Nothing Special   »   [go: up one dir, main page]

JP5695276B2 - Use of polyamic acid, polyimide, polyamic acid solution, and polyimide - Google Patents

Use of polyamic acid, polyimide, polyamic acid solution, and polyimide Download PDF

Info

Publication number
JP5695276B2
JP5695276B2 JP2014523689A JP2014523689A JP5695276B2 JP 5695276 B2 JP5695276 B2 JP 5695276B2 JP 2014523689 A JP2014523689 A JP 2014523689A JP 2014523689 A JP2014523689 A JP 2014523689A JP 5695276 B2 JP5695276 B2 JP 5695276B2
Authority
JP
Japan
Prior art keywords
structural unit
unit represented
polyamic acid
polyimide
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014523689A
Other languages
Japanese (ja)
Other versions
JPWO2014007112A1 (en
Inventor
真理 藤井
真理 藤井
伸二 小澤
伸二 小澤
友博 安保
友博 安保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2014523689A priority Critical patent/JP5695276B2/en
Application granted granted Critical
Publication of JP5695276B2 publication Critical patent/JP5695276B2/en
Publication of JPWO2014007112A1 publication Critical patent/JPWO2014007112A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/1053Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、ポリアミド酸、ポリイミド、およびポリアミド酸溶液に関する。本発明は、さらに、ポリイミドを用いた電子デバイス材料、TFT基板、フレキシブルディスプレイ基板、カラーフィルター、印刷物、光学材料、液晶表示装置、有機EL及び電子ペーパー等の画像表示装置、3−Dディスプレイ、太陽電池、タッチパネル、透明導電膜基板、現在ガラスが使用されている部分の代替材料に関する。   The present invention relates to a polyamic acid, a polyimide, and a polyamic acid solution. The present invention further includes an electronic device material using polyimide, a TFT substrate, a flexible display substrate, a color filter, a printed material, an optical material, a liquid crystal display device, an organic EL, an electronic display such as electronic paper, a 3-D display, and a solar. The present invention relates to an alternative material for a battery, a touch panel, a transparent conductive film substrate, and a portion where glass is currently used.

近年、液晶、有機EL、電子ペーパー等のディスプレイや、太陽電池、タッチパネル等のエレクトロニクスの急速な進歩に伴い、デバイスの薄型化や軽量化、更には、フレキシブル化が要求されている。そこでこれらのデバイスに用いられているガラス基板に代えて、薄型化、軽量化、フレキシブル化が可能なプラスチックフィルム基板が検討されている。   In recent years, with rapid advances in displays such as liquid crystal, organic EL, and electronic paper, and electronics such as solar cells and touch panels, devices are required to be thinner and lighter, and more flexible. Therefore, in place of the glass substrate used in these devices, a plastic film substrate that can be made thin, light, and flexible has been studied.

これらのデバイスでは、基板上に様々な電子素子、例えば、薄膜トランジスタや透明電極等が形成されており、これらの電子素子の形成には高温プロセスが必要である。そのため、プラスチックフィルム基板には高温プロセスに適応できるだけの十分な耐熱性が必要とされる。また無機材料からなるこれらの電子素子をフィルム上に形成した場合、無機材料とフィルムの線熱膨張係数の違いにより、無機素子の形成後フィルムが反ったり、更には、無機素子が破壊されてしまう恐れがあった。このため、耐熱性を有しながら、無機材料と同等の線熱膨張係数を有する材料が望まれていた。   In these devices, various electronic elements such as thin film transistors and transparent electrodes are formed on a substrate, and a high-temperature process is required to form these electronic elements. Therefore, the plastic film substrate is required to have sufficient heat resistance that can be adapted to a high temperature process. In addition, when these electronic elements made of an inorganic material are formed on a film, the film is warped after the formation of the inorganic element due to the difference in linear thermal expansion coefficient between the inorganic material and the film, and further, the inorganic element is destroyed. There was a fear. For this reason, a material having a linear thermal expansion coefficient equivalent to that of an inorganic material while having heat resistance has been desired.

さらに、表示素子(液晶、有機ELなど)から発せられる光がプラスチックフィルム基板を通って出射されるような場合(例えば、ボトムエミッション型の有機ELなど)、プラスチックフィルム基板には透明性が必要となる。特に、可視光領域である400nm以下の波長領域での光透過率が高いことが要求される。また、位相差フィルムや偏光板を光が通過する場合は(例えば、液晶ディスプレイ、タッチパネルなど)、プラスチックフィルム基板には、透明性に加えて、光学的等方性が高いことが必要とされる。   Further, when light emitted from a display element (liquid crystal, organic EL, etc.) is emitted through a plastic film substrate (for example, bottom emission type organic EL, etc.), the plastic film substrate needs to be transparent. Become. In particular, the light transmittance is required to be high in a wavelength region of 400 nm or less that is a visible light region. When light passes through a retardation film or a polarizing plate (for example, a liquid crystal display, a touch panel, etc.), the plastic film substrate is required to have high optical isotropy in addition to transparency. .

これらデバイスの作製プロセスはバッチタイプとロール・トゥ・ロールタイプに分けられる。ロール・トゥ・ロールの作製プロセスを用いる場合には、新たな設備が必要となり、さらに回転と接触に起因するいくつかの問題を克服しなければならない。一方、バッチタイプは、ガラス基板上にコーティング樹脂溶液を塗布、乾燥し、基板形成した後、剥がすというプロセスになる。そのため、バッチタイプは、現行TFT等のガラス基板用プロセス設備を利用することができるため、コスト面で優位である。   The manufacturing process of these devices is divided into a batch type and a roll-to-roll type. When using a roll-to-roll fabrication process, new equipment is required and several problems due to rotation and contact must be overcome. On the other hand, the batch type is a process in which a coating resin solution is applied on a glass substrate, dried, a substrate is formed and then peeled off. Therefore, the batch type is advantageous in terms of cost because it can use the current glass substrate process equipment such as TFT.

このような背景から、既存のバッチプロセス対応が可能で、耐熱性、低熱膨張性、透明性にすぐれ、さらには低複屈折である材料の開発が強く望まれている。   From such a background, development of a material that can be applied to an existing batch process, has excellent heat resistance, low thermal expansion, transparency, and low birefringence is strongly desired.

上記の要求を満たす材料として、耐熱性に優れる材料として知られているポリイミド系材料が検討されている。透明性が高く、さらに低熱膨張性を示すポリイミドを得ようとする場合、剛直な構造のモノマーや脂環式モノマーが一般に用いられている(特許文献1、特許文献2)。一方、フルオレン構造を含むポリイミドが耐熱性や低吸水性を示すことが知られている(特許文献3)。   As a material satisfying the above requirements, a polyimide material known as a material having excellent heat resistance has been studied. In order to obtain a polyimide having high transparency and low thermal expansion, a monomer having a rigid structure or an alicyclic monomer is generally used (Patent Documents 1 and 2). On the other hand, it is known that polyimide containing a fluorene structure exhibits heat resistance and low water absorption (Patent Document 3).

日本国公開特許公報「特開2002−161136号公報(2002年6月4日公開)」Japanese Patent Publication “JP 2002-161136 A (published June 4, 2002)” 日本国公開特許公報「特開2012−41530号公報(2012年3月1日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2012-41530 (published March 1, 2012)” 日本国公開特許公報「特開2009−079165号公報(2009年4月16日公開)」Japanese Patent Publication “JP 2009-079165 (April 16, 2009)”

特許文献1に記載のポリイミドは、耐熱性および低熱膨張性には優れるものの透明性が十分ではなく、複屈折に関する記載もない。また特許文献2に記載のポリイミドは透明性および低熱膨張特性に優れるが複屈折に関する記載がない。特許文献3に記載のフルオレン構造を含有するポリイミドは、耐熱性および低熱膨張性には優れるが、透明性が不十分であり、複屈折に関する記載もない。   Although the polyimide described in Patent Document 1 is excellent in heat resistance and low thermal expansion, the transparency is not sufficient, and there is no description regarding birefringence. Moreover, although the polyimide of patent document 2 is excellent in transparency and a low thermal expansion characteristic, there is no description regarding birefringence. The polyimide containing a fluorene structure described in Patent Document 3 is excellent in heat resistance and low thermal expansion, but has insufficient transparency and no description on birefringence.

本発明は、上記実情を鑑みて成し遂げられたものであり、耐熱性および低熱膨張性、さらには透明性に優れ、さらに低複屈折を示すポリイミド、およびその前駆体としてのポリアミド酸を得ることを目的とする。さらに、当該ポリイミド、およびポリアミド酸を用いて耐熱性および透明性の要求の高い製品又は部材を提供することを目的とする。特に、本発明のポリイミド、およびポリアミド酸を、ガラス、金属、金属酸化物及び単結晶シリコン等の無機物表面に形成する用途に適用した製品、及び部材を提供することを目的とする。   The present invention has been accomplished in view of the above circumstances, and is to obtain polyimide having excellent heat resistance, low thermal expansion, transparency, low birefringence, and polyamic acid as a precursor thereof. Objective. Furthermore, it aims at providing the product or member with a high request | requirement of heat resistance and transparency using the said polyimide and polyamic acid. In particular, it is an object of the present invention to provide a product and a member that are applied to applications in which the polyimide and the polyamic acid of the present invention are formed on an inorganic surface such as glass, metal, metal oxide, and single crystal silicon.

本願発明者らは、上記課題である耐熱性、低熱膨張性、および透明性に優れ、さらには低複屈折を示すポリイミドを得るためには、骨格中に剛直な構造および脂環構造を導入し、さらにフルオレン骨格を有するモノマーを併用することが有効であることを見出した。   The inventors of the present invention introduced a rigid structure and an alicyclic structure in the skeleton in order to obtain a polyimide having excellent heat resistance, low thermal expansion, and transparency, which are the above-mentioned problems, and exhibiting low birefringence. Furthermore, it has been found that it is effective to use a monomer having a fluorene skeleton in combination.

すなわち、本発明に係るポリアミド酸は、一般式(1)で表される構成単位および一般式(2)で表される構成単位を含有することを特徴としている:   That is, the polyamic acid according to the present invention is characterized by containing a structural unit represented by the general formula (1) and a structural unit represented by the general formula (2):

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

およびRは水素原子、アルキル基、ハロゲン原子、水酸基、カルボキシル基、およびアルコキシル基より選ばれる基であり、これらは同じでも異なっていてもよく、一般式(2)中のAは式(3)で表される構成単位、式(4)で表される構成単位、および式(5)で表される構成単位より選択されるいずれか1つである、酸二無水物由来の成分である。R 1 and R 2 are groups selected from a hydrogen atom, an alkyl group, a halogen atom, a hydroxyl group, a carboxyl group, and an alkoxyl group, which may be the same or different, and A in the general formula (2) is a formula The component derived from acid dianhydride, which is any one selected from the structural unit represented by (3), the structural unit represented by formula (4), and the structural unit represented by formula (5) It is.

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

また、本発明に係るポリイミドは、一般式(6)で表される構成単位および一般式(7)で表される構成単位を含有することを特徴としている:   In addition, the polyimide according to the present invention is characterized by containing a structural unit represented by the general formula (6) and a structural unit represented by the general formula (7):

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

R1およびR2は水素原子、アルキル基、ハロゲン原子、水酸基、カルボキシル基、およびアルコキシル基より選ばれる基であり、これらは同じでも異なっていてもよく、一般式(7)中のAは式(3)で表される構成単位、式(4)で表される構成単位、および式(5)で表される構成単位より選択されるいずれか1つである、酸二無水物由来の成分である。   R1 and R2 are groups selected from a hydrogen atom, an alkyl group, a halogen atom, a hydroxyl group, a carboxyl group, and an alkoxyl group, which may be the same or different, and A in the general formula (7) is represented by the formula (3 ), A structural unit represented by formula (4), and a structural unit represented by formula (5), which is a component derived from acid dianhydride. .

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

上記本発明に係るポリイミド、および上記本発明に係るポリアミド酸を用いて製造されるポリイミドは、耐熱性、低熱膨張性、および透明性に加えて、低複屈折を有する。そのため、本発明に係るポリイミド、および本発明に係るポリアミド酸は、耐熱性、低熱膨張性、および透明性に加えて、低複屈折を有することが必要とされる部材用のフィルムや塗膜として好適である。   The polyimide according to the present invention and the polyimide produced using the polyamic acid according to the present invention have low birefringence in addition to heat resistance, low thermal expansibility, and transparency. Therefore, the polyimide according to the present invention and the polyamic acid according to the present invention are used as a film or a coating film for a member required to have low birefringence in addition to heat resistance, low thermal expansion and transparency. Is preferred.

支持体上にポリアミド酸溶液を塗布しイミド化したときの、ポリイミドと支持体との間の剥離または浮きの様子を模式的に示す図である。It is a figure which shows typically the mode of peeling or a float between a polyimide and a support body when a polyamic acid solution is apply | coated and imidized on a support body.

以下において本発明を詳しく説明する。   The present invention is described in detail below.

本発明で製造されるポリアミド酸は、一般式(1)で表される構成単位および一般式(2)で表される構成単位を含む。   The polyamic acid produced by the present invention includes a structural unit represented by the general formula (1) and a structural unit represented by the general formula (2).

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

ここで式中のRおよびRは、水素原子、アルキル基、ハロゲン原子、水酸基、カルボキシル基、およびアルコキシル基より選ばれる基であり、これらは同じでも異なっていてもよい。低熱膨張性の発現の観点から、RおよびRは、それぞれ独立して、水素原子またはアルキル基であることが好ましく、耐熱性の観点から、RおよびRは水素原子であることが特に好ましい。つまり、式(1)で表される構成単位は3,3’,4,4’−ビフェニルテトラカルボン酸二無水物と1,4−シクロヘキサンジアミンより得られる式(8)で表されるポリアミド酸構成単位であることが最も好ましい。Here, R 1 and R 2 in the formula are groups selected from a hydrogen atom, an alkyl group, a halogen atom, a hydroxyl group, a carboxyl group, and an alkoxyl group, and these may be the same or different. From the viewpoint of expression of low thermal expansion, R 1 and R 2 are preferably each independently a hydrogen atom or an alkyl group, and from the viewpoint of heat resistance, R 1 and R 2 are preferably a hydrogen atom. Particularly preferred. That is, the structural unit represented by the formula (1) is a polyamic acid represented by the formula (8) obtained from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 1,4-cyclohexanediamine. Most preferably, it is a structural unit.

Figure 0005695276
Figure 0005695276

一般式(2)中のAはフルオレン骨格を含有する構成単位であり、複屈折を低くする観点から、式(3)で表される構成単位、式(4)で表される構成単位、および式(5)で表される構成単位より1つ選択されることが好ましく、耐熱性の観点から式(3)で表される構成単位であることが特に好ましい。   A in the general formula (2) is a structural unit containing a fluorene skeleton, and from the viewpoint of reducing birefringence, the structural unit represented by the formula (3), the structural unit represented by the formula (4), and One is preferably selected from the structural units represented by the formula (5), and the structural unit represented by the formula (3) is particularly preferable from the viewpoint of heat resistance.

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

つまり、式(2)で表される構成単位は、下記式(9)で表される構成単位、下記式(12)で表される構成単位、および下記式(13)で表される構成単位より1つ選択されることが好ましく、耐熱性の観点から、式(9)で表される構成単位であることが最も好ましい。   That is, the structural unit represented by the formula (2) includes the structural unit represented by the following formula (9), the structural unit represented by the following formula (12), and the structural unit represented by the following formula (13). It is preferable to select one, and from the viewpoint of heat resistance, the structural unit represented by the formula (9) is most preferable.

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

得られるポリイミドの耐熱性、低熱膨張性、透明性、および低複屈折を向上させる観点から、ポリアミド酸中に一般式(1)で表される構成単位と一般式(2)で表される構成単位との合計のモル数が、ポリアミド酸のモル数に対して、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが特に好ましい。なお、ここで、ポリアミド酸のモル数とは、ポリアミド酸を構成する全ジアミン由来構成単位のモル数、または、ポリアミド酸を構成する全酸二無水物由来構成単位のモル数である。   From the viewpoint of improving the heat resistance, low thermal expansion, transparency, and low birefringence of the resulting polyimide, the constitutional unit represented by the general formula (1) and the constitution represented by the general formula (2) in the polyamic acid. The total number of moles with the unit is preferably 70% or more, more preferably 80% or more, and particularly preferably 90% or more with respect to the number of moles of the polyamic acid. Here, the number of moles of the polyamic acid is the number of moles of the structural units derived from all diamines constituting the polyamic acid or the number of moles of structural units derived from all the acid dianhydrides constituting the polyamic acid.

本発明のポリアミド酸は、一般式(1)で表される構成単位および一般式(2)で表される構成単位を含んでいることが特徴であり、本発明の式(1)で表される構成単位および式(2)で表される構成単位を含有するポリアミド酸において、式(1)で表される構成単位のモル数/式(2)で表される構成単位のモル数で表されるモル比は、低熱膨張性の発現の観点から、30/70以上であることが好ましく、50/50以上であることがより好ましい。また、式(1)で表される構成単位のモル数/式(2)で表される構成単位のモル数で表されるモル比は、低複屈折の観点、および、支持体上にポリアミド酸溶液を塗布してイミド化する場合の支持体とポリイミドとの間の密着性の観点から、99/1以下であることが好ましく、98/2以下であることがより好ましく、97/3以下であることがさらに好ましく、95/5以下であることが特に好ましく、80/20以下であることが最も好ましい。   The polyamic acid of the present invention is characterized by containing a structural unit represented by the general formula (1) and a structural unit represented by the general formula (2), and is represented by the formula (1) of the present invention. In the polyamic acid containing the structural unit and the structural unit represented by the formula (2), the number of moles of the structural unit represented by the formula (1) / the number of moles of the structural unit represented by the formula (2) The molar ratio is preferably 30/70 or more, and more preferably 50/50 or more, from the viewpoint of expression of low thermal expansion. In addition, the molar ratio represented by the number of moles of the structural unit represented by the formula (1) / the number of moles of the structural unit represented by the formula (2) is a low birefringence viewpoint and a polyamide on the support. From the viewpoint of adhesion between the support and the polyimide when the acid solution is applied and imidized, it is preferably 99/1 or less, more preferably 98/2 or less, and 97/3 or less. Is more preferably 95/5 or less, and most preferably 80/20 or less.

本発明のポリアミド酸は、一般式(1)で表される構成単位および一般式(2)で表される構成単位を含んでいることが特徴であり、上述したように、一般式(1)で表される構成単位が式(8)で表される構成単位であり、一般式(2)で表される構成単位が式(9)で表される構成単位であることが特に好ましい。本発明の式(8)で表される構成単位および式(9)で表される構成単位を含有するポリアミド酸において、式(8)で表される構成単位のモル数/式(9)で表される構成単位のモル数で表されるモル比は、低熱膨張性の発現の観点から、30/70以上であることが好ましく、50/50以上であることがより好ましい。また、式(8)で表される構成単位のモル数/式(9)で表される構成単位のモル数で表されるモル比は、低複屈折の観点、および、支持体上にポリアミド酸溶液を塗布してイミド化する場合の支持体とポリイミドとの間の密着性の観点から、99/1以下であることが好ましく、98/2以下であることがより好ましく、97/3以下であることがさらに好ましく、95/5以下であることが特に好ましく、80/20以下であることが最も好ましい。   The polyamic acid of the present invention is characterized by containing a structural unit represented by the general formula (1) and a structural unit represented by the general formula (2). As described above, the general formula (1) The structural unit represented by the formula (8) is particularly preferred, and the structural unit represented by the general formula (2) is particularly preferably a structural unit represented by the formula (9). In the polyamic acid containing the structural unit represented by the formula (8) and the structural unit represented by the formula (9), the number of moles of the structural unit represented by the formula (8) / the formula (9) The molar ratio represented by the number of moles of the structural unit is preferably 30/70 or more, and more preferably 50/50 or more, from the viewpoint of expression of low thermal expansion. In addition, the molar ratio represented by the number of moles of the structural unit represented by the formula (8) / the number of moles of the structural unit represented by the formula (9) is a low birefringence viewpoint and a polyamide on the support. From the viewpoint of adhesion between the support and the polyimide when the acid solution is applied and imidized, it is preferably 99/1 or less, more preferably 98/2 or less, and 97/3 or less. Is more preferably 95/5 or less, and most preferably 80/20 or less.

特に、ガラス等の支持体上にポリアミド酸溶液を塗布し、加熱してイミド化し、電子素子等を形成して基板形成した後、剥がすという、バッチタイプのデバイス作製プロセスにおいては、支持体とポリイミドとの間の密着性が良いことがより好ましい。ここでいう密着性とは、密着強度という意味ではなく、ガラス等の支持体上にポリアミド酸溶液を塗布してイミド化したときの、ポリイミドと支持体との間の剥離または浮きの程度をいう。すなわち、ポリイミドと支持体との間の剥離または浮きが少ないほど、密着性に優れると言える。かかる剥離または浮きは、ガラス等の支持体上にポリアミド酸溶液を塗布してイミド化するときに、支持体とポリイミドとの間に泡状の剥離または浮きとして形成される。以下、図1に基づいて、ポリイミドと支持体との間の剥離または浮きについて説明する。すなわち、図1は、例えば、ガラス等の支持体1にポリアミド酸溶液2を塗布し、加熱することによって、ポリアミド酸をイミド化するときに、ポリイミドと支持体との間の剥離または浮きが形成される様子を模式的に示す。ガラス等の支持体1にポリアミド酸溶液2を塗布し(図1の(a))、加熱すると、ポリアミド酸のイミド化が始まる。そして、イミド化の進行とともに、ポリアミド酸溶液2の水および/または有機溶媒が、図1の(b)において矢印により示されるように、イミド化中のポリアミド酸から外部に出ていく。しかし、このとき、一部の水および/または有機溶媒は図1の(b)において、×を付した矢印で示されるように、イミド化中のポリアミド酸から排出されず、支持体とイミド化中のポリアミド酸との間にとどまる。そして、この支持体とイミド化中のポリアミド酸との間にとどまった水および/または有機溶媒は、図1の(c)に示すように、得られたポリイミドと支持体との間に泡状の剥離または浮きを形成する。この水および/または有機溶媒は、その後、ポリイミドまたは支持体を通って、上記泡状の剥離または浮きから排出され、最終的には、剥離または浮きの泡状部分は空気からなる空間となる。かかる剥離または浮きの形成を低減することにより、支持体上のポリイミド膜に電子素子等を形成して基板形成した後に、支持体から、電子素子等が形成されたポリイミド基板を剥がすという作製プロセスにおいて、電子素子等をより正確に形成または実装することができる。特に、薄型化または小型化されたデバイスでは、細かい剥離または浮きでも、電子素子等の形成または実装に大きな影響を与えることから、上記剥離または浮きの低減は重要である。   In particular, in a batch type device manufacturing process in which a polyamic acid solution is applied onto a support such as glass, heated to imidize, an electronic element or the like is formed to form a substrate, and then peeled, the support and polyimide It is more preferable that the adhesion between the two is good. The term “adhesion” as used herein does not mean adhesion strength, but means the degree of peeling or floating between the polyimide and the support when a polyamic acid solution is applied onto a support such as glass and imidized. . That is, it can be said that the smaller the peeling or floating between the polyimide and the support, the better the adhesion. Such peeling or floating is formed as foamy peeling or floating between the support and the polyimide when the polyamic acid solution is applied onto a support such as glass and imidized. Hereinafter, peeling or floating between the polyimide and the support will be described with reference to FIG. That is, FIG. 1 shows that, for example, when a polyamic acid solution 2 is applied to a support 1 such as glass and heated to imidize the polyamic acid, peeling or floating between the polyimide and the support is formed. The state of being done is shown schematically. When the polyamic acid solution 2 is applied to a support 1 such as glass ((a) in FIG. 1) and heated, imidization of the polyamic acid starts. As the imidization proceeds, the water and / or organic solvent of the polyamic acid solution 2 exits from the polyamic acid being imidized to the outside as indicated by arrows in FIG. However, at this time, a part of water and / or organic solvent is not discharged from the polyamic acid during imidation as shown by the arrow marked with x in FIG. Stays with the polyamic acid inside. And the water and / or organic solvent which remained between this support body and the polyamic acid in imidation is foamy between the obtained polyimide and support body, as shown in (c) of FIG. To form peeling or floating. The water and / or the organic solvent is then discharged from the foam-like peeling or floating through the polyimide or the support, and finally, the foamed portion of the peeling or floating becomes a space composed of air. By reducing the formation of such peeling or floating, after forming a substrate by forming an electronic element or the like on a polyimide film on a support, the polyimide substrate on which the electronic element or the like is formed is peeled from the support. In addition, an electronic element or the like can be formed or mounted more accurately. In particular, in a thinned or miniaturized device, even if fine peeling or floating has a great influence on formation or mounting of an electronic element or the like, reduction of the peeling or floating is important.

好適には、式(1)で表される構成単位のモル数/式(2)で表される構成単位のモル数で表されるモル比、より好ましくは、式(8)で表される構成単位のモル数/式(9)で表される構成単位のモル数で表されるモル比が、99/1以下であるときに、支持体とポリイミドとの間の密着性が向上する。したがって、式(1)で表される構成単位のモル数/式(2)で表される構成単位のモル数で表されるモル比、より好ましくは、式(8)で表される構成単位のモル数/式(9)で表される構成単位のモル数で表されるモル比が、99/1以下であるときには、低複屈折と、支持体上にポリアミド酸溶液を塗布してイミド化する場合の支持体とポリイミドとの間の優れた密着性とが実現される。   Preferably, the molar ratio represented by the number of moles of the structural unit represented by formula (1) / the number of moles of the structural unit represented by formula (2), more preferably represented by formula (8). When the molar ratio represented by the number of moles of the structural unit / number of moles of the structural unit represented by the formula (9) is 99/1 or less, the adhesion between the support and the polyimide is improved. Therefore, the molar ratio represented by the number of moles of the structural unit represented by formula (1) / the number of moles of the structural unit represented by formula (2), more preferably the structural unit represented by formula (8) When the molar ratio represented by the number of moles of the structural unit represented by the formula (9) is 99/1 or less, low birefringence and a polyamic acid solution are coated on the support to form an imide. In this case, excellent adhesion between the support and the polyimide is realized.

中でも、低複屈折と、支持体上にポリアミド酸溶液を塗布してイミド化する場合の支持体とポリイミドとの間の優れた密着性とを満たし、さらに特に低い熱膨張性を実現するという観点からは、
式(2)で表される構成単位のモル数/(式(1)で表される構成単位のモル数+式(2)で表される構成単位のモル数)、
は、0.01以上0.05未満であることがより好ましく、0.02以上0.05未満であることがさらに好ましい。
また、同様の観点から、式(9)で表される構成単位のモル数/(式(8)で表される構成単位のモル数+式(9)で表される構成単位のモル数)
は、0.01以上0.05未満であることがより好ましく、0.02以上0.05未満であることがさらに好ましい。
Among them, the viewpoint of satisfying low birefringence and excellent adhesion between the support and the polyimide when imidizing by applying a polyamic acid solution on the support, and achieving particularly low thermal expansion From
Number of moles of structural unit represented by formula (2) / (number of moles of structural unit represented by formula (1) + number of moles of structural unit represented by formula (2)),
Is more preferably 0.01 or more and less than 0.05, and further preferably 0.02 or more and less than 0.05.
From the same viewpoint, the number of moles of the structural unit represented by formula (9) / (number of moles of the structural unit represented by formula (8) + number of moles of the structural unit represented by formula (9)).
Is more preferably 0.01 or more and less than 0.05, and further preferably 0.02 or more and less than 0.05.

本発明で製造されるポリイミドは一般式(6)で表される構成単位および一般式(7)で表される構成単位を含む。   The polyimide produced by the present invention includes a structural unit represented by the general formula (6) and a structural unit represented by the general formula (7).

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

式中のR1、R2およびAは、それぞれ、上記一般式(1)および一般式(2)中のR、RおよびAと同義である。つまり、一般式(6)は3,3’,4,4’−ビフェニルテトラカルボン酸二無水物と1,4−シクロヘキサンジアミンより得られる式(10)で表されるポリイミド構成単位であることが最も好ましい。R1, R2 and A in the formula are respectively the same as R 1, R 2 and A in the general formula (1) and general formula (2). That is, the general formula (6) is a polyimide constituent unit represented by the formula (10) obtained from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 1,4-cyclohexanediamine. Most preferred.

Figure 0005695276
Figure 0005695276

一般式(7)中のAはフルオレン骨格を含有する構成単位であり、複屈折を低くする観点から式(3)で表される構成単位、(4)で表される構成単位、および(5)で表される構成単位より1つ選択されることが好ましく、耐熱性の観点から式(3)で表される構成単位であることが特に好ましい。つまり、一般式(7)で表される構成単位は、下記式(11)で表される構成単位、下記式(14)で表される構成単位、および下記式(15)で表される構成単位より1つ選択されることが好ましく、耐熱性の観点から、式(11)で表される構成単位であることが最も好ましい。   A in the general formula (7) is a structural unit containing a fluorene skeleton, and from the viewpoint of reducing birefringence, the structural unit represented by the formula (3), the structural unit represented by (4), and (5 Is preferably selected from the structural units represented by formula (3), and is particularly preferably a structural unit represented by the formula (3) from the viewpoint of heat resistance. That is, the structural unit represented by the general formula (7) includes the structural unit represented by the following formula (11), the structural unit represented by the following formula (14), and the structural unit represented by the following formula (15). One unit is preferably selected, and from the viewpoint of heat resistance, the structural unit represented by the formula (11) is most preferable.

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

耐熱性、低熱膨張性、透明性、および低複屈折を向上させる観点から、ポリイミド中に、一般式(6)で表される構成単位と一般式(7)で表される構成単位との合計のモル数が、ポリイミドのモル数に対して、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが特に好ましい。なお、ここで、ポリイミドのモル数とは、ポリイミドを構成する全ジアミン由来構成単位のモル数、または、ポリイミドを構成する全酸二無水物由来構成単位のモル数である。   From the viewpoint of improving heat resistance, low thermal expansion, transparency, and low birefringence, the total of the structural unit represented by the general formula (6) and the structural unit represented by the general formula (7) in polyimide. Is preferably 70% or more, more preferably 80% or more, and particularly preferably 90% or more with respect to the number of moles of polyimide. Here, the number of moles of polyimide is the number of moles of all diamine-derived constituent units constituting polyimide or the number of moles of all acid dianhydride-derived constituent units constituting polyimide.

本発明のポリイミドは、一般式(6)で表される構成単位および一般式(7)で表される構成単位を含んでいることが特徴であり、本発明の式(6)で表される構成単位および式(7)で表される構成単位を含有するポリイミドにおいて、式(6)で表される構成単位のモル数/式(7)で表される構成単位のモル数で表されるモル比は、低熱膨張性の発現の観点から、30/70以上であることが好ましく、50/50以上であることがより好ましい。また、式(6)で表される構成単位のモル数/式(7)で表される構成単位のモル数で表されるモル比は、低複屈折の観点、および、支持体上にポリアミド酸溶液を塗布してイミド化する場合の支持体とポリイミドとの間の密着性の観点から、99/1以下であることが好ましく、98/2以下であることがより好ましく、97/3以下であることがさらに好ましく、95/5以下であることが特に好ましく、80/20以下であることが最も好ましい。   The polyimide of the present invention is characterized by containing a structural unit represented by the general formula (6) and a structural unit represented by the general formula (7), and is represented by the formula (6) of the present invention. In the polyimide containing the structural unit and the structural unit represented by the formula (7), the number of moles of the structural unit represented by the formula (6) / the number of moles of the structural unit represented by the formula (7). The molar ratio is preferably 30/70 or more, and more preferably 50/50 or more, from the viewpoint of expression of low thermal expansion. In addition, the molar ratio represented by the number of moles of the structural unit represented by the formula (6) / the number of moles of the structural unit represented by the formula (7) is a low birefringence viewpoint and a polyamide on the support. From the viewpoint of adhesion between the support and the polyimide when the acid solution is applied and imidized, it is preferably 99/1 or less, more preferably 98/2 or less, and 97/3 or less. Is more preferably 95/5 or less, and most preferably 80/20 or less.

本発明のポリイミドは、一般式(6)で表される構成単位および一般式(7)で表される構成単位を含んでいることが特徴であり、上述したように、一般式(6)で表される構成単位が式(10)で表される構成単位であり、一般式(7)で表される構成単位が式(11)で表される構成単位であることが特に好ましい。本発明の式(10)で表される構成単位および式(11)で表される構成単位を含有するポリイミドにおいて、式(10)で表される構成単位のモル数/式(11)で表される構成単位のモル数で表されるモル比は、低熱膨張性の発現の観点から、30/70以上であることが好ましく、50/50以上であることがより好ましい。また、式(10)で表される構成単位のモル数/式(11)で表される構成単位のモル数で表されるモル比は、低複屈折の観点、および、支持体上にポリアミド酸溶液を塗布してイミド化する場合の支持体とポリイミドとの間の密着性の観点から、99/1以下であることが好ましく、98/2以下であることがより好ましく、97/3以下であることがさらに好ましく、95/5以下であることが特に好ましく、80/20以下であることが最も好ましい。   The polyimide of the present invention is characterized by containing a structural unit represented by the general formula (6) and a structural unit represented by the general formula (7). It is particularly preferable that the structural unit represented is a structural unit represented by the formula (10), and the structural unit represented by the general formula (7) is a structural unit represented by the formula (11). In the polyimide containing the structural unit represented by the formula (10) and the structural unit represented by the formula (11) of the present invention, the number of moles of the structural unit represented by the formula (10) / the formula (11) The molar ratio represented by the number of moles of structural units is preferably 30/70 or more, and more preferably 50/50 or more, from the viewpoint of expression of low thermal expansion. In addition, the molar ratio represented by the number of moles of the structural unit represented by the formula (10) / the number of moles of the structural unit represented by the formula (11) is a low birefringence viewpoint and a polyamide on the support. From the viewpoint of adhesion between the support and the polyimide when the acid solution is applied and imidized, it is preferably 99/1 or less, more preferably 98/2 or less, and 97/3 or less. Is more preferably 95/5 or less, and most preferably 80/20 or less.

中でも、低複屈折と、支持体上にポリアミド酸溶液を塗布してイミド化する場合の支持体とポリイミドとの間の優れた密着性とを満たし、さらに特に低い熱膨張性を実現するという観点からは、
式(7)で表される構成単位のモル数/(式(6)で表される構成単位のモル数+式(7)で表される構成単位のモル数)、
は、0.01以上0.05未満であることがより好ましく、0.02以上0.05未満であることがさらに好ましい。
また、同様の観点から、式(11)で表される構成単位のモル数/(式(10)で表される構成単位のモル数+式(11)で表される構成単位のモル数)
は、0.01以上0.05未満であることがより好ましく、0.02以上0.05未満であることがさらに好ましい。
Among them, the viewpoint of satisfying low birefringence and excellent adhesion between the support and the polyimide when imidizing by applying a polyamic acid solution on the support, and achieving particularly low thermal expansion From
Number of moles of structural unit represented by formula (7) / (number of moles of structural unit represented by formula (6) + number of moles of structural unit represented by formula (7)),
Is more preferably 0.01 or more and less than 0.05, and further preferably 0.02 or more and less than 0.05.
From the same viewpoint, the number of moles of the structural unit represented by formula (11) / (number of moles of the structural unit represented by formula (10) + number of moles of the structural unit represented by formula (11)).
Is more preferably 0.01 or more and less than 0.05, and further preferably 0.02 or more and less than 0.05.

本発明のポリイミドは一般式(1)で表される構成単位および一般式(2)で表される構成単位を含むポリアミド酸をイミド化することによって得ることができる。また、本発明のポリイミドは、ポリアミド酸エステル等の一般に知られる前躯体より合成してもよいし、前躯体を経由せずに製造してもよい。   The polyimide of this invention can be obtained by imidating the polyamic acid containing the structural unit represented by General formula (1) and the structural unit represented by General formula (2). The polyimide of the present invention may be synthesized from a generally known precursor such as a polyamic acid ester, or may be produced without going through the precursor.

本発明のポリアミド酸は、公知の一般的な方法にて合成することができ、有機溶媒中でジアミンとテトラカルボン酸二無水物とを反応させることにより得ることができる。具体的には、例えば、アルゴン、窒素等の不活性雰囲気中において、ジアミンを有機溶媒中に溶解、又はスラリー状に分散させて、ジアミン溶液とする。一方、テトラカルボン酸二無水物は、有機溶媒に溶解、又はスラリー状に分散させた状態とした後、あるいは固体の状態で、上記ジアミン溶液中に添加すればよい。   The polyamic acid of the present invention can be synthesized by a known general method, and can be obtained by reacting diamine and tetracarboxylic dianhydride in an organic solvent. Specifically, for example, in an inert atmosphere such as argon or nitrogen, the diamine is dissolved in an organic solvent or dispersed in a slurry to obtain a diamine solution. On the other hand, tetracarboxylic dianhydride may be added to the diamine solution after being dissolved or dispersed in an organic solvent or in a solid state.

ジアミンとテトラカルボン酸二無水物とを用いてポリアミド酸を合成する場合、単数または複数のジアミン成分全量のモル数と、単数または複数のテトラカルボン酸二無水物成分全量のモル数とを、実質上等モルに調整することで、ポリアミド酸共重合体を任意に得ることができる。また、2種のポリアミド酸をブレンドすることによって複数のテトラカルボン酸二無水物およびジアミンを含有するポリアミド酸を得ることもできる。上記ジアミンとテトラカルボン酸二無水物との反応即ち、ポリアミド酸の合成反応の温度条件は、特に限定されない。脂環式ジアミンを用いる場合、塩形成が起こる場合が多いので、ポリアミド酸の合成反応の温度を、必要に応じて50℃〜150℃の範囲としてもよく、塩が溶解し重合反応が進行しはじめたら、ポリアミド酸の分子量低下を抑制するために、ポリアミド酸の合成反応の温度を、80℃以下とすることが好ましく、0℃以上50℃以下とすることがより好ましい。また、反応時間は10分〜30時間の範囲で任意に設定すればよい。   When synthesizing a polyamic acid using a diamine and a tetracarboxylic dianhydride, the number of moles of the total amount of one or more diamine components and the number of moles of the total amount of one or more tetracarboxylic dianhydride components are substantially By adjusting to an equimolar ratio, a polyamic acid copolymer can be arbitrarily obtained. Moreover, the polyamic acid containing several tetracarboxylic dianhydride and diamine can also be obtained by blending 2 types of polyamic acids. The temperature conditions for the reaction between the diamine and tetracarboxylic dianhydride, that is, the polyamic acid synthesis reaction, are not particularly limited. When an alicyclic diamine is used, salt formation often occurs. Therefore, the temperature of the polyamic acid synthesis reaction may be set in the range of 50 ° C. to 150 ° C. as necessary, and the salt dissolves and the polymerization reaction proceeds. If it starts, in order to suppress the molecular weight fall of a polyamic acid, it is preferable that the temperature of the synthesis reaction of a polyamic acid shall be 80 degrees C or less, and it is more preferable to set it as 0 to 50 degreeC. Moreover, what is necessary is just to set reaction time arbitrarily in the range of 10 minutes-30 hours.

さらに、上記ポリアミド酸の合成反応に使用する有機溶媒としては、有機極性溶媒であれば特に限定されるものではない。上記ジアミンとテトラカルボン酸二無水物との反応が進行するにつれてポリアミド酸が生成し、反応液の粘度が上昇する。   Furthermore, the organic solvent used for the synthesis reaction of the polyamic acid is not particularly limited as long as it is an organic polar solvent. As the reaction between the diamine and tetracarboxylic dianhydride proceeds, polyamic acid is generated, and the viscosity of the reaction solution increases.

ポリアミド酸の重合に使用する有機溶媒は、使用するテトラカルボン酸二無水物、およびジアミン類を溶解することが可能なものが好ましく、更に生成されるポリアミド酸を溶解することが可能なものが好ましい。上記ポリアミド酸の合成反応に使用する有機溶媒は、例えば、テトラメチル尿素、N,N−ジメチルエチルウレアのようなウレア系溶媒、ジメチルスルホキシド、ジフェニルスルホン、テトラメチルスルフォンのようなスルホキシドあるいはスルホン系溶媒、N,N−ジメチルアセトアミド(DMAC)、N,N−ジメチルホルムアミド(DMF)、N,N’−ジエチルアセトアミド、N−メチル−2−ピロリドン(NMP)、γ―ブチロラクトン等のエステル系溶媒、ヘキサメチルリン酸トリアミド等のアミド系溶媒、クロロホルム、塩化メチレンなどのハロゲン化アルキル系溶媒、ベンゼン、トルエン等の芳香族炭化水素系溶媒、フェノール、クレゾールなどのフェノール系溶媒、シクロペンタノン等のケトン系溶媒、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、ジメチルエーテル、ジエチルエーテル、p−クレゾールメチルエーテルなどのエーテル系溶媒が挙げられる。通常これらの溶媒を単独で用いるが、必要に応じて2種以上を適宜組合わせて用いて良い。ポリアミド酸の溶解性及び反応性を高めるために、上記ポリアミド酸の合成反応に使用する有機溶媒は、アミド系溶媒、ケトン系溶媒、エステル系溶媒及びエーテル系溶媒より選択されることが好ましく、特にDMF、DMAC、NMPなどのアミド系溶媒が好ましい。   The organic solvent used for the polymerization of the polyamic acid is preferably one that can dissolve the tetracarboxylic dianhydride and diamines to be used, and more preferably one that can dissolve the produced polyamic acid. . Examples of the organic solvent used in the above polyamic acid synthesis reaction include urea solvents such as tetramethylurea and N, N-dimethylethylurea, sulfoxides such as dimethylsulfoxide, diphenylsulfone, and tetramethylsulfone, and sulfone solvents. N, N-dimethylacetamide (DMAC), N, N-dimethylformamide (DMF), N, N′-diethylacetamide, N-methyl-2-pyrrolidone (NMP), ester solvents such as γ-butyrolactone, hexa Amide solvents such as methyl phosphate triamide, alkyl halide solvents such as chloroform and methylene chloride, aromatic hydrocarbon solvents such as benzene and toluene, phenol solvents such as phenol and cresol, and ketone solvents such as cyclopentanone Solvent, tetrahydrofura , 1,3-dioxolane, 1,4-dioxane, dimethyl ether, diethyl ether, ether solvents such as p- cresol methyl ether. Usually, these solvents are used alone, but two or more kinds may be used in appropriate combination as required. In order to increase the solubility and reactivity of the polyamic acid, the organic solvent used for the polyamic acid synthesis reaction is preferably selected from amide solvents, ketone solvents, ester solvents, and ether solvents. Amide solvents such as DMF, DMAC and NMP are preferred.

本発明のポリイミドは、公知の方法にて得ることができ、その製造方法は、特に制限されない。モノマーの入手性および重合の簡便さから、本発明のポリイミドはその前駆体であるポリアミド酸から得ることが好ましい。ポリアミド酸を用いて、ポリイミドを得るために、上記ポリアミド酸をイミド化する方法について説明する。イミド化は、ポリアミド酸を脱水閉環することによって行われる。この脱水閉環は、共沸溶媒を用いた共沸法、熱的手法または化学的手法によって行うことができる。また、ポリアミド酸からポリイミドへのイミド化は、1〜100%の任意の割合をとることができる。つまり、一部がイミド化されたポリアミド酸を合成してもよい。本明細書ではポリアミド酸と有機溶媒とを含む溶液をポリアミド酸溶液とする。ここで、ポリアミド酸溶液に含まれる当該有機溶媒としては、上記ポリアミド酸の合成反応に使用する有機溶媒と同様の有機溶媒を用いることができ、中でも、アミド系溶媒、ケトン系溶媒、エステル系溶媒及びエーテル系溶媒より選択される有機溶媒をより好適に用いることができ、DMF、DMAC、NMPなどのアミド系溶媒を特に好適に用いることができる。上述した方法でポリアミド酸を得た場合、合成した反応溶液自体をポリアミド酸溶液と表現することもある。   The polyimide of the present invention can be obtained by a known method, and its production method is not particularly limited. From the viewpoint of availability of monomers and ease of polymerization, the polyimide of the present invention is preferably obtained from polyamic acid which is a precursor thereof. A method for imidizing the above polyamic acid to obtain a polyimide using the polyamic acid will be described. Imidization is performed by dehydrating and ring-closing the polyamic acid. This dehydration ring closure can be performed by an azeotropic method using an azeotropic solvent, a thermal method, or a chemical method. Moreover, imidation from a polyamic acid to a polyimide can take an arbitrary ratio of 1 to 100%. That is, a polyamic acid partially imidized may be synthesized. In this specification, a solution containing a polyamic acid and an organic solvent is referred to as a polyamic acid solution. Here, as the organic solvent contained in the polyamic acid solution, an organic solvent similar to the organic solvent used for the polyamic acid synthesis reaction can be used, and among them, an amide solvent, a ketone solvent, and an ester solvent. And an organic solvent selected from ether solvents can be used more preferably, and amide solvents such as DMF, DMAC, and NMP can be particularly preferably used. When polyamic acid is obtained by the above-described method, the synthesized reaction solution itself may be expressed as a polyamic acid solution.

脱水閉環は、ポリアミド酸を加熱して行えばよい。ポリアミド酸を加熱する方法は特に制限されないが、例えば、ガラス板、金属板、PET(ポリエチレンテレフタレート)等の支持体に、ポリアミド酸溶液を流延または塗布した後、80℃〜500℃の範囲内で熱処理を行えばよい。或いは、フッ素系樹脂によるコーティング等の離型処理を施した容器に直接ポリアミド酸溶液を入れ、当該ポリアミド酸溶液を減圧下で加熱乾燥することによって、ポリアミド酸の脱水閉環を行うこともできる。このような手法によるポリアミド酸の脱水閉環により、ポリイミドを得ることができる。なお、上記各処理の加熱時間は、脱水閉環を行うポリアミド酸溶液の処理量や加熱温度により異なるが、一般的には、処理温度が最高温度に達してから1分〜5時間の範囲で行うことが好ましい。また、加熱時間の短縮や特性発現のために、イミド化剤および/または脱水触媒をポリアミド酸溶液に添加し、このイミド化剤および/または脱水触媒を添加したポリアミド酸溶液を上記のような方法で加熱してイミド化してもよい。   The dehydration ring closure may be performed by heating the polyamic acid. The method for heating the polyamic acid is not particularly limited. For example, the polyamic acid solution is cast or coated on a support such as a glass plate, a metal plate, or PET (polyethylene terephthalate), and then within a range of 80 ° C to 500 ° C. Heat treatment may be performed. Alternatively, the polyamic acid solution can be directly dehydrated and closed by placing the polyamic acid solution directly into a container that has been subjected to a release treatment such as coating with a fluororesin, and heating and drying the polyamic acid solution under reduced pressure. Polyimide can be obtained by dehydration ring closure of polyamic acid by such a method. In addition, although the heating time of each said process changes with the process amount and heating temperature of the polyamic acid solution which performs dehydration ring closure, generally it is performed in the range of 1 minute-5 hours after the processing temperature reaches the maximum temperature. It is preferable. Further, in order to shorten the heating time and develop the characteristics, an imidizing agent and / or a dehydration catalyst are added to the polyamic acid solution, and the polyamic acid solution to which the imidizing agent and / or the dehydration catalyst is added is treated as described above. May be imidized by heating.

上記イミド化剤としては、特に限定されないが、3級アミンを用いることができる。3級アミンとしては複素環式の3級アミンがさらに好ましい。複素環式の3級アミンの好ましい具体例としてはピリジン、ピコリン、キノリン、イソキノリンなどを挙げることができる。上記脱水触媒としては具体的には無水酢酸、プロピオン酸無水物、n−酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物等を好ましい具体例として挙げることができる。   Although it does not specifically limit as said imidating agent, A tertiary amine can be used. As the tertiary amine, a heterocyclic tertiary amine is more preferable. Preferable specific examples of the heterocyclic tertiary amine include pyridine, picoline, quinoline, isoquinoline and the like. Specific examples of the dehydration catalyst include acetic anhydride, propionic anhydride, n-butyric anhydride, benzoic anhydride, trifluoroacetic anhydride, and the like.

イミド化剤および脱水触媒の添加量としては、ポリアミド酸のアミド基に対して、イミド化剤は0.5〜5.0倍モル当量、さらには0.7〜2.5倍モル当量、特には0.8〜2.0倍モル当量が好ましい。また、ポリアミド酸のアミド基に対して、脱水触媒は0.5〜10.0倍モル当量、さらには0.7〜5.0倍モル当量、特には0.8〜3.0倍モル当量が好ましい。ポリアミド酸溶液にイミド化剤および/または脱水触媒を加える際、有機溶媒に溶かさず直接加えても良いし、有機溶媒に溶かしたものを加えても良い。有機溶媒に溶かさず直接加える方法ではイミド化剤および/または脱水触媒が拡散する前に反応が急激に進行し、ゲルが生成することがある。イミド化剤および/または脱水触媒を有機溶媒に溶かして得られた溶液を、ポリアミド酸溶液に混合することがより好ましい。   As the addition amount of the imidizing agent and the dehydration catalyst, the imidizing agent is 0.5 to 5.0 times molar equivalent, more preferably 0.7 to 2.5 times molar equivalent, especially with respect to the amide group of the polyamic acid. Is preferably 0.8 to 2.0 times molar equivalent. Further, the dehydration catalyst is 0.5 to 10.0 times molar equivalent, more preferably 0.7 to 5.0 times molar equivalent, particularly 0.8 to 3.0 times molar equivalent, relative to the amide group of the polyamic acid. Is preferred. When the imidizing agent and / or dehydration catalyst is added to the polyamic acid solution, it may be added directly without being dissolved in the organic solvent, or a solution dissolved in the organic solvent may be added. In the method of adding directly without dissolving in an organic solvent, the reaction may proceed rapidly before the imidizing agent and / or dehydration catalyst diffuses, and a gel may be formed. More preferably, a solution obtained by dissolving the imidizing agent and / or dehydration catalyst in an organic solvent is mixed with the polyamic acid solution.

本発明のポリアミド酸およびポリイミドの重量平均分子量は、その用途にもよるが、10,000以上500,000以下の範囲であることが好ましく、20,000〜300,000の範囲であることがより好ましく、30,000〜200,000の範囲であることがさらに好ましい。重量平均分子量が10,000以上であれば、ポリアミド酸およびポリイミドを塗膜又はフィルムとすることが可能となる。一方、重量平均分子量が500,000以下であると、溶媒に対して十分な溶解性を示すため、後述するポリアミド酸溶液から表面が平滑で膜厚が均一な塗膜又はフィルムが得られる。   The weight average molecular weight of the polyamic acid and polyimide of the present invention is preferably in the range of 10,000 or more and 500,000 or less, more preferably in the range of 20,000 to 300,000, depending on the use. Preferably, it is in the range of 30,000 to 200,000. If the weight average molecular weight is 10,000 or more, it becomes possible to use polyamic acid and polyimide as a coating film or film. On the other hand, when the weight average molecular weight is 500,000 or less, sufficient solubility in a solvent is exhibited, so that a coating film or film having a smooth surface and a uniform film thickness can be obtained from a polyamic acid solution described later.

ここで用いている分子量とは、ゲルパーミレーションクロマトグラフィー(GPC)によるポリエチレングリコール換算の値のことをいう。   The molecular weight used here refers to a value in terms of polyethylene glycol by gel permeation chromatography (GPC).

本発明のポリイミドは、支持体にポリアミド酸溶液を塗工し、乾燥または加熱することにより製造することができる。本明細書において、上述したような方法で得られた膜状のポリイミドを、ポリイミド膜と表現することがある。ここで、ポリアミド酸溶液は一部がイミド化した溶液でもよい。乾燥または加熱は空気下で実施してもよいし、窒素雰囲気下で実施してもよい。透明性の観点から窒素雰囲気下で乾燥または加熱することが特に好ましい。   The polyimide of the present invention can be produced by applying a polyamic acid solution to a support and drying or heating. In this specification, the film-like polyimide obtained by the method described above may be expressed as a polyimide film. Here, the polyamic acid solution may be a partially imidized solution. Drying or heating may be performed under air, or may be performed under a nitrogen atmosphere. It is particularly preferable to dry or heat in a nitrogen atmosphere from the viewpoint of transparency.

ポリアミド酸溶液を塗工する支持体としては、ガラス基板;SUS等の金属基板あるいは金属ベルト;ポリエチレンテレフタレート、ポリカーボネート、ポリアクリレート、ポリエチレンナフタレート、トリアセチルセルロース等のプラスチックフィルム等が使用されるがこれに限定されるものではない。現行のバッチタイプのデバイス製造プロセスに適応させるためにはガラス基板を用いることが好ましい。   As the support on which the polyamic acid solution is applied, a glass substrate; a metal substrate such as SUS or a metal belt; a plastic film such as polyethylene terephthalate, polycarbonate, polyacrylate, polyethylene naphthalate, or triacetyl cellulose is used. It is not limited to. In order to adapt to the current batch type device manufacturing process, it is preferable to use a glass substrate.

ポリイミド膜製造時の乾燥温度または加熱温度に関しては、プロセスに合わせた条件を選択することが可能であり、特性に影響を与えない限り、特に制限されない。   Regarding the drying temperature or heating temperature at the time of manufacturing the polyimide film, it is possible to select conditions suitable for the process, and there is no particular limitation as long as the characteristics are not affected.

ポリイミドの透明性は、例えば、JIS K7105−1981に従った全光線透過率あるいはヘイズで表される。後述する本発明の用途でポリイミド膜を用いる場合、ポリイミドの全光線透過率は、80%以上であることが好ましく、85%以上であることがより好ましい。また、ヘイズは、2.0%以下であることが好ましく、1.0%以下であることがより好ましい。本発明の用途においては、ポリイミドは全波長領域で透過率が高いことが要求されるが、ポリイミドは短波長側の光を吸収しやすい傾向があり、膜自体が黄色に着色することが多い。本発明の用途に使用するためには、ポリイミドは、膜厚が10μmのとき、波長400nmでの光透過率が50%以上であることが好ましく、60%以上であることがより好ましく、70%より大きいことがさらに好ましい。波長400nmでの光透過率は、紫外−可視分光光度計によって測定される。このように透明性を付与することで、ポリイミド膜は、ガラス代替用途などの透明基板として使用することができる。   The transparency of polyimide is expressed by, for example, total light transmittance or haze according to JIS K7105-1981. When a polyimide film is used for the application of the present invention described later, the total light transmittance of the polyimide is preferably 80% or more, and more preferably 85% or more. The haze is preferably 2.0% or less, and more preferably 1.0% or less. In applications of the present invention, polyimide is required to have high transmittance in the entire wavelength range, but polyimide tends to absorb light on the short wavelength side, and the film itself is often colored yellow. For use in the application of the present invention, when the film thickness is 10 μm, the light transmittance at a wavelength of 400 nm is preferably 50% or more, more preferably 60% or more, and 70%. More preferably, it is larger. The light transmittance at a wavelength of 400 nm is measured by an ultraviolet-visible spectrophotometer. Thus, by giving transparency, a polyimide film can be used as transparent substrates, such as a glass alternative use.

本発明のポリイミドは、フィルム特性として低線熱膨張特性と加熱前後の寸法安定性を有する。例えば熱機械分析(TMA)によりこれらの値を測定する場合、セイコー電子(株)社製TMA120Cを用いて(サンプルサイズ 幅3mm、長さ10mm、膜厚を測定し、フィルムの断面積を算出)、荷重3gfとし10℃/minで10℃から340℃まで一旦昇温させた後、10℃まで冷却し、さらに340℃まで10℃/minで昇温したときの、2回目の昇温時の100〜300℃における単位温度あたりの試料の歪の変化量から求めた、100℃から300℃の範囲での線熱膨張係数が、50ppm/K以下、より好ましくは40ppm/K以下となるポリイミドを得ることができる。   The polyimide of the present invention has low linear thermal expansion characteristics and dimensional stability before and after heating as film characteristics. For example, when these values are measured by thermomechanical analysis (TMA), TMA120C manufactured by Seiko Electronics Co., Ltd. is used (sample size: width 3 mm, length 10 mm, film thickness is measured, and the cross-sectional area of the film is calculated) When the temperature was raised from 10 ° C. to 340 ° C. at 10 ° C./min with a load of 3 gf, cooled to 10 ° C., and further heated to 340 ° C. at 10 ° C./min. A polyimide having a linear thermal expansion coefficient of 50 ppm / K or less, more preferably 40 ppm / K or less, in the range of 100 ° C. to 300 ° C., obtained from the amount of change in strain of the sample per unit temperature at 100 to 300 ° C. Can be obtained.

ガラス転移温度は、耐熱性の観点から高ければ高いほど良い。具体的には、示差走査熱量分析(DSC)または動的粘弾性分析(DMA)において、昇温速度10℃/minの条件で測定したときのガラス転移温度が、250℃以上であることが好ましく、プロセス温度が高くても対応できるという観点から、300℃以上であることがより好ましい。   The higher the glass transition temperature, the better from the viewpoint of heat resistance. Specifically, in differential scanning calorimetry (DSC) or dynamic viscoelasticity analysis (DMA), the glass transition temperature when measured at a temperature rising rate of 10 ° C./min is preferably 250 ° C. or higher. From the viewpoint of being able to cope with a high process temperature, it is more preferably 300 ° C. or higher.

ポリイミドの光学特性は、本発明の用途に用いる場合、複屈折が小さい方が好ましい。ポリイミドは、面内に配向しやすいため、面内方向と厚み方向での屈折率の差(複屈折)が大きく、特に低熱膨張特性を示すポリイミドの場合複屈折が大きくなることが多い。本発明の用途に用いるためには、面内の屈折率のうち最大のものをnx、最小のものをny、厚み方向の屈折率をnzと定義したとき、
nx−ny<0.0010、且つ、(nx+ny)/2−nz<0.160
を満たすことが好ましく、
nx−ny<0.0010、且つ、(nx+ny)/2−nz≦0.120
を満たすことがより好ましく、
nx−ny<0.0010、且つ、(nx+ny)/2−nz<0.100
を満たすことがさらに好ましく、より光学的等方性が高い方が好ましいために
nx−ny<0.0010、且つ、(nx+ny)/2−nz<0.050
を満たすことが特に好ましい。ここで、(nx+ny)/2−nzは面内方向と厚み方向の屈折率の差、すなわち複屈折を表しており、この値が低いほど光学的に等方性が優れ好ましい。また、ここで、nx−nyは、より好ましくは0.0002未満であり、さらに好ましくは0.0001未満である。
When the optical properties of polyimide are used in the application of the present invention, it is preferable that the birefringence is small. Since polyimide is easily oriented in the plane, the difference in refractive index between the in-plane direction and the thickness direction (birefringence) is large. In particular, in the case of polyimide exhibiting low thermal expansion characteristics, the birefringence often increases. For use in the application of the present invention, when the in-plane refractive index is defined as nx, the smallest one is defined as ny, and the refractive index in the thickness direction is defined as nz,
nx-ny <0.0010 and (nx + ny) / 2-nz <0.160
Preferably satisfying
nx−ny <0.0010 and (nx + ny) /2−nz≦0.120
More preferably,
nx-ny <0.0010 and (nx + ny) / 2-nz <0.100
It is more preferable that nx−ny <0.0010 and (nx + ny) / 2−nz <0.050 because it is preferable that the optical isotropy is higher.
It is particularly preferable to satisfy Here, (nx + ny) / 2−nz represents the difference in refractive index between the in-plane direction and the thickness direction, that is, birefringence, and the lower this value, the better the optical isotropy. Here, nx-ny is more preferably less than 0.0002, and even more preferably less than 0.0001.

本発明に係るポリアミド酸およびポリイミドは、そのまま製品や部材を作製するためのコーティングや成形プロセスに供してもよいが、フィルム状に成形された成形物にさらにコーティング等の処理を行うための積層物として用いることも出来る。コーティングあるいは成形プロセスに供するために、該ポリアミド酸およびポリイミドを必要に応じて有機溶媒に溶解又は分散させ、さらに、光又は熱硬化性成分、本発明に係るポリアミド酸およびポリイミド以外の非重合性バインダー樹脂、その他の成分を配合して、ポリアミド酸およびポリイミド樹脂組成物を調製してもよい。   The polyamic acid and polyimide according to the present invention may be used as they are for coating and molding processes for producing products and members as they are, but a laminate for further processing such as coating on a molded product formed into a film shape It can also be used as In order to provide a coating or molding process, the polyamic acid and polyimide are dissolved or dispersed in an organic solvent as necessary, and further, a light or thermosetting component, a non-polymerizable binder other than the polyamic acid and polyimide according to the present invention. A polyamic acid and a polyimide resin composition may be prepared by blending a resin and other components.

本発明に係るポリアミド酸およびポリイミドに加工特性や各種機能性を付与するために、その他に様々な有機又は無機の低分子又は高分子化合物を配合してもよい。例えば、染料、界面活性剤、レベリング剤、可塑剤、微粒子、増感剤等を用いることができる。微粒子には、ポリスチレン、ポリテトラフルオロエチレン等の有機微粒子、コロイダルシリカ、カーボン、層状珪酸塩等の無機微粒子等が含まれ、それらは多孔質や中空構造であってもよい。また、その機能又は形態としては顔料、フィラー、繊維等がある。   In order to impart processing characteristics and various functionalities to the polyamic acid and polyimide according to the present invention, various other organic or inorganic low-molecular or high-molecular compounds may be blended. For example, dyes, surfactants, leveling agents, plasticizers, fine particles, sensitizers, and the like can be used. The fine particles include organic fine particles such as polystyrene and polytetrafluoroethylene, inorganic fine particles such as colloidal silica, carbon, and layered silicate, and these may have a porous or hollow structure. The function or form includes pigments, fillers, fibers, and the like.

本発明に係るポリアミド酸およびポリイミドは、一般式(1)および(2)で表されるポリアミド酸または式(6)および(7)で表されるポリイミドを、組成物の固形分全体に対し、通常、60〜99.9重量%の範囲内で含有させる。言い換えれば、本発明に係るポリアミド酸およびポリイミドは、一般式(1)で表される構成単位および一般式(2)で表される構成単位を含有するポリアミド酸、または一般式(6)で表される構成単位および一般式(7)で表される構成単位を含有するポリイミドを、組成物の固形分全体に対し、通常、60〜99.9重量%の範囲内で含有させる。また、より好ましくは、本発明に係るポリアミド酸およびポリイミドは、式(8)で表される構成単位および式(9)で表される構成単位を含有するポリアミド酸、または一般式(10)で表される構成単位および一般式(11)で表される構成単位を含有するポリイミドを、組成物の固形分全体に対し、通常、60〜99.9重量%の範囲内で含有させる。なお、99.9重量%とは実質的に全ての意味である。また、その他の任意成分の配合割合は、ポリイミドの固形分全体に対し、0.1重量%〜95重量%の範囲であることが好ましい。配合割合が0.1重量%以上であることによって、添加物を添加した効果が発揮されやすい。配合割合が95重量%以下であることによって、樹脂組成物の特性が最終生成物に反映されやすい。なお、組成物の固形分とは有機溶媒以外の全成分であり、液状のモノマー成分も固形分に含まれる。   The polyamic acid and polyimide according to the present invention include the polyamic acid represented by the general formulas (1) and (2) or the polyimide represented by the formulas (6) and (7) with respect to the entire solid content of the composition. Usually, it is contained within the range of 60 to 99.9% by weight. In other words, the polyamic acid and the polyimide according to the present invention are represented by the polyamic acid containing the structural unit represented by the general formula (1) and the structural unit represented by the general formula (2), or represented by the general formula (6). The polyimide containing the structural unit and the structural unit represented by the general formula (7) is usually contained within a range of 60 to 99.9% by weight with respect to the entire solid content of the composition. More preferably, the polyamic acid and the polyimide according to the present invention are a polyamic acid containing a structural unit represented by the formula (8) and a structural unit represented by the formula (9), or a general formula (10). The polyimide containing the structural unit represented and the structural unit represented by the general formula (11) is usually contained in the range of 60 to 99.9% by weight with respect to the entire solid content of the composition. 99.9% by weight means substantially all of them. Moreover, it is preferable that the mixture ratio of another arbitrary component is the range of 0.1 weight%-95 weight% with respect to the whole solid content of a polyimide. When the blending ratio is 0.1% by weight or more, the effect of adding the additive is easily exhibited. When the blending ratio is 95% by weight or less, the characteristics of the resin composition are easily reflected in the final product. In addition, solid content of a composition is all components other than an organic solvent, and a liquid monomer component is also contained in solid content.

本発明に係るポリイミド膜は、その表面に金属酸化物や透明電極等の各種無機薄膜を形成していても良い。これら無機薄膜の製膜方法は特に限定されるものではなく、例えばCVD法、スパッタリング法や真空蒸着法、イオンプレーティング法等のPVD法等が挙げられる。   The polyimide film according to the present invention may have various inorganic thin films such as metal oxides and transparent electrodes formed on the surface thereof. The method for producing these inorganic thin films is not particularly limited, and examples thereof include PVD methods such as CVD, sputtering, vacuum deposition, and ion plating.

本発明に係るポリイミドは、耐熱性、低熱膨張性、および透明性に加えて、低複屈折を有し、さらに、支持体とポリイミドとの間の密着性が良いことから、これらの特性が有効とされる分野および製品、例えば、印刷物、カラーフィルター、フレキシブルディスプレイ、光学フィルム、液晶表示装置、有機EL及び電子ペーパー等の画像表示装置、3−Dディスプレイ、タッチパネル、透明導電膜基板あるいは太陽電池に使用されることが好ましく、さらには現在ガラスが使用されている部分の代替材料とすることがさらに好ましい。即ち、本発明に係る一般式(1)で表される構成単位および一般式(2)で表される構成単位を含有するポリアミド酸、好ましくは一般式(1)で表される構成単位が式(8)で表される構成単位であり、一般式(2)で表される構成単位が式(9)で表される構成単位であるポリアミド酸、および一般式(6)で表される構成単位および一般式(7)で表される構成単位を含有するポリイミド、好ましくは式(6)で表される構成単位が式(10)で表される構成単位であり、式(7)で表される構成単位が(11)で表される構成単位であるポリイミドは、特に、基板、画像表示装置、光学材料、電子デバイス材料に好適に用いることができる。この基板とは、TFT基板、ITO基板、フレキシブルディスプレイ基板などをいう。この画像表示装置とは、有機EL、電子ペーパー、タッチパネル等をいう。この光学材料とは、カラーフィルターなどをいう。また、本発明のポリイミドは、反射防止膜、ホログラム、光学部材又は建築材料や構造物としての利用も期待される。   The polyimide according to the present invention has low birefringence in addition to heat resistance, low thermal expansibility, and transparency, and also has good adhesion between the support and the polyimide, so these characteristics are effective. For example, printed products, color filters, flexible displays, optical films, liquid crystal display devices, organic EL, electronic paper and other image display devices, 3-D displays, touch panels, transparent conductive film substrates, or solar cells. It is preferably used, and more preferably an alternative material for the part where glass is currently used. That is, the polyamic acid containing the structural unit represented by the general formula (1) and the structural unit represented by the general formula (2) according to the present invention, preferably the structural unit represented by the general formula (1) is represented by the formula The structural unit represented by (8), wherein the structural unit represented by the general formula (2) is the structural unit represented by the formula (9), and the configuration represented by the general formula (6) The polyimide containing the unit and the structural unit represented by the general formula (7), preferably the structural unit represented by the formula (6) is the structural unit represented by the formula (10), and is represented by the formula (7). The polyimide whose structural unit is the structural unit represented by (11) can be suitably used particularly for substrates, image display devices, optical materials, and electronic device materials. This substrate refers to a TFT substrate, an ITO substrate, a flexible display substrate, or the like. This image display device refers to organic EL, electronic paper, a touch panel, and the like. This optical material refers to a color filter or the like. The polyimide of the present invention is also expected to be used as an antireflection film, hologram, optical member, building material or structure.

また、本発明に係るポリアミド酸、ポリイミドおよびポリアミド酸溶液は、支持体上にポリアミド酸溶液を塗布し、加熱してイミド化し、電子素子等を形成して基板形成した後、剥がすという、バッチタイプのデバイス作製プロセスに好適に用いることができる。したがって、本発明には、支持体上にポリアミド酸溶液を塗布し、加熱してイミド化し、支持体上に形成されたポリイミド膜に電子素子等を形成する基板形成工程を含む電子デバイスの製造方法も含まれる。また、かかる電子デバイスの製造方法は、さらに、基板形成工程の後に、支持体から、電子素子等が形成されたポリイミド基板を剥がす工程を含んでいてもよい。   In addition, the polyamic acid, polyimide and polyamic acid solution according to the present invention is a batch type in which a polyamic acid solution is applied on a support, imidized by heating, a substrate is formed by forming an electronic device or the like, and then peeled off. It can be suitably used for the device manufacturing process. Therefore, in the present invention, a method for producing an electronic device includes a substrate forming step of applying a polyamic acid solution on a support, heating to imidize, and forming an electronic element or the like on a polyimide film formed on the support Is also included. Moreover, the manufacturing method of this electronic device may further include the process of peeling the polyimide substrate in which the electronic element etc. were formed from the support body after the board | substrate formation process.

本願発明は以下の構成を有するものである。   The present invention has the following configuration.

1.一般式(1)で表される構成単位および一般式(2)で表される構成単位を含有することを特徴とするポリアミド酸:   1. Polyamic acid characterized by containing a structural unit represented by general formula (1) and a structural unit represented by general formula (2):

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

およびRは水素原子、アルキル基、ハロゲン原子、水酸基、カルボキシル基、およびアルコキシル基より選ばれる基であり、これらは同じでも異なっていてもよく、一般式(2)中のAは式(3)で表される構成単位、式(4)で表される構成単位、および式(5)で表される構成単位より選択されるいずれか1つである、酸二無水物由来の成分である。R 1 and R 2 are groups selected from a hydrogen atom, an alkyl group, a halogen atom, a hydroxyl group, a carboxyl group, and an alkoxyl group, which may be the same or different, and A in the general formula (2) is a formula The component derived from acid dianhydride, which is any one selected from the structural unit represented by (3), the structural unit represented by formula (4), and the structural unit represented by formula (5) It is.

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

2.前記式(1)で表される構成単位のモル数/前記式(2)で表される構成単位のモル数で表されるモル比が30/70〜99/1の範囲であることを特徴とする1に記載のポリアミド酸。   2. The molar ratio represented by the number of moles of the structural unit represented by the formula (1) / the number of moles of the structural unit represented by the formula (2) is in the range of 30/70 to 99/1. 2. The polyamic acid according to 1.

3.前記一般式(1)で表される構成単位が下記式(8)で表される構成単位であり、一般式(2)で表される構成単位が下記式(9)で表される構成単位であることを特徴とする1または2に記載のポリアミド酸。   3. The structural unit represented by the general formula (1) is a structural unit represented by the following formula (8), and the structural unit represented by the general formula (2) is represented by the following formula (9). 3. The polyamic acid according to 1 or 2, which is

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

4.1〜3のいずれかに記載のポリアミド酸と有機溶媒とを含有するポリアミド酸溶液。   The polyamic acid solution containing the polyamic acid in any one of 4.1-3, and an organic solvent.

5.前記有機溶媒が、アミド系溶媒、ケトン系溶媒、エステル系溶媒及びエーテル系溶媒から選択される少なくとも1つを含んでいることを特徴とする4に記載のポリアミド酸溶液。   5. 5. The polyamic acid solution according to 4, wherein the organic solvent contains at least one selected from an amide solvent, a ketone solvent, an ester solvent, and an ether solvent.

6.4または5に記載のポリアミド酸溶液を支持体に塗工して得られたことを特徴とするポリイミド。   A polyimide obtained by applying the polyamic acid solution described in 6.4 or 5 to a support.

7.1〜3のいずれかに記載のポリアミド酸をイミド化することにより得られることを特徴とするポリイミド。   7.1 A polyimide obtained by imidizing the polyamic acid according to any one of 1 to 3.

8.一般式(6)で表される構成単位および一般式(7)で表される構成単位を含有することを特徴とするポリイミド:   8). Polyimide comprising the structural unit represented by the general formula (6) and the structural unit represented by the general formula (7):

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

R1およびR2は水素原子、アルキル基、ハロゲン原子、水酸基、カルボキシル基、およびアルコキシル基より選ばれる基であり、これらは同じでも異なっていてもよく、一般式(7)中のAは式(3)で表される構成単位、式(4)で表される構成単位、および式(5)で表される構成単位より選択されるいずれか1つである、酸二無水物由来の成分である。   R1 and R2 are groups selected from a hydrogen atom, an alkyl group, a halogen atom, a hydroxyl group, a carboxyl group, and an alkoxyl group, which may be the same or different, and A in the general formula (7) is represented by the formula (3 ), A structural unit represented by formula (4), and a structural unit represented by formula (5), which is a component derived from acid dianhydride. .

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

9.前記式(6)で表わされる構成単位のモル数/前記式(7)で表される構成単位のモル数で表されるモル比が30/70〜99/1の範囲であることを特徴とする8に記載のポリイミド。   9. The molar ratio represented by the number of moles of the structural unit represented by the formula (6) / the number of moles of the structural unit represented by the formula (7) is in the range of 30/70 to 99/1. 8. The polyimide according to 8.

10.前記一般式(6)で表される構成単位が下記式(10)で表される構成単位であり、前記一般式(7)で表される構成単位が下記式(11)で表される構成単位であることを特徴とする8または9に記載のポリイミド。   10. The structural unit represented by the general formula (6) is a structural unit represented by the following formula (10), and the structural unit represented by the general formula (7) is represented by the following formula (11). The polyimide according to 8 or 9, which is a unit.

Figure 0005695276
Figure 0005695276

Figure 0005695276
Figure 0005695276

11.膜厚が10μmのときの波長400nmの光透過率が50%以上であることを特徴とする6〜10のいずれかに記載のポリイミド。   11. The polyimide according to any one of 6 to 10, wherein the light transmittance at a wavelength of 400 nm when the film thickness is 10 μm is 50% or more.

12.膜厚が10μmのときの100〜300℃における熱膨張係数が50ppm/K以下であることを特徴とする6〜11のいずれかに記載のポリイミド。   12 The polyimide according to any one of 6 to 11, wherein a coefficient of thermal expansion at 100 to 300 ° C. when the film thickness is 10 μm is 50 ppm / K or less.

13.面内の屈折率のうち最大のものをnx、最小のものをnyとし、厚み方向の屈折率をnzとしたとき、nx−ny<0.0010、且つ、(nx+ny)/2−nz<0.160の関係を満たすことを特徴とする6〜12のいずれかに記載のポリイミド。   13. Of the in-plane refractive indexes, nx is the largest and ny is the smallest, and nz is the refractive index in the thickness direction, and nx−ny <0.0010 and (nx + ny) / 2−nz <0. The polyimide according to any one of 6 to 12, which satisfies a relationship of .160.

14.ガラス転移温度が250℃以上であることを特徴とする6〜13のいずれかに記載のポリイミド。   14 Glass transition temperature is 250 degreeC or more, The polyimide in any one of 6-13 characterized by the above-mentioned.

15.6〜14のいずれかに記載のポリイミドを含有する基板。   The board | substrate containing the polyimide in any one of 15.6-14.

16.6〜14のいずれかに記載のポリイミドを含有する光学材料。   The optical material containing the polyimide in any one of 16.6-14.

17.6〜14のいずれかに記載のポリイミドを含有する画像表示装置。   The image display apparatus containing the polyimide in any one of 17.6-14.

18.6〜14のいずれかに記載のポリイミドを含有する電子デバイス材料。   Electronic device material containing the polyimide in any one of 18.6-14.

(評価方法)
本明細書中に記載の材料特性値等は以下の評価法によって得られたものである。
(Evaluation method)
The material characteristic values and the like described in the present specification are obtained by the following evaluation methods.

(1)ポリアミド酸の分子量
表1の条件にて重量平均分子量(Mw)を求めた。評価結果を表2に示す。
(1) Molecular Weight of Polyamic Acid The weight average molecular weight (Mw) was determined under the conditions shown in Table 1. The evaluation results are shown in Table 2.

Figure 0005695276
Figure 0005695276

(2)ポリイミド膜の透過率
日本分光社製紫外可視近赤外分光光度計(V−650)を用いて、ポリイミド膜の200−800nmにおける光透過率を測定し、400nmの波長における光透過率を指標として用いた。また、透過率が0.5%以下となる波長(カットオフ波長)も求めた。
(2) Transmittance of polyimide film Using a UV-Vis near-infrared spectrophotometer (V-650) manufactured by JASCO Corporation, the transmittance of the polyimide film at 200 to 800 nm is measured, and the transmittance at a wavelength of 400 nm is measured. Was used as an index. Further, the wavelength (cutoff wavelength) at which the transmittance was 0.5% or less was also determined.

(3)フィルムの線熱膨張係数(CTE)
線熱膨張係数の測定は、セイコー電子(株)社製TMA120Cを用いて(サンプルサイズ 幅3mm、長さ10mm、膜厚を測定し、フィルムの断面積を算出)、荷重3gfとし10℃/minで10℃から340℃まで一旦昇温させた後、10℃まで冷却し、さらに340℃まで10℃/minで昇温したときの、2回目の昇温時の100〜300℃における単位温度あたりの試料の歪の変化量から線膨張係数を求めた。
(3) Coefficient of linear thermal expansion (CTE) of film
The linear thermal expansion coefficient was measured using a TMA120C manufactured by Seiko Electronics Co., Ltd. (sample size: width 3 mm, length 10 mm, film thickness was measured to calculate the cross-sectional area of the film), and the load was 3 gf and 10 ° C./min. Per unit temperature at 100 to 300 ° C. during the second temperature increase when the temperature is once raised from 10 ° C. to 340 ° C., cooled to 10 ° C., and further heated to 340 ° C. at 10 ° C./min. The linear expansion coefficient was determined from the amount of change in strain of the sample.

(4)ポリイミド膜のガラス転移温度(Tg)
セイコー電子(株)社製TMA120Cを用いて(サンプルサイズ 幅3mm、長さ10mm、膜厚を測定し、フィルムの断面積を算出)、荷重3gとし10℃/minで10〜400℃まで昇温させたたときのフィルムの歪の変化量を測定し、この変化量の変曲点の温度をガラス転移温度とした。
(4) Glass transition temperature (Tg) of polyimide film
Using TMA120C manufactured by Seiko Electronics Co., Ltd. (sample size: width 3 mm, length 10 mm, film thickness is measured and film cross-sectional area is calculated), the load is 3 g and the temperature is raised to 10-400 ° C. at 10 ° C./min. The amount of change in strain of the film when measured was measured, and the temperature at the inflection point of this amount of change was taken as the glass transition temperature.

(5)ポリイミド膜の全光線透過率
日本電色工業製積分球式ヘイズメーター300Aにより、JIS K7105−1981記載の方法により測定した。
(5) Total light transmittance of polyimide film: Measured by Nippon Denshoku Industries Co., Ltd. integrating sphere haze meter 300A according to the method described in JIS K7105-1981.

(6)ポリイミド膜のヘイズ
日本電色工業製積分球式ヘイズメーター300Aにより、JIS K7105−1981記載の方法により測定した。
(6) Haze of polyimide film Measured by a method described in JIS K7105-1981 using an integrating sphere haze meter 300A manufactured by Nippon Denshoku Industries Co., Ltd.

(7)位相差測定
シンテック社製位相差計:OPTIPROにて、測定波長590nmにおける正面位相差および厚み位相差の値を測定した。その値を用いて、nx-nyおよび(nx+ny)/2−nzを算出した。ここで、nx、ny、nzは、面内の屈折率のうち最大のものをnx、最小のものをny、厚み方向の屈折率をnzと定義した。
(7) Phase difference measurement A phase difference meter manufactured by Shintech Co., Ltd .: The values of front phase difference and thickness phase difference at a measurement wavelength of 590 nm were measured with OPTIPRO. Using the values, nx-ny and (nx + ny) / 2-nz were calculated. Here, nx, ny, and nz are defined as nx, the smallest one in the in-plane refractive index, ny, and the refractive index in the thickness direction as nz.

(8)ガラス密着性評価
ポリアミド酸溶液を150×150×0.7mmの無アルカリガラスに塗工し、空気中60℃で30分乾燥後、窒素雰囲気下で6.5℃/minの速度で350℃まで昇温し、さらに350℃で2時間乾燥することによってポリイミド膜を製膜した。なお、ポリイミド膜の膜厚は10μmとなるようにした。このときのポリイミド膜のガラスからの剥離または浮きの様子を観察した。ポリイミド膜のガラスからの剥離または浮きの様子の観察は、150×150mmのポリイミド膜に存在する、泡状の、ガラスからの剥離箇所が何点あるかを数えることにより行った。なお、ここで、上記剥離箇所としては、長辺が5mm以上のもののみを数えるものとする。支持体とポリイミドとの間の密着性の評価基準は以下のようにした。
5:剥離箇所無
4:剥離箇所が1〜2点
3:剥離箇所が3〜5点
2:剥離箇所が5点以上または塗工面積の25%以上が剥離
1:塗工面積の50%以上が剥離
(実施例1)
<ポリアミド酸の重合>
ステンレス製撹拌棒を備えた撹拌機、窒素導入管を備えた、500mLのガラス製セパラブルフラスコにトランス−1,4−シクロヘキサンジアミン(以下、CHDAと称することもある)7.8gを入れ、重合用の有機溶媒として脱水したN,N−ジメチルアセトアミド(以下、DMACと称することもある)120.0gを仕込み攪拌した後、この溶液に、3,3’、4,4‘−ビフェニルテトラカルボン酸無水物(以下、BPDAと称することもある)16.0gと、9,9−ビス(3,4−ジカルボキシフェニル)フルオレン酸二無水物(以下、BPAFと称することがある)6.2gを同時に加え、120℃で5分加熱し、その後冷却し、室温(23℃)で5時間攪拌し、ポリアミド酸を得た。各モノマーの仕込み比率は、CHDAを100mol%としたとき、BPDA:80mol%、BPAF:20mol%となっていた。なお、この反応溶液におけるジアミン化合物及びテトラカルボン酸二無水物の仕込み濃度は、全反応液に対して20重量%となっていた。またポリアミド酸の重量平均分子量(Mw)は30,000であった。
(8) Evaluation of glass adhesion The polyamic acid solution was applied to 150 × 150 × 0.7 mm non-alkali glass, dried in air at 60 ° C. for 30 minutes, and then at a rate of 6.5 ° C./min in a nitrogen atmosphere. The temperature was raised to 350 ° C. and further dried at 350 ° C. for 2 hours to form a polyimide film. The film thickness of the polyimide film was set to 10 μm. The state of peeling or floating of the polyimide film from the glass at this time was observed. Observation of peeling or floating of the polyimide film from the glass was carried out by counting the number of foam-like peeled portions from the glass present in the 150 × 150 mm polyimide film. It should be noted that here, as the above-mentioned peeling portions, only those having a long side of 5 mm or more are counted. The evaluation criteria for the adhesion between the support and the polyimide were as follows.
5: No peeling location 4: 1 to 2 peeling locations 3: 3 to 5 peeling locations 2: 5 or more peeling locations or 25% or more of coating area 1 peeling: 50% or more coating area Peeling (Example 1)
<Polymerization of polyamic acid>
7.8 g of trans-1,4-cyclohexanediamine (hereinafter sometimes referred to as CHDA) is placed in a 500 mL glass separable flask equipped with a stirrer made of stainless steel and a nitrogen introduction tube, and polymerized. After dehydrating 120.0 g of dehydrated N, N-dimethylacetamide (hereinafter sometimes referred to as DMAC) as an organic solvent for use, 3,3 ′, 4,4′-biphenyltetracarboxylic acid was added to this solution. 16.0 g of an anhydride (hereinafter sometimes referred to as BPDA) and 6.2 g of 9,9-bis (3,4-dicarboxyphenyl) fluorinated dianhydride (hereinafter sometimes referred to as BPAF) Simultaneously added, heated at 120 ° C. for 5 minutes, then cooled, and stirred at room temperature (23 ° C.) for 5 hours to obtain polyamic acid. The charging ratio of each monomer was BPDA: 80 mol% and BPAF: 20 mol% when CHDA was 100 mol%. In addition, the preparation density | concentration of the diamine compound and tetracarboxylic dianhydride in this reaction solution was 20 weight% with respect to all the reaction liquids. The weight average molecular weight (Mw) of the polyamic acid was 30,000.

<ポリイミド膜の作製>
重合したポリアミド酸溶液をバーコーターでガラス板上にて塗布し、空気中で60℃で30分、窒素雰囲気下で350℃で1時間乾燥させ、膜厚10μmのポリイミド膜を得た。得られたポリイミド膜の400nmにおける透過率は80%、(nx+ny)/2−nzは0.043、CTEは33ppm/K、ガラス転移温度は367℃であった。また、重合したポリアミド酸溶液を用いて行ったポリイミド膜のガラス密着性評価の結果は5であった。ポリイミド膜の評価結果を表2に示す。
<Preparation of polyimide film>
The polymerized polyamic acid solution was applied on a glass plate with a bar coater and dried in air at 60 ° C. for 30 minutes and in a nitrogen atmosphere at 350 ° C. for 1 hour to obtain a polyimide film having a thickness of 10 μm. The transmittance of the obtained polyimide film at 400 nm was 80%, (nx + ny) / 2-nz was 0.043, CTE was 33 ppm / K, and the glass transition temperature was 367 ° C. Moreover, the result of glass adhesion evaluation of the polyimide film performed using the polymerized polyamic acid solution was 5. Table 2 shows the evaluation results of the polyimide film.

Figure 0005695276
Figure 0005695276

(実施例2)
<ポリアミド酸の重合>
ステンレス製撹拌棒を備えた撹拌機、窒素導入管を備えた、500mLのガラス製セパラブルフラスコにCHDA7.2gを入れ、重合用の有機溶媒として脱水したDMAC120.0gを仕込み攪拌した後、この溶液に、BPDA11.2gとBPAF11.6gを同時に加え、120℃で5分加熱し、その後冷却し、室温(23℃)で5時間攪拌し、ポリアミド酸を得た。各モノマーの仕込み比率は、CHDAを100mol%としたとき、BPDA:60mol%、BPAF:40mol%となっていた。なお、この反応溶液におけるジアミン化合物及びテトラカルボン酸二無水物の仕込み濃度は、全反応液に対して20重量%となっていた。またポリアミド酸の重量平均分子量(Mw)は32,000であった。
(Example 2)
<Polymerization of polyamic acid>
After stirring 7.2 kg of CHDA in a 500 mL glass separable flask equipped with a stirrer with a stainless steel stir bar and a nitrogen introduction tube and dehydrating DMAC as an organic solvent for polymerization, this solution was stirred. 11.2 g of BPDA and 11.6 g of BPAF were simultaneously added, heated at 120 ° C. for 5 minutes, then cooled, and stirred at room temperature (23 ° C.) for 5 hours to obtain polyamic acid. The charging ratio of each monomer was BPDA: 60 mol% and BPAF: 40 mol%, when CHDA was 100 mol%. In addition, the preparation density | concentration of the diamine compound and tetracarboxylic dianhydride in this reaction solution was 20 weight% with respect to all the reaction liquids. The weight average molecular weight (Mw) of the polyamic acid was 32,000.

<ポリイミド膜の作製>
重合したポリアミド酸溶液をバーコーターでガラス板上にて塗布し、空気中で60℃で30分、窒素雰囲気下で350℃で1時間乾燥させ、膜厚10μmのポリイミド膜を得た。得られたポリイミド膜の400nmにおける透過率は82%、(nx+ny)/2−nzは0.018、CTEは46ppm/K、ガラス転移温度は365℃であった。また、重合したポリアミド酸溶液を用いて行ったポリイミド膜のガラス密着性評価の結果は5であった。ポリイミド膜の評価結果を表2に示す。
<Preparation of polyimide film>
The polymerized polyamic acid solution was applied on a glass plate with a bar coater and dried in air at 60 ° C. for 30 minutes and in a nitrogen atmosphere at 350 ° C. for 1 hour to obtain a polyimide film having a thickness of 10 μm. The transmittance of the obtained polyimide film at 400 nm was 82%, (nx + ny) / 2-nz was 0.018, CTE was 46 ppm / K, and the glass transition temperature was 365 ° C. Moreover, the result of glass adhesion evaluation of the polyimide film performed using the polymerized polyamic acid solution was 5. Table 2 shows the evaluation results of the polyimide film.

(実施例3)
<ポリアミド酸の重合>
ステンレス製撹拌棒を備えた撹拌機、窒素導入管を備えた、500mLのガラス製セパラブルフラスコにCHDA7.0gを入れ、重合用の有機溶媒として脱水したDMAC120.0gを仕込み攪拌した後、この溶液に、BPDA9.0g、BPAF14.0gを加え、120℃で5分加熱し、その後冷却し、室温(23℃)で5時間攪拌し、ポリアミド酸を得た。各モノマーの仕込み比率は、CHDAを100mol%としたとき、BPDA:50mol%、BPAF:50mol%となっていた。なお、この反応溶液におけるジアミン化合物及びテトラカルボン酸二無水物の仕込み濃度は、全反応液に対して20重量%となっていた。またポリアミド酸の重量平均分子量(Mw)は40,000であった。
(Example 3)
<Polymerization of polyamic acid>
A stirrer equipped with a stirrer made of stainless steel, a nitrogen separable flask equipped with a nitrogen introducing tube, 7.0 g of CHDA were charged, and 120.0 g of dehydrated DMAC as an organic solvent for polymerization was charged and stirred. BPDA 9.0g and BPAF 14.0g were added, and it heated at 120 degreeC for 5 minutes, cooled after that, and stirred at room temperature (23 degreeC) for 5 hours, and polyamic acid was obtained. The charging ratio of each monomer was BPDA: 50 mol% and BPAF: 50 mol%, when CHDA was 100 mol%. In addition, the preparation density | concentration of the diamine compound and tetracarboxylic dianhydride in this reaction solution was 20 weight% with respect to all the reaction liquids. The weight average molecular weight (Mw) of the polyamic acid was 40,000.

<ポリイミド膜の作製>
重合したポリアミド酸溶液をバーコーターでガラス板上にて塗布し、空気中で60℃で30分、窒素雰囲気下で350℃で1時間乾燥させ、膜厚10μmのポリイミド膜を得た。得られたポリイミド膜の400nmにおける透過率は82%、(nx+ny)/2−nzは0.011、CTEは47ppm/K、ガラス転移温度は365℃であった。また、重合したポリアミド酸溶液を用いて行ったポリイミド膜のガラス密着性評価の結果は5であった。ポリイミド膜の評価結果を表2に示す。
<Preparation of polyimide film>
The polymerized polyamic acid solution was applied on a glass plate with a bar coater and dried in air at 60 ° C. for 30 minutes and in a nitrogen atmosphere at 350 ° C. for 1 hour to obtain a polyimide film having a thickness of 10 μm. The transmittance of the obtained polyimide film at 400 nm was 82%, (nx + ny) / 2-nz was 0.011, CTE was 47 ppm / K, and the glass transition temperature was 365 ° C. Moreover, the result of glass adhesion evaluation of the polyimide film performed using the polymerized polyamic acid solution was 5. Table 2 shows the evaluation results of the polyimide film.

(実施例4)
<ポリアミド酸の重合>
ステンレス製撹拌棒を備えた撹拌機、窒素導入管を備えた、500mLのガラス製セパラブルフラスコにCHDA6.2gを入れ、重合用の有機溶媒としてDMAC170.0gを仕込み攪拌した後、この溶液にBPDA16.0gを加え、100℃で30分加熱し、その後室温で1時間撹拌した。その後、この溶液にCHDAを1.5g加え、さらにBPAF6.2gを加え、再度100℃で20分加熱し、その後冷却し、室温(23℃)で5時間攪拌し、ポリアミド酸を得た。各モノマーの仕込み比率は、CHDAを100mol%としたとき、BPDA:80mol%、BPAF:20mol%となっていた。なお、この反応溶液におけるジアミン化合物及びテトラカルボン酸二無水物の仕込み濃度は、全反応液に対して15重量%となっていた。またポリアミド酸の重量平均分子量(Mw)は45,000であった。
Example 4
<Polymerization of polyamic acid>
After putting 6.2 g of CHDA into a 500 mL glass separable flask equipped with a stirrer equipped with a stainless steel stir bar and a nitrogen introduction tube, 170.0 g of DMAC as an organic solvent for polymerization and stirring, BPDA 16 was added to this solution. 0.0 g was added, heated at 100 ° C. for 30 minutes, and then stirred at room temperature for 1 hour. Thereafter, 1.5 g of CHDA was added to this solution, and 6.2 g of BPAF was further added. The mixture was again heated at 100 ° C. for 20 minutes, then cooled, and stirred at room temperature (23 ° C.) for 5 hours to obtain polyamic acid. The charging ratio of each monomer was BPDA: 80 mol% and BPAF: 20 mol% when CHDA was 100 mol%. In addition, the preparation density | concentration of the diamine compound and tetracarboxylic dianhydride in this reaction solution was 15 weight% with respect to all the reaction liquids. The weight average molecular weight (Mw) of the polyamic acid was 45,000.

<ポリイミド膜の作製>
重合したポリアミド酸溶液を固形分濃度が10%になるようにDMACで希釈し、希釈した溶液をバーコーターでガラス板上にて塗布し、空気中で60℃で30分、窒素雰囲気下で350℃で1時間乾燥させ、膜厚10μmのポリイミド膜を得た。得られたポリイミド膜の400nmにおける透過率は78%、(nx+ny)/2−nzは0.073、CTEは27ppm/K、ガラス転移温度は365℃であった。また、固形分濃度が10%になるようにDMACで希釈したポリアミド酸溶液を用いて行ったポリイミド膜のガラス密着性評価の結果は5であった。ポリイミド膜の評価結果を表2に示す。
<Preparation of polyimide film>
The polymerized polyamic acid solution is diluted with DMAC so that the solid content concentration becomes 10%, and the diluted solution is coated on a glass plate with a bar coater, and is heated in air at 60 ° C. for 30 minutes and 350% in a nitrogen atmosphere. It was dried at 0 ° C. for 1 hour to obtain a polyimide film having a thickness of 10 μm. The transmittance of the obtained polyimide film at 400 nm was 78%, (nx + ny) / 2-nz was 0.073, CTE was 27 ppm / K, and the glass transition temperature was 365 ° C. Moreover, the result of glass adhesion evaluation of the polyimide film performed using the polyamic acid solution diluted with DMAC so that the solid content concentration becomes 10% was 5. Table 2 shows the evaluation results of the polyimide film.

(実施例5)
<ポリアミド酸の重合>
ステンレス製撹拌棒を備えた撹拌機、窒素導入管を備えた、500mLのガラス製セパラブルフラスコにCHDA3.5gを入れ、重合用の有機溶媒としてDMAC170.0gを仕込み攪拌した後、この溶液にBPDA9.0gを加え、100℃で30分加熱し、その後室温で1時間撹拌した。その後、この溶液にCHDAを3.5g加え、さらにBPAF14.0gを加え、再度100℃で20分加熱し、その後冷却し、室温(23℃)で5時間攪拌し、ポリアミド酸を得た。各モノマーの仕込み比率は、CHDAを100mol%としたとき、BPDA:50mol%、BPAF:50mol%となっていた。なお、この反応溶液におけるジアミン化合物及びテトラカルボン酸二無水物の仕込み濃度は、全反応液に対して15重量%となっていた。またポリアミド酸の重量平均分子量(Mw)は45,000であった。
(Example 5)
<Polymerization of polyamic acid>
A 500 mL glass separable flask equipped with a stirrer equipped with a stainless steel stir bar and a nitrogen inlet tube was charged with 3.5 g of CHDA, and 170.0 g of DMAC was charged as an organic solvent for polymerization and stirred, and then BPDA 9 0.0 g was added, heated at 100 ° C. for 30 minutes, and then stirred at room temperature for 1 hour. Thereafter, 3.5 g of CHDA was added to this solution, and 14.0 g of BPAF was further added, and again heated at 100 ° C. for 20 minutes, then cooled, and stirred at room temperature (23 ° C.) for 5 hours to obtain polyamic acid. The charging ratio of each monomer was BPDA: 50 mol% and BPAF: 50 mol%, when CHDA was 100 mol%. In addition, the preparation density | concentration of the diamine compound and tetracarboxylic dianhydride in this reaction solution was 15 weight% with respect to all the reaction liquids. The weight average molecular weight (Mw) of the polyamic acid was 45,000.

<ポリイミド膜の作製>
重合したポリアミド酸溶液を固形分濃度が10%になるようにDMACで希釈し、希釈した溶液をバーコーターでガラス板上にて塗布し、空気中で60℃で30分、窒素雰囲気下で350℃で1時間乾燥させ、膜厚10μmのポリイミド膜を得た。得られたポリイミド膜の400nmにおける透過率は79%、(nx+ny)/2−nzは0.044、CTEは36ppm/K、ガラス転移温度は365℃であった。また、固形分濃度が10%になるようにDMACで希釈したポリアミド酸溶液を用いて行ったポリイミド膜のガラス密着性評価の結果は5であった。ポリイミド膜の評価結果を表2に示す。
<Preparation of polyimide film>
The polymerized polyamic acid solution is diluted with DMAC so that the solid content concentration becomes 10%, and the diluted solution is coated on a glass plate with a bar coater, and is heated in air at 60 ° C. for 30 minutes and 350% in a nitrogen atmosphere. It was dried at 0 ° C. for 1 hour to obtain a polyimide film having a thickness of 10 μm. The transmittance of the obtained polyimide film at 400 nm was 79%, (nx + ny) / 2-nz was 0.044, CTE was 36 ppm / K, and the glass transition temperature was 365 ° C. Moreover, the result of glass adhesion evaluation of the polyimide film performed using the polyamic acid solution diluted with DMAC so that the solid content concentration becomes 10% was 5. Table 2 shows the evaluation results of the polyimide film.

(実施例6)
<ポリアミド酸の重合>
ステンレス製撹拌棒を備えた撹拌機、窒素導入管を備えた、500mLのガラス製セパラブルフラスコにCHDA8.3gを入れ、重合用の有機溶媒として脱水したDMAC170.0gを仕込み攪拌した後、この溶液に、BPDA21.3g、BPAF0.3gを加え、100℃で5分加熱し、その後冷却し、室温(23℃)で5時間攪拌し、ポリアミド酸を得た。各モノマーの仕込み比率は、CHDAを100mol%としたとき、BPDA:99mol%、BPAF:1mol%となっていた。なお、この反応溶液におけるジアミン化合物及びテトラカルボン酸二無水物の仕込み濃度は、全反応液に対して15重量%となっていた。またポリアミド酸の重量平均分子量(Mw)は50,000であった。
(Example 6)
<Polymerization of polyamic acid>
After stirring 8.3 g of CHDA into a 500 mL glass separable flask equipped with a stirrer with a stainless steel stir bar and a nitrogen introduction tube, and dehydrating 170.0 g of DMAC as an organic solvent for polymerization, this solution was stirred. 21.3 g of BPDA and 0.3 g of BPAF were added, heated at 100 ° C. for 5 minutes, then cooled, and stirred at room temperature (23 ° C.) for 5 hours to obtain polyamic acid. The charging ratio of each monomer was BPDA: 99 mol% and BPAF: 1 mol% when CHDA was 100 mol%. In addition, the preparation density | concentration of the diamine compound and tetracarboxylic dianhydride in this reaction solution was 15 weight% with respect to all the reaction liquids. The weight average molecular weight (Mw) of the polyamic acid was 50,000.

<ポリイミド膜の作製>
重合したポリアミド酸溶液を固形分濃度が10%になるようにDMACで希釈し、希釈した溶液をバーコーターでガラス板上にて塗布し、空気中で60℃で30分、窒素雰囲気下で350℃で1時間乾燥させ、膜厚10μmのポリイミド膜を得た。得られたポリイミド膜の400nmにおける透過率は74%、(nx+ny)/2−nzは0.120、CTEは11ppm/K、ガラス転移温度は360℃であった。また、固形分濃度が10%になるようにDMACで希釈したポリアミド酸溶液を用いて行ったポリイミド膜のガラス密着性評価の結果は3であった。ポリイミド膜の評価結果を表2に示す。
<Preparation of polyimide film>
The polymerized polyamic acid solution is diluted with DMAC so that the solid content concentration becomes 10%, and the diluted solution is coated on a glass plate with a bar coater, and is heated in air at 60 ° C. for 30 minutes and 350% in a nitrogen atmosphere. It was dried at 0 ° C. for 1 hour to obtain a polyimide film having a thickness of 10 μm. The transmittance of the obtained polyimide film at 400 nm was 74%, (nx + ny) / 2-nz was 0.120, CTE was 11 ppm / K, and the glass transition temperature was 360 ° C. Moreover, the result of the glass adhesiveness evaluation of the polyimide film performed using the polyamic acid solution diluted with DMAC so that the solid content concentration becomes 10% was 3. Table 2 shows the evaluation results of the polyimide film.

(実施例7)
<ポリアミド酸の重合>
ステンレス製撹拌棒を備えた撹拌機、窒素導入管を備えた、500mLのガラス製セパラブルフラスコにCHDA8.3gを入れ、重合用の有機溶媒として脱水したDMAC170.0gを仕込み攪拌した後、この溶液に、BPDA20.7g、BPAF1.0gを加え、100℃で5分加熱し、その後冷却し、室温(23℃)で5時間攪拌し、ポリアミド酸を得た。各モノマーの仕込み比率は、CHDAを100mol%としたとき、BPDA:97mol%、BPAF:3mol%となっていた。なお、この反応溶液におけるジアミン化合物及びテトラカルボン酸二無水物の仕込み濃度は、全反応液に対して15重量%となっていた。またポリアミド酸の重量平均分子量(Mw)は50,000であった。
(Example 7)
<Polymerization of polyamic acid>
After stirring 8.3 g of CHDA into a 500 mL glass separable flask equipped with a stirrer with a stainless steel stir bar and a nitrogen introduction tube, and dehydrating 170.0 g of DMAC as an organic solvent for polymerization, this solution was stirred. 20.7 g of BPDA and 1.0 g of BPAF were added, heated at 100 ° C. for 5 minutes, then cooled, and stirred at room temperature (23 ° C.) for 5 hours to obtain polyamic acid. The charging ratio of each monomer was BPDA: 97 mol% and BPAF: 3 mol% when CHDA was 100 mol%. In addition, the preparation density | concentration of the diamine compound and tetracarboxylic dianhydride in this reaction solution was 15 weight% with respect to all the reaction liquids. The weight average molecular weight (Mw) of the polyamic acid was 50,000.

<ポリイミド膜の作製>
重合したポリアミド酸溶液を固形分濃度が10%になるようにDMACで希釈し、希釈した溶液をバーコーターでガラス板上にて塗布し、空気中で60℃で30分、窒素雰囲気下で350℃で1時間乾燥させ、膜厚10μmのポリイミド膜を得た。得られたポリイミド膜の400nmにおける透過率は77%、(nx+ny)/2−nzは0.120、CTEは13ppm/K、ガラス転移温度は360℃であった。また、固形分濃度が10%になるようにDMACで希釈したポリアミド酸溶液を用いて行ったポリイミド膜のガラス密着性評価の結果は5であった。ポリイミド膜の評価結果を表2に示す。
<Preparation of polyimide film>
The polymerized polyamic acid solution is diluted with DMAC so that the solid content concentration becomes 10%, and the diluted solution is coated on a glass plate with a bar coater, and is heated in air at 60 ° C. for 30 minutes and 350% in a nitrogen atmosphere. It was dried at 0 ° C. for 1 hour to obtain a polyimide film having a thickness of 10 μm. The transmittance of the obtained polyimide film at 400 nm was 77%, (nx + ny) / 2-nz was 0.120, CTE was 13 ppm / K, and the glass transition temperature was 360 ° C. Moreover, the result of glass adhesion evaluation of the polyimide film performed using the polyamic acid solution diluted with DMAC so that the solid content concentration becomes 10% was 5. Table 2 shows the evaluation results of the polyimide film.

(実施例8)
<ポリアミド酸の重合>
ステンレス製撹拌棒を備えた撹拌機、窒素導入管を備えた、500mLのガラス製セパラブルフラスコにCHDA8.2gを入れ、重合用の有機溶媒として脱水したDMAC170.0gを仕込み攪拌した後、この溶液に、BPDA20.1g、BPAF1.7gを加え、100℃で5分加熱し、その後冷却し、室温(23℃)で5時間攪拌し、ポリアミド酸を得た。各モノマーの仕込み比率は、CHDAを100mol%としたとき、BPDA:95mol%、BPAF:5mol%となっていた。なお、この反応溶液におけるジアミン化合物及びテトラカルボン酸二無水物の仕込み濃度は、全反応液に対して15重量%となっていた。またポリアミド酸の重量平均分子量(Mw)は50,000であった。
(Example 8)
<Polymerization of polyamic acid>
A stirrer equipped with a stirrer made of stainless steel, and a 500 mL glass separable flask equipped with a nitrogen inlet tube were charged with 8.2 g of CHDA, and 170.0 g of dehydrated DMAC as an organic solvent for polymerization were charged and stirred. 20.1 g of BPDA and 1.7 g of BPAF were added, heated at 100 ° C. for 5 minutes, then cooled, and stirred at room temperature (23 ° C.) for 5 hours to obtain polyamic acid. The charging ratio of each monomer was BPDA: 95 mol% and BPAF: 5 mol% when CHDA was 100 mol%. In addition, the preparation density | concentration of the diamine compound and tetracarboxylic dianhydride in this reaction solution was 15 weight% with respect to all the reaction liquids. The weight average molecular weight (Mw) of the polyamic acid was 50,000.

<ポリイミド膜の作製>
重合したポリアミド酸溶液を固形分濃度が10%になるようにDMACで希釈し、希釈した溶液をバーコーターでガラス板上にて塗布し、空気中で60℃で30分、窒素雰囲気下で350℃で1時間乾燥させ、膜厚10μmのポリイミド膜を得た。得られたポリイミド膜の400nmにおける透過率は78%、(nx+ny)/2−nzは0.115、CTEは15ppm/K、ガラス転移温度は362℃であった。また、固形分濃度が10%になるようにDMACで希釈したポリアミド酸溶液を用いて行ったポリイミド膜のガラス密着性評価の結果は5であった。ポリイミド膜の評価結果を表2に示す。
<Preparation of polyimide film>
The polymerized polyamic acid solution is diluted with DMAC so that the solid content concentration becomes 10%, and the diluted solution is coated on a glass plate with a bar coater, and is heated in air at 60 ° C. for 30 minutes and 350% in a nitrogen atmosphere. It was dried at 0 ° C. for 1 hour to obtain a polyimide film having a thickness of 10 μm. The transmittance of the obtained polyimide film at 400 nm was 78%, (nx + ny) / 2-nz was 0.115, CTE was 15 ppm / K, and the glass transition temperature was 362 ° C. Moreover, the result of glass adhesion evaluation of the polyimide film performed using the polyamic acid solution diluted with DMAC so that the solid content concentration becomes 10% was 5. Table 2 shows the evaluation results of the polyimide film.

(比較例1)
<ポリアミド酸の重合>
ステンレス製撹拌棒を備えた撹拌機、窒素導入管を備えた、500mLのガラス製セパラブルフラスコにCHDA8.3gを入れ、重合用の有機溶媒として脱水したDMAC120.0gを仕込み攪拌した後、この溶液に、BPDA21.6g、を加え、120℃で5分加熱し、その後冷却し、室温(23℃)で5時間攪拌し、ポリアミド酸を得た。なお、この反応溶液におけるジアミン化合物及びテトラカルボン酸二無水物の仕込み濃度は、全反応液に対して20重量%となっていた。またポリアミド酸の重量平均分子量(Mw)は45,000であった。
(Comparative Example 1)
<Polymerization of polyamic acid>
After stirring 8.3 g of CHDA in a 500 mL glass separable flask equipped with a stirrer with a stainless steel stir bar and a nitrogen introduction tube, and adding 120.0 g of dehydrated DMAC as an organic solvent for polymerization, this solution was stirred. 21.6 g of BPDA was added thereto, heated at 120 ° C. for 5 minutes, then cooled, and stirred at room temperature (23 ° C.) for 5 hours to obtain polyamic acid. In addition, the preparation density | concentration of the diamine compound and tetracarboxylic dianhydride in this reaction solution was 20 weight% with respect to all the reaction liquids. The weight average molecular weight (Mw) of the polyamic acid was 45,000.

<ポリイミド膜の作製>
重合したポリアミド酸溶液をバーコーターでガラス板上にて塗布し、空気中で60℃で30分、窒素雰囲気下で350℃で1時間乾燥させ、膜厚10μmのポリイミド膜を得た。得られたポリイミド膜の400nmにおける透過率は70%、(nx+ny)/2−nzは0.120、CTEは11ppm/K、ガラス転移温度は360℃であった。また、重合したポリアミド酸溶液を用いて行ったポリイミド膜のガラス密着性評価の結果は2であった。ポリイミド膜の評価結果を表2に示す。
<Preparation of polyimide film>
The polymerized polyamic acid solution was applied on a glass plate with a bar coater and dried in air at 60 ° C. for 30 minutes and in a nitrogen atmosphere at 350 ° C. for 1 hour to obtain a polyimide film having a thickness of 10 μm. The obtained polyimide film had a transmittance at 400 nm of 70%, (nx + ny) / 2-nz of 0.120, CTE of 11 ppm / K, and a glass transition temperature of 360 ° C. Moreover, the result of the glass adhesiveness evaluation of the polyimide film performed using the polymerized polyamic acid solution was 2. Table 2 shows the evaluation results of the polyimide film.

(比較例2)
<ポリアミド酸の重合>
ステンレス製撹拌棒を備えた撹拌機、窒素導入管を備えた、500mLのガラス製セパラブルフラスコにCHDA8.3gを入れ、重合用の有機溶媒として脱水したNMP120.0gを仕込み攪拌した後、この溶液に、BPDA21.6g、を加え、120℃で5分加熱し、その後冷却し、室温(23℃)で5時間攪拌し、ポリアミド酸を得た。なお、この反応溶液におけるジアミン化合物及びテトラカルボン酸二無水物の仕込み濃度は、全反応液に対して20重量%となっていた。またポリアミド酸の重量平均分子量(Mw)は45,000であった。
(Comparative Example 2)
<Polymerization of polyamic acid>
After stirring 8.3 g of CHDA into a 500 mL glass separable flask equipped with a stirrer with a stainless steel stir bar and a nitrogen inlet tube, and stirring 120.0 g of dehydrated NMP as an organic solvent for polymerization, this solution 21.6 g of BPDA was added thereto, heated at 120 ° C. for 5 minutes, then cooled, and stirred at room temperature (23 ° C.) for 5 hours to obtain polyamic acid. In addition, the preparation density | concentration of the diamine compound and tetracarboxylic dianhydride in this reaction solution was 20 weight% with respect to all the reaction liquids. The weight average molecular weight (Mw) of the polyamic acid was 45,000.

<ポリイミド膜の作製>
重合したポリアミド酸溶液をバーコーターでガラス板上にて塗布し、空気中で60℃で30分、窒素雰囲気下で350℃で1時間乾燥させ、膜厚10μmのポリイミド膜を得た。得られたポリイミド膜の400nmにおける透過率は49%、(nx+ny)/2−nzは0.160、CTEは7ppm/K、ガラス転移温度は360℃であった。また、重合したポリアミド酸溶液を用いて行ったポリイミド膜のガラス密着性評価の結果は2であった。ポリイミド膜の評価結果を表2に示す。
<Preparation of polyimide film>
The polymerized polyamic acid solution was applied on a glass plate with a bar coater and dried in air at 60 ° C. for 30 minutes and in a nitrogen atmosphere at 350 ° C. for 1 hour to obtain a polyimide film having a thickness of 10 μm. The transmittance of the obtained polyimide film at 400 nm was 49%, (nx + ny) / 2-nz was 0.160, CTE was 7 ppm / K, and the glass transition temperature was 360 ° C. Moreover, the result of the glass adhesiveness evaluation of the polyimide film performed using the polymerized polyamic acid solution was 2. Table 2 shows the evaluation results of the polyimide film.

(比較例3)
<ポリアミド酸の重合>
ステンレス製撹拌棒を備えた撹拌機、窒素導入管を備えた、500mLのガラス製セパラブルフラスコにCHDA6.0gを入れ、重合用の有機溶媒として脱水したDMAC120.0gを仕込み攪拌した後、この溶液に、BPAF24.0gを加え、室温(23℃)で5時間攪拌し、ポリアミド酸を得た。なお、この反応溶液におけるジアミン化合物及びテトラカルボン酸二無水物の仕込み濃度は、全反応液に対して20重量%となっていた。またポリアミド酸の重量平均分子量(Mw)は62,000であった。
(Comparative Example 3)
<Polymerization of polyamic acid>
After stirring 6.00 g of CHDA in a 500 mL glass separable flask equipped with a stirrer equipped with a stainless steel stir bar and a nitrogen introduction tube, 120.0 g of dehydrated DMAC as an organic solvent for polymerization was added, and the solution was stirred. BPAF (24.0 g) was added thereto and stirred at room temperature (23 ° C.) for 5 hours to obtain a polyamic acid. In addition, the preparation density | concentration of the diamine compound and tetracarboxylic dianhydride in this reaction solution was 20 weight% with respect to all the reaction liquids. The weight average molecular weight (Mw) of the polyamic acid was 62,000.

<ポリイミド膜の作製>
重合したポリアミド酸溶液をバーコーターでガラス板上にて塗布し、空気中で60℃で30分、窒素雰囲気下で350℃で1時間乾燥させ、膜厚10μmのポリイミド膜を得た。得られたポリイミド膜の400nmにおける透過率は83%、(nx+ny)/2−nzは0.001、CTEは52ppm/K、ガラス転移温度は376℃であった。また、重合したポリアミド酸溶液を用いて行ったポリイミド膜のガラス密着性評価の結果は5であった。ポリイミド膜の評価結果を表2に示す。
<Preparation of polyimide film>
The polymerized polyamic acid solution was applied on a glass plate with a bar coater and dried in air at 60 ° C. for 30 minutes and in a nitrogen atmosphere at 350 ° C. for 1 hour to obtain a polyimide film having a thickness of 10 μm. The transmittance of the obtained polyimide film at 400 nm was 83%, (nx + ny) / 2-nz was 0.001, CTE was 52 ppm / K, and the glass transition temperature was 376 ° C. Moreover, the result of glass adhesion evaluation of the polyimide film performed using the polymerized polyamic acid solution was 5. Table 2 shows the evaluation results of the polyimide film.

(比較例4)
<ポリアミド酸の重合>
ステンレス製撹拌棒を備えた撹拌機、窒素導入管を備えた、500mLのガラス製セパラブルフラスコに4,4´−ジアミノジフェニルエーテル(以下、4,4´−ODAと称することがある)13.6gを入れ、重合用の有機溶媒として脱水したDMAC120.0gを仕込み攪拌した後、この溶液に、BPAF3.1g、ピロメリット酸無水物(以下、PMDAと称することがある)13.3gを加え、室温(23℃)で5時間攪拌し、ポリアミド酸を得た。各モノマーの仕込み比率は、4,4´−ODAを100mol%としたとき、PMDA:90mol%、BPAF:10mol%となっていた。なお、この反応溶液におけるジアミン化合物及びテトラカルボン酸二無水物の仕込み濃度は、全反応液に対して20重量%となっていた。またポリアミド酸の重量平均分子量(Mw)は50,000であった。
(Comparative Example 4)
<Polymerization of polyamic acid>
A stirrer equipped with a stainless steel stir bar and a 500 mL glass separable flask equipped with a nitrogen inlet tube, 13.6 g of 4,4′-diaminodiphenyl ether (hereinafter sometimes referred to as 4,4′-ODA) After adding 120.0 g of dehydrated DMAC as an organic solvent for polymerization and stirring, 3.1 g of BPAF and 13.3 g of pyromellitic acid anhydride (hereinafter sometimes referred to as PMDA) were added to this solution at room temperature. The mixture was stirred at 23 ° C. for 5 hours to obtain polyamic acid. The charging ratio of each monomer was PMDA: 90 mol% and BPAF: 10 mol%, when 4,4′-ODA was 100 mol%. In addition, the preparation density | concentration of the diamine compound and tetracarboxylic dianhydride in this reaction solution was 20 weight% with respect to all the reaction liquids. The weight average molecular weight (Mw) of the polyamic acid was 50,000.

<ポリイミド膜の作製>
重合したポリアミド酸溶液をバーコーターでガラス板上にて塗布し、空気中で60℃で30分、窒素雰囲気下で350℃で1時間乾燥させ、膜厚10μmのポリイミド膜を得た。得られたポリイミド膜の400nmにおける透過率は0%、(nx+ny)/2−nzは0.048、CTEは41ppm/K、ガラス転移温度は375℃であった。また、重合したポリアミド酸溶液を用いて行ったポリイミド膜のガラス密着性評価の結果は5であった。ポリイミド膜の評価結果を表2に示す。
<Preparation of polyimide film>
The polymerized polyamic acid solution was applied on a glass plate with a bar coater and dried in air at 60 ° C. for 30 minutes and in a nitrogen atmosphere at 350 ° C. for 1 hour to obtain a polyimide film having a thickness of 10 μm. The obtained polyimide film had a transmittance at 400 nm of 0%, (nx + ny) / 2-nz of 0.048, CTE of 41 ppm / K, and a glass transition temperature of 375 ° C. Moreover, the result of glass adhesion evaluation of the polyimide film performed using the polymerized polyamic acid solution was 5. Table 2 shows the evaluation results of the polyimide film.

(比較例5)
<ポリアミド酸の重合>
ステンレス製撹拌棒を備えた撹拌機、窒素導入管を備えた、500mLのガラス製セパラブルフラスコにp−フェニレンジアミン(以下、PDAと称することがある)1.1gを入れ、重合用の有機溶媒として脱水したDMAC120.0gを仕込み攪拌した後、この溶液に、PMDA2.2gを加え、1時間撹拌した。その後、4,4´−ODA11.9gを加えて撹拌し、さらにPMDA9.1g、BPDA4.1g、BPAF1.6gを加えて室温(23℃)で5時間攪拌し、ポリアミド酸を得た。PDAと4,4´−ODAを合わせて100mol%としたとき、PMDA:75mol%、BPDA:20mol%、BPAF:5mol%となっていた。なお、この反応溶液におけるジアミン化合物及びテトラカルボン酸二無水物の仕込み濃度は、全反応液に対して20重量%となっていた。またポリアミド酸の重量平均分子量(Mw)は50,000であった。
(Comparative Example 5)
<Polymerization of polyamic acid>
1.1 g of p-phenylenediamine (hereinafter sometimes referred to as PDA) is placed in a 500 mL glass separable flask equipped with a stirrer made of stainless steel and a nitrogen introduction tube, and is used as an organic solvent for polymerization. After adding 120.0 g of dehydrated DMAC and stirring, PMDA 2.2 g was added to this solution and stirred for 1 hour. Thereafter, 11.9 g of 4,4′-ODA was added and stirred, and 9.1 g of PMDA, 4.1 g of BPDA and 1.6 g of BPAF were further added and stirred at room temperature (23 ° C.) for 5 hours to obtain a polyamic acid. When PDA and 4,4′-ODA were combined to make 100 mol%, PMDA: 75 mol%, BPDA: 20 mol%, and BPAF: 5 mol%. In addition, the preparation density | concentration of the diamine compound and tetracarboxylic dianhydride in this reaction solution was 20 weight% with respect to all the reaction liquids. The weight average molecular weight (Mw) of the polyamic acid was 50,000.

<ポリイミド膜の作製>
重合したポリアミド酸溶液をバーコーターでガラス板上にて塗布し、空気中で60℃で30分、窒素雰囲気下で350℃で1時間乾燥させ、膜厚10μmのポリイミド膜を得た。得られたポリイミド膜の400nmにおける透過率は0%、(nx+ny)/2−nzは0.060、CTEは36ppm/K、ガラス転移温度は357℃であった。ポリイミド膜の評価結果を表2に示す。
<Preparation of polyimide film>
The polymerized polyamic acid solution was applied on a glass plate with a bar coater and dried in air at 60 ° C. for 30 minutes and in a nitrogen atmosphere at 350 ° C. for 1 hour to obtain a polyimide film having a thickness of 10 μm. The transmittance of the obtained polyimide film at 400 nm was 0%, (nx + ny) / 2-nz was 0.060, CTE was 36 ppm / K, and the glass transition temperature was 357 ° C. Table 2 shows the evaluation results of the polyimide film.

実施例1〜8に記載のポリイミドは、比較例1、2、4、5のポリイミドと比較して400nmでの透過率が70%を超えていて透明性が高く、ガラス密着性の評価値が3以上と良く、また(nx+ny)/2−nz<0.120と低い複屈折の値を有していた。さらに、実施例1〜8に記載のポリイミドは、比較例3のポリイミドと比較して50ppm/K以下の低い熱膨張係数を有していた。   The polyimides described in Examples 1 to 8 have a transmittance of more than 70% at 400 nm as compared with the polyimides of Comparative Examples 1, 2, 4, and 5, and the transparency is high. It was good as 3 or more, and had a low birefringence value of (nx + ny) / 2−nz <0.120. Furthermore, the polyimides described in Examples 1 to 8 had a low thermal expansion coefficient of 50 ppm / K or less as compared with the polyimide of Comparative Example 3.

本発明に係るポリアミド酸、ポリイミド、およびポリアミド酸溶液は、当該ポリイミド、または、当該ポリアミド酸を用いて製造されるポリイミドが、耐熱性、低熱膨張性、および透明性に加えて、低複屈折を有し、さらに、支持体とポリイミドとの間の密着性が良いことから、これらの特性が有効とされる分野および製品、例えば、印刷物、カラーフィルター、フレキシブルディスプレイ、光学フィルム、液晶表示装置、有機EL及び電子ペーパー等の画像表示装置、3−Dディスプレイ、タッチパネル、透明導電膜基板あるいは太陽電池への利用、さらには現在ガラスが使用されている部分の代替材料としての利用が期待される。   The polyamic acid, the polyimide, and the polyamic acid solution according to the present invention have low birefringence in addition to heat resistance, low thermal expansion, and transparency. In addition, since the adhesion between the support and the polyimide is good, the fields and products in which these characteristics are effective, for example, printed matter, color filters, flexible displays, optical films, liquid crystal display devices, organic It is expected to be used for an image display device such as EL and electronic paper, a 3-D display, a touch panel, a transparent conductive film substrate or a solar cell, and further used as an alternative material for a portion where glass is currently used.

1 支持体
2 ポリアミド酸溶液
1 Support 2 Polyamic Acid Solution

Claims (18)

一般式(1)で表される構成単位および一般式(2)で表される構成単位を含有することを特徴とするポリアミド酸:
Figure 0005695276
Figure 0005695276
およびRは水素原子、アルキル基、ハロゲン原子、水酸基、カルボキシル基、およびアルコキシル基より選ばれる基であり、RおよびRは同じでも異なっていてもよく、一般式(2)中のAは式(3)で表される構成単位、式(4)で表される構成単位、および式(5)で表される構成単位より選択されるいずれか1つである、酸二無水物由来の成分である。
Figure 0005695276
Figure 0005695276
Figure 0005695276
Polyamic acid characterized by containing a structural unit represented by general formula (1) and a structural unit represented by general formula (2):
Figure 0005695276
Figure 0005695276
R 1 and R 2 are groups selected from a hydrogen atom, an alkyl group, a halogen atom, a hydroxyl group, a carboxyl group, and an alkoxyl group, and R 1 and R 2 may be the same or different, and in the general formula (2) In which A is any one selected from the structural unit represented by formula (3), the structural unit represented by formula (4), and the structural unit represented by formula (5), It is a component derived from things.
Figure 0005695276
Figure 0005695276
Figure 0005695276
前記式(1)で表される構成単位のモル数/前記式(2)で表される構成単位のモル数
で表されるモル比が30/70〜99/1の範囲であることを特徴とする請求項1に記載のポリアミド酸。
The molar ratio represented by the number of moles of the structural unit represented by the formula (1) / the number of moles of the structural unit represented by the formula (2) is in the range of 30/70 to 99/1. The polyamic acid according to claim 1.
前記一般式(1)で表される構成単位が下記式(8)で表される構成単位であり、前記一般式(2)で表される構成単位が下記式(9)で表される構成単位であることを特徴とする請求項1または2に記載のポリアミド酸。
Figure 0005695276
Figure 0005695276
The structural unit represented by the general formula (1) is a structural unit represented by the following formula (8), and the structural unit represented by the general formula (2) is represented by the following formula (9). The polyamic acid according to claim 1, wherein the polyamic acid is a unit.
Figure 0005695276
Figure 0005695276
請求項1〜3のいずれか一項に記載のポリアミド酸と有機溶媒とを含有するポリアミド酸溶液。   The polyamic acid solution containing the polyamic acid as described in any one of Claims 1-3, and the organic solvent. 前記有機溶媒が、アミド系溶媒、ケトン系溶媒、エステル系溶媒及びエーテル系溶媒から選択される少なくとも1つを含んでいることを特徴とする請求項4に記載のポリアミド酸溶液。   The polyamic acid solution according to claim 4, wherein the organic solvent contains at least one selected from an amide solvent, a ketone solvent, an ester solvent, and an ether solvent. 請求項4または5に記載のポリアミド酸溶液を支持体に塗工して得られたことを特徴とするポリイミド。   A polyimide obtained by applying the polyamic acid solution according to claim 4 or 5 to a support. 請求項1〜3のいずれか一項に記載のポリアミド酸をイミド化することにより得られることを特徴とするポリイミド。   A polyimide obtained by imidizing the polyamic acid according to any one of claims 1 to 3. 一般式(6)で表される構成単位および一般式(7)で表される構成単位を含有することを特徴とするポリイミド:
Figure 0005695276
Figure 0005695276
R1およびR2は水素原子、アルキル基、ハロゲン原子、水酸基、カルボキシル基、およびアルコキシル基より選ばれる基であり、R1およびR2は同じでも異なっていてもよく、一般式(7)中のAは式(3)で表される構成単位、式(4)で表される構成単位、および式(5)で表される構成単位より選択されるいずれか1つである、酸二無水物由来の成分である。
Figure 0005695276
Figure 0005695276
Figure 0005695276
Polyimide comprising the structural unit represented by the general formula (6) and the structural unit represented by the general formula (7):
Figure 0005695276
Figure 0005695276
R1 and R2 are groups selected from a hydrogen atom, an alkyl group, a halogen atom, a hydroxyl group, a carboxyl group, and an alkoxyl group, R1 and R2 may be the same or different, and A in the general formula (7) is a formula The component derived from acid dianhydride, which is any one selected from the structural unit represented by (3), the structural unit represented by formula (4), and the structural unit represented by formula (5) It is.
Figure 0005695276
Figure 0005695276
Figure 0005695276
前記式(6)で表わされる構成単位のモル数/前記式(7)で表される構成単位のモル数
で表されるモル比が30/70〜99/1の範囲であることを特徴とする請求項8に記載のポリイミド。
The molar ratio represented by the number of moles of the structural unit represented by the formula (6) / the number of moles of the structural unit represented by the formula (7) is in the range of 30/70 to 99/1. The polyimide according to claim 8.
前記一般式(6)で表される構成単位が下記式(10)で表される構成単位であり、前記一般式(7)で表される構成単位が下記式(11)で表される構成単位であることを特徴とする請求項8または9に記載のポリイミド。
Figure 0005695276
Figure 0005695276
The structural unit represented by the general formula (6) is a structural unit represented by the following formula (10), and the structural unit represented by the general formula (7) is represented by the following formula (11). The polyimide according to claim 8 or 9, wherein the polyimide is a unit.
Figure 0005695276
Figure 0005695276
膜厚が10μmのときの波長400nmの光透過率が50%以上であることを特徴とする請求項6〜10のいずれか一項に記載のポリイミド。   The polyimide according to any one of claims 6 to 10, wherein the light transmittance at a wavelength of 400 nm when the film thickness is 10 µm is 50% or more. 膜厚が10μmのときの100〜300℃における熱膨張係数が50ppm/K以下であることを特徴とする請求項6〜11のいずれか一項に記載のポリイミド。   The polyimide according to any one of claims 6 to 11, wherein a thermal expansion coefficient at 100 to 300 ° C when the film thickness is 10 µm is 50 ppm / K or less. 面内の屈折率のうち最大のものをnx、最小のものをnyとし、厚み方向の屈折率をnzとしたとき、nx−ny<0.0010、且つ、(nx+ny)/2−nz<0.160の関係を満たすことを特徴とする請求項6〜12のいずれか一項に記載のポリイミド。   Of the in-plane refractive indexes, nx is the largest and ny is the smallest, and nz is the refractive index in the thickness direction, and nx−ny <0.0010 and (nx + ny) / 2−nz <0. The polyimide according to any one of claims 6 to 12, which satisfies a relationship of .160. ガラス転移温度が250℃以上であることを特徴とする請求項6〜13のいずれか一項に記載のポリイミド。   The polyimide according to claim 6, wherein the glass transition temperature is 250 ° C. or higher. 請求項6〜14のいずれか一項に記載のポリイミドを含有する基板。   The board | substrate containing the polyimide as described in any one of Claims 6-14. 請求項6〜14のいずれか一項に記載のポリイミドを含有する光学材料。   The optical material containing the polyimide as described in any one of Claims 6-14. 請求項6〜14のいずれか一項に記載のポリイミドを含有する画像表示装置。   The image display apparatus containing the polyimide as described in any one of Claims 6-14. 請求項6〜14のいずれか一項に記載のポリイミドを含有する電子デバイス材料。
The electronic device material containing the polyimide as described in any one of Claims 6-14.
JP2014523689A 2012-07-02 2013-06-25 Use of polyamic acid, polyimide, polyamic acid solution, and polyimide Active JP5695276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014523689A JP5695276B2 (en) 2012-07-02 2013-06-25 Use of polyamic acid, polyimide, polyamic acid solution, and polyimide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012148588 2012-07-02
JP2012148588 2012-07-02
PCT/JP2013/067370 WO2014007112A1 (en) 2012-07-02 2013-06-25 Polyamide acid, polyimide, polyamide acid solution, and use of polyimide
JP2014523689A JP5695276B2 (en) 2012-07-02 2013-06-25 Use of polyamic acid, polyimide, polyamic acid solution, and polyimide

Publications (2)

Publication Number Publication Date
JP5695276B2 true JP5695276B2 (en) 2015-04-01
JPWO2014007112A1 JPWO2014007112A1 (en) 2016-06-02

Family

ID=49881869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014523689A Active JP5695276B2 (en) 2012-07-02 2013-06-25 Use of polyamic acid, polyimide, polyamic acid solution, and polyimide

Country Status (6)

Country Link
US (1) US9353223B2 (en)
JP (1) JP5695276B2 (en)
KR (1) KR102009067B1 (en)
CN (1) CN104395376B (en)
TW (1) TWI549991B (en)
WO (1) WO2014007112A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201601946XA (en) 2013-09-27 2016-04-28 Toray Industries Polyimide precursor, polyimide resin film produced from said polyimide precursor, display element, optical element, light-receiving element, touch panel and circuit board each equipped with said polyimide resin film, organic el display, and methods respectively for producing organic el element and color filter
CN104910400B (en) * 2014-03-12 2020-03-13 日铁化学材料株式会社 Display device, method for manufacturing same, and polyimide film for display device
WO2016136597A1 (en) * 2015-02-24 2016-09-01 株式会社カネカ Method of manufacturing polyimide laminate and use thereof
US10752791B2 (en) * 2015-10-16 2020-08-25 Sumitomo Chemical Company, Limited Resin solution composition
JP7248394B2 (en) * 2017-09-29 2023-03-29 日鉄ケミカル&マテリアル株式会社 Polyimide film and metal-clad laminate
KR102350095B1 (en) 2018-01-03 2022-01-11 주식회사 엘지화학 Poly(amide-imide) copolymer film and preparation method of the same
CN112004858B (en) 2018-03-30 2023-06-30 株式会社钟化 Polyamic acid, polyamic acid solution, polyimide film, laminate, flexible device, and method for producing polyimide film
JP7355010B2 (en) 2018-06-22 2023-10-03 三菱ケミカル株式会社 Zeolite-containing polyimide resin composites, zeolite-containing polyimide resin precursor compositions, films, and electronic devices
KR102463960B1 (en) * 2018-06-22 2022-11-04 미쓰이 가가쿠 가부시키가이샤 Polyamic acid and varnish containing same, film, touch panel display, liquid crystal display, and organic EL display
JP7412094B2 (en) 2018-06-28 2024-01-12 旭化成株式会社 Polyimide precursor resin composition
KR102551047B1 (en) * 2019-02-01 2023-07-04 주식회사 엘지화학 Polyimide film, flexible substrate using same and flexible display comprising flexible substrate
JP2024503967A (en) * 2021-12-08 2024-01-30 エルジー・ケム・リミテッド Polyimide resin film, display device substrate using the same, and optical device
KR20240023948A (en) 2022-08-16 2024-02-23 에스케이이노베이션 주식회사 Polyimide composition, flexible smart window and method of fabricating flexible smart window

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306983A (en) * 2004-04-21 2005-11-04 Fuji Photo Film Co Ltd Optical film and image display device
JP2006206825A (en) * 2005-01-31 2006-08-10 Jfe Chemical Corp Aromatic polyimide resin precursor and aromatic polyimide resin
JP2007091701A (en) * 2005-08-31 2007-04-12 Jfe Chemical Corp Tetracarboxylic acid containing fluorenyl group and ester group, polyester imide precursor containing fluorenyl group, polyester imide containing fluorenyl group and method for producing the same
JP2010235641A (en) * 2009-03-30 2010-10-21 Sony Chemical & Information Device Corp Polyamic acid solution, polyimide, and optical device
WO2012011590A1 (en) * 2010-07-22 2012-01-26 宇部興産株式会社 Polyimide precursor, polyimide, and materials to be used in producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3972600B2 (en) * 2000-09-14 2007-09-05 ソニーケミカル&インフォメーションデバイス株式会社 Polyimide precursor, method for producing the same, and photosensitive resin composition
JP2009079165A (en) 2007-09-27 2009-04-16 Du Pont Toray Co Ltd Polyimide film
JP5332456B2 (en) 2008-09-29 2013-11-06 デクセリアルズ株式会社 Printed wiring board and manufacturing method thereof
JP5903789B2 (en) 2010-07-22 2016-04-13 宇部興産株式会社 Copolymer polyimide precursor and copolymer polyimide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306983A (en) * 2004-04-21 2005-11-04 Fuji Photo Film Co Ltd Optical film and image display device
JP2006206825A (en) * 2005-01-31 2006-08-10 Jfe Chemical Corp Aromatic polyimide resin precursor and aromatic polyimide resin
JP2007091701A (en) * 2005-08-31 2007-04-12 Jfe Chemical Corp Tetracarboxylic acid containing fluorenyl group and ester group, polyester imide precursor containing fluorenyl group, polyester imide containing fluorenyl group and method for producing the same
JP2010235641A (en) * 2009-03-30 2010-10-21 Sony Chemical & Information Device Corp Polyamic acid solution, polyimide, and optical device
WO2012011590A1 (en) * 2010-07-22 2012-01-26 宇部興産株式会社 Polyimide precursor, polyimide, and materials to be used in producing same

Also Published As

Publication number Publication date
WO2014007112A1 (en) 2014-01-09
CN104395376A (en) 2015-03-04
US20150183931A1 (en) 2015-07-02
KR102009067B1 (en) 2019-08-08
US9353223B2 (en) 2016-05-31
KR20150031434A (en) 2015-03-24
TWI549991B (en) 2016-09-21
CN104395376B (en) 2016-09-14
JPWO2014007112A1 (en) 2016-06-02
TW201410738A (en) 2014-03-16

Similar Documents

Publication Publication Date Title
JP5695276B2 (en) Use of polyamic acid, polyimide, polyamic acid solution, and polyimide
JP6010533B2 (en) Polyamide acid, polyimide, polyamide acid solution, polyimide solution, polyimide film obtained from these solutions, and use of polyimide film
JP7122437B2 (en) Polyimides, polyimide laminates and flexible device substrates
US10745519B2 (en) Polyimide resin, polyimide solution, film, and method for producing same
JP7157859B2 (en) Electronic device manufacturing method
JP2008297360A (en) Solvent-soluble polyimide resin
JP2012146905A (en) Utilization of soluble polyimide resin film
JP7527610B2 (en) Polyimide powder, polyimide varnish, polyimide film and polyimide porous film
JP6687442B2 (en) Utilization of polyamic acid, polyimide, polyamic acid solution, and polyimide
WO2019073972A1 (en) Polyimide resin and production method therefor, polyimide solution, and polyimide film and production method therefor
JP5675114B2 (en) Optical compensation film, optical compensation laminate, optical compensation polarizing plate, and liquid crystal display device
JP2019172746A (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film
JP7094296B2 (en) Polyimide resin and its manufacturing method, polyimide solution, and polyimide film and its manufacturing method
JPWO2005118686A1 (en) Soluble polyimide and optical compensation member using the same
JP2008031268A (en) Polyimide resin, polyimide resin layer by using the same and optical member
JP2007291151A (en) Polyimide resin, polyimide resin layer using the same and optical member
JP2009096967A (en) Polyimide resin solution for coating, polyimide resin layer using the same, optical compensation member, polarizing plate and liquid crystal display

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150205

R150 Certificate of patent or registration of utility model

Ref document number: 5695276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250