A JP 5610881 B2 JP5610881 B2 JP 5610881B2
Authority
JP
Japan
Prior art keywords
composite material
tapered portion
layer
molding die
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010151219A
Other languages
Japanese (ja)
Other versions
JP2012011695A (en
Inventor
隆之 清水
隆之 清水
勇也 永友
勇也 永友
大輔 三輪
大輔 三輪
宗平 荒川
宗平 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Society of Japanese Aerospace Companies
Original Assignee
Mitsubishi Heavy Industries Ltd
Society of Japanese Aerospace Companies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Society of Japanese Aerospace Companies filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010151219A priority Critical patent/JP5610881B2/en
Priority to PCT/JP2011/064745 priority patent/WO2012002355A1/en
Publication of JP2012011695A publication Critical patent/JP2012011695A/en
Application granted granted Critical
Publication of JP5610881B2 publication Critical patent/JP5610881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/342Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/84Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks by moulding material on preformed parts to be joined
    • B29C70/845Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks by moulding material on preformed parts to be joined by moulding material on a relative small portion of the preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

本発明は、複合材成形型及びその製造方法に関するものである。   The present invention relates to a composite material mold and a method for producing the same.

近年、航空機もしくは風車などの構造物を複合材料で製造するために、コア材を複合材料で被覆した成形治具(型)が開発されている(特許文献1)。
複合材料とは、結合材料(マトリックス)と、微粒子または繊維状材料を含む成形材料である。例えば、エポキシ樹脂に代表されるプラスチックと、炭素やガラスからなる硬い繊維とから構成され、プリプレグなどとして用いられる。
In recent years, a molding jig (mold) in which a core material is coated with a composite material has been developed in order to manufacture a structure such as an aircraft or a windmill with the composite material (Patent Document 1).
The composite material is a molding material including a binding material (matrix) and fine particles or a fibrous material. For example, it is composed of a plastic typified by an epoxy resin and hard fibers made of carbon or glass, and is used as a prepreg or the like.

複合材料でコア材を被覆する場合、複合材料のマトリックスを高温高圧環境下で硬化させる工程が必須となる。そのため、コア材を複合材料で被覆した成形治具は、オートクレーブと呼ばれる高温高圧の釜の内部に設置して製造される。   When the core material is coated with the composite material, a step of curing the matrix of the composite material in a high temperature and high pressure environment is essential. Therefore, a molding jig in which a core material is coated with a composite material is manufactured by being installed inside a high-temperature and high-pressure pot called an autoclave.

特表2007−521987号公報Special Table 2007-521987

航空機の主翼クラスの構成部材は長く、大きいため、必然的に成形治具や成形治具を製造するためのオートクレーブにも大きいものが必要となる。従って、大型構造用の成形治具は、大型のオートクレーブを所有している航空機体メーカーであれば製造することができるが、大型のオートクレーブを所有していない一般の治具メーカーなどでは、製造できないという問題がある。   Since the components of the main wing class of aircraft are long and large, inevitably, a large jig is required for the forming jig and the autoclave for manufacturing the forming jig. Therefore, a molding jig for a large structure can be manufactured by an aircraft body manufacturer that owns a large autoclave, but cannot be manufactured by a general jig manufacturer that does not have a large autoclave. There is a problem.

本発明は、このような事情に鑑みてなされたものであって、オートクレーブの大きさによらずに製造可能な複合材成形治具の製造方法を提供することを目的とする。   This invention is made | formed in view of such a situation, Comprising: It aims at providing the manufacturing method of the composite material shaping | molding jig which can be manufactured irrespective of the magnitude | size of an autoclave.

上記課題を解決するために、本発明は、コア材の上面を被成形体形状に対応する形状に加工するステップと、前記コア材同士を並べて配置した場合に、前記コア材の他のコア材と対向する側面に段を形成するステップと、前記コア材の表面に未硬化の複合材料を積層して加熱しながら加圧することで硬化させて複合材層を形成するステップと、前記側面に直交する前記コア材の他の面にある複合材層に、前記側面側に向かって厚さが漸減されたテーパー部を形成するステップと、を含む構成部材を作成する工程と、前記側面に接着剤を塗布し、前記構成部材同士を結合する工程と、前記テーパー部に未硬化の複合材料を積層し、該複合材料に対して熱源を配置した後、前記複合材料及び前記熱源を包装材で被覆し、前記包装材内部を真空引きした後に前記熱源で加熱して前記複合材料を硬化させる工程と、前記結合された構成部材の表面を研磨処理する工程と、を備える複合材成形型の製造方法を提供する。   In order to solve the above problems, the present invention provides a step of processing the upper surface of the core material into a shape corresponding to the shape of the molded body, and the other core material of the core material when the core materials are arranged side by side. Forming a step on the side surface facing the surface, laminating an uncured composite material on the surface of the core material and curing it by heating and pressurizing to form a composite material layer, orthogonal to the side surface Forming a taper portion having a thickness gradually reduced toward the side surface on the composite material layer on the other surface of the core material to be formed, and forming an adhesive on the side surface And bonding the constituent members together, laminating an uncured composite material on the tapered portion, placing a heat source on the composite material, and then covering the composite material and the heat source with a packaging material And vacuuming the inside of the packaging material And curing the composite material by heating at the heat source after, to provide a method of manufacturing a composite mold comprising the steps of polishing the surface of the combined components.

本発明によれば、複数の構成部材を結合させて1つの複合材成形型を製造するため、中小型のオートクレーブであっても大型構造用の複合材成形型を製造することが可能となる。構成部材同士の結合部の側面に段を設けることで、結合面積が増すとともに、結合面の方向も分散されるため、結合部の強度を高めることができるようになる。複合材層に設けられたテーパー部は、構成部材を結合させた後に更に未硬化の複合材料で埋めて硬化させることで、結合部の強度を更に高めることができる。テーパー部に積層された複合材料は、オートクレーブを使用せずに、上に配置した熱源にて硬化させることができる。   According to the present invention, since a single composite material mold is manufactured by combining a plurality of constituent members, it is possible to manufacture a composite material mold for a large structure even with a small and medium autoclave. By providing a step on the side surface of the coupling portion between the constituent members, the coupling area is increased and the direction of the coupling surface is dispersed, so that the strength of the coupling portion can be increased. The taper portion provided in the composite material layer can be further enhanced in strength by bonding the constituent members and then filling and curing with an uncured composite material. The composite material laminated | stacked on the taper part can be hardened with the heat source arrange | positioned on top, without using an autoclave.

本発明の一態様において、前記構成部材を作成する工程が、前記側面に孔を形成するステップを含み、前記構成部材同士を結合する工程が、前記側面を突き合わせて2つの構成部材を配置し、一方の構成部材に形成された前記孔に案内部材の一端を挿入し、他方の構成部材に形成された別の孔に前記案内部材の他端を挿入するステップを含むことが好ましい。
構成部材の突き合わせ面に孔を設け、対向する構成部材の孔同士を案内部材で接続することで、構成部材の位置合わせが容易となる。
In one aspect of the present invention, the step of creating the constituent member includes a step of forming a hole in the side surface, and the step of connecting the constituent members to each other arranges the two constituent members while abutting the side surface, Preferably, the method includes a step of inserting one end of the guide member into the hole formed in one component member and inserting the other end of the guide member into another hole formed in the other component member.
By providing holes in the abutting surfaces of the constituent members and connecting the holes of the opposing constituent members with a guide member, the positioning of the constituent members is facilitated.

本発明の一態様において、前記テーパー部を前記構成部材の上面側の複合材層に形成し、前記段を前記構成部材の下面側の前記側面に形成し、前記構成部材同士を結合する工程の後、前記段に当て材をして接着剤で固定する工程と、前記当て材の表面に未硬化の複合材料を積層し、該複合材料上に熱源を配置した後、前記積層した複合材料を前記テーパー部に積層した未硬化の複合材料と共に硬化させる工程とを備えることが好ましい。   In one aspect of the present invention, the taper portion is formed in the composite material layer on the upper surface side of the component member, the step is formed on the side surface on the lower surface side of the component member, and the component members are joined to each other. Thereafter, a step of applying a patch to the step and fixing it with an adhesive, laminating an uncured composite material on the surface of the patch, arranging a heat source on the composite material, and then laminating the stacked composite material And curing with the uncured composite material laminated on the tapered portion.

複合材成形型の上面は被成形体が接するツール面となる。ツール面に被成形体を載せると上面に圧縮力がかかる。上面の複合材層の結合部にテーパー部を形成して、このテーパー部を別の複合材料で埋めることで、複合材層の結合部の強度を高めることができる。また、下面から当て材をすることで、各構成部材自身の重量や、被成形材を載せたときのせん断力に耐え得る強度の結合部となる。   The upper surface of the composite material mold is a tool surface with which the workpiece is in contact. When a workpiece is placed on the tool surface, a compressive force is applied to the upper surface. By forming a tapered portion in the joint portion of the upper composite material layer and filling the tapered portion with another composite material, the strength of the joint portion of the composite material layer can be increased. Further, by applying the contact material from the lower surface, it becomes a connecting portion having a strength capable of withstanding the weight of each component member and the shearing force when the material to be molded is placed.

上記一態様において、前記テーパー部を前記構成部材の下面側の複合材層に形成し、前記テーパー部の形状に合わせて前記当て材の表面に未硬化の複合材料を積層しても良い。
下面側の複合材層にもテーパー部を設けることで、下面側の複合材層の結合部の強度を高めることができる。
In the above aspect, the tapered portion may be formed in the composite material layer on the lower surface side of the constituent member, and an uncured composite material may be laminated on the surface of the pad according to the shape of the tapered portion.
By providing the taper portion on the lower composite layer, the strength of the joint portion of the lower composite layer can be increased.

本発明の一態様において、前記構成部材の端部に前記コア材が露出するよう前記テーパー部を形成しても良い。
端部にコア材を露出させることで、テーパー部を突き合わせて2つの構成部材を配置したときの結合部表面に平坦な底面を形成させることができる。これによって、複合材料としてプリプレグなどの板状体を用いた場合、よりテーパー部の形状に合わせて複合材料を配置することができるようになる。
In one aspect of the present invention, the tapered portion may be formed so that the core material is exposed at an end portion of the component member.
By exposing the core material to the end portion, it is possible to form a flat bottom surface on the surface of the coupling portion when the two constituent members are disposed by abutting the tapered portion. Accordingly, when a plate-like body such as a prepreg is used as the composite material, the composite material can be arranged more in accordance with the shape of the tapered portion.

本発明の一態様において、前記構成部材の側面にアングル材を複数設置することが好ましい。そうすることによって、構成部材を位置合わせする際の微調整が可能となり、より精度よく構成部材同士を結合させることができる。   In one aspect of the present invention, it is preferable to install a plurality of angle members on the side surface of the component member. By doing so, the fine adjustment at the time of aligning a structural member becomes possible, and structural members can be combined more accurately.

本発明の一態様において、前記コア材を炭素発泡体とすることが好ましい。そのようにすることによって、複合材成形型を軽量化することができる。   In one embodiment of the present invention, the core material is preferably a carbon foam. By doing so, the composite material mold can be reduced in weight.

本発明は、上面が被成形体形状に対応する形状に加工され、少なくとも1側面に段が形成されたコア材と、少なくとも段が形成された前記側面と直交する前記コア材の他の面に設けられ、前記側面側に向かって厚さが漸減されたテーパー部を有する複合材層と、
を含む構成部材を具備し、1の前記構成部材の段が形成された側面と、他の前記構成部材の段が形成された側面とが、接着剤層を介して結合され、前記テーパー部上に別の複合材層が形成され、研磨処理された前記結合された構成部材の表面を有する複合材成形型を提供する。
In the present invention, an upper surface is processed into a shape corresponding to the shape of a molded body, and a core material having a step formed on at least one side surface and another surface of the core material orthogonal to the side surface on which at least the step is formed are provided. A composite material layer having a tapered portion which is provided and has a thickness gradually reduced toward the side surface;
A side surface on which a step of one of the constituent members is formed and a side surface on which a step of the other constituent member is formed are bonded via an adhesive layer, and the taper portion In another aspect, the present invention provides a composite mold having a surface of the bonded component member that is formed with another composite material layer and polished.

本発明に係る複合材成形型は、複数の構成部材を結合させてなるため、中小型のオートクレーブであっても大型構造用の複合材成形型を製造することが可能となる。コア材の側面には段が形成されているため、構成部材同士の結合部の強度の高い複合材成形型となる。複合材層に設けられたテーパー部上に別の複合材層が形成されているため、結合部の強度が更に高い複合材成形型となる。複合材層の表面は研磨処理されているため、被成形体が接触するツール面として適用可能な精度を有する平滑な表面を有する複合材成形型となる。   Since the composite material shaping | molding die concerning this invention couple | bonds several structural members, it becomes possible to manufacture the composite material shaping | molding die for large structures even if it is a medium-sized autoclave. Since the step is formed on the side surface of the core material, a composite material mold having a high strength of the joint portion between the constituent members is obtained. Since another composite material layer is formed on the tapered portion provided in the composite material layer, a composite material mold having a higher strength of the joint portion is obtained. Since the surface of the composite material layer is polished, it becomes a composite material mold having a smooth surface having accuracy applicable as a tool surface to be contacted with the workpiece.

上記発明の一態様において、前記段が形成された前記側面が孔を有し、隣接する前記構成部材の互いに対応する孔に挿入された案内部材を備えることが好ましい。
また、前記テーパー部が前記構成部材の上面側の複合材層に形成され、前記段が前記構成部材の下面側の前記側面に形成され、接着剤層を介して当て材が前記段に固定され、前記当て材の表面に別の複合材層が形成されることが好ましい。
また、前記テーパー部が前記構成部材の下面側の複合材層に形成され、前記テーパー部の形状に合わせて前記当て材の表面に前記別の複合材層が形成されても良い。
また、前記構成部材の端部に前記コア材が露出するよう前記テーパー部が形成されても良い。
また、前記構成部材の側面にアングル材が複数設置されることが好ましい。
また、前記コア材が炭素発泡体であることが好ましい。
In one aspect of the invention, it is preferable that the side surface on which the step is formed has a hole, and includes guide members inserted into holes corresponding to each other in the adjacent component members.
The tapered portion is formed on the composite material layer on the upper surface side of the component member, the step is formed on the side surface on the lower surface side of the component member, and the pad is fixed to the step via an adhesive layer. It is preferable that another composite material layer is formed on the surface of the pad.
Moreover, the said taper part may be formed in the composite material layer of the lower surface side of the said structural member, and the said another composite material layer may be formed in the surface of the said contact material according to the shape of the said taper part.
The tapered portion may be formed so that the core material is exposed at an end portion of the component member.
Moreover, it is preferable that a plurality of angle members are installed on the side surfaces of the constituent members.
The core material is preferably a carbon foam.

本発明によれば、複数の構成部材を組み立てて大型化するため、中小型のオートクレーブであっても大型構造用の複合材成形型を製造することができる。   According to the present invention, since a plurality of constituent members are assembled and enlarged, a composite material mold for a large structure can be manufactured even for a medium-sized autoclave.

本発明に係る複合材成形型の製造方法のイメージ図である。It is an image figure of the manufacturing method of the composite material shaping | molding die concerning this invention. 本実施形態に係る複合材成形型の製造方法における複合材成形型の結合仕様を示す斜視図である。It is a perspective view which shows the coupling | bonding specification of the composite material shaping | molding die in the manufacturing method of the composite material shaping | molding die concerning this embodiment. 図2の複合材成形型の結合後の状態を示す斜視図である。It is a perspective view which shows the state after the coupling | bonding of the composite material shaping | molding die of FIG. 本実施形態に係る複合材成形型の製造方法を説明する概略図である。It is the schematic explaining the manufacturing method of the composite material shaping | molding die concerning this embodiment. 接着強度試験1の概略図である。It is the schematic of the adhesive strength test 1. FIG. 接着強度試験2の概略図である。It is the schematic of the adhesive strength test 2. FIG. 高温暴露前後の接着強度の変化を示すグラフである。It is a graph which shows the change of the adhesive strength before and after high temperature exposure. 複合材層の硬化サイクルの一例を示すグラフである。It is a graph which shows an example of the hardening cycle of a composite material layer. 被成形体の硬化サイクルの一例を示すグラフである。It is a graph which shows an example of the hardening cycle of a to-be-molded body.

本発明に係る複合材成形型の製造方法の一実施形態を、図面を用いて説明する。
図1に、本発明に係る複合材成形型の製造方法のイメージ図を示す。本発明に係る複合材成形型の製造方法は、複数の構成部材1を結合させて、大型の複合材成形型100を製造することを特徴とする。
An embodiment of a method for producing a composite mold according to the present invention will be described with reference to the drawings.
In FIG. 1, the image figure of the manufacturing method of the composite material shaping | molding die concerning this invention is shown. The method for manufacturing a composite material mold according to the present invention is characterized by manufacturing a large composite material mold 100 by combining a plurality of constituent members 1.

構成部材1は、コア材及び複合材層を備える。コア材は炭素発泡体などとされる。コア材を備えることで、複合材のみからなる構成部材よりも曲げ剛性に強いものとなる。複合材層は、繊維強化された樹脂板(複合材料)からなる。繊維で強化された樹脂は、例えば、炭素繊維で強化されたエポキシ系樹脂などとされる。構成部材1の大きさは、使用するオートクレーブの大きさなどに合わせて適宜設定され得る。本実施形態では、結合させる構成部材1は、一辺が0.5〜2m程度を想定する。これらを組み立て、6m〜30m程度の被成形体を製造するための複合材成形型とすることができる。   The component 1 includes a core material and a composite material layer. The core material is a carbon foam or the like. By providing the core material, it becomes stronger in bending rigidity than a component member made of only a composite material. The composite material layer is made of a fiber-reinforced resin plate (composite material). The resin reinforced with fibers is, for example, an epoxy resin reinforced with carbon fibers. The size of the constituent member 1 can be appropriately set according to the size of the autoclave to be used. In the present embodiment, the constituent member 1 to be coupled is assumed to have a side of about 0.5 to 2 m. These can be assembled into a composite material mold for producing a molded body of about 6 to 30 m.

本実施形態に係る複合材成形型の製造方法を、図2乃至図4を用いて説明する。
図2に、本実施形態に係る複合材成形型の製造方法における複合材成形型の結合仕様を示す。図3に、図2の複合材成形型の結合後の状態を示す。図4は、本実施形態に係る複合材成形型の製造方法を説明する概略図である。
A method for manufacturing the composite material mold according to this embodiment will be described with reference to FIGS.
FIG. 2 shows the combined specifications of the composite material mold in the method of manufacturing the composite material mold according to this embodiment. FIG. 3 shows a state after the composite material mold of FIG. 2 is joined. FIG. 4 is a schematic diagram for explaining a method for manufacturing a composite material mold according to this embodiment.

(1)構成部材を作製する工程
コア材2をクランプで固定し、下面、側面及び上面の順にNC加工する。ここで「NC」とは、数値制御工作機械において、工作物に対する工具の位置を、それに対応する数値情報で指令する制御方式を意味する。コア材として炭素発泡体を使用する場合は、複数の炭素発泡体を無機系接着剤で接着させて、所望の大きさとした後、NC加工を施しても良い。
(1) Step of producing component member The core material 2 is fixed with a clamp, and NC processing is performed in the order of the lower surface, the side surface, and the upper surface. Here, “NC” means a control method for instructing the position of the tool with respect to the workpiece with numerical information corresponding thereto in the numerically controlled machine tool. When a carbon foam is used as the core material, NC processing may be performed after a plurality of carbon foams are bonded with an inorganic adhesive to obtain a desired size.

具体的には、図2及び図4に示すように、コア材2の所定の側面4に、下面6と平行な少なくとも1の段5を形成する。側面4には、間隔をあけて二つの孔7を形成しても良い。その場合、孔7の大きさは、コア材2の大きさ、適用される被成形体の大きさや重さなどによって適宜設定する。
なお、図2では、側面4のみに段5及び孔7を形成させているが、構成部材1とした時に他の構成部材1と結合される側面には同様に段5及び孔7を形成する。また、階段状に段5を形成する場合は、結合する2つの構成部材1に設けられた段5が、互いに嵌合されるよう形成する。
Specifically, as shown in FIGS. 2 and 4, at least one step 5 parallel to the lower surface 6 is formed on a predetermined side surface 4 of the core material 2. Two holes 7 may be formed in the side surface 4 at intervals. In that case, the size of the hole 7 is appropriately set depending on the size of the core material 2, the size and weight of the object to be molded, and the like.
In FIG. 2, the step 5 and the hole 7 are formed only on the side surface 4, but when the component member 1 is formed, the step 5 and the hole 7 are similarly formed on the side surface combined with the other component member 1. . Moreover, when forming the step 5 in step shape, it forms so that the step 5 provided in the two structural members 1 to couple | bond together may mutually be fitted.

コア材の上面3は、被成形体が接する成形面(ツール面)とされ、被成形体の形状に対応させてNC加工する。   The upper surface 3 of the core material is a molding surface (tool surface) with which the workpiece is in contact, and NC processing is performed according to the shape of the workpiece.

次に、複合材層8が、段5を形成させた側面以外のコア材2の表面に設けられる。
コア材2の表面に、フィルム接着剤及び繊維で強化された樹脂からなるプリプレグ(複合材料)を順次積層する。このとき、フィルム接着剤及びプリプレグは必要に応じて複数枚積層すると良い。例えば、コア材2が多孔体である場合、フィルム接着剤は2枚以上積層することが好ましい。例えば、剛性を要するツール面にはプリプレグを複数枚積層することが好ましい。
プリプレグを積層後、バッグフィルム9で周囲を覆い、オートクレーブにて加熱しながら加圧して、フィルム接着剤及びプリプレグを硬化させる(不図示)。プリプレグとバックフィルムの間には、ピールプライ、離型フィルム、ベントマットなどを適宜配置しても良い。硬化反応条件は、使用するフィルム接着剤及びプリプレグに応じて、適宜設定する。
Next, the composite material layer 8 is provided on the surface of the core material 2 other than the side surface on which the step 5 is formed.
A prepreg (composite material) made of a resin reinforced with a film adhesive and fibers is sequentially laminated on the surface of the core material 2. At this time, a plurality of film adhesives and prepregs may be laminated as necessary. For example, when the core material 2 is a porous body, it is preferable to laminate two or more film adhesives. For example, it is preferable to laminate a plurality of prepregs on a tool surface that requires rigidity.
After laminating the prepreg, the periphery is covered with a bag film 9 and pressurized while heating in an autoclave to cure the film adhesive and the prepreg (not shown). Between the prepreg and the back film, a peel ply, a release film, a vent mat, and the like may be appropriately disposed. The curing reaction conditions are appropriately set according to the film adhesive and prepreg used.

次に、図2に示すように、他の構成部材1と結合される端部に向かって複合材層の厚さが漸減するように、テーパー部10を形成する。テーパーは、例えば、15:1で形成する。テーパー部10は、上面だけでなく、下面及び側面の複合材層に設けられても良い。
また、テーパー部10は端部にコア材を露出させた状態で形成しても良い。テーパー部10を突き合わせて2つの構成部材を配置したときの結合部表面に平坦な底面を形成させることができる。これによって、複合材料としてプリプレグなどの板状体を用いた場合、よりテーパー部の形状に合わせて複合材料を配置することができるようになる。
Next, as shown in FIG. 2, the tapered portion 10 is formed so that the thickness of the composite material layer gradually decreases toward the end portion coupled with the other component 1. The taper is formed at 15: 1, for example. The tapered portion 10 may be provided not only on the upper surface but also on the lower and side composite material layers.
Moreover, you may form the taper part 10 in the state which exposed the core material to the edge part. A flat bottom surface can be formed on the surface of the coupling portion when the two constituent members are arranged by abutting the tapered portion 10. Accordingly, when a plate-like body such as a prepreg is used as the composite material, the composite material can be arranged more in accordance with the shape of the tapered portion.

次に、研磨材やコンパウンドを使用して複合材層8の上面を研磨し、ツール面に適用可能な精度を有する平滑な表面とする。   Next, the upper surface of the composite material layer 8 is polished using an abrasive or a compound to obtain a smooth surface having accuracy applicable to the tool surface.

次に、構成部材1の複合材層8を形成させた側面に、アングル材11をボルトで取り付け、上面孔をリーマ加工する。本実施形態では、アルミニウム製のアングル材11を使用する。   Next, the angle member 11 is attached with a bolt to the side surface of the component 1 where the composite material layer 8 is formed, and the upper surface hole is reamed. In this embodiment, an aluminum angle member 11 is used.

(2)構成部材同士を結合する工程(図4(i))
まず、構成部材1a及び構成部材1bの少なくともいずれかの側面4に、接着剤12を塗布する。接着剤は、無機系の接着剤であり、常温で硬化するものが好ましい。
次に、側面4を突き合わせて構成部材1a及び構成部材1bを配置して、一方の構成部材1aの孔7aに案内部材13の一端を挿入する。次に、案内部材13の他端を他方の構成部材1bの孔7bに挿入して、構成部材1a及び構成部材1bを結合する。
案内部材13には、コア材2と線膨張係数の近い材料を用いると良い。本実施形態では、案内部材13としてセラミックスからなる案内ピンを使用する。案内ピン13の線膨張係数をコア材2の線膨張係数よりも低くすると、高温に曝されたときに大きく膨張し、コア材2に負荷をかけることを回避できる。
次に、コア材の側面に設けられているアングル材11の上にリフレクタを載置し、三次元計測器を用いて構成部材の位置を微調整する。
(2) Step of joining the constituent members together (FIG. 4 (i))
First, the adhesive 12 is applied to at least one of the side surfaces 4 of the constituent member 1a and the constituent member 1b. The adhesive is an inorganic adhesive and is preferably cured at room temperature.
Next, the side surface 4 is butted and the constituent member 1a and the constituent member 1b are arranged, and one end of the guide member 13 is inserted into the hole 7a of the one constituent member 1a. Next, the other end of the guide member 13 is inserted into the hole 7b of the other constituent member 1b to join the constituent member 1a and the constituent member 1b.
For the guide member 13, a material having a linear expansion coefficient close to that of the core material 2 may be used. In the present embodiment, a guide pin made of ceramics is used as the guide member 13. If the linear expansion coefficient of the guide pin 13 is lower than the linear expansion coefficient of the core material 2, it is possible to avoid large expansion when exposed to high temperatures and to apply a load to the core material 2.
Next, a reflector is mounted on the angle member 11 provided on the side surface of the core member, and the position of the constituent member is finely adjusted using a three-dimensional measuring instrument.

(3)当て材14の接着工程(図4(i)及び図4(ii))
上記(2)の工程で結合した構成部材1a及び構成部材1bの下面側にそれぞれ設けられている段5a及び段5bに、無機系接着剤を塗布する。段5a及び段5bの形状に合わせた当て材14を用意する。当て材14の表面にも適宜無機系接着材を塗布してから、段5a及び段5bに接着させる。必要に応じて、下面側から当て材14に対して負荷を加えながら無機系接着剤を硬化させても良い。
なお、段5a及び段5bを階段状とした場合、当て材の接着工程を省略しても良い。
(3) Adhesion process of the pad 14 (FIGS. 4 (i) and 4 (ii))
An inorganic adhesive is applied to the step 5a and the step 5b provided on the lower surface side of the constituent member 1a and the constituent member 1b combined in the step (2). A pad 14 according to the shape of the steps 5a and 5b is prepared. An inorganic adhesive is appropriately applied also to the surface of the pad 14 and then bonded to the steps 5a and 5b. If necessary, the inorganic adhesive may be cured while applying a load to the pad 14 from the lower surface side.
In addition, when the step 5a and the step 5b are stepped, the adhesive bonding step may be omitted.

(4)テーパー部10にて複合材料を硬化させる工程(図4(ii)及び図4(iii))
構成部材1a及び構成部材1bの結合部の上面3側に設けられたテーパー部10にフィルム接着剤15を積層する。次に、テーパー部10の形状に合わせた幅で切り取られたプリプレグをテーパー部10に積層する(図3)。また、構成部材1a及び構成部材1bの下面側に接着させた当て材14の表面を覆うように接着フィルム及びプリプレグを積層する。下面6及び側面4にテーパー部を設けた場合は、テーパー部の形状に合わせて上面3側と同様に接着フィルム及びプリプレグを積層する。
積層したプリプレグの上部に、プリプレグを覆うよう熱源16を配置してから、これらをバッグフィルム9で被覆する。本実施形態において、熱源16はヒートブランケットとされる。具体的には、シリコンラバーヒーターなどが用いられる。熱源16の下には銅箔などの熱伝導性シート17が配置されると良い。また、プリプレグとバックフィルム9との間には、ピールプライ、離型フィルム、ベントマットなどを順次配置しても良い。この場合、ヒートブランケット及び銅箔は、離型フィルムとベントマットとの間に配置すると良い。
次に、バッグフィルム9内を真空引きした後、ヒートブランケットで加熱して、プリプレグを硬化させる。硬化反応条件は、上記(1)の工程と同様とする。
(4) Step of curing the composite material at the tapered portion 10 (FIGS. 4 (ii) and 4 (iii))
A film adhesive 15 is laminated on the tapered portion 10 provided on the upper surface 3 side of the coupling portion of the constituent member 1a and the constituent member 1b. Next, the prepreg cut out with the width | variety matched with the shape of the taper part 10 is laminated | stacked on the taper part 10 (FIG. 3). Moreover, an adhesive film and a prepreg are laminated | stacked so that the surface of the contact material 14 adhere | attached on the lower surface side of the structural member 1a and the structural member 1b may be covered. When the taper portion is provided on the lower surface 6 and the side surface 4, the adhesive film and the prepreg are laminated in the same manner as the upper surface 3 side according to the shape of the taper portion.
After the heat source 16 is arranged on the top of the laminated prepreg so as to cover the prepreg, these are covered with the bag film 9. In the present embodiment, the heat source 16 is a heat blanket. Specifically, a silicon rubber heater or the like is used. A heat conductive sheet 17 such as a copper foil is preferably disposed under the heat source 16. Further, a peel ply, a release film, a vent mat, and the like may be sequentially disposed between the prepreg and the back film 9. In this case, the heat blanket and the copper foil are preferably disposed between the release film and the vent mat.
Next, the bag film 9 is evacuated and then heated with a heat blanket to cure the prepreg. The curing reaction conditions are the same as in step (1) above.

(5)結合部の複合材層8の表面処理工程(図4(iv))
上記(4)の工程で硬化させた複合材層8の表面を、上記(1)の工程で形成させた複合材層8の表面と滑らかに繋がるよう切削した後、上記(1)の工程と同様に複合材層8の表面を研磨し、平滑な表面に仕上げる。
(5) Surface treatment process of the composite material layer 8 in the joint (FIG. 4 (iv))
After cutting the surface of the composite material layer 8 cured in the step (4) so as to be smoothly connected to the surface of the composite material layer 8 formed in the step (1), the step (1) Similarly, the surface of the composite material layer 8 is polished and finished to a smooth surface.

(構成部材同士の接着強度試験)
コア材として炭素発泡体(CFOAM20;Touchtone Research Laboratry,Ltd.より入手可能)を用いた。接着剤としては、無機系接着剤(X−Pando;X−Pando Products Companyから入手可能)及びエポキシ系接着剤(ER−0/EH−208−S;有限会社プラス・プラスチックスから入手可能)を用いた。無機系接着剤は、300gのX−Pandoに水67gを混合したものを使用した。エポキシ系接着剤は、ER−0とEH−208−Sを2:1で混合したものを使用した。
(Adhesive strength test between components)
A carbon foam (CFOAM20; available from Touchetone Research Laboratory, Ltd.) was used as the core material. As adhesives, inorganic adhesives (X-Pando; available from X-Pando Products Company) and epoxy adhesives (ER-0 / EH-208-S; available from limited company Plus Plastics) Using. The inorganic adhesive used was a mixture of 300 g of X-Pando and 67 g of water. The epoxy adhesive used was a mixture of ER-0 and EH-208-S at a ratio of 2: 1.

炭素発泡体を無機系接着剤又はエポキシ系接着剤で接着させた試験片をそれぞれ作成し、以下の2種類の接着強度試験を実施した。無機系接着剤は、240分、93℃で加熱して硬化させた。エポキシ系接着剤は、24時間、40℃で加熱して1次硬化させた後、2時間、180℃で2次硬化させた。   Test pieces in which the carbon foam was bonded with an inorganic adhesive or an epoxy adhesive were prepared, and the following two types of adhesive strength tests were performed. The inorganic adhesive was cured by heating at 93 ° C. for 240 minutes. The epoxy adhesive was first cured by heating at 40 ° C. for 24 hours, and then secondarily cured at 180 ° C. for 2 hours.

接着強度試験1(4点曲げ試験)
図5に接着強度試験1の概略図を示す。試験片(各3個)を常温または180℃の高温に900時間暴露させた状態で、接着部に曲げ荷重を付与した。試験機は、AG−X 100kN(島津製作所製、荷重容量±100kN)を使用した。変位計は、DT−30F(共和電業製、最大変位30mm)を使用した。
式(A)を用いて破壊荷重(P)、試験片寸法(試験片支持スパン(L)、負荷スパン(L)、試験片幅(w)、試験片板厚(t))、及び試験条件から曲げ応力(S)を算出し、強度を比較した。
=3P(L−L)/2wt ・・・(A)
Adhesive strength test 1 (4-point bending test)
FIG. 5 shows a schematic diagram of the adhesive strength test 1. FIG. A bending load was applied to the bonded portion in a state where the test pieces (each 3 pieces) were exposed to room temperature or a high temperature of 180 ° C. for 900 hours. AG-X 100 kN (manufactured by Shimadzu Corp., load capacity ± 100 kN) was used as a testing machine. As the displacement meter, DT-30F (manufactured by Kyowa Denki Co., Ltd., maximum displacement 30 mm) was used.
Using formula (A), the breaking load (P), test piece dimensions (test piece support span (L 1 ), load span (L 2 ), test piece width (w), test piece plate thickness (t)), and Bending stress (S F ) was calculated from the test conditions, and the strengths were compared.
S F = 3P (L 1 −L 2 ) / 2 wt 2 (A)

接着強度試験2(3点曲げ試験)
図6に接着強度試験2の概略図を示す。試験片(各3個)を常温または180℃の高温に900時間暴露させた状態で、接着部に曲げ荷重及びせん断荷重を付与した。式(B)を用いて式(A)と同様に曲げ応力(S)を算出し、強度を比較した。
=3PL/2wt ・・・(B)
Adhesive strength test 2 (3-point bending test)
FIG. 6 shows a schematic diagram of the adhesive strength test 2. A bending load and a shear load were applied to the bonded portion in a state where the test pieces (3 pieces each) were exposed to room temperature or a high temperature of 180 ° C. for 900 hours. Bending stress (S F ) was calculated using equation (B) in the same manner as equation (A), and the strengths were compared.
S F = 3PL 1 / 2wt 2 ··· (B)

上記試験によれば、常温で荷重を負荷した試験片では、接着剤の種類に関わらず、炭素発泡体部分で破壊が生じた。無機系接着剤を用いた試験片では、すべて負荷部で破壊した。負荷部の局所的な割れが起点となり破断しているため、接着部の強度は試験結果より高いと考えられる。エポキシ系接着剤を用いた試験片では、一部の試験片で負荷部から破壊したが、ほとんどの試験片で接着剤近傍の炭素発泡体部で壊れる傾向があった。この要因として、エポキシ系接着剤は、接着時に残留応力を炭素発泡体内に発生させている、もしくは、接着剤が曲げ負荷時の炭素発泡体の変形を拘束し、炭素発泡体の接着剤近傍に割れを生じやすくさせている可能性がある。   According to the above test, in the test piece loaded at normal temperature, the carbon foam portion was broken regardless of the type of adhesive. All test pieces using an inorganic adhesive were broken at the load. It is considered that the strength of the bonded portion is higher than the test results because the load portion is locally cracked and fractures. In the test piece using the epoxy adhesive, some of the test pieces were broken from the load part, but most of the test pieces tended to break at the carbon foam part near the adhesive. As a cause of this, the epoxy adhesive generates a residual stress in the carbon foam during bonding, or the adhesive restrains the deformation of the carbon foam during bending load, and is close to the adhesive of the carbon foam. There is a possibility that cracking is likely to occur.

図7に、高温暴露前後の接着強度の変化を示す。図7によれば、高温暴露することによって、エポキシ系接着剤を用いた試験片では、接着強度が73%〜80%程度低下した。一方、無機系接着剤を用いた試験片では、接着強度の低下が6%〜16%程度であった。上記結果から、炭素発泡体同士を接着させる場合、無機系接着剤を用いることで、高温暴露後も接着力が保持されることが確認できた。   FIG. 7 shows the change in adhesive strength before and after high temperature exposure. According to FIG. 7, the adhesive strength decreased about 73% to 80% in the test piece using the epoxy adhesive by being exposed to high temperature. On the other hand, in the test piece using the inorganic adhesive, the decrease in the adhesive strength was about 6% to 16%. From the above results, it was confirmed that when the carbon foams were bonded to each other, the adhesive strength was maintained even after high temperature exposure by using an inorganic adhesive.

なお、上記実施形態で複合材料と炭素発泡体とを接着させるために使用するフィルム接着剤については、L−313(J.D.Lincolnから入手可能)を用いて高温暴露により接着強度が低下しないことを別途試験で確認済みである。   In addition, about the film adhesive used in order to adhere | attach a composite material and a carbon foam in the said embodiment, adhesive strength does not fall by high temperature exposure using L-313 (available from JD Lincoln). This has been confirmed by a separate test.

(実施例)
コア材として炭素発泡体(CFOAM20;Touchtone Research Laboratry,Ltd.より入手可能)を用いた。炭素発泡体同士を接着させる接着剤としては、無機系接着剤(X−Pando;X−Pando Products Companyから入手可能)を用いた。複合材料(プリプレグ)としては、コア材側に層が厚く(厚さ:0.65mm)且つ目の粗いTRK510−270GMP(三菱レイヨン株式会社から入手可能)を、表面側を層が薄く(厚さ0.22mm)且つ目が細かいTRK3110−270GMP(三菱レイヨン株式会社から入手可能)を用いた。プリプレグの繊維方向は0°、±45°及び+90°を適当に用いた。フィルム接着剤としては、エポキシ系フィルム接着剤(L−313)を用いた。
(Example)
A carbon foam (CFOAM20; available from Touchetone Research Laboratory, Ltd.) was used as the core material. An inorganic adhesive (X-Pando; available from X-Pando Products Company) was used as an adhesive for adhering the carbon foams. As the composite material (prepreg), TRK510-270GMP (available from Mitsubishi Rayon Co., Ltd.) with a thick layer (thickness: 0.65 mm) and a coarse layer on the core material side, and a thin layer on the surface side (thickness) 0.22 mm) and fine TRK3110-270GMP (available from Mitsubishi Rayon Co., Ltd.) was used. The fiber direction of the prepreg was suitably 0 °, ± 45 °, and + 90 °. As the film adhesive, an epoxy film adhesive (L-313) was used.

上記実施形態に従って、500mm×500mm×厚さ132mmの寸法の構成部材を2つ作製し、それらを結合して1,000mm×500mmの複合材成形型(複合材成形治具)とした。炭素発泡体及び複合材料の機械加工時に構成部材を固定するため、構成部材の側面に複合材料からなるクランプ板を追加した。   According to the above embodiment, two constituent members having dimensions of 500 mm × 500 mm × thickness 132 mm were produced and combined to form a 1,000 mm × 500 mm composite material mold (composite material forming jig). In order to fix the structural member during the machining of the carbon foam and the composite material, a clamp plate made of the composite material was added to the side surface of the structural member.

上面の複合材層として、TRK510−270GMPを3ply積層した後、TRK3110−270GMPを9ply積層した。下面及び側面の複合材層として、TRK510−270GMPを3ply積層した後、TRK3110−270GMPを2ply積層した。   As a composite layer on the upper surface, 3 ply of TRK510-270GMP was laminated, and 9 ply of TRK3110-270GMP was laminated. As a composite material layer on the lower surface and the side surface, 3 ply of TRK510-270GMP was laminated, and then 2 ply of TRK3110-270GMP was laminated.

図8に示す硬化サイクルにて、複合材層を硬化させた後、複合材層をNC加工した。複合材層の表面を#1000水研ぎと仕上げ材ケムリース#2100塗布を繰り返した後、コンパウンドで研磨し、表面を仕上げた。   After the composite material layer was cured by the curing cycle shown in FIG. 8, the composite material layer was NC processed. The surface of the composite layer was subjected to # 1000 water sharpening and finishing material Chemlease # 2100 application, and then polished with a compound to finish the surface.

上記で作製した構成部材の上面は、基準面からのズレが0.1mm未満であり、高い形状精度を有することが確認された。   It was confirmed that the upper surface of the component member produced above had a high shape accuracy with a deviation from the reference surface of less than 0.1 mm.

2つの構成部材を結合させた後、下面側の段に当て材を接着した。次に、テーパー部にフィルム接着剤及びプリプレグを順次積層した。プリプレグは、TRK510−270GMPを3ply積層した後、TRK3110−270GMPを9ply積層した。この際、層間に残った空気を抜くためにプリプレグを3ply積層するごとに、デバルク(Full真空×10分)した。
次に、当て材の表面に複合材層を形成させた。当て材の下面の複合材層として、当て材TRK510−270GMPを5ply積層した後、TRK3110−270GMPを4ply積層し、デバルク(Full真空×10分)した。当て材の側面の複合材層として、TRK510−270GMPを3ply積層した後、TRK3110−270GMPを2ply積層し、デバルク(Full真空×10分)した。
After the two constituent members were joined together, the contact material was bonded to the step on the lower surface side. Next, a film adhesive and a prepreg were sequentially laminated on the tapered portion. The prepreg was formed by stacking 3 ply of TRK510-270GMP and then stacking 9 ply of TRK3110-270GMP. At this time, every time 3 ply of prepreg was laminated to remove air remaining between the layers, debulk (Full vacuum × 10 minutes) was performed.
Next, a composite material layer was formed on the surface of the patch. As a composite material layer on the lower surface of the backing material, 5 ply of TRK510-270GMP was laminated, and then 4 ply of TRK3110-270GMP was laminated, followed by debulk (Full vacuum × 10 minutes). As a composite material layer on the side surface of the padding material, 3 ply of TRK510-270GMP was laminated, and then 2 ply of TRK3110-270GMP was laminated, followed by debulk (Full vacuum × 10 minutes).

プリプレグの上には、ピールプライ、離型フィルム、銅箔、シリコンラバーヒーター、及びベントマットを積層させ、その上からバッグフィルムで被覆した。バッグフィルム内を真空引きした後、構成部材の複合材層を硬化させた時と同様の温度サイクルでヒートブランケットにて加熱して、複合材層を硬化させた。   On the prepreg, a peel ply, a release film, a copper foil, a silicon rubber heater, and a vent mat were laminated and covered with a bag film. After the bag film was evacuated, the composite material layer was cured by heating with a heat blanket at the same temperature cycle as when the composite material layer of the constituent members was cured.

テーパー部及び当て材表面に形成した複合材層及びその周囲を、構成部材の複合材層と同様の手順で研磨し、2つの構成部材が結合した面が滑らかに繋がるよう表面処理を施し、複合材成形治具とした。   The composite material layer formed on the taper part and the surface of the backing material and its surroundings are polished in the same procedure as the composite material layer of the constituent member, and the surface treatment is performed so that the surface where the two constituent members are joined is smoothly connected, and the composite A material forming jig was used.

上記で作製した複合材成形治具を用いて、被成形体を作製した。
上記で作製した複合材成形治具の上に、プリプレグを16層、疑似等方対称に積層した。その上に、ピールプライ、離型フィルム、及びベントマットを順次積層し、バッグフィルムで被覆した後、バッグフィルム内を真空引きした。この複合材成形治具をオートクレーブ内に配置し、図9に示す硬化サイクルにて、プリプレグを硬化させた。
Using the composite material forming jig prepared above, a molded object was prepared.
On the composite material forming jig produced as described above, 16 layers of prepreg were laminated in a quasi-isotropic manner. A peel ply, a release film, and a vent mat were sequentially laminated thereon, covered with a bag film, and then the bag film was evacuated. This composite material forming jig was placed in an autoclave, and the prepreg was cured by a curing cycle shown in FIG.

被成形体を作製する工程において、バッグフィルム内を真空引きした後、リークチェックを実施した。その結果、金属製の成形治具と同レベルのエアリーク量であり、実用上問題ないことが確認できた。   In the process of producing the molded body, the bag film was evacuated and then subjected to a leak check. As a result, it was confirmed that the air leakage amount was the same level as that of a metal forming jig, and there was no practical problem.

上記被成形体を作製する工程を通して複合材成形治具のかけや破損は生じなかった。また、製造された被成形体のツール面は滑らかに繋がっており、複合材成形治具の構成部材同士の結合部での段差や窪みが発生していないことが確認できた。   The composite material forming jig was not applied or damaged throughout the process of producing the molded body. Moreover, the tool surface of the manufactured to-be-molded body was connected smoothly, and it was confirmed that there was no step or depression at the joint between the constituent members of the composite material forming jig.

1 構成部材
2 コア材
3 上面
4 側面
5 段
6 下面
7 孔
8 複合材層、複合材料
9 バックフィルム
10 テーパー部
11 アングル材
12 接着剤
13 案内部材
14 当て材
15 フィルム接着剤
16 熱源
17 熱伝導性シート
18 シーラント
100 複合材成形型
DESCRIPTION OF SYMBOLS 1 Constituent member 2 Core material 3 Upper surface 4 Side surface 5 Stage 6 Lower surface 7 Hole 8 Composite material layer, composite material 9 Back film 10 Tapered part 11 Angle material 12 Adhesive 13 Guide member 14 Adhesive material 15 Film adhesive 16 Heat source 17 Thermal conduction Sheet 18 Sealant 100 Composite mold

Claims (14)

コア材の上面を被成形体形状に対応する形状に加工するステップと、前記コア材同士を並べて配置した場合に、前記コア材の他のコア材と対向する側面に段を形成するステップと、前記コア材の表面に未硬化の複合材料を積層して加熱しながら加圧することで硬化させて複合材層を形成するステップと、前記側面に直交する前記コア材の他の面にある複合材層に、前記側面側に向かって厚さが漸減されたテーパー部を形成するステップと、を含む構成部材を作成する工程と、
前記側面に接着剤を塗布し、前記構成部材同士を結合する工程と、
前記テーパー部に未硬化の複合材料を積層し、該複合材料に対して熱源を配置した後、前記複合材料及び前記熱源を包装材で被覆し、前記包装材内部を真空引きした後に前記熱源で加熱して前記複合材料を硬化させる工程と、
前記結合された構成部材の表面を研磨処理する工程と、
を備える複合材成形型の製造方法。
A step of processing the upper surface of the core material into a shape corresponding to the shape of the molded body, and a step of forming a step on a side surface facing the other core material when the core materials are arranged side by side; A step of forming a composite material layer by laminating an uncured composite material on the surface of the core material and applying pressure while heating, and a composite material on the other surface of the core material orthogonal to the side surface Forming a taper portion having a thickness gradually reduced toward the side surface in the layer, and creating a component member including:
Applying an adhesive to the side surface and bonding the components together;
After laminating an uncured composite material on the tapered portion and disposing a heat source on the composite material, the composite material and the heat source are covered with a packaging material, and the inside of the packaging material is evacuated and then the heat source is used. Heating and curing the composite material;
Polishing the surfaces of the combined components; and
A method for manufacturing a composite material mold.
前記構成部材を作成する工程が、前記側面に孔を形成するステップを含み、
前記構成部材同士を結合する工程が、前記側面を突き合わせて2つの構成部材を配置し、一方の構成部材に形成された前記孔に案内部材の一端を挿入し、他方の構成部材に形成された別の孔に前記案内部材の他端を挿入するステップを含む、
請求項1に記載の複合材成形型の製造方法。
Creating the component includes forming a hole in the side surface;
In the step of joining the constituent members, two constituent members are arranged by abutting the side surfaces, one end of the guide member is inserted into the hole formed in one constituent member, and the other constituent member is formed. Inserting the other end of the guide member into another hole,
The manufacturing method of the composite material shaping | molding die of Claim 1.
前記テーパー部を前記構成部材の上面側の複合材層に形成し、前記段を前記構成部材の下面側の前記側面に形成し、前記構成部材同士を結合する工程の後、前記段に当て材をして接着剤で固定する工程と、
前記当て材の表面に未硬化の複合材料を積層し、該複合材料上に熱源を配置した後、前記積層した複合材料を前記テーパー部に積層した未硬化の複合材料と共に硬化させる工程と、
を備える請求項1または請求項2に記載の複合材成形型の製造方法。
The taper portion is formed on the composite material layer on the upper surface side of the component member, the step is formed on the side surface on the lower surface side of the component member, and the step is applied to the step after joining the component members. And fixing with an adhesive,
Laminating an uncured composite material on the surface of the abutting material, placing a heat source on the composite material, and then curing the laminated composite material together with the uncured composite material stacked on the tapered portion;
The manufacturing method of the composite material shaping | molding die of Claim 1 or Claim 2 provided with these.
前記テーパー部を前記構成部材の下面側の複合材層に形成し、前記テーパー部の形状に合わせて前記当て材の表面に未硬化の複合材料を積層する請求項3に記載の複合材成形型の製造方法。   The composite material molding die according to claim 3, wherein the tapered portion is formed in a composite material layer on a lower surface side of the constituent member, and an uncured composite material is laminated on a surface of the contact material in accordance with the shape of the tapered portion. Manufacturing method. 前記構成部材の端部に前記コア材が露出するよう前記テーパー部を形成する請求項1乃至請求項4のいずれかに記載の複合材成形型の製造方法。   The manufacturing method of the composite material shaping | molding die in any one of Claim 1 thru | or 4 which forms the said taper part so that the said core material may be exposed to the edge part of the said structural member. 前記構成部材の側面にアングル材を複数設置する請求項1乃至請求項5のいずれかに記載の複合材成形型の製造方法。   The manufacturing method of the composite material shaping | molding die in any one of Claims 1 thru | or 5 which installs multiple angle materials in the side surface of the said structural member. 前記コア材を炭素発泡体とする請求項1乃至請求項6のいずれかに記載の複合材成形型の製造方法。   The manufacturing method of the composite material shaping | molding die in any one of Claim 1 thru | or 6 which makes the said core material a carbon foam. 上面が被成形体形状に対応する形状に加工され、少なくとも1側面に段が形成されたコア材と、
少なくとも段が形成された前記側面と直交する前記コア材の他の面に設けられ、前記側面側に向かって厚さが漸減されたテーパー部を有する複合材層と、
を含む構成部材を具備し、
1の前記構成部材の段が形成された側面と、他の前記構成部材の段が形成された側面とが、接着剤層を介して結合され、
前記テーパー部上に別の複合材層が形成され、
研磨処理された前記結合された構成部材の表面を有する複合材成形型。
A core material whose upper surface is processed into a shape corresponding to the shape of the molded body, and a step is formed on at least one side surface;
A composite material layer having a tapered portion that is provided on the other surface of the core material orthogonal to the side surface on which at least a step is formed and whose thickness is gradually reduced toward the side surface;
Comprising structural members,
The side surface on which the step of one of the constituent members is formed and the side surface on which the step of the other constituent member is formed are bonded via an adhesive layer,
Another composite material layer is formed on the tapered portion,
A composite mold having a surface of the bonded component member that has been polished.
前記段が形成された前記側面が孔を有し、
隣接する前記構成部材の互いに対応する孔に挿入された案内部材を備える請求項8に記載の複合材成形型。
The side surface on which the step is formed has a hole;
The composite material shaping | molding die of Claim 8 provided with the guide member inserted in the mutually corresponding hole of the said adjacent structural member.
前記テーパー部が前記構成部材の上面側の複合材層に形成され、
前記段が前記構成部材の下面側の前記側面に形成され、
接着剤層を介して当て材が前記段に固定され、前記当て材の表面に別の複合材層が形成される請求項8または請求項9に記載の複合材成形型。
The tapered portion is formed in the composite material layer on the upper surface side of the component member,
The step is formed on the side surface on the lower surface side of the component member,
The composite material mold according to claim 8 or 9, wherein a patch is fixed to the step via an adhesive layer, and another composite layer is formed on a surface of the patch.
前記テーパー部が前記構成部材の下面側の複合材層に形成され、前記テーパー部の形状に合わせて前記当て材の表面に前記別の複合材層が形成される請求項10に記載の複合材成形型。   11. The composite material according to claim 10, wherein the tapered portion is formed in a composite material layer on a lower surface side of the constituent member, and the another composite material layer is formed on a surface of the contact material in accordance with a shape of the tapered portion. Mold. 前記構成部材の端部に前記コア材が露出するよう前記テーパー部が形成された請求項8乃至請求項11のいずれかに記載の複合材成形型。   The composite material molding die according to any one of claims 8 to 11, wherein the tapered portion is formed so that the core material is exposed at an end portion of the component member. 前記構成部材の側面にアングル材が複数設置された請求項8乃至請求項12のいずれかに記載の複合材成形型。   The composite material shaping | molding die in any one of Claims 8 thru | or 12 with which multiple angle materials were installed in the side surface of the said structural member. 前記コア材が炭素発泡体である請求項8乃至請求項12のいずれかに記載の複合材成形型。
The composite material mold according to any one of claims 8 to 12, wherein the core material is a carbon foam.
JP2010151219A 2010-07-01 2010-07-01 Composite material mold and manufacturing method thereof Active JP5610881B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010151219A JP5610881B2 (en) 2010-07-01 2010-07-01 Composite material mold and manufacturing method thereof
PCT/JP2011/064745 WO2012002355A1 (en) 2010-07-01 2011-06-28 Composite material molding die and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010151219A JP5610881B2 (en) 2010-07-01 2010-07-01 Composite material mold and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012011695A JP2012011695A (en) 2012-01-19
JP5610881B2 true JP5610881B2 (en) 2014-10-22

Family

ID=45402062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010151219A Active JP5610881B2 (en) 2010-07-01 2010-07-01 Composite material mold and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5610881B2 (en)
WO (1) WO2012002355A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170036375A1 (en) * 2015-08-07 2017-02-09 Hexcel Corporation Multi-sectional composite tooling
US11040512B2 (en) 2017-11-08 2021-06-22 Northrop Grumman Systems Corporation Composite structures, forming apparatuses and related systems and methods
JP6975618B2 (en) * 2017-11-17 2021-12-01 三菱重工業株式会社 Molding equipment
US11981839B2 (en) * 2019-09-30 2024-05-14 The Boeing Company Method and apparatus for fabrication of composite tooling

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0319449B1 (en) * 1987-12-03 1993-11-18 United Technologies Corporation Tooling and method for forming complex composite articles
JP4202844B2 (en) * 2003-07-02 2008-12-24 川崎重工業株式会社 Composite material forming jig
KR20060126565A (en) * 2004-01-20 2006-12-07 터치스톤 리서치 래버러토리 리미티드 Carbon foam composite tooling and methods for using the same
US7527222B2 (en) * 2004-04-06 2009-05-05 The Boeing Company Composite barrel sections for aircraft fuselages and other structures, and methods and systems for manufacturing such barrel sections
JP2006123403A (en) * 2004-10-29 2006-05-18 Toray Ind Inc Mandrel for fiber-reinforced composite material shaping
DE102008012055B3 (en) * 2008-02-29 2009-10-01 Airbus Deutschland Gmbh Method for tolerance compensation between two fiber composite components
JP5564233B2 (en) * 2009-11-02 2014-07-30 株式会社山下工業所 Resin casting mold and its manufacturing method

Also Published As

Publication number Publication date
WO2012002355A1 (en) 2012-01-05
JP2012011695A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP6599797B2 (en) Co-curing process for joining composite structures
EP2922685B1 (en) Bonding of composite materials
JP6411359B2 (en) Joining composite parts using low temperature thermoplastic film fusion.
US5954898A (en) Method and system for fabricating parts from composite materials
EP1268120B1 (en) Method of joining composite components
JP4407964B2 (en) Composite honeycomb sandwich structure
US7138028B2 (en) Vacuum assisted resin transfer method for co-bonding composite laminate structures
EP2569142B1 (en) Method of making a composite sandwich structure
KR102535014B1 (en) Partial curing of thermoset composites
US9505204B2 (en) Method for making and joining composite sandwich shell edge joint
JP5610881B2 (en) Composite material mold and manufacturing method thereof
US11738526B2 (en) Method for using composite tooling to manufacture composite parts
CN114801237B (en) Forming method of full-height edge-covering sandwich composite material workpiece
JP2009179065A (en) Method of manufacturing frp structure
US11458719B2 (en) Method for joining by bonding of parts, in particular composite parts having fibrous reinforcement
JP4328579B2 (en) Method for manufacturing honeycomb sandwich panel
JP4338550B2 (en) Method for manufacturing FRP structure
JP3822182B2 (en) Manufacturing method of composite material honeycomb sandwich structure
US11981839B2 (en) Method and apparatus for fabrication of composite tooling
CN113858656A (en) Integrated forming process of sawtooth-shaped hollow-structure composite wave-absorbing component
JP3004309B2 (en) Method for producing fiber-reinforced resin laminate
JP4462715B2 (en) Manufacturing method of honeycomb sandwich structure using composite material and forming jig used for manufacturing of honeycomb sandwich structure
JP2004148700A (en) Laminate shim made of composite material, and its manufacturing method
Redmann et al. Additively manufactured B-stage epoxy for adhesive bonding in composite structures
US20240239061A1 (en) Method of Manufacturing a Component from a Composite Material with Locally Different Thicknesses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140902

R150 Certificate of patent or registration of utility model

Ref document number: 5610881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250