Nothing Special   »   [go: up one dir, main page]

JP5696941B2 - Measuring method of critical current - Google Patents

Measuring method of critical current Download PDF

Info

Publication number
JP5696941B2
JP5696941B2 JP2011172823A JP2011172823A JP5696941B2 JP 5696941 B2 JP5696941 B2 JP 5696941B2 JP 2011172823 A JP2011172823 A JP 2011172823A JP 2011172823 A JP2011172823 A JP 2011172823A JP 5696941 B2 JP5696941 B2 JP 5696941B2
Authority
JP
Japan
Prior art keywords
current
superconducting
conductor layer
superconducting conductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011172823A
Other languages
Japanese (ja)
Other versions
JP2013036840A (en
Inventor
正義 大屋
正義 大屋
忠 瀬戸口
忠 瀬戸口
和晃 畳谷
和晃 畳谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011172823A priority Critical patent/JP5696941B2/en
Publication of JP2013036840A publication Critical patent/JP2013036840A/en
Application granted granted Critical
Publication of JP5696941B2 publication Critical patent/JP5696941B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、臨界電流の測定方法に関するものである。特に、超電導ケーブルの構成部材に利用されるケーブルコアの全長の臨界電流を精度よく測定することができる臨界電流の測定方法に関するものである。   The present invention relates to a method for measuring critical current. In particular, the present invention relates to a critical current measuring method capable of accurately measuring the critical current of the entire length of a cable core used for a component of a superconducting cable.

電力供給路を構成する電力ケーブルとして、超電導ケーブルが開発されつつある。超電導ケーブルは、代表的には、超電導層を有するケーブルコアと、このケーブルコアを収納すると共に、液体窒素といった冷媒が満たされる断熱管とを具える。超電導層は、超電導導体層と、電気絶縁層を介して超電導導体層の外周に設けられる外側超電導層とを具え、超電導線材を巻回して構成される形態が代表的である。外側超電導層は、例えば、交流送電では、シールドとして機能する。   Superconducting cables are being developed as power cables constituting power supply paths. A superconducting cable typically includes a cable core having a superconducting layer, and a heat insulating tube that houses the cable core and is filled with a refrigerant such as liquid nitrogen. The superconducting layer typically includes a superconducting conductor layer and an outer superconducting layer provided on the outer periphery of the superconducting conductor layer via an electrical insulating layer, and is typically configured by winding a superconducting wire. The outer superconducting layer functions as a shield in AC power transmission, for example.

OFケーブルやCVケーブルなどの常電導ケーブルでは、その電気的特性を調べるにあたり、工場出荷前、全長を対象とする全長試験(枠試験)が行われている。一方、超電導ケーブルでは、その電気的特性を調べるにあたり、超電導導体層を超電導状態にするために冷却する必要がある。従って、仮に、超電導ケーブルの全長試験を行う場合、細い断熱管内に冷媒を充填しなければならず時間がかかるため、超電導ケーブルでは、短いサンプルを利用した抜き取り試験が行われている。   For normal conducting cables such as OF cables and CV cables, a full length test (frame test) is performed on the full length before shipping to the factory to investigate the electrical characteristics. On the other hand, when examining the electrical characteristics of a superconducting cable, it is necessary to cool the superconducting conductor layer to bring it into a superconducting state. Therefore, if a full-length test of a superconducting cable is performed, it takes time to fill a thin heat insulating tube with a refrigerant. Therefore, a superconducting cable is subjected to a sampling test using a short sample.

一方、特許文献1では、上記超電導ケーブルを布設後、超電導ケーブルの臨界電流を測定するにあたり、測定対象となる1本のケーブルコアに、別のケーブルコアを接続して往復通電を行って、測定対象の臨界電流を測定することを開示している。   On the other hand, in Patent Document 1, after laying the superconducting cable, when measuring the critical current of the superconducting cable, connect one cable core to be measured to another cable core and perform reciprocal energization. Measuring the critical current of an object is disclosed.

特開2006-329838号公報JP 2006-329838

超電導ケーブルに用いられるケーブルコアに対して、全長試験を行うことが望まれている。   It is desired to perform a full length test on a cable core used for a superconducting cable.

特許文献1に提案される測定方法では、ケーブルコアが断熱管内に収納された状態の超電導ケーブルを対象としている。超電導ケーブルの電気的特性は、実質的にケーブルコアの特性であることから、断熱管内への収納前においてケーブルコア自体の特性が良くなければ、このケーブルコアを用いた超電導ケーブルの全長試験の結果も当然に良くない。また、ケーブルコア単体で出荷する場合には、出荷試験の対象はケーブルコアになる。従って、断熱管に収納する前のケーブルコアについて全長試験を行うことが望まれる。   The measurement method proposed in Patent Document 1 targets a superconducting cable in a state where a cable core is housed in a heat insulating tube. Since the electrical characteristics of the superconducting cable are essentially the characteristics of the cable core, if the characteristics of the cable core itself are not good before storage in the heat insulation tube, the result of the full-length test of the superconducting cable using this cable core Of course not good. In addition, when the cable core is shipped alone, the object of the shipping test is the cable core. Therefore, it is desired to perform a full length test on the cable core before being housed in the heat insulating tube.

しかし、従来、超電導ケーブル用のケーブルコアに対して、適切な全長試験方法が提案されていない。   However, conventionally, an appropriate full length test method has not been proposed for a cable core for a superconducting cable.

例えば、超電導ケーブルに利用されるケーブルコアは、長尺であることから、取り扱い易いように、ケーブルコアをドラムに巻き取っておき、この状態で冷却し、特性を調べることが考えられる。この場合、ドラムに巻き取ったケーブルコアを容器に収納し、この容器に冷媒を充填すればよく、例えば、断熱管内に冷媒を充填して循環冷却する場合に比較して、簡易な冷却設備で試験を実施できる。また、ドラムに巻き取った状態では、ケーブルコアの両端が近くに配置されることから、例えば、電気的特性を調べるために利用する電源の取り付けも容易に行える。しかし、この場合、臨界電流を精度よく測定することが難しい。   For example, since the cable core used for the superconducting cable is long, it is conceivable that the cable core is wound around a drum and cooled in this state so as to be easy to handle. In this case, the cable core wound around the drum may be housed in a container, and the container may be filled with a refrigerant. For example, compared with the case where the heat insulation pipe is filled with a refrigerant and circulated and cooled, a simple cooling facility is used. The test can be conducted. In addition, since both ends of the cable core are arranged close to each other when wound on the drum, for example, it is possible to easily attach a power source used for examining electrical characteristics. However, in this case, it is difficult to accurately measure the critical current.

ここで、超電導導体層といった超電導層を構成する超電導線材の臨界電流は、磁場に依存し、磁場の印加によって臨界電流は、ゼロ磁場下の臨界電流よりも低下する傾向にある。超電導線材の臨界電流の低下によって、超電導層の臨界電流も低下する。   Here, the critical current of the superconducting wire constituting the superconducting layer such as the superconducting conductor layer depends on the magnetic field, and the critical current tends to be lower than the critical current under zero magnetic field by applying the magnetic field. As the critical current of the superconducting wire decreases, the critical current of the superconducting layer also decreases.

ドラムに巻き取られたケーブルコアがつくる各ターンは近接しており、各ターンに流れる電流に基づく磁場がそれぞれターンの外部に漏れ出て、この漏れ磁場が相互に干渉し合う。そのため、上述のようにケーブルコアの両端部を電源に取り付けて臨界電流を測定しても、このターン間の磁場の干渉によって、測定値は、本来の値(設計値)よりも低くなる。特に、設計値が高いケーブルコアの場合、大電流を通電して臨界電流を測定することになるが、通電電流の増大に伴い磁場も大きくなり易く、測定する臨界電流が更に低下し得る。   The turns formed by the cable core wound around the drum are close to each other, and magnetic fields based on the currents flowing through the turns leak out of the turns, and the leakage magnetic fields interfere with each other. Therefore, even when the critical current is measured by attaching both ends of the cable core to the power source as described above, the measured value becomes lower than the original value (design value) due to the interference of the magnetic field between the turns. In particular, in the case of a cable core having a high design value, a critical current is measured by supplying a large current. However, the magnetic field is likely to increase as the applied current increases, and the measured critical current can be further reduced.

そこで、本発明の目的は、超電導ケーブル用ケーブルコアの全長の臨界電流を精度よく測定可能な臨界電流の測定方法を提供することにある。   Accordingly, an object of the present invention is to provide a critical current measuring method capable of accurately measuring the critical current of the entire length of the cable core for a superconducting cable.

本発明は、ケーブルコアの全長に亘って臨界電流を測定するにあたり、超電導導体層と外側超電導層とに相互に逆向きの電流が流れた状態にすることで、上記目的を達成する。   In measuring the critical current over the entire length of the cable core, the present invention achieves the above-mentioned object by causing the opposite currents to flow through the superconducting conductor layer and the outer superconducting layer.

本発明の臨界電流の測定方法は、試験対象として、超電導導体層と、上記超電導導体層の外周に外側超電導層とを具えるケーブルコアを準備し、上記超電導導体層に直流電流を通電し、上記外側超電導層には上記超電導導体層に流れる電流とは逆向きの電流が流れた状態にして、上記ケーブルコアの全長の臨界電流を測定する。   The method for measuring the critical current of the present invention, as a test object, preparing a superconducting conductor layer and a cable core comprising an outer superconducting layer on the outer periphery of the superconducting conductor layer, passing a direct current through the superconducting conductor layer, A critical current of the entire length of the cable core is measured with the outer superconducting layer in a state in which a current opposite to the current flowing in the superconducting conductor layer flows.

本発明は、ケーブルコアの全長に亘って臨界電流を測定するにあたり、当該ケーブルコアに具える超電導導体層にのみ、電流が流れた状態とするのではなく、同じケーブルコアに具える外側超電導層にも特定の電流、具体的には、超電導導体層に流れる電流(以下、導体電流と呼ぶ)とは逆向きの電流が流れた状態とする。この逆向きの電流に基づく磁場によって、導体電流に基づく磁場をある程度打ち消し、ケーブルコアの外部に漏れ出る磁場を低減できる。そのため、本発明は、上述の磁場の影響による臨界電流の低下を抑制でき、本来の値(設計値)に近い値を測定可能となる。従って、本発明は、ケーブルコアの全長の臨界電流を精度よく測定可能であり、ケーブルコアの全長試験として好適に利用できる。   In the present invention, when measuring the critical current over the entire length of the cable core, the outer superconducting layer provided in the same cable core is not used only in the superconducting conductor layer provided in the cable core. In addition, it is assumed that a specific current, specifically, a current in the direction opposite to the current flowing in the superconducting conductor layer (hereinafter referred to as a conductor current) flows. The magnetic field based on the reverse current can cancel the magnetic field based on the conductor current to some extent and reduce the magnetic field leaking out of the cable core. Therefore, the present invention can suppress a decrease in critical current due to the influence of the magnetic field described above, and can measure a value close to the original value (design value). Therefore, the present invention can accurately measure the critical current of the entire length of the cable core, and can be suitably used as a full length test of the cable core.

本発明の一形態として、上記ケーブルコアがドラムに巻き取られた形態が挙げられる。また、このドラムが非磁性材料によって構成された形態が挙げられる。   As one form of this invention, the form by which the said cable core was wound up by the drum is mentioned. Moreover, the form by which this drum was comprised with the nonmagnetic material is mentioned.

ドラムに巻き取られたケーブルコアを試験対象とする上記形態は、(1)試験対象を取り扱い易い、(2)冷凍機や循環ポンプを省略した簡易な冷却設備によって試験実施が可能、(3)電源の取り付けが容易、といった利点を有する。また、本発明は、上述のように超電導導体層と外側超電導層との双方に相互に逆向きの電流を流すことで、ケーブルコアがドラムに巻き取られて、当該ケーブルコアがつくる各ターンが近接された状態であっても、臨界電流を精度よく測定することができる。上記ドラムが非磁性材料によって構成されている場合、導体電流に基づく磁場や上記逆向きの電流に基づく磁場の乱れを抑制することができる。   The above-mentioned form in which the cable core wound around the drum is the test target is (1) easy to handle the test target, (2) the test can be performed with a simple cooling facility omitting the refrigerator and the circulation pump, (3) There is an advantage that the power supply can be easily attached. Further, according to the present invention, as described above, the cable core is wound around the drum by causing the opposite currents to flow in both the superconducting conductor layer and the outer superconducting layer, and each turn made by the cable core is The critical current can be measured with high accuracy even in close proximity. When the drum is made of a nonmagnetic material, the magnetic field based on the conductor current and the magnetic field disturbance based on the reverse current can be suppressed.

本発明の一形態として、上記ケーブルコアの一端では、上記超電導導体層と上記外側超電導層とを電気的に接続して、当該超電導導体層と当該外側超電導層とによる往復通電路を形成し、上記ケーブルコアの他端では、上記超電導導体層と上記外側超電導層とを直流電源に接続して、上記往復通電路に直流電流を通電する形態が挙げられる。   As one aspect of the present invention, at one end of the cable core, the superconducting conductor layer and the outer superconducting layer are electrically connected to form a reciprocal current path by the superconducting conductor layer and the outer superconducting layer, At the other end of the cable core, the superconducting conductor layer and the outer superconducting layer are connected to a DC power source, and a DC current is supplied to the reciprocating current path.

上記形態は、同じケーブルコアに具える超電導導体層の一端と外側超電導層の一端同士を短絡させる、即ち、近接した構成部材同士を短絡させるため、往復通電路を容易に構築できる。また、上記形態は、近接する構成部材の他端を同じ直流電源に接続するため、直流電源を接続するためのリード部材を短くでき、接続作業が容易である上に、リード部材の抵抗成分の増加に伴う電源の出力電圧の増加を低減できる。従って、上記形態は、ケーブルコアの全長の臨界電流を測定するにあたり、測定準備の作業性に優れる上に、試験に用いる直流電源として、出力容量が小さいものを利用できる。特に、上記形態においてドラムに巻き取られたケーブルコアを試験対象とする場合、ケーブルコアの両端が近いため、上述の短絡作業や接続作業をより容易に行える。   In the above embodiment, one end of the superconducting conductor layer and one end of the outer superconducting layer provided in the same cable core are short-circuited, that is, the adjacent constituent members are short-circuited. Moreover, since the said form connects the other end of the adjacent structural member to the same DC power supply, the lead member for connecting DC power supply can be shortened, connection work is easy, and the resistance component of the lead member can be reduced. The increase in the output voltage of the power supply accompanying the increase can be reduced. Therefore, in the above-described embodiment, when measuring the critical current of the entire length of the cable core, the workability of measurement preparation is excellent, and a DC power source having a small output capacity can be used as a DC power source used for the test. In particular, when the cable core wound around the drum in the above embodiment is used as a test object, the short-circuiting operation and the connection operation described above can be performed more easily because both ends of the cable core are close.

本発明の一形態として、上記ケーブルコアの両端において上記外側超電導層を短絡接続部によって電気的に接続して閉ループを形成し、上記ケーブルコアの両端において上記超電導導体層を直流電源に接続して、当該超電導導体層に直流電流を通電し、上記外側超電導層を含む閉ループには、上記逆向きの電流として、前記超電導導体層に流れる電流に基づく誘導電流を流す形態が挙げられる。   As one form of the present invention, the outer superconducting layer is electrically connected by a short-circuit connecting portion at both ends of the cable core to form a closed loop, and the superconducting conductor layer is connected to a DC power source at both ends of the cable core. In the closed loop including the outer superconducting layer, a direct current is passed through the superconducting conductor layer, and an induced current based on the current flowing in the superconducting conductor layer is supplied as the reverse current.

上記形態は、超電導導体層のみを測定対象とするため、超電導導体層の臨界電流の測定に好適に利用することができる。上記形態において、特に、ドラムに二層などの多層巻きされたケーブルコアを試験対象とする場合、ケーブルコアの両端が近いため、上記閉ループの形成や電源の接続作業をより容易に行える。   Since only the superconducting conductor layer is an object to be measured, the above form can be suitably used for measuring the critical current of the superconducting conductor layer. In the above embodiment, in particular, when a cable core wound in multiple layers such as two layers on a drum is used as a test object, the closed end of the cable core and the power supply connection work can be more easily performed because the ends of the cable core are close.

本発明の一形態として、複数の上記ケーブルコアが1つのドラムに共巻きされたものを試験対象とする形態が挙げられる。この形態では、上記共巻きされたケーブルコアのうち、2本のケーブルコアに具える上記外側超電導層同士を短絡接続部によって電気的に接続して一つの閉ループを形成し、当該2本のケーブルコアの一端では、各ケーブルコアに具える上記超電導導体層同士を電気的に接続して、これら超電導導体層による往復通電路を形成し、他端では、各ケーブルコアに具える上記超電導導体層を直流電源に接続して、上記往復通電路に直流電流を通電し、上記外側超電導層を含む閉ループには、上記逆向きの電流として、上記超電導導体層に流れる電流に基づく誘導電流を流す構成が挙げられる。   As one form of the present invention, a form in which a plurality of the above-described cable cores are wound together on one drum is a test object. In this form, the outer superconducting layers provided in the two cable cores of the co-wound cable cores are electrically connected by a short-circuit connection portion to form one closed loop, and the two cables At one end of the core, the superconducting conductor layers provided in each cable core are electrically connected to each other to form a reciprocating current path by these superconducting conductor layers, and at the other end, the superconducting conductor layer provided in each cable core. Is connected to a direct current power source, a direct current is passed through the reciprocating current path, and an inductive current based on the current flowing in the superconducting conductor layer is supplied as a reverse current to the closed loop including the outer superconducting layer. Is mentioned.

上記形態は、複数のケーブルコアを試験対象とする場合に、超電導導体層の臨界電流を精度よく測定できる上に、これらのケーブルコアが1つのドラムに巻き取られていることで、各ケーブルコアの端部が近接しているため、上記閉ループや往復通電路の形成、電源の接続作業を容易に行える。   In the above configuration, when a plurality of cable cores are to be tested, the critical current of the superconducting conductor layer can be accurately measured, and the cable cores are wound on one drum, so that each cable core Therefore, the closed loop and the reciprocating current path can be formed and the power supply can be easily connected.

上記短絡接続部を具える形態として、測定した臨界電流を補正する形態とすることができる。より具体的には、上記短絡接続部にロゴスキーコイルを取り付けて、又は上記短絡接続部がシャント抵抗を具えており、上記ロゴスキーコイル又は上記シャント抵抗を用いて、上記誘導電流を実測し、上記超電導導体層への通電電流と、実測した上記誘導電流との差から、上記ケーブルコアの外部に漏れる漏れ磁場によって上記超電導導体層の臨界電流が低下する量を求め、上記測定した臨界電流を上記低下した量に基づいて補正する構成が挙げられる。   As a form including the short-circuit connection portion, a form in which the measured critical current is corrected can be employed. More specifically, a Rogowski coil is attached to the short-circuit connection part, or the short-circuit connection part has a shunt resistance, and the induced current is measured using the Rogowski coil or the shunt resistance, From the difference between the energization current to the superconducting conductor layer and the actually measured induced current, the amount by which the critical current of the superconducting conductor layer is reduced due to the leakage magnetic field leaking outside the cable core is obtained, and the measured critical current is calculated. The structure correct | amended based on the said reduced amount is mentioned.

本発明者らが調べた結果、超電導導体層に一定の変化速度で直流電流を通電した場合、変化速度に応じて誘導電流が変化する、具体的には変化速度が小さいと、誘導電流が小さくなる、との知見を得た。誘導電流が小さいと、導体電流と誘導電流との差に基づく漏れ磁場が大きくなり、この漏れ磁場によって測定した臨界電流が低下する。上記形態では、この低下分を補正するため、臨界電流を精度よく測定できる。また、上記形態は、誘導電流の実測値を利用することで漏れ磁場を高精度に求められ、ひいては漏れ磁場による臨界電流の低下量を正確に求められるため、この点からも、臨界電流を精度よく求められる。更に、上記形態では、漏れ磁場の発生を許容するため、超電導導体層への電流の変化速度を小さくできることから、小容量の電源を利用できる。つまり、変化速度の増大に伴う大きな誘導電圧に対応可能な大容量の電源を用いる必要が無い。その他、ロゴスキーコイルを利用する形態では、短絡接続部に容易に取り付けられて作業性に優れる上に、使用後も簡単に取り外せる。シャント抵抗を利用する形態では、誘導電流を高精度に求められることから、臨界電流をより高精度に測定できる。   As a result of investigations by the present inventors, when a direct current is applied to the superconducting conductor layer at a constant change rate, the induced current changes according to the change rate. Specifically, if the change rate is low, the induced current is small. I got the knowledge that. When the induced current is small, the leakage magnetic field based on the difference between the conductor current and the induced current becomes large, and the critical current measured by the leakage magnetic field decreases. In the above embodiment, the critical current can be accurately measured in order to correct this decrease. In the above-mentioned form, the leakage magnetic field can be obtained with high accuracy by using the actually measured value of the induced current, and hence the amount of decrease in critical current due to the leakage magnetic field can be obtained accurately. Often required. Furthermore, in the above embodiment, since the generation of a leakage magnetic field is allowed, the rate of change of current to the superconducting conductor layer can be reduced, so that a small capacity power source can be used. That is, it is not necessary to use a large-capacity power supply that can cope with a large induced voltage accompanying an increase in the change rate. In addition, in the form using the Rogowski coil, it can be easily attached to the short-circuited connection portion and excellent in workability, and can be easily removed after use. In the form using the shunt resistor, the induced current can be obtained with high accuracy, so that the critical current can be measured with higher accuracy.

本発明の一形態として、上記ケーブルコアの両端において上記超電導導体層を直流電源に接続して、当該超電導導体層に直流電流を通電し、上記ケーブルコアの両端において上記外側超電導層を別の直流電源に接続して、当該外側超電導層に上記超電導導体層に流れる電流と逆向きの電流を通電する形態が挙げられる。   As one aspect of the present invention, the superconducting conductor layer is connected to a DC power source at both ends of the cable core, a DC current is passed through the superconducting conductor layer, and the outer superconducting layer is connected to another DC at both ends of the cable core. There is a mode in which a current opposite to the current flowing in the superconducting conductor layer is passed through the outer superconducting layer by connecting to a power source.

上記形態は、超電導導体層の臨界電流の設計値と、外側超電導層の臨界電流の設計値とが大きく異なる場合でも、上記設計値のうち、小さい方を超えない範囲で電流を十分に流すことができるため、磁場の影響を最小限にすることができる。つまり、上記形態は、導体電流と外側超電導層に流れる電流との差に基づく漏れ磁場を小さくし易い、好ましくは漏れ磁場を実質的に無くすことができる。従って、上記形態は、磁場の影響による臨界電流の低下を低減でき、例えば、上述のような補正を行わなくても、臨界電流を精度よく測定できる。また、上記形態は、超電導導体層と外側超電導層とのそれぞれに流れている電流値が電源によって制御されていることから、各層に流れる電流に差がある場合でもその差を正確に測定できる。   In the above configuration, even when the design value of the critical current of the superconducting conductor layer and the design value of the critical current of the outer superconducting layer are greatly different, the current should flow sufficiently in a range not exceeding the smaller one of the above design values. Therefore, the influence of the magnetic field can be minimized. In other words, the above configuration can easily reduce the leakage magnetic field based on the difference between the conductor current and the current flowing in the outer superconducting layer, and can substantially eliminate the leakage magnetic field. Therefore, the said form can reduce the fall of the critical current by the influence of a magnetic field, for example, can measure a critical current accurately, without performing the above correction | amendments. Moreover, since the current value flowing through each of the superconducting conductor layer and the outer superconducting layer is controlled by the power source, the above-described configuration can accurately measure the difference even when there is a difference in the current flowing through each layer.

本発明臨界電流の測定方法は、超電導ケーブルに利用されるケーブルコアの全長の臨界電流を精度よく測定することができる。   The method for measuring the critical current of the present invention can accurately measure the critical current of the entire length of the cable core used in the superconducting cable.

実施形態1に係る臨界電流の測定方法を説明するための説明図である。3 is an explanatory diagram for explaining a method for measuring a critical current according to Embodiment 1. FIG. 実施形態2に係る臨界電流の測定方法を説明するための説明図である。5 is an explanatory diagram for explaining a method for measuring a critical current according to Embodiment 2. FIG. 実施形態3に係る臨界電流の測定方法を説明するための説明図である。6 is an explanatory diagram for explaining a method for measuring a critical current according to Embodiment 3. FIG. 実施形態4に係る臨界電流の測定方法を説明するための説明図である。5 is an explanatory diagram for explaining a method for measuring a critical current according to Embodiment 4. FIG. 実施形態1に係る臨界電流の測定方法であって、ケーブルコアがドラムに巻き取られた状態を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining a state in which a cable core is wound around a drum, which is a critical current measuring method according to the first embodiment. 超電導ケーブル用ケーブルコアを模式的に示す横断面図である。It is a cross-sectional view which shows the cable core for superconducting cables typically.

以下、図面を参照して、本発明をより詳細に説明する。図において同一符号は、同一名称物を示す。まず、測定対象となる超電導ケーブル用ケーブルコアを説明し、次に、臨界電流の測定方法のより具体的な手法を説明し、その後、試験対象のより具体的な形態について説明する。   Hereinafter, the present invention will be described in more detail with reference to the drawings. In the figure, the same reference numeral indicates the same name object. First, a cable core for a superconducting cable to be measured will be described, then a more specific method for measuring the critical current will be described, and then a more specific form of the test object will be described.

[ケーブルコア]
ケーブルコア100は、図6に示すように、例えば、中心から順にフォーマ101、超電導導体層102、電気絶縁層103、外側超電導層104、保護層105を具える。
[Cable core]
As shown in FIG. 6, the cable core 100 includes, for example, a former 101, a superconducting conductor layer 102, an electrical insulating layer 103, an outer superconducting layer 104, and a protective layer 105 in order from the center.

フォーマ101は、超電導導体層102の支持部材であり、ケーブルコア100の抗張力材としても機能する。また、フォーマ101は、短絡や地絡などの事故時に事故電流を分流する通電路に利用される。通電路に利用する場合、フォーマ101は、銅やアルミニウム、その合金などの常電導材料からなる中実体や中空体(管体)が好適に利用できる。より具体的には、例えば、ポリビニルホルマール(PVF)やエナメルなどの絶縁被覆を具える銅線を複数本撚り合わせた撚り線材が挙げられる。フォーマ101の外周にクラフト紙やPPLP(住友電気工業株式会社 登録商標)といった絶縁テープ材を巻回してクッション層を設けることができる。   The former 101 is a support member for the superconducting conductor layer 102 and also functions as a tensile material for the cable core 100. In addition, the former 101 is used for an energization path that diverts an accident current in the event of an accident such as a short circuit or a ground fault. When used in the current path, the former 101 can be preferably a solid body or hollow body (tubular body) made of a normal conducting material such as copper, aluminum, or an alloy thereof. More specifically, for example, a stranded wire material obtained by twisting a plurality of copper wires having an insulation coating such as polyvinyl formal (PVF) or enamel. A cushion layer can be provided by winding an insulating tape material such as kraft paper or PPLP (registered trademark of Sumitomo Electric Industries, Ltd.) around the outer periphery of the former 101.

超電導導体層102及び外側超電導層104は、超電導線材を螺旋状に巻回した線材層を単層又は多層に具える形態が挙げられる。超電導線材は、酸化物超電導相を具える線材、具体的には、REBa2Cu3Ox(RE123:REは希土類元素)、例えばYBCO,HoBCO,GdBCOといった希土類系酸化物超電導相を具える薄膜線材や、Bi2Sr2Ca2Cu3O10+δ(Bi2223)といったBi系酸化物超電導相を具え、Agやその合金を金属マトリクスとする高温超電導線材がある。多層構造の場合、各線材層の層間にクラフト紙などの絶縁紙を巻回した層間絶縁層を形成することができる。超電導導体層102の直上にカーボン紙などを巻回して内側半導電層を設けることができる。なお、薄膜線材及びBi系酸化物超電導線材はいずれも、その表面に対して垂直に磁場が印加されると(超電導線材の厚さ方向に磁場が印加されると)、その表面に平行に磁場が印加される場合に比べて、臨界電流が低下する傾向にある。 Examples of the superconducting conductor layer 102 and the outer superconducting layer 104 include a single layer or a multilayer including a wire layer in which a superconducting wire is spirally wound. Superconducting wire is a wire comprising an oxide superconducting phase, specifically, REBa 2 Cu 3 O x (RE123: RE is a rare earth element), for example, a thin film comprising a rare earth oxide superconducting phase such as YBCO, HoBCO, GdBCO. There are high-temperature superconducting wires that comprise a wire and a Bi-based oxide superconducting phase such as Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ (Bi2223) and Ag or an alloy thereof as a metal matrix. In the case of a multilayer structure, an interlayer insulating layer in which insulating paper such as kraft paper is wound can be formed between the layers of the wire layers. An inner semiconductive layer can be provided by winding carbon paper or the like directly on the superconducting conductor layer 102. Note that when a magnetic field is applied perpendicularly to the surface of each of the thin film wire and the Bi-based oxide superconducting wire (when a magnetic field is applied in the thickness direction of the superconducting wire), the magnetic field is parallel to the surface. As compared with the case where is applied, the critical current tends to decrease.

外側超電導層104は、例えば、交流送電の場合、磁気シールドとして利用され、直流送電の場合、帰路導体や中性線として利用される。超電導導体層102及び外側超電導層104を構成する超電導線材の数や線材層の数は、所望の電力供給容量に応じて設計される。   For example, the outer superconducting layer 104 is used as a magnetic shield in the case of AC power transmission, and is used as a return conductor or a neutral wire in the case of DC power transmission. The number of superconducting wires constituting the superconducting conductor layer 102 and the outer superconducting layer 104 and the number of wire layers are designed according to the desired power supply capacity.

電気絶縁層103は、超電導導体層102(或いは内側半導電層)の上に、クラフト紙やPPLP(登録商標)といった半合成絶縁紙などの絶縁テープ材を巻回することで形成することができる。電気絶縁層103の直上に、カーボン紙などを巻回して外側半導電層を設けることができる。   The electrical insulating layer 103 can be formed by winding an insulating tape material such as semi-synthetic insulating paper such as kraft paper or PPLP (registered trademark) on the superconducting conductor layer 102 (or inner semiconductive layer). . An outer semiconductive layer can be provided by winding carbon paper or the like directly on the electrical insulating layer 103.

外側超電導層104の外周に、上述した事故電流の誘導電流の通電路に利用する常電導シールド層を設けることができる。常電導シールド層は、例えば、銅といった常電導材料からなる金属テープ材を巻回して形成することができる。   A normal conducting shield layer can be provided on the outer periphery of the outer superconducting layer 104 to be used for the above-described accident current induced current passage. The normal conductive shield layer can be formed, for example, by winding a metal tape material made of a normal conductive material such as copper.

外側超電導層104(或いは常電導シールド層)の外周に、クラフト紙やPPLP(登録商標)といった半合成絶縁紙などの絶縁テープ材を巻回して、外側超電導層104を機械的に保護するための保護層105を設けることができる。   In order to mechanically protect the outer superconducting layer 104 by winding an insulating tape material such as semi-synthetic insulating paper such as kraft paper or PPLP (registered trademark) around the outer periphery of the outer superconducting layer 104 (or normal conducting shield layer) A protective layer 105 can be provided.

上述のケーブルコア100は、超電導ケーブルの構成部材に利用される。超電導ケーブルは、1条又は複数条(代表的には3条)のコア100を一つの断熱管(図示せず)に収納して製造する。断熱管は、内管と外管との二重管からなり、内管と外管との間が真空引きされた真空断熱構造のものが代表的である。超電導ケーブルは、断熱管内に冷媒(例えば、液体窒素や液体ヘリウムといった液体冷媒)が充填され、この冷媒により超電導導体層102や外側超電導層104を冷却して超電導状態として、電力供給路に利用される。   The above-described cable core 100 is used as a constituent member of a superconducting cable. A superconducting cable is manufactured by housing one or a plurality of (typically three) cores 100 in one heat insulating tube (not shown). The heat insulation pipe is typically composed of a double pipe of an inner pipe and an outer pipe, and a vacuum heat insulation structure in which a vacuum is drawn between the inner pipe and the outer pipe. A superconducting cable is used in a power supply path by filling a heat insulating pipe with a refrigerant (for example, a liquid refrigerant such as liquid nitrogen or liquid helium), cooling the superconducting conductor layer 102 or the outer superconducting layer 104 with this refrigerant, and making it into a superconducting state. The

[臨界電流の測定方法]
本発明は、上述のケーブルコア100の全長の臨界電流を測定するにあたり、超電導導体層102に直流電流を通電すると共に、外側超電導層104に導体電流とは逆向きの電流が流れた状態とする。具体的な手法として、以下の実施形態1〜4が挙げられる。
[Measurement method of critical current]
In the present invention, in measuring the critical current of the entire length of the cable core 100 described above, a direct current is passed through the superconducting conductor layer 102, and a current in the direction opposite to the conductor current flows through the outer superconducting layer 104. . Specific embodiments include the following Embodiments 1 to 4.

(実施形態1)
実施形態1では、図1に示すようにケーブルコア100に具える超電導導体層102と外側超電導層104とを短絡して往復通電を行い、例えば、超電導導体層102には往路電流、外側超電導層には帰路電流を流す。
(Embodiment 1)
In the first embodiment, as shown in FIG. 1, the superconducting conductor layer 102 provided in the cable core 100 and the outer superconducting layer 104 are short-circuited to perform reciprocal energization. For example, the superconducting conductor layer 102 has a forward current and an outer superconducting layer. A return current is passed through.

より具体的には、例えば、ケーブルコア100の一端を段剥ぎして、超電導導体層102及び外側超電導層104とを露出させ、短絡接続部20によって両層102,104の一端同士を電気的に接続して、往復通電路を形成する。短絡接続部20は、銅や銅合金などの導電性に優れる常電導材料、その他、超電導導体層102などの超電導層を構成する超電導線材と同様の超電導線材を適宜組み合せて形成することができる。後述する実施形態2,3の短絡接続部21〜24にも同様の材料を利用することができる。なお、短絡接続部20〜24といった、臨界電流の測定のためにコア100に取り付けた部材は、測定終了後、適宜取り外して、コア100を出荷したり、超電導ケーブルの製造などに利用したりする。   More specifically, for example, one end of the cable core 100 is stripped to expose the superconducting conductor layer 102 and the outer superconducting layer 104, and one end of each of the layers 102, 104 is electrically connected by the short-circuit connecting portion 20. Thus, a reciprocating current path is formed. The short-circuit connection portion 20 can be formed by appropriately combining superconducting wires similar to the superconducting wires constituting the superconducting layer such as the superconducting layer such as the superconducting layer such as a superconducting layer such as a superconducting conductor layer 102. The same material can be used for the short-circuit connection portions 21 to 24 of Embodiments 2 and 3 described later. The members attached to the core 100 for measuring the critical current, such as the short-circuit connections 20 to 24, are appropriately removed after the measurement, and the core 100 is shipped or used for manufacturing a superconducting cable. .

臨界電流の測定にあたり、上記往復通電路に直流電流を供給するために、ケーブルコア100の他端において、超電導導体層102及び外側超電導層104を直流電源50に接続する。直流電源50は、電流の変化速度に応じて生じる誘導電圧を確保した適宜なものが利用でき、市販品を利用することができる。また、直流電源50として、変化速度の制御が可能な機構を具えるものを利用したり、変化速度を制御可能な市販のスイーパ装置(図示せず)を直流電源50に併設させたりすることができる。   In measuring the critical current, the superconducting conductor layer 102 and the outer superconducting layer 104 are connected to the DC power source 50 at the other end of the cable core 100 in order to supply a DC current to the reciprocating current path. As the DC power source 50, an appropriate one that secures an induced voltage generated according to the rate of change of current can be used, and a commercially available product can be used. In addition, the DC power supply 50 may be one having a mechanism capable of controlling the change speed, or a commercially available sweeper device (not shown) capable of controlling the change speed may be provided in the DC power supply 50. it can.

更に、直流電源50やケーブルコア100などからの種々の測定データ(通電電流、超電導導体層102の端部と外側超電導層104の端部間の電圧などの信号)を記録する記憶手段を具える記録装置51を直流電源50やコア100の端部に接続すると、作業者が測定結果を把握し易い。   Furthermore, it has storage means for recording various measurement data (signals such as energization current and voltage between the end of the superconducting conductor layer 102 and the end of the outer superconducting layer 104) from the DC power supply 50, the cable core 100, etc. When the recording device 51 is connected to the DC power supply 50 or the end of the core 100, the operator can easily grasp the measurement result.

上述のようにして超電導導体層102と外側超電導層104とによる往復通電路を形成したら、直流電源50によって、一定の変化速度で往復通電路に直流電流を供給して、臨界電流を測定する。   When the reciprocal energization path is formed by the superconducting conductor layer 102 and the outer superconducting layer 104 as described above, a direct current is supplied to the reciprocal energization path at a constant change rate by the DC power source 50, and the critical current is measured.

実施形態1では、超電導導体層102と外側超電導層104との間の電圧信号(電位差)を測定して、電流と電圧との関係を記録装置51に記録し、得られた電流-電圧特性から1μV/cm(=0.1mV/m)の電界が生じた電流を求め、この電流を超電導導体層102及び外側超電導層104の少なくとも一方の臨界電流とする。実施形態1では、超電導導体層102の臨界電流の設計値と外側超電導層104の臨界電流の設計値とが極端に差が大きい場合には、設計値が低い方の臨界電流を測定できる。また、超電導導体層102と外側超電導層104とのそれぞれに電圧タップを取り付け、それぞれの電圧を測定すると、各層102,104の臨界電流をより精度よく測定することができて好ましい。後述する実施形態2,4では、超電導導体層102の両端の電位差を測定し、得られた電流-電圧特性から求めた「1μV/cmの電界が生じた電流」を超電導導体層102の臨界電流とし、実施形態3では、2本のケーブルコア100A,100Bに具える超電導導体層102A,102Bの端部間の電位差を測定し、得られた電流-電圧特性から求めた「1μV/cmの電界が生じた電流」を超電導導体層の臨界電流とする。後述する実施形態4では、超電導導体層102の両端の電位差と外側超電導層104の両端の電位差とをそれぞれ別個に測定することで、超電導導体層102の臨界電流、外側超電導層104の臨界電流のそれぞれを別個に測定することもできる。   In the first embodiment, the voltage signal (potential difference) between the superconducting conductor layer 102 and the outer superconducting layer 104 is measured, the relationship between the current and the voltage is recorded in the recording device 51, and the obtained current-voltage characteristics are used. A current with an electric field of 1 μV / cm (= 0.1 mV / m) is obtained, and this current is set as a critical current of at least one of the superconducting conductor layer 102 and the outer superconducting layer 104. In the first embodiment, when the design value of the critical current of the superconducting conductor layer 102 and the design value of the critical current of the outer superconducting layer 104 are extremely large, the critical current with the lower design value can be measured. Further, it is preferable to attach voltage taps to each of the superconducting conductor layer 102 and the outer superconducting layer 104 and measure the respective voltages, because the critical currents of the respective layers 102 and 104 can be measured with higher accuracy. In Embodiments 2 and 4 to be described later, the potential difference between both ends of the superconducting conductor layer 102 was measured, and the “current that generated an electric field of 1 μV / cm” obtained from the obtained current-voltage characteristics was determined as the critical current of the superconducting conductor layer 102. In Embodiment 3, the potential difference between the ends of the superconducting conductor layers 102A and 102B provided in the two cable cores 100A and 100B is measured, and the electric field of 1 μV / cm obtained from the obtained current-voltage characteristics is obtained. Is the critical current of the superconducting conductor layer. In Embodiment 4 to be described later, by measuring separately the potential difference between both ends of the superconducting conductor layer 102 and the potential difference between both ends of the outer superconducting layer 104, the critical current of the superconducting conductor layer 102, the critical current of the outer superconducting layer 104 Each can also be measured separately.

実施形態1は、超電導導体層102に流れる電流:導体電流がつくる磁場を外側超電導層104に流れる電流:導体電流とは逆向きの電流がつくる磁場によって、実質的に全て打ち消すことができる。そのため、実施形態1は、ケーブルコア100が後述するようにドラム10に巻回されてコア100がつくる各ターンが近接して存在する場合でも、各ターンからの漏れ磁場を低減できる。従って、実施形態1は、測定対象である超電導導体層102又は外側超電導層104の臨界電流が上記漏れ磁場により低下する量を低減でき、測定対象の臨界電流を精度よく測定することができる。   In the first embodiment, substantially all of the current flowing through the superconducting conductor layer 102: the magnetic field created by the conductor current can be canceled out by the magnetic field created by the current flowing in the outer superconducting layer 104: the current opposite to the conductor current. Therefore, Embodiment 1 can reduce the leakage magnetic field from each turn even when the turns that the cable core 100 is wound around the drum 10 and the core 100 creates are close to each other as will be described later. Therefore, the first embodiment can reduce the amount by which the critical current of the superconducting conductor layer 102 or the outer superconducting layer 104 that is the measurement target is reduced by the leakage magnetic field, and can accurately measure the critical current of the measurement target.

(実施形態2)
実施形態2では、図2に示すようにケーブルコア100に具える外側超電導層104を短絡して閉ループとし、この閉ループに、超電導導体層102に流れる導体電流に基づく誘導電流を流す。
(Embodiment 2)
In the second embodiment, as shown in FIG. 2, the outer superconducting layer 104 provided in the cable core 100 is short-circuited to form a closed loop, and an induced current based on the conductor current flowing in the superconducting conductor layer 102 is passed through the closed loop.

より具体的には、ケーブルコア100の両端において、外側超電導層104の端部同士を短絡接続部21によって電気的に接続する。また、ケーブルコア100の両端において、超電導導体層102の端部を直流電源50に接続し、一定の変化速度で直流電流を供給して、超電導導体層102の臨界電流を測定する。   More specifically, the ends of the outer superconducting layer 104 are electrically connected by the short-circuit connecting portion 21 at both ends of the cable core 100. Further, at both ends of the cable core 100, the ends of the superconducting conductor layer 102 are connected to the DC power source 50, and a DC current is supplied at a constant change rate to measure the critical current of the superconducting conductor layer 102.

実施形態2では、主として外側超電導層104により構成される上記閉ループに、導体電流とは逆向きの誘導電流が流れ、この誘導電流がつくる磁場によって、導体電流に基づく磁場をある程度打ち消すことができる。そのため、実施形態2は、ケーブルコア100が後述するようにドラムに巻回されて、ターンが近接する場合でも、各ターンにおける導体電流と誘導電流との差に基づく漏れ磁場を低減できる。従って、実施形態2は、測定対象である超電導導体層102の臨界電流が上記漏れ磁場によって低下する量を低減でき、臨界電流を精度よく測定できる。   In the second embodiment, an induced current opposite to the conductor current flows through the closed loop mainly composed of the outer superconducting layer 104, and the magnetic field based on the conductor current can be canceled to some extent by the magnetic field generated by the induced current. Therefore, Embodiment 2 can reduce the leakage magnetic field based on the difference between the conductor current and the induced current in each turn even when the cable core 100 is wound around a drum as described later and the turns are close to each other. Therefore, Embodiment 2 can reduce the amount by which the critical current of the superconducting conductor layer 102 to be measured decreases due to the leakage magnetic field, and can accurately measure the critical current.

特に、実施形態2では、超電導導体層102に供給する電流の変化速度を十分に大きくすることで、導体電流とほぼ同じ大きさの誘導電流を発生でき、上述の漏れ磁場が実質的に生じない、つまり、漏れ磁場による臨界電流の低下を抑制することができる。誘導電流が、導体電流の75%以上の大きさとなるように変化速度を調整すると、漏れ磁場を効果的に低減できる。   In particular, in the second embodiment, by sufficiently increasing the rate of change of the current supplied to the superconducting conductor layer 102, it is possible to generate an induced current having substantially the same magnitude as the conductor current, and the above-described leakage magnetic field does not substantially occur. That is, a decrease in critical current due to a leakage magnetic field can be suppressed. By adjusting the rate of change so that the induced current is 75% or more of the conductor current, the leakage magnetic field can be effectively reduced.

或いは、実施形態2では、誘導電流の大きさを測定して、導体電流と誘導電流との差に基づく漏れ磁場を求め、更に、この漏れ磁場により低下する臨界電流の低下量を求めて、測定した臨界電流に対して、この低下分を補正する構成とすることができる。   Alternatively, in the second embodiment, the magnitude of the induced current is measured to obtain a leakage magnetic field based on the difference between the conductor current and the induced current, and further, the amount of decrease in the critical current that is reduced by the leakage magnetic field is obtained and measured. The reduced amount can be corrected for the critical current.

具体的には、例えば、短絡接続部21にロゴスキーコイル30を取り付け、ロゴスキーコイル30からの測定データ(例えば、発生電圧の積分値)を用いて、外側超電導層104に流れる誘導電流(例えば、上記積分値×校正係数)を求める。測定データは、記録装置51の記憶手段に記憶させると、測定データを利用し易い。ロゴスキーコイル30は、着脱が容易であり、測定時の作業性に優れる。ロゴスキーコイル30に代えて、シャント抵抗を利用して誘導電流を測定してもよい。この場合、シャント抵抗(図示せず)を具える短絡接続部21を構築する。シャント抵抗は短絡接続部21の構成要素に直接接続されるため、測定誤差が小さく、誘導電流の測定精度が高い。   Specifically, for example, the Rogowski coil 30 is attached to the short-circuit connection portion 21, and the measurement data from the Rogowski coil 30 (for example, the integrated value of the generated voltage) is used to induce an induced current (for example, the outer superconducting layer 104) , The integral value × calibration coefficient). If the measurement data is stored in the storage means of the recording device 51, the measurement data can be easily used. The Rogowski coil 30 is easy to attach and detach and has excellent workability during measurement. Instead of the Rogowski coil 30, the induced current may be measured using a shunt resistor. In this case, a short-circuit connection portion 21 having a shunt resistor (not shown) is constructed. Since the shunt resistor is directly connected to the components of the short-circuit connection portion 21, the measurement error is small and the measurement accuracy of the induced current is high.

測定した臨界電流と誘導電流との差を求め、両電流の差に基づく漏れ磁場に応じた臨界電流の低下量を求める。通電電流の変化速度αを大きくするほど誘導電流が大きくなり、上記両電流の差が小さくなる。すると、漏れ磁場が少なくなるため、臨界電流の低下量も少なくなり、補正による誤差が小さくなる。臨界電流の低下量は、種々の大きさの漏れ磁場と、各漏れ磁場を印加したときの臨界電流の低下量との相関データを予め求めておき、この相関データを参照して求めるようにすると、容易に求められる。この相関データも、上述した記録装置51の記憶手段などに記憶させておくと、臨界電流の低下量をより簡単に求められる。   The difference between the measured critical current and the induced current is obtained, and the amount of decrease in the critical current according to the leakage magnetic field based on the difference between the two currents is obtained. As the change rate α of the energization current increases, the induced current increases and the difference between the two currents decreases. Then, since the leakage magnetic field is reduced, the amount of decrease in critical current is also reduced, and the error due to correction is reduced. The amount of decrease in critical current is obtained by previously obtaining correlation data between leakage magnetic fields of various magnitudes and the amount of decrease in critical current when each leakage magnetic field is applied, and referring to this correlation data. Sought easily. If this correlation data is also stored in the storage means of the recording device 51 described above, the amount of decrease in critical current can be obtained more easily.

或いは、臨界電流の低下量を電磁場解析を利用して演算により求めることができる。具体的には、超電導導体層に変化速度αで直流電流を通電したとき、変化速度αに応じて外側超電導層に誘導する誘導電流の電流波形を求め、導体電流と誘導電流との差に基づく磁場分布及び時間変化を(二次元或いは三次元の)電磁場解析によって計算する。また、超電導層を形成する各超電導線材に印加される磁場を算出する。予め、超電導線材に磁場が印加されたときの臨界電流の維持率を実験的に求めておき、上記磁場によって超電導層を構成する各超電導線材の臨界電流の低下を求める。この低下量を用いて、例えば、超電導導体層の臨界電流の低下率を求める。上記電磁場解析には、市販の解析ソフトを利用することができる。例えば、超電導線材がBi系酸化物超電導線材である場合には、印加磁場が垂直磁場であると上述のように臨界電流が低下する傾向にあることから、印加磁場を垂直磁場として解析することが挙げられる。   Alternatively, the amount of decrease in critical current can be obtained by calculation using electromagnetic field analysis. Specifically, when a direct current is passed through the superconducting conductor layer at a change rate α, a current waveform of an induced current induced in the outer superconducting layer is obtained according to the change rate α, and based on the difference between the conductor current and the induced current. Magnetic field distribution and time change are calculated by electromagnetic field analysis (2D or 3D). Moreover, the magnetic field applied to each superconducting wire forming the superconducting layer is calculated. In advance, a critical current maintenance factor when a magnetic field is applied to the superconducting wire is experimentally determined, and a decrease in the critical current of each superconducting wire constituting the superconducting layer is determined by the magnetic field. For example, the reduction rate of the critical current of the superconducting conductor layer is obtained using this reduction amount. Commercially available analysis software can be used for the electromagnetic field analysis. For example, when the superconducting wire is a Bi-based oxide superconducting wire, the critical current tends to decrease as described above when the applied magnetic field is a vertical magnetic field, so that the applied magnetic field can be analyzed as a vertical magnetic field. Can be mentioned.

そして、測定した臨界電流に、求めた低下量を加えて補正し、適切な臨界電流(理想的には、漏れ磁場による低下が無いときの本来の臨界電流)を求める。ここで、記録装置51として、上述の記憶手段に加えて、記憶手段から呼び出したデータを用いて漏れ磁場によって低下した臨界電流の低下分を補正するための補正量を演算する補正量演算手段と、求めた補正量を用いて測定値を補正し、適切な臨界電流を演算する臨界電流演算手段とを具えるものを利用することができる。そして、上記演算手段に補正を行わせるようにすると、臨界電流をより簡単に、自動的に求められる。或いは、上記演算手段を具える演算装置を別途用意して利用することができる。   Then, the measured critical current is corrected by adding the obtained decrease amount, and an appropriate critical current (ideally, the original critical current when there is no decrease due to the leakage magnetic field) is obtained. Here, as the recording device 51, in addition to the storage unit described above, a correction amount calculation unit that calculates a correction amount for correcting a decrease in the critical current that has been decreased due to the leakage magnetic field using data called from the storage unit; It is possible to use a device including critical current calculation means for correcting a measured value using the obtained correction amount and calculating an appropriate critical current. If the arithmetic means is made to perform correction, the critical current can be obtained more easily and automatically. Alternatively, a calculation device including the calculation means can be separately prepared and used.

なお、電流の変化速度の増加に応じて、超電導導体層102の両端の電圧が非常に大きくなる。通電電流の変化速度をα(A/sec)とすると、誘導電圧は、L・(dI/dt)=Lαで定義され、変化速度αを大きくするほど、発生する誘導電圧が大きくなる。そのため、例えば、ケーブルコア100が長大化すると、抵抗成分の電圧に加えて、上記誘導電圧をも確保した電源、即ち、大電流・大電圧に対応可能な大容量の電源が必要となる。しかし、測定値を補正する形態では、誘導電流が小さい場合を許容するため、変化速度を小さくする(遅くする)ことが可能である。従って、上述の測定値を補正する形態では、臨界電流をより精度よく求められる上に、直流電源50として、小容量のものを利用できる。   Note that the voltage at both ends of the superconducting conductor layer 102 becomes very large as the current change rate increases. Assuming that the change rate of the energizing current is α (A / sec), the induced voltage is defined by L · (dI / dt) = Lα, and as the change rate α is increased, the generated induced voltage is increased. Therefore, for example, when the cable core 100 becomes longer, a power source that secures the induced voltage in addition to the voltage of the resistance component, that is, a large-capacity power source that can handle a large current and a large voltage is required. However, in the form of correcting the measurement value, the case where the induced current is small is allowed, so that the change speed can be reduced (slow). Therefore, in the embodiment in which the measured value is corrected, the critical current can be obtained with higher accuracy, and a small-capacity DC power supply 50 can be used.

また、この形態は、測定値の補正にあたり、誘導電流を実測し、この実測値に基づいて補正量を決定するため、製造誤差などにより短絡接続部21の抵抗が設計値と相違する場合や、ドラム巻きしたケーブルコア100間のギャップ幅が所定値と相違する場合などでも、臨界電流を精度よく測定でき、信頼性が高い。   Further, in this form, when correcting the measured value, the induced current is actually measured, and the correction amount is determined based on the actually measured value.Therefore, when the resistance of the short-circuit connection portion 21 is different from the design value due to a manufacturing error or the like, Even when the gap width between the cable cores 100 wound around the drum is different from the predetermined value, the critical current can be measured with high accuracy and the reliability is high.

(実施形態3)
実施形態3では、図3に示すように2本のケーブルコア100A,100Bに具える超電導導体層102A,102B同士による往復通電を行うと共に、コア100A,100Bに具える外側超電導層104A,104Bを短絡して一つの閉ループとし、この閉ループに、超電導導体層102A,102Bに流れる導体電流に基づく誘導電流を流す。なお、2本のコア100A,100Bの構成・材質は、ケーブルコア100と同様である。
(Embodiment 3)
In the third embodiment, as shown in FIG. 3, the superconducting conductor layers 102A and 102B provided in the two cable cores 100A and 100B are reciprocally energized, and the outer superconducting layers 104A and 104B provided in the cores 100A and 100B are provided. A short circuit is formed into one closed loop, and an induced current based on the conductor current flowing in the superconducting conductor layers 102A and 102B is passed through the closed loop. The configuration and material of the two cores 100A and 100B are the same as those of the cable core 100.

より具体的には、両ケーブルコア100A,100Bの一端において、超電導導体層102A,102B同士を短絡接続部22によって電気的に接続して、超電導導体層102A,102Bによる往復通電路を形成する。また、両コア100A,100Bに具える外側超電導層104A,104Bの端部同士をそれぞれ短絡接続部23,24によって電気的に接続する。そして、各コア100A,100Bの他端において、超電導導体層102A,102Bの端部を直流電源50に接続し、一定の変化速度で往復通電路に直流電流を供給して、超電導導体層102A,102Bの臨界電流を測定する。   More specifically, at one end of both cable cores 100A and 100B, the superconducting conductor layers 102A and 102B are electrically connected to each other by the short-circuit connecting portion 22 to form a reciprocal energization path by the superconducting conductor layers 102A and 102B. Further, the end portions of the outer superconducting layers 104A and 104B provided in both the cores 100A and 100B are electrically connected by the short-circuit connecting portions 23 and 24, respectively. Then, at the other end of each core 100A, 100B, the ends of the superconducting conductor layers 102A, 102B are connected to the DC power supply 50, and a DC current is supplied to the reciprocating current path at a constant change speed, so that the superconducting conductor layers 102A, 102B, Measure the critical current of 102B.

実施形態3も、実施形態2と同様に、主として外側超電導層104A,104Bにより構成される上記閉ループに、往復通電路に流れる導体電流とは逆向きの誘導電流が流れ、この誘導電流がつくる磁場によって、導体電流に基づく磁場をある程度打ち消すことができる。そのため、実施形態3も、ケーブルコア100A,100Bが後述するようにドラムに共巻きされた場合でも、各コア100A,100Bにおける導体電流と誘導電流との差に基づく漏れ磁場を低減できる。従って、実施形態3は、測定対象である超電導導体層の臨界電流が上記漏れ磁場によって低下する量を低減でき、臨界電流を精度よく測定できる。   In the third embodiment, similarly to the second embodiment, an induced current in the direction opposite to the conductor current flowing in the reciprocating current path flows in the closed loop mainly composed of the outer superconducting layers 104A and 104B, and a magnetic field generated by the induced current is generated. Thus, the magnetic field based on the conductor current can be canceled to some extent. Therefore, the third embodiment can also reduce the leakage magnetic field based on the difference between the conductor current and the induced current in each of the cores 100A and 100B even when the cable cores 100A and 100B are wound around the drum as will be described later. Therefore, Embodiment 3 can reduce the amount by which the critical current of the superconducting conductor layer to be measured decreases due to the leakage magnetic field, and can accurately measure the critical current.

実施形態3も、実施形態2と同様に、超電導導体層102A,102Bによる往復通電路への電流の変化速度を十分に大きくすることで、上述の磁場の影響による臨界電流の低下を抑制できる。また、実施形態3も、実施形態2と同様に、導体電流と誘導電流との差に基づく漏れ磁場による臨界電流の低下分を補正する構成とすると、小容量の電源を利用した場合でも、臨界電流を高精度に測定できる。この補正を行う場合、実施形態2と同様に短絡接続部23,24のいずれか(図3では短絡接続部23)にロゴスキーコイル30を取り付けたり、シャント抵抗を具える短絡接続部を構築し、ロゴスキーコイル30などを利用して誘導電流を実測すると、誘導電流を精度よく測定でき、ひいては、補正量も精度よく求められて、臨界電流を更に精度よく測定できる。   Similarly to the second embodiment, the third embodiment can suppress the decrease in the critical current due to the influence of the magnetic field by sufficiently increasing the rate of change of the current to the reciprocating current path by the superconducting conductor layers 102A and 102B. As in the second embodiment, the third embodiment is also configured to correct the decrease in the critical current due to the leakage magnetic field based on the difference between the conductor current and the induced current, even when a small capacity power source is used. Current can be measured with high accuracy. When this correction is performed, the Rogowski coil 30 is attached to one of the short-circuit connection portions 23 and 24 (the short-circuit connection portion 23 in FIG. 3) or a short-circuit connection portion having a shunt resistance is constructed as in the second embodiment. When the induced current is actually measured using the Rogowski coil 30 or the like, the induced current can be measured with high accuracy, and the correction amount can be obtained with high accuracy, and the critical current can be measured with higher accuracy.

実施形態2,3において上述の補正を行う形態は、超電導導体層の臨界電流の設定値が4kA以上、更に5kA以上といった大容量の電力供給用途の超電導ケーブルに利用されるケーブルコアや、ケーブルコアの長さが短く、誘導電流を誘導し難い場合に好適に利用することができる。勿論、この補正を行う形態は、上記臨界電流の設定値が4kA未満、例えば、3kA程度の電力供給用途の超電導ケーブル用ケーブルコア、その他、キロメートルオーダーといった長尺なケーブルコアの全長の臨界電流を測定する場合についても利用することができる。   In Embodiments 2 and 3, the above-described correction is performed by a cable core used for a superconducting cable for use in large-capacity power supply such as a setting value of the critical current of the superconducting conductor layer of 4 kA or more, further 5 kA or more, Can be suitably used when it is difficult to induce an induced current. Of course, the form of performing this correction is that the set value of the critical current is less than 4 kA, for example, a superconducting cable core for power supply applications of about 3 kA, and the critical current of the entire length of a long cable core such as the kilometer order. It can also be used for measurement.

(実施形態4)
実施形態4では、図4に示すようにケーブルコア100に具える超電導導体層102と外側超電導層104とのそれぞれに別個の直流電源50C,50Sを取り付け、互いに逆向きの電流を流す。直流電源50C,50Sは、上述の直流電源50と同様のものを利用できる。電源の容量は、適宜変更することができる。
(Embodiment 4)
In the fourth embodiment, as shown in FIG. 4, separate DC power supplies 50C and 50S are attached to the superconducting conductor layer 102 and the outer superconducting layer 104 included in the cable core 100, and currents in opposite directions are passed. As the DC power supplies 50C and 50S, the same DC power supply 50 as described above can be used. The capacity of the power source can be changed as appropriate.

より具体的には、ケーブルコア100の両端において、超電導導体層102の端部を直流電源50Cに接続すると共に、外側超電導層104の端部を直流電源50Sに接続する。そして、一定の変化速度で直流電流を供給して、超電導導体層102又は外側超電導層104の臨界電流を測定する。超電導導体層102及び外側超電導層104に流す電流値は、超電導導体層102の臨界電流の設計値と外側超電導層104の臨界電流の設計値とにおいて、低い方の設計値を超えない範囲で選択する。   More specifically, at both ends of the cable core 100, the end of the superconducting conductor layer 102 is connected to the DC power supply 50C, and the end of the outer superconducting layer 104 is connected to the DC power supply 50S. Then, a direct current is supplied at a constant change rate, and the critical current of the superconducting conductor layer 102 or the outer superconducting layer 104 is measured. The current value to be passed through the superconducting conductor layer 102 and the outer superconducting layer 104 is selected within a range that does not exceed the lower design value between the critical current design value of the superconducting conductor layer 102 and the critical current design value of the outer superconducting layer 104. To do.

実施形態4は、超電導導体層102及び外側超電導層104に流す電流の変化速度を容易に調整できるため、各層102,104に流れる電流の大きさを簡単に同じにすることができる。従って、超電導導体層102に流れる導体電流に基づく磁場を外側超電導層104に流れる電流=導体電流と逆向きの電流に基づく磁場によってある程度、好ましくは実質的に全て打ち消すことができる。そのため、実施形態4は、ケーブルコア100が後述するようにドラムに巻回された場合でも、各ターンにおける磁場の干渉を低減でき、上述の補正を行わなくても、測定対象である超電導導体層102又は外側超電導層104の臨界電流を精度よく測定できる。また、この形態は、電源制御によって超電導導体層102に流れる電流と、外側超電導層104に流れる電流とを調整できるため、漏れ磁場を正確に把握できる。つまり、この形態は、上記漏れ磁場に基づく臨界電流の低下分も正確に求められることから、上述のようにこの低下分を補正することで、臨界電流を精度よく測定できる。その他、この形態は、上述の大容量の電力供給用途や短尺なケーブルコアの全長の臨界電流を測定する場合に好適に利用することができる。   In the fourth embodiment, since the rate of change of the current flowing through the superconducting conductor layer 102 and the outer superconducting layer 104 can be easily adjusted, the magnitude of the current flowing through each of the layers 102 and 104 can be easily made the same. Accordingly, the magnetic field based on the conductor current flowing in the superconducting conductor layer 102 can be canceled to some extent, preferably substantially all by the magnetic field based on the current flowing in the outer superconducting layer 104 = the current opposite to the conductor current. Therefore, even when the cable core 100 is wound around a drum as will be described later, the fourth embodiment can reduce the interference of the magnetic field in each turn, and the superconducting conductor layer that is the measurement target without performing the above correction The critical current of 102 or the outer superconducting layer 104 can be accurately measured. Further, in this embodiment, since the current flowing in the superconducting conductor layer 102 and the current flowing in the outer superconducting layer 104 can be adjusted by power supply control, the leakage magnetic field can be accurately grasped. That is, in this embodiment, since the decrease in the critical current based on the leakage magnetic field is also accurately obtained, the critical current can be accurately measured by correcting the decrease as described above. In addition, this form can be suitably used for the above-described large-capacity power supply application or when measuring the critical current of the entire length of a short cable core.

[試験対象の形態]
上述の実施形態1〜4を実施する場合には、例えば、図5に示すようにケーブルコア100をドラム10に巻き取ったもの(実施形態3ではコア100A,100B(図3)を共巻きしたもの)を試験対象とすると、長尺なコア100を扱い易い。なお、図5では、実施形態1を示す。
[Test target form]
When carrying out the above-described first to fourth embodiments, for example, the cable core 100 is wound around the drum 10 as shown in FIG. 5 (in the third embodiment, the cores 100A and 100B (FIG. 3) are wound together. When the object is a test object, the long core 100 is easy to handle. FIG. 5 shows the first embodiment.

ドラム10に巻き取られていることで、ケーブルコア100(実施形態3ではケーブルコア100A,100B)は、コア100,100A,100Bの両端が近接しており、上述した短絡接続部20〜24(図2,図3)や、直流電源50,50C(図3),50S(図3)を接続するためのリード電極25,26(図5)などの取り付け作業を容易に行え、作業性に優れる。リード電極25,26は、通電可能なように、銅や銅合金といった適宜な導電性材料からなる適宜な形状、長さのものを利用できる。   By being wound around the drum 10, the cable core 100 (cable cores 100A and 100B in the third embodiment) is close to both ends of the cores 100, 100A, and 100B, and the short-circuit connection portions 20 to 24 (see FIG. 2, Fig. 3) and lead electrodes 25, 26 (Fig. 5) for connecting DC power supplies 50, 50C (Fig. 3), 50S (Fig. 3) can be easily attached, and workability is excellent. As the lead electrodes 25 and 26, those having an appropriate shape and length made of an appropriate conductive material such as copper or a copper alloy can be used so that energization is possible.

ドラム10に巻き取られた状態で上述の往復通電路や閉ループの形成、リード電極25,26の取り付けを行った試験対象を冷却容器1に収納し、容器1内に充填した液体冷媒2L(代表的には液体窒素)により超電導導体層102や外側超電導層104を冷却して、超電導状態にして臨界電流を測定する。   The test object in which the above-described reciprocating current path and closed loop are formed and the lead electrodes 25 and 26 are attached while being wound around the drum 10 is stored in the cooling container 1 and the liquid refrigerant 2L (typical) filled in the container 1 is stored. Specifically, the superconducting conductor layer 102 and the outer superconducting layer 104 are cooled by liquid nitrogen), and the critical current is measured in a superconducting state.

ドラム10は、円筒状の巻胴11と、巻胴11の各周縁からそれぞれ、巻胴11の外方に突出する円環状の鍔部12A,12Bとを具えるものが挙げられる。ドラムの構成材料は、冷媒に対する耐性を有する材料、例えば、高炭素鋼やステンレス鋼といった高強度な金属材料が挙げられる。鍔部12A,12Bは、巻胴11に一体に保持された形態が代表的であるが、一方の鍔部12Aを巻胴11に対して着脱可能とし、鍔部12Aを取り外した状態で容器1に収納すると、リード電極25,26などを引き出し易い。   Examples of the drum 10 include a drum having a cylindrical winding drum 11 and annular flanges 12A and 12B protruding from the peripheral edges of the winding drum 11 to the outside of the winding drum 11, respectively. Examples of the constituent material of the drum include materials having resistance to the refrigerant, for example, high-strength metal materials such as high carbon steel and stainless steel. The collar parts 12A and 12B are typically in a form of being integrally held by the winding drum 11, but one of the collar parts 12A can be attached to and detached from the winding drum 11, and the container 1 with the collar part 12A removed. When it is housed, the lead electrodes 25, 26 and the like can be easily pulled out.

冷却容器1は、一方が開口した箱状体である本体部2と、本体部2の開口部を塞ぐ蓋部3とを具える。本体部2は、真空層2aを具える真空断熱構造であり、試験対象を十分に収納可能な容積を有する。本体部2は、開口部側に蓋部3を取り付ける取付部2fを具える。本体部2の構成材料は、ステンレス鋼といった、冷媒温度(例えば、液体窒素の場合:77K程度)に対する耐性に優れる材料が挙げられる。蓋部3は、冷却容器1内の冷媒(ここでは、液体冷媒2L及び液体冷媒2Lの上方に形成される気相)を封止するための部材である。蓋部3は、ここでは、中実体(例えば、ステンレス鋼からなる板材)とし、リード電極25,26などを引き出す貫通孔を具える。ドラム10は、冷却容器1の底面に対して、ドラム10の軸が直交するように収納すると、コア100を均一的な状態として、コア100の全長の特性を測定することができる。冷却容器1の底面に対して、ドラム10の軸が平行するようにドラム10を収納することもできる。   The cooling container 1 includes a main body 2 that is a box-like body that is open on one side, and a lid 3 that closes the opening of the main body 2. The main body 2 has a vacuum heat insulating structure including a vacuum layer 2a, and has a volume that can sufficiently accommodate a test object. The main body portion 2 includes an attachment portion 2f for attaching the lid portion 3 to the opening side. Examples of the constituent material of the main body 2 include a material having excellent resistance to a refrigerant temperature (for example, about 77K in the case of liquid nitrogen) such as stainless steel. The lid 3 is a member for sealing the refrigerant in the cooling container 1 (here, the liquid refrigerant 2L and the gas phase formed above the liquid refrigerant 2L). Here, the lid 3 is a solid body (for example, a plate material made of stainless steel), and includes a through-hole through which the lead electrodes 25 and 26 are drawn out. When the drum 10 is housed so that the axis of the drum 10 is orthogonal to the bottom surface of the cooling container 1, the core 100 can be in a uniform state and the characteristics of the entire length of the core 100 can be measured. The drum 10 can also be stored such that the axis of the drum 10 is parallel to the bottom surface of the cooling container 1.

本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、ドラムの材質・構成、冷却容器の材質・構成・形状などを適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, the material / configuration of the drum and the material / configuration / shape of the cooling container can be appropriately changed.

本発明臨界電流の測定方法は、ケーブルコアの出荷試験、超電導ケーブルの製造途中における中間試験、その他、任意のときにケーブルコアの全長の臨界電流を測定する際に好適に利用することができる。   The method for measuring the critical current of the present invention can be suitably used when measuring the critical current of the entire length of the cable core at any time, such as a shipping test of the cable core, an intermediate test during the production of the superconducting cable, and the like.

1 冷却容器 2 本体部 2a 真空層 2L 液体冷媒 2f 取付部 3 蓋部
10 ドラム 11 巻胴 12A,12B 鍔部
20,21,22,23,24 短絡接続部 25,26 リード電極 30 ロゴスキーコイル
50,50C,50S 直流電源 51 記録装置
100,100A,100B ケーブルコア 101 フォーマ
102,102A,102B 超電導導体層 103 電気絶縁層
104,104A,104B 外側超電導層 105 保護層
1 Cooling vessel 2 Body 2a Vacuum layer 2L Liquid refrigerant 2f Mounting part 3 Lid
10 drum 11 roll 12A, 12B buttocks
20, 21, 22, 23, 24 Short circuit connection 25, 26 Lead electrode 30 Rogowski coil
50, 50C, 50S DC power supply 51 Recording device
100,100A, 100B Cable core 101 former
102,102A, 102B Superconducting conductor layer 103 Electrical insulation layer
104,104A, 104B Outer superconducting layer 105 Protective layer

Claims (4)

試験対象として、超電導導体層と、前記超電導導体層の外周に外側超電導層とを具えるケーブルコアであって、断熱管に収納されていない状態のものを準備し
前記ケーブルコアの両端において前記外側超電導層を短絡接続部によって電気的に接続して閉ループを形成し、
前記ケーブルコアの両端において前記超電導導体層を直流電源に接続して、前記超電導導体層に直流電流を通電し、
前記外側超電導層を含む閉ループには、前記超電導導体層に流れる電流とは逆向きの電流として、前記超電導導体層に流れる電流に基づく誘導電流が流れた状態にして、前記ケーブルコアの全長の臨界電流を測定し、
前記短絡接続部にロゴスキーコイルを取り付けて、又は前記短絡接続部がシャント抵抗を具えており、前記ロゴスキーコイル又は前記シャント抵抗を用いて前記誘導電流を実測し、
前記超電導導体層への通電電流と、実測した前記誘導電流との差から、前記ケーブルコアの外部に漏れる漏れ磁場によって前記超電導導体層の臨界電流が低下する量を求め、
前記測定した臨界電流を前記低下した量に基づいて補正する臨界電流の測定方法。
As a test object, a superconducting conductor layer, and a cable core comprising an outer superconducting layer on the outer periphery of the superconducting conductor layer, prepared in a state not accommodated in a heat insulating tube ,
Electrically connecting the outer superconducting layer at both ends of the cable core by a short-circuit connection to form a closed loop;
Connecting the superconducting conductor layer to a DC power source at both ends of the cable core, passing a DC current through the superconducting conductor layer,
In the closed loop including the outer superconducting layer , an inductive current based on the current flowing in the superconducting conductor layer flows as a current opposite to the current flowing in the superconducting conductor layer. current was measured,
A Rogowski coil is attached to the short-circuit connection part, or the short-circuit connection part comprises a shunt resistor, and the induced current is measured using the Rogowski coil or the shunt resistor,
From the difference between the energization current to the superconducting conductor layer and the measured induced current, the amount by which the critical current of the superconducting conductor layer decreases due to the leakage magnetic field leaking outside the cable core,
A method for measuring a critical current, wherein the measured critical current is corrected based on the reduced amount .
試験対象として、超電導導体層と、前記超電導導体層の外周に外側超電導層とを具える複数のケーブルコアが断熱管に収納されていない状態で1つのドラムに共巻きされたものを準備し、
前記共巻きされたケーブルコアのうち、2本のケーブルコアに具える前記外側超電導層同士を短絡接続部によって電気的に接続して一つの閉ループを形成し、
前記2本のケーブルコアの一端では、各ケーブルコアに具える前記超電導導体層同士を電気的に接続して、これら超電導導体層による往復通電路を形成し、他端では、各ケーブルコアに具える前記超電導導体層を直流電源に接続して、前記往復通電路に直流電流を通電し、
前記外側超電導層を含む閉ループには、前記超電導導体層に流れる電流とは逆向きの電流として、前記超電導導体層に流れる電流に基づく誘導電流が流れた状態にして、前記ケーブルコアの全長の臨界電流を測定し、
前記短絡接続部にロゴスキーコイルを取り付けて、又は前記短絡接続部がシャント抵抗を具えており、前記ロゴスキーコイル又は前記シャント抵抗を用いて前記誘導電流を実測し、
前記超電導導体層への通電電流と、実測した前記誘導電流との差から、前記ケーブルコアの外部に漏れる漏れ磁場によって前記超電導導体層の臨界電流が低下する量を求め、
前記測定した臨界電流を前記低下した量に基づいて補正する臨界電流の測定方法。
As a test object, a superconducting conductor layer and a plurality of cable cores comprising an outer superconducting layer on the outer periphery of the superconducting conductor layer are prepared so that they are wound together in one drum in a state where they are not housed in a heat insulating tube ,
Of the co-wound cable cores, the outer superconducting layers provided in two cable cores are electrically connected by a short-circuit connection part to form one closed loop,
At one end of the two cable cores, the superconducting conductor layers provided in the cable cores are electrically connected to each other to form a reciprocal current path by the superconducting conductor layers, and at the other end, the cable cores are provided with the cable cores. Connecting the superconducting conductor layer to a DC power source, and applying a DC current to the reciprocating current path ,
In the closed loop including the outer superconducting layer , an inductive current based on the current flowing in the superconducting conductor layer flows as a current opposite to the current flowing in the superconducting conductor layer. current was measured,
A Rogowski coil is attached to the short-circuit connection part, or the short-circuit connection part comprises a shunt resistor, and the induced current is measured using the Rogowski coil or the shunt resistor,
From the difference between the energization current to the superconducting conductor layer and the measured induced current, the amount by which the critical current of the superconducting conductor layer decreases due to the leakage magnetic field leaking outside the cable core,
A method for measuring a critical current, wherein the measured critical current is corrected based on the reduced amount .
前記ケーブルコアは、ドラムに巻き取られている請求項1に記載の臨界電流の測定方法。 Said cable core, method of measuring the critical current according to Motomeko 1 that has been wound on the drum. 前記ドラムは、非磁性材料によって構成されている請求項2又は請求項3に記載の臨界電流の測定方法。 The drum, method of measuring the critical current according to Motomeko 2 or claim 3 that is composed of a nonmagnetic material.
JP2011172823A 2011-08-08 2011-08-08 Measuring method of critical current Expired - Fee Related JP5696941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011172823A JP5696941B2 (en) 2011-08-08 2011-08-08 Measuring method of critical current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011172823A JP5696941B2 (en) 2011-08-08 2011-08-08 Measuring method of critical current

Publications (2)

Publication Number Publication Date
JP2013036840A JP2013036840A (en) 2013-02-21
JP5696941B2 true JP5696941B2 (en) 2015-04-08

Family

ID=47886585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011172823A Expired - Fee Related JP5696941B2 (en) 2011-08-08 2011-08-08 Measuring method of critical current

Country Status (1)

Country Link
JP (1) JP5696941B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680505B2 (en) * 2011-08-22 2015-03-04 住友電気工業株式会社 Method for measuring critical current of superconducting cable
WO2014132853A1 (en) 2013-02-27 2014-09-04 国立大学法人 横浜国立大学 Carbon material, fuel cell, electrical double-layer capacitor, carbon dioxide adsorption device, and carbon material production method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140266A (en) * 1991-06-05 1992-08-18 General Electric Company Apparatus and method for the non-destructive evaluation of a bifilar superconducting winding
JP3051884B1 (en) * 1999-07-15 2000-06-12 工業技術院長 Laminated superconducting cable
JP4223744B2 (en) * 2002-06-27 2009-02-12 住友電気工業株式会社 Critical current measurement method for high temperature superconducting wire
JP4716248B2 (en) * 2004-05-21 2011-07-06 住友電気工業株式会社 Superconducting cable
JP4697530B2 (en) * 2005-05-26 2011-06-08 住友電気工業株式会社 Critical current measuring method and critical current measuring system for superconducting cable
JP5356206B2 (en) * 2009-12-22 2013-12-04 住友電気工業株式会社 Method for measuring critical current of superconducting cable

Also Published As

Publication number Publication date
JP2013036840A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP6270175B2 (en) Superconducting cable
JP2000277322A (en) High-temperature superconducting coil, high-temperature superconducting magnet using the same, and high- temperature superconducting magnet system
JP2013036842A (en) Method for testing cable core for superconductive cables and cooling container
Caspi et al. Design, fabrication, and test of a superconducting dipole magnet based on tilted solenoids
JP5696941B2 (en) Measuring method of critical current
JP5680505B2 (en) Method for measuring critical current of superconducting cable
JP2014149264A (en) Method and device for measuring alternating current loss of superconducting coil
JP4719090B2 (en) High temperature superconducting coil and high temperature superconducting magnet using the same
JP5356206B2 (en) Method for measuring critical current of superconducting cable
JP5246453B2 (en) Method for measuring critical current of superconducting cable
EP2908145A1 (en) Method for testing cable core for superconducting cable, and cooling container
Kim et al. Contact resistance and current characteristics of NI HTS coils in low frequency AC method
JP4697530B2 (en) Critical current measuring method and critical current measuring system for superconducting cable
JP5604213B2 (en) Superconducting equipment
JP2014099440A (en) Permanent current switch, and superconducting magnet device with permanent current switch
JP4191545B2 (en) Measuring method of shield current of superconducting cable
Shikimachi et al. Unit coil development for Y-SMES
Obana et al. Investigation of long time constants of magnetic fields generated by the JT-60SA CS1 module
JP2015216735A (en) Superconducting cable and superconducting cable line
Choi et al. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System
Barzi et al. Commissioning of 14 T/16 T Rutherford cable test facility with bifilar sample and superconducting transformer
JP2018146291A (en) Superconductive conductor, current measuring device, and superconducting apparatus
Lombardo et al. Modular test facility for HTS insert coils
Carter et al. Solenoids of composite conductor simulate ac losses in flexible superconducting cable
Chang et al. AC loss measurement of bifilarly wound magnet using coated conductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150129

R150 Certificate of patent or registration of utility model

Ref document number: 5696941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees