JP5690354B2 - 撮像光学系及び撮像装置 - Google Patents
撮像光学系及び撮像装置 Download PDFInfo
- Publication number
- JP5690354B2 JP5690354B2 JP2012540821A JP2012540821A JP5690354B2 JP 5690354 B2 JP5690354 B2 JP 5690354B2 JP 2012540821 A JP2012540821 A JP 2012540821A JP 2012540821 A JP2012540821 A JP 2012540821A JP 5690354 B2 JP5690354 B2 JP 5690354B2
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- lens
- lens group
- height
- imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims description 169
- 238000003384 imaging method Methods 0.000 title claims description 131
- 230000004075 alteration Effects 0.000 description 49
- 238000010586 diagram Methods 0.000 description 29
- 238000006243 chemical reaction Methods 0.000 description 26
- 230000014509 gene expression Effects 0.000 description 20
- 239000010410 layer Substances 0.000 description 19
- 230000035945 sensitivity Effects 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 238000005286 illumination Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 201000009310 astigmatism Diseases 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/34—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
- G02B9/58—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only arranged - + + -
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00096—Optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/04—Reversed telephoto objectives
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2407—Optical details
- G02B23/2423—Optical details of the distal end
- G02B23/243—Objectives for endoscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2476—Non-optical details, e.g. housings, mountings, supports
- G02B23/2484—Arrangements in relation to a camera or imaging device
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B37/00—Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
- G03B37/005—Photographing internal surfaces, e.g. of pipe
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Astronomy & Astrophysics (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Radiology & Medical Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Multimedia (AREA)
- Biophysics (AREA)
- Lenses (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
- Endoscopes (AREA)
Description
本発明は、固体撮像素子とともに用いられる広角系の撮像光学系に関し、詳しくは、最大像高に比べて外径を小さくし、かつ全長も短くした撮像光学系、さらにこの撮像光学系をイメージセンサとともに用いた撮像装置に関するものである。
CCD型あるいはCMOS型のイメージセンサを用いた各種の撮像装置が知られている。監視あるいは観察用途の撮像装置には、広角系の撮像光学系が多く利用される。また、携帯電話機などの携帯端末に内蔵される撮像装置や、内視鏡の先端部に組み込まれる撮像装置にはコンパクト化も必須の条件となる。例えば内視鏡では、挿入時における患者への負担を軽減するために、経口タイプのほかに経鼻タイプも実用化されている。そして、経口タイプのものでも先端挿入部の外径が9mm前後、経鼻タイプのものでは6mm未満まで細系化が進められ、これに伴って先端部に内蔵される撮像装置の小型化も不可欠になっている。
内視鏡の先端部には一般に長さが20〜30mm程度の円筒状の硬性部が設けられている。この先端硬性部の後端側に屈曲自在な湾曲部が設けられ、アングルノブを操作して先端硬性部の向きを変えることができる。この先端硬性部の内部に前述のイメージセンサと撮像光学系からなる撮像装置が組み込まれ、先端硬性部に設けられた対物窓を通して観察部位の画像が撮像される。先端硬性部には、さらにライトガイドファイバ、送気・送水チューブ、また鉗子チューブなどの各々の端部が連結され、それぞれ対応して設けられた開口を通して観察部位に照明を与え、対物窓の水洗や乾燥を行い、また適切な処置具により患部の治療やサンプル採取を行うことができるようになっている。
先端硬性部が長くなると、挿入時における患者への負担が増すだけでなく、狭い体腔内では可撓管部の屈曲操作に制約が加わる。このため、先端硬性部は細径化だけでなく短くすることも重要で、その内部の主要構成要素である撮像装置をできるだけ細く、かつ軸方向長さも短くする必要がある。例えば特許文献1で知られる内視鏡用の撮像光学系は、イメージセンサで撮像を行うことを前提に設計されている。この撮像光学系は、結像面の周辺部で主光線が斜めに入射することを許容し、撮像光学系自体の厚みを3.5〜4.7mmに抑え、また撮像光学系の最前面から結像面までの全長を4.2〜5.5mmに抑えながらも、画角(2ω)が略100°〜118°の広角化が図られている。
広角系の撮像光学系では絞りの前後で光線が広がるため、撮像光学系中の物体に最も近い入射面と、像面に最も近い出射面で光線が光軸から大きく離れる。したがって、撮像光学系の外径は物体に最も近いレンズ、または像面に最も近いレンズの外径に応じて決まるから、撮像光学系の細径化のためにはこれらのレンズの外径を小さく抑えることが必要になる。また、内視鏡先端部のように非常に限られた小さなスペースに撮像装置を組み込む場合には、できるだけサイズの大きいイメージセンサを利用し、撮像光学系にはイメージセンサの有効画面サイズと同等のイメージサイズをもつものが用いられる。そして、細径化を保ちつつ画像品質を高めるには、撮像光学系の外径もイメージサイズを越えない範囲で大きくすることが有利である。
以上の観点からは、特許文献1で知られる撮像光学系は、イメージサイズに相当する最大像高に対して外径が大きく、また光学系全体のレンズ厚(レンズ部分の光軸方向長さ)も大きいので細径化及び短縮化を要する最近の内視鏡には適していない。こうした事情は内視鏡に限らず、携帯電話機に代表される薄型の携帯情報端末(PDA:Personal Digital Assistants)等に組み込まれる撮像装置にも共通する。
本発明は上記背景を考慮してなされたもので、その目的は、必要とされるイメージサイズに対して最前面から結像面までの長さを短く抑え、かつ外径についてもイメージサイズに対して適切な範囲に収めた撮像光学系を提供し、またこの撮像光学系をイメージセンサと組み合わせた撮像装置を提供することにある。
本発明の撮像光学系は、物体側から順に、負の第1レンズ群、正の第2レンズ群、正の第3レンズ群、負の第4レンズ群から構成され、第2レンズ群と第3レンズ群との間に絞りが設けられ、絞りを挟んで凹凸・凸凹の対称形に構成される。そして、最大像高をIH、光学系全体のレンズ厚みsumとバックフォーカス長との和を光学系全長TL、前記最大像高IHに対する主光線の、最も物体側の面における入射高さをhF、最も像面側の面における出射高さをhR、第1レンズ群の焦点距離をf1としたとき、以下の(1)〜(5)式を満たすことが特徴である。
2.00 < TL/IH < 3.00 ・・・(1)
0.37 < hF/IH < 0.5 ・・・(2)
0.37 < hR/IH < 0.5 ・・・(3)
3.5 < |f1/IH| < 4.5 ・・・(4)
1.8 < sum/IH < 2.1 ・・・(5)
2.00 < TL/IH < 3.00 ・・・(1)
0.37 < hF/IH < 0.5 ・・・(2)
0.37 < hR/IH < 0.5 ・・・(3)
3.5 < |f1/IH| < 4.5 ・・・(4)
1.8 < sum/IH < 2.1 ・・・(5)
上記(1)〜(5)式により、物体側の最前面から結像面までの光学系全長を短くし、最も物体側の第1レンズ群に入射する主光線の高さと最も像側の第4レンズ群から出射する主光線の高さとを最大像高に対して適切な範囲に収め、かつ同等の高さにそろえて撮像光学系の外径を抑えることができ、色収差を良好に補正する上で有利になる。また、各種収差を補正する上では、上記(1)式の下限値を2.211にすることが望ましい。
また、第1レンズ群を像側に凹面を向けた単レンズ、第4レンズ群を物体側に凹面を向けた単レンズとし、第2レンズ群と第3レンズ群との少なくとも一方については、一枚の正レンズと一枚の負レンズとを貼り合わせた接合レンズで構成することが、他の収差を抑えながら色収差を良好に補正することができ、具体的な実施形態として望ましい。さらに本発明は、上述の撮像光学系を裏面照射型CMOSセンサあるいは有機CMOSセンサのように、入射面への主光線の入射角が30°を越えても光電変換効率が大きく低下することのないイメージセンサと組み合わせた撮像装置として効果的に適用することができ、特に体腔内を撮像する内視鏡の先端部に組み込まれる撮像装置に有効である。
本発明の撮像光学系は、画角が100°を越える広角系であっても外径及び光学系の全長が共に小さく抑えられ、また色収差を含む諸収差が良好に補正され鮮明な画像の撮影が可能となるから、内視鏡の先端部や携帯型の情報端末機器に内蔵される撮像装置に効果的に用いることができる。
内視鏡の先端硬性部の概略断面を示す図1において、ステンレスなどの金属でつくられた円柱状の先端硬性部2の所要部には軸方向に貫通する穴が形成され、それぞれの穴には撮像装置3、ライトガイド4の先端、鉗子パイプ5の先端が固定されている。先端硬性部2の先端面を覆うようにキャップ6が固定され、キャップ6には先端硬性部2の穴に連通する開口が設けられている。開口7は撮像装置3の前面を露呈させる撮影窓となり、同様にライトガイド4の前面を露呈させる開口は照明窓となっている。また、送水パイプの前方にある開口にはノズル8が組み込まれ、撮像装置3の前面に洗浄水を吹きつけて洗浄することができるようにしている。
先端硬性部2の後端側には接続リング9を介して節輪構造部10が連結されている。詳細な図示は省略したが、内視鏡の手元操作部からの操作力がワイヤを通じて連結リング9まで伝達され、周知のようにその操作方向に応じて節輪構造部10が屈曲し、先端硬性部2の向きを自在に変えることができるようにしている。先端硬性部2,連結リング9、節輪構造部10の表面は柔軟な防水性の被覆カバー11で覆われている。
撮像装置3は、金属製の鏡筒本体12と、その内部に組み込まれた撮像光学系15とイメージセンサ16とから構成されている。鏡筒本体12は先端硬性部2に形成された穴を密封するように固定されている。鏡筒本体12の背面に露呈した接続端子群には同軸ケーブル17から引き出された信号線が接続され、それぞれイメージセンサ16を駆動するための駆動信号やイメージセンサ16から得られる撮像信号などの伝送に用いられる。
撮像装置3は、撮像光学系15の光軸15aに対してイメージセンサ16の入射面が垂直となった直視型で構成されている。撮像光学系15の最終面から出射する光線は、結像面(イメージセンサ16の入射面と一致する)に対して様々な角度で入射する。主光線で比較すれば、結像面の中央部に入射する主光線の入射角よりも結像面の周辺部に入射する主光線の入射角が大きくなる。なお、撮像光学系15の最終面から出射した光線をプリズムで屈曲させた後にイメージセンサ16に入射させる、いわゆる側視型の撮像装置でもこれらの事情は全く共通する。イメージセンサ16にはCCD型またはCMOS型のものを用いることができるが、消費電力や製造コストなどの点でCMOS型のものが多く用いられている。
本実施形態では、イメージセンサ16として有機光電変換膜で光電変換を行うCMOSイメージセンサ(以下、有機CMOSセンサという)が用いられている。この有機CMOSセンサは、例えば「FUJIFILM RESERCH & DEVELOPMENT 」(No.55-2010)などで知られ、図2Aに示す概略構造をもつ。比較のために、図2Bに裏面照射型(背面照射型)CMOSイメージセンサの概略構造を、図2Cに表面照射型のCMOSイメージセンサの概略構造を示す。これらの図では共通する構成部分には同符号が付されている。
マイクロカラーフィルタ層18は、青色(B光)透過フィルタと緑色(G光)透過フィルタと赤色(R光)透過フィルタとをベイヤー配列などの所定パターンで配列したもので、図中のPが一画素分のピクセルに相当する。有機CMOSセンサは読み出し回路(図示省略)が設けられた半導体基板19の上方に配線層20を設け、その上方に画素電極21、有機光電変換膜22、透明な対向電極23を有する構造である。配線層20は、画素電極24を介して画素単位に得られる撮像信号を読み出すためのスイッチング回路や増幅回路などの回路網を含む。これらの回路は配線層20中に設けられた接続部25によって電気的に接続される。対向電極23の上方には透明な保護層26が形成され、その上に前述したマイクロカラーフィルタ層18が積層されている。
図2Bの裏面照射型CMOSイメージセンサでは、半導体基板19中にシリコンフォトダイオードからなる光電変換部28が画素ごとに設けられ、その上方にパッシベーション膜29、マイクロカラーフィルタ層18を積層した構造となっている。さらに、マイクロカラーフィルタ層18を画素単位でマイクロレンズで覆うように、マイクロレンズアレイ30が重ねられる。撮像信号を画素単位で読み出すスイッチング回路等を含む配線層20は、光電変換部28の下方(光の入射面とは反対側)に設けられている。
図2Cに示す表面照射型CMOSイメージセンサでは、半導体基板19中にシリコンフォトダイオードからなる光電変換部28が設けられる。光電変換部28の上に配線層20、パッシベーション絶縁膜29、マイクロカラーフィルタ層18が設けられ、マイクロカラーフィルタ層18を画素単位で個々のマイクロレンズで覆うように、マイクロレンズアレイ30が重ねられている。
図2A及び図2Bから分るように、有機CMOSセンサと裏面照射型CMOSイメージセンサでは、光電変換のための受光面となる有機光電変換膜22あるいは光電変換部28の上面が配線層20の上方に位置している。このため、光の入射面となる最表面に接近して受光面が設けられるのに対し、図2Cに示す表面照射型CMOSイメージセンサでは受光面となる光電変換部28の上面が配線層20の下方に位置する。また、有機CMOSセンサでは光電変換部として機能する有機光電変換膜の厚みが0.5μmであるのに対し、裏面照射型CMOSイメージセンサおよび表面照射型CMOSイメージセンサではシリコンフォトダイオードからなる光電変換部の深さ方向の厚みが5μm程度である。
光電変換部の受光面を配線層20の上方に位置させることにより、表面照射型CMOSイメージセンサと比較して、有機CMOSセンサ及び裏面照射型CMOSイメージセンサは入射光束の損失が少なく感度が向上する。また、入射光が受光面に達する前に配線層20で蹴られるのを避けることができるため、光線が角度をもって入射した場合の感度劣化を抑えることができる。さらに、光電変換作用をもつ有機光電変換膜22あるいは光電変換部28の深さ方向の厚みTが薄くなれば、マイクロカラーフィルタ層18を垂直に透過してきた入射光はもとより、斜めに透過してきた入射光も隣接する画素の光電変換部28への漏光を抑えることができるようになり、混色の発生を改善することが可能となる。
一方、図2Bに示す裏面照射型CMOSセンサでは、混色の発生を防ぐために、斜めに入射してきた光がマイクロカラーフィルタ層18にできるだけ垂直に入射するようにマイクロレンズアレイ30を利用せざるを得ない。これに対し、図2Aの有機CMOSセンサでは光電変換の受光面となる有機光電変換膜22の上面がマイクロカラーフィルタ層18に近接していることからマイクロレンズアレイ30を省略しても混色が生じにくい。
また、図2B,図2Cに示す裏面照射型あるいは表面照射型CMOSイメージセンサでは、適切なマイクロレンズアレイ30を用いた場合でもマイクロカラーフィルタ層18の法線に対して30°以上の角度で入射してきた光線は、該当画素の光電変換部28に入射する割合が激減する。図3はその様子を相対感度で表したもので、光線の入射角0°が垂直入射に相当する。図3に符号M3で示す感度特性が従来の表面照射型CMOSイメージセンサのもので、光線の入射角が±20°程度になると垂直入射と比較して35%程度にまで低下し、±30°がほぼ限界となっている。
符号M2で示す感度特性が裏面照射型CMOSイメージセンサのものである。光線の入射角が±20°程度になると垂直入射と比較して感度は低下するものの、50%程度の感度は確保され、±30°でも25%程度の感度があり表面入射型CMOSイメージセンサよりも優れている。さらに、有機CMOSセンサは符号M1で示す感度特性を有し、理論限界となるコサインカーブM0とほぼ同等のレベルまで高い感度特性を示し、実用的には±45°近辺でも十分な感度を示していることが分かる。これは、上述の如く有機光電変換膜が光の入射面に接近し、かつ、その厚みが薄いという特長に依るものである。
上述のように、有機CMOSセンサの感度特性は裏面照射型CMOSイメージセンサよりも格段に優れており、かつ表面照射型CMOSイメージセンサに対しては圧倒的に優れている。感度特性としては有機CMOSセンサが最も優れてはいるが、実用的には入射角±30°の光線に対する相対的な感度が、垂直入射に対して20%を上回る感度特性があればよい。したがって、本発明の撮像装置3のイメージセンサ16として裏面照射型CMOSイメージセンサを用いることも可能である。これらのイメージセンサを用いることにより、結像面への主光線の最大入射角に対する制約が緩和されることになるため撮像光学系15の設計がしやすくなる。そして、イメージサイズに適した範囲内での光学系の細径化及び全長の短縮化、諸収差を抑えて高い結像性能を保つ上で有利となる。
また、従来型のCMOSイメージセンサは赤外領域にも感度を有するため、赤外カットフィルタを光学系内に組み込むのが一般となっている。一般的な多層膜を用いた赤外カットフィルタは、例えば図4に符号T0で示すように、垂直入射光に対する透過率の半値が650nm程度に設定された分光透過特性をもつ。ところが、斜め入射光に対しては波長シフトを生じ、20°入射ではT1、30°入射ではT2、40°入射ではT3と透過特性が変化する。したがって、入射角が小さい画面中央部分と入射角が大きくなる画面周辺部とで色味が変わる色シェーディングの問題が生じる。この色シェーディングの観点からも、従来型のCMOSイメージセンサでは結像面の周辺部に入射する主光線の入射角の最大値を25°〜30°に抑えておく必要があった。
この点、有機CMOSイメージセンサは、赤外領域での感度特性を図4に破線で示すように著しく低下させることが可能であり、必ずしも赤外カットフィルタを光学系中に組み込まなくても使用可能である。赤外カットフィルタを用いなければ結像面への光線の入射角の相違に伴う色シェーディングの問題も解消され、製造コストも抑えることができるようになり、撮像装置3のイメージセンサ16には有機CMOSセンサを用いるのが最適である。
撮像光学系15は鏡筒本体12にイメージセンサ16とともに組み込まれ、先端硬性部2に設けられている穴に嵌め込んで固定される。イメージセンサ16は、その光入射面が撮像光学系15の結像面と一致するように鏡筒本体12に組み込まれており、撮像光学系15によって結像される被写体像を撮像する。なお、撮像光学系15によって有効に結像される被写体像の最大像高(光軸15aからの距離)は1.5mmとなっている。
先端硬性部2をコンパクトにまとめることができるように、鏡筒本体12に組み込まれる撮像光学系15の外径は少なくともイメージセンサ16の外形輪郭内に収められる。また、全体的なレンズ厚みあるいは撮像光学系15の最前面から結像面までの距離も短く、しかも画像の品質も損なわれることがないようにレンズ構成が工夫されている。このようなレンズ構成としては、基本的には物体側から順に、負の第1レンズ群、正の第2レンズ群、正の第3レンズ群、負の第4レンズ群を配置するのが好適である。
そして、結像面における最大像高をIH、光学系全系のレンズ厚みと最終面から結像面までのバックフォーカス長との和である光学系全長をTL、最大像高IHに対する主光線の、最も物体側の面における光軸15aからの入射高さをhF、最も像側の面における出射高さをhRとしたとき、次の(1)〜(3)式を満たすことによって光学系全体のコンパクト化を図っている。
2.00 < TL/IH < 3.00 ・・・(1)
0.37 < hF/IH < 0.5 ・・・(2)
0.37 < hR/IH < 0.5 ・・・(3)
2.00 < TL/IH < 3.00 ・・・(1)
0.37 < hF/IH < 0.5 ・・・(2)
0.37 < hR/IH < 0.5 ・・・(3)
上記(1)式は、最前面のレンズの入射面から結像面までの全長TLの適切な範囲を示す。上記(2)式は、結像面における最大像高となる位置に向かう主光線が最初のレンズに入射するときの光軸15aからの高さの適切な範囲を示し、上記(3)式は、結像面における最大像高となる位置に向かう主光線が最後のレンズから出射するときの光軸15aからの高さの適切な範囲を示す。これらの範囲は結像面における最大像高で規格化され、最大像高1mmの場合における撮像光学系全長と、最大像高1mmの結像が得られるときの最大像高位置に向かう主光線の撮像光学系への入射高さ及び出射高さの適切な値の範囲を表す。
上記(1)式の上限を越えると光学系全長のコンパトクト化が不十分となり、下限を下回ると各種収差の補正が難しくなる。上記(2)、(3)式は、第1レンズ群、第4レンズ群の外径を規制するファクタに相当する。これらの上限を越えると最大像高に対して外径が大きくなり過ぎてコンパクト化に不利であり、下限を下回る場合には外径が小さくなり過ぎて光学面の面精度に厳しさが要求され、各レンズの製造コストが高くなりやすい。
さらに、上記撮像光学系3の第2レンズ群と第3レンズ群との間に絞りを設け、絞りを中心にパワー配分を対称にして色収差の補正を容易にし、また第1レンズ群の焦点距離をf1としたとき、
3.5 < |f1/IH| < 4.5・・・(4)
を満たすようにすることも有効である。上記(4)式の上限を越えると第1レンズ群の負のパワーが弱過ぎて広角化を図る場合には小型化が難しくなり、逆に下限を下回ると負のパワーが強過ぎて収差補正、特に像面倒れの補正が困難になる。
3.5 < |f1/IH| < 4.5・・・(4)
を満たすようにすることも有効である。上記(4)式の上限を越えると第1レンズ群の負のパワーが弱過ぎて広角化を図る場合には小型化が難しくなり、逆に下限を下回ると負のパワーが強過ぎて収差補正、特に像面倒れの補正が困難になる。
また、第1レンズ群の物体側の面から第4レンズ群の像側の面までのレンズ厚みをsumとしたとき、
1.8 < sum/IH < 2.1 ・・・(5)
を満たすことも効果的である。上記(5)式の上限を越えるとレンズ厚みが大きくなり過ぎて光学系全長を十分に短くすることができず、逆に下限を越えると非点収差の補正が難しくなる。さらに、色収差の補正を含め、各種の収差補正を考慮すれば、絞りを挟んで設けられている正パワーの第2レンズ群あるいは第3レンズ群の少なくとも一方は、正レンズと負レンズとを貼り合わせた接合レンズで構成することが望ましい。
1.8 < sum/IH < 2.1 ・・・(5)
を満たすことも効果的である。上記(5)式の上限を越えるとレンズ厚みが大きくなり過ぎて光学系全長を十分に短くすることができず、逆に下限を越えると非点収差の補正が難しくなる。さらに、色収差の補正を含め、各種の収差補正を考慮すれば、絞りを挟んで設けられている正パワーの第2レンズ群あるいは第3レンズ群の少なくとも一方は、正レンズと負レンズとを貼り合わせた接合レンズで構成することが望ましい。
以下、撮像光学系3の具体的な実施例1〜10のそれぞれについて、光学系データ、レンズ構成図、収差図を参照しながら説明する。レンズ構成を示す各図面においては、物体側から順に配列された第1レンズ群、第2レンズ群、絞り、第3レンズ群、第4レンズ群にそれぞれG1,G2,G3,G4の符号を付し、絞りは符号Sで、結像面は符号IPで示している。各実施例とも、第1群レンズからのパワー配分が凹、凸、凸、凹であり、絞りSが第2レンズ群と第3レンズ群との間に設けられた対称形となっている。また、第2レンズ群または第3レンズ群が接合レンズで構成された実施例については、接合された単レンズの個々にはG2a,G2b、またはG3a,G3bの符号を付した。なお、第1レンズ群G1及び第4レンズ群G4は単レンズで構成しているが、その少なくとも一方を接合レンズで構成してもよい。
光学系データは、物体側から順に付した面番号ごとに曲率半径r,面間隔dをmm単位で示し、また画角(°)及び出射角(°)以外の数値も同様にmm単位で示されている。収差図にあっては、球面収差図の符号F,d,CはそれぞれF線(486.1nm)、d線(587.6nm)、C線(656.3nm)の波長光に対する収差特性を示し、非点収差図の符号s,tは、それぞれサジタル,タンジェンシャルの収差特性を示す。なお、バック長BLは、物体距離が無限遠のときのレンズ最終面から結像面までの距離を表す。
また、一般の光学系と比較して内視鏡用の光学系は物体距離を短い状態にして用いるのが通常である。内視鏡の観察に適した所定の物体距離に光学系の最適ピント位置を合わせるために、イメージセンサを後方に移動して実際の結像面は後方にずらされ、したがって内視鏡用の光学系はバック長を物体距離無限遠の場合よりも長くした状態で用いられる。物体距離が短くなるほど結像面の後方へのずらし量は大きくなるが、そのおよその値は焦点距離の二乗を物体距離で割ったものとなる。各実施例の収差図は、物体距離10mmのものを示している。
光学系の全長TL、結像面の最大像高位置に入射する主光線の、第1レンズ群の入射面における入射位置の光軸からの高さを表す最前面入射高hFと、第4レンズ群の出射面における出射位置の光軸からの高さを表す最終面出射高hR、第1レンズ群の焦点距離f1の絶対値|f1|、さらに第1レンズ群の最前面から第4レンズ群の最終面までのレンズ厚sumについてはそれぞれ最大像高IHで規格化した値も示しており、これらについては「*TL」のように「*」を付して示した。
[実施例1]
図5に示すレンズ構成をもち、光学系データは表1のとおりである。表1に挙げた最前面入射高[hF]、最終面出射高[hR]及び最大像高IHは、図5に例示のようにそれぞれ光軸15aからの高さを表している。
図5に示すレンズ構成をもち、光学系データは表1のとおりである。表1に挙げた最前面入射高[hF]、最終面出射高[hR]及び最大像高IHは、図5に例示のようにそれぞれ光軸15aからの高さを表している。
この実施例1の光学系は、第2レンズ群G2と第3レンズ群G3に、それぞれ物体側から順に正レンズG2aと負レンズG2bとの接合レンズ、正レンズG3aと負レンズG3bとの接合レンズが用いられ、全体として4群6枚構成となっている。最大像高IHの1.500mmに対し、第1レンズ群G1の最前面から結像面IPまでの全長TLが3.351mm、レンズ厚sumが2.850mm、最前面入射高hFが0.598mm、最終面出射高hRが0.635mmであるから、撮像光学系15の外径を決める第1レンズ群G1、第4レンズ群G4の計算上の外径は1.5mmもあれば十分である。
したがって、3×3mm程度のイメージセンサ16の画面サイズに比して撮像光学系15の外径は十分に小さくなり、鏡筒本体12への組み込み適性や、第2レンズ群G2,第3レンズ群G3を含めた各レンズ群の製造適性などから有効径の外側にコバ部分を設けて実際の外径が大きくなることを考慮しても、内視鏡の先端硬性部2に組み込まれる広角系の撮像装置3に好適に用いることができる。
全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*sum」の各値は、前掲した(1)式、(2)式、(3)式、(5)式の条件を満たす。また、第1レンズ群G1の焦点距離f1を最大像高IHで規格化した「*|f1|」の値も式(4)の範囲内であるから、137°の画角2ωを確保しながらも、図6に示すように諸収差が良好に補正された撮像光学系が得られる。そして、内視鏡だけでなく広画角が要求される各種撮像装置の光学系に広く用いることができる。
[実施例2]
図7に示す4群5枚のレンズ構成を有し、その光学系データは次の表2に、収差特性は図8に示すとおりである。
図7に示す4群5枚のレンズ構成を有し、その光学系データは次の表2に、収差特性は図8に示すとおりである。
この光学系は、第3レンズ群G3に正レンズG3aと負レンズG3bとの接合レンズが用いられ、全体として4群5枚構成となっている。最大像高IHの1.5mmに対し、光学系全長TLが3.316mm、レンズ厚sumが2.85mm、最前面入射高hFが0.665mm、最終面出射高hRが0.669mmである。よって、先の実施例1と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)〜(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
[実施例3]
図9に示す4群5枚のレンズ構成をもち、その光学系データは次の表3に、収差特性は図10に示すとおりである。
図9に示す4群5枚のレンズ構成をもち、その光学系データは次の表3に、収差特性は図10に示すとおりである。
この光学系は、先の実施例2と同様に第3レンズ群G3に正レンズG3aと負レンズG3bとの接合レンズが用いられ、全体として4群5枚構成となっている。最大像高IHの1.5mmに対し、光学系全長TLが3.74mm、レンズ厚sumが2.86mm、最前面入射高hFが0.597mm、最終面出射高hRが0.553mmである。よって、これまでの実施例と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)〜(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
[実施例4]
図11に示す4群6枚のレンズ構成をもち、その光学系データは表4に、収差特性は図12に示すとおりである。
図11に示す4群6枚のレンズ構成をもち、その光学系データは表4に、収差特性は図12に示すとおりである。
この光学系は、第2レンズ群G2に負レンズG2aと正レンズG2bとの接合レンズを用い、また第3レンズ群G3には正レンズG3aと正レンズG3bとの接合レンズを用いた全体として4群6枚構成である。最大像高IHの1.5mmに対し、光学系全長TLが3.788mm、レンズ厚sumが2.87mm、最前面入射高hFが0.569mm、最終面出射高hRが0.561mmである。よって、これまでの実施例と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)〜(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
[実施例5]
図13に示す4群5枚のレンズ構成で、光学系データは次の表5に、収差特性は図14に示すとおりである。
図13に示す4群5枚のレンズ構成で、光学系データは次の表5に、収差特性は図14に示すとおりである。
この光学系は、第2レンズ群G2に正レンズG2aと負レンズG2bとの接合レンズが用いられ、また第3レンズ群G3にも正レンズG3aと負レンズG3bとの接合レンズが用いられた4群6枚構成である。最大像高IHの1.5mmに対し、光学系全長TLが3.638mm、レンズ厚sumが2.978mm、最前面入射高hFが0.680mm、最終面出射高hRが0.687mmである。よって、これまでの実施例と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)〜(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
[実施例6]
図15に示す4群6枚のレンズ構成で、その光学系データは次の表6に、また収差特性は図16に示すとおりである。
図15に示す4群6枚のレンズ構成で、その光学系データは次の表6に、また収差特性は図16に示すとおりである。
この光学系は、第2レンズ群G2に負レンズG2aと正レンズG2bとの接合レンズが用いられ、また第3レンズ群G3に正レンズG3aと負レンズG3bとの接合レンズが用いられた4群6枚構成である。最大像高IHの1.5mmに対し、光学系全長TLが3.903mm、レンズ厚sumが3.00mm、最前面入射高hFが0.628mm、最終面出射高hRが0.623mmである。よって、これまでの実施例と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)〜(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
[実施例7]
図17に示す4群5枚のレンズ構成で、光学系データは次の表7に、また収差特性は図18に示すとおりである。
図17に示す4群5枚のレンズ構成で、光学系データは次の表7に、また収差特性は図18に示すとおりである。
この光学系は、第3レンズ群G3に正レンズG3aと負レンズG3bとの接合レンズが用いられ、全体として4群5枚構成となっている。最大像高IHの1.5mmに対し、光学系全長TLが3.564mm、レンズ厚sumが2.83mm、最前面入射高hFが0.581mm、最終面出射高hRが0.663mmである。よって、これまでの実施例と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)〜(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
[実施例8]
図19に示す4群5枚のレンズ構成をもち、その光学系データは次の表8に、収差特性は図20に示すとおりである。
図19に示す4群5枚のレンズ構成をもち、その光学系データは次の表8に、収差特性は図20に示すとおりである。
この光学系は、第3レンズ群G3に正レンズG3aと負レンズG3bとの接合レンズが用いられ、全体として4群5枚構成となっている。最大像高IHの1.5mmに対し、光学系全長TLが3.831mm、レンズ厚sumが2.969mm、最前面入射高hFが0.624mm、最終面出射高hRが0.659mmである。よって、これまでの実施例と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)〜(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
[実施例9]
図21に示す4群6枚のレンズ構成をもち、その光学系データは次の表9に、各種の収差特性は図22に示すとおりである。
図21に示す4群6枚のレンズ構成をもち、その光学系データは次の表9に、各種の収差特性は図22に示すとおりである。
この光学系は、第2レンズ群G2に正レンズG2aと負レンズG2bとの接合レンズが用いられ、また第3レンズ群G3にも正レンズG3aと負レンズG3bとの接合レンズが用いられた4群6枚構成である。最大像高IHの1.50mmに対し、光学系全長TLが4.10mm、レンズ厚sumが3.00mm、最前面入射高hFが0.622mm、最終面出射高hRが0.580mmである。よって、これまでの実施例と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)〜(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
[実施例10]
図23に示す4群6枚のレンズ構成をもち、その光学系データは次の表10に、また各種の収差特性は図24に示すとおりである。
図23に示す4群6枚のレンズ構成をもち、その光学系データは次の表10に、また各種の収差特性は図24に示すとおりである。
この光学系は、第2レンズ群G2に正レンズG2aと負レンズG2bとの接合レンズが用いられ、また第3レンズ群G3にも正レンズG3aと負レンズG3bとの接合レンズが用いられた4群6枚構成である。最大像高IHの1.50mmに対し、光学系全長TLが4.045mm、レンズ厚sumが3.00mm、最前面入射高hFが0.646mm、最終面出射高hRが0.652mmである。よって、これまでの実施例と同様に全長及び外径が適切な範囲に収まり、内視鏡の観察光学系に適した広角系の撮像光学系を得ることができる。全長TL、最前面入射高hF、最終面出射高hR、レンズ厚sumの値をそれぞれ最大像高IHで規格化した「*TL」、「*hF」、「*hR」、「*|f1|」、「*sum」の各値もそれぞれ前掲した(1)〜(5)式の条件を満たし、イメージサイズに対して十分に小型化された撮像光学系が得られ、諸収差も良好に補正することができる。
なお、図25は比較例1を示すもので、これは先行技術文献として挙げた特公平6−48327号公報に記載された実施例1の光学系である。この比較例1は、上述してきた本発明の実施例1〜10と同様、物体側から順に配列された第1レンズ群G1、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4が凹凸凸凹のパワー配分をもつ4群構成である点、第2レンズ群G2と第3レンズ群G3との間に絞りSが設けられている点で共通する。また、この比較例1の撮像光学系の収差特性は図26のとおりである。
図25に示す比較例1の主要な光学系データを次の表11に示す。同表中、比較例2〜7として挙げた光学系データは、上記公報に実施例2〜7として記載された撮像光学系のものである。
表11から分かるとおり、最大像高IHが1.004〜1.2102の範囲で一定していないが、最大像高IHが本発明各実施例の最大像高1.500に比して低いのに対し、光学系の全長TL、レンズ厚sum、最前面入射高hF、最終面hRの値がいずれも本発明各実施例のものよりも大きい。したがってこれらの撮像光学系は、イメージサイズに対し、全長TL、レンズ厚sumがともに長く、外径もかなり大きくなっており、コンパクト化の点では不十分であることが分かる。
さらに、上記表11には各光学データを最大像高IHで規格化した値を[ ]中に示している。比較例1〜7の規格化されたこれらの値をみると「*TL」の値は3.526〜4.782の範囲で(1)式を満たしておらず、結像面サイズに対して光学系全長の短縮化が不十分であることが分かる。また、「*hF」の値はいずれも0.85以上であり、(2)式を満たしていない。「*hR」の値は最小のものが0.558であり、(3)式の条件は満たされないものの、その上限をわずかに越えただけで第4レンズ群G4の外径については小さくすることができる。しかし、この場合の「*hF」の値が0.878であるから、第1レンズ群G1についてはその外径を十分に小さくすることができず、撮像光学系全体の細径化を図ることはできない。同様に「*sum」の値も3.29を越える大きな値で(5)式は満たされておらず、レンズ厚みの薄型化が不十分である。
さらに、本発明の撮像光学系の特徴は出射角2δが大きいことにも現れている。各表の光学データ中に挙げた出射角2δは、第4レンズ群G4の像側の面から光軸15aに関して対称に出射する一対の主光線、特に、結像面IPにおいて光軸15に関して対称に位置する最大像高位置のそれぞれに向かって出射する一対の主光線の相互がなす角度を意味している。したがって、一の最大像高位置に向かう主光線が光軸15aとの間になす角度、すなわち結像面IP上の最大像高位置に入射する主光線の入射角はδとなり、この入射角δがイメージセンサ16に入射する主光線の最大入射角となる。
先に述べたとおり、イメージセンサ16に入射する主光線の入射角が大きくなるとイメージセンサ16の光電変換効率は低下してくるが、有機CMOSセンサをイメージセンサ16に用いることによって、主光線の入射角に対する制約が大幅に緩和される。したがって本発明の各実施例にみられるように、最大像高位置に入射する主光線の最大入射角δを35°〜47.75°の範囲まで広げても実用化することが可能となる。もちろん、イメージセンサ16への主光線の最大入射角δを小さめに抑えておけば、有機CMOSセンサに代えて裏面照射型CMOSセンサを用いることもできる。この点、比較例1〜7の大半は主光線の最大入射角δが23°〜30°と小さく抑えられ、撮像光学系を設計する上での制約となっている。
以上、各面に球面のみを用いた実施例1〜10にしたがって本発明について説明してきたが、本発明の撮像光学系は一面あるいは複数の面に非球面を用いて構成することも可能である。また、内視鏡の先端硬性部に内蔵される撮像光学系だけでなく、携帯電話機などの携帯情報端末はもとより、イメージサイズに比して小型化が要求される定置式の監視カメラや車載用カメラにも本発明の撮像光学系は等しく適用することができる。さらに、本発明は上記特徴を備えた撮像光学系を各種のイメージセンサと一体化した撮像装置として実施することも可能である。
2 先端硬性部
15 撮像光学系
16 イメージセンサ
15 撮像光学系
16 イメージセンサ
Claims (5)
- 物体側から順に、負の第1レンズ群、正の第2レンズ群、正の第3レンズ群、負の第4レンズ群からなる撮像光学系において、
前記第2レンズ群と第3レンズ群との間に絞りが設けられ、最大像高をIH、光学系全体のレンズ厚みsumとバックフォーカス長との和を光学系全長TL、前記最大像高IHに対する主光線の、最も物体側の面における入射高さをhF、最も像面側の面における出射高さをhR、第1レンズ群の焦点距離をf1としたとき、以下の(1)〜(5)式を満たすことを特徴とする撮像光学系。
2.00 < TL/IH < 3.00 ・・・(1)
0.37 < hF/IH < 0.5 ・・・(2)
0.37 < hR/IH < 0.5 ・・・(3)
3.5 < |f1/IH| < 4.5 ・・・(4)
1.8 < sum/IH < 2.1 ・・・(5) - 請求の範囲第4項記載の撮像光学系において、
前記第1レンズ群が像面側に凹面を向けた単レンズ、前記第4レンズ群が物体側に凹面を向けた単レンズであり、前記第2レンズ群または第3レンズ群の少なくともいずれかが1枚の正レンズと1枚の負レンズとを貼り合わせた接合レンズである撮像光学系。 - 請求の範囲第4項または第5項いずれか記載の撮像光学系と、この撮像光学系の結像面に配置されたイメージセンサとを備え、
前記イメージセンサが裏面照射型CMOSセンサまたは有機CMOSセンサである撮像装置。 - 請求の範囲第6項記載の撮像装置において、
体腔内を撮像する内視鏡の先端部に組み込まれた撮像装置。 - 請求の範囲第4項記載の撮像光学系において、
2.211 < TL/IH < 3.00
である撮像光学系。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012540821A JP5690354B2 (ja) | 2010-10-25 | 2011-10-21 | 撮像光学系及び撮像装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010238619 | 2010-10-25 | ||
JP2010238619 | 2010-10-25 | ||
PCT/JP2011/074292 WO2012057021A1 (ja) | 2010-10-25 | 2011-10-21 | 撮像光学系及び撮像装置 |
JP2012540821A JP5690354B2 (ja) | 2010-10-25 | 2011-10-21 | 撮像光学系及び撮像装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2012057021A1 JPWO2012057021A1 (ja) | 2014-05-12 |
JP5690354B2 true JP5690354B2 (ja) | 2015-03-25 |
Family
ID=45993731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012540821A Expired - Fee Related JP5690354B2 (ja) | 2010-10-25 | 2011-10-21 | 撮像光学系及び撮像装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9395515B2 (ja) |
JP (1) | JP5690354B2 (ja) |
WO (1) | WO2012057021A1 (ja) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9456735B2 (en) * | 2012-09-27 | 2016-10-04 | Shahinian Karnig Hrayr | Multi-angle rear-viewing endoscope and method of operation thereof |
CN103969819A (zh) * | 2013-01-25 | 2014-08-06 | 北京威斯顿亚太光电仪器有限公司 | 消杂光硬管内窥镜光学系统 |
JP2014149481A (ja) | 2013-02-04 | 2014-08-21 | Fujifilm Corp | 内視鏡用対物レンズおよび内視鏡 |
CN107548395B (zh) * | 2015-03-31 | 2021-05-04 | 索尼公司 | 用于有机光电二极管中的有机光电转换层的特定n和p活性材料 |
TWI588524B (zh) | 2015-11-27 | 2017-06-21 | 大立光電股份有限公司 | 攝像用光學鏡片組、取像裝置及電子裝置 |
JP6206540B2 (ja) * | 2016-06-09 | 2017-10-04 | ソニー株式会社 | 内視鏡及び内視鏡装置 |
TWI594010B (zh) | 2016-07-05 | 2017-08-01 | 大立光電股份有限公司 | 光學成像系統鏡組、取像裝置及電子裝置 |
GB201701012D0 (en) * | 2017-01-20 | 2017-03-08 | Ev Offshore Ltd | Downhole inspection assembly camera viewport |
DE102017214178B3 (de) * | 2017-08-15 | 2018-11-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | System mit einem Laparoskop und einer elektronischen Auswerteeinheit |
KR102071922B1 (ko) | 2018-01-23 | 2020-01-31 | 삼성전기주식회사 | 촬상 광학계 |
US10816789B2 (en) | 2018-01-24 | 2020-10-27 | Canon U.S.A., Inc. | Optical probes that include optical-correction components for astigmatism correction |
US10561303B2 (en) * | 2018-01-24 | 2020-02-18 | Canon U.S.A., Inc. | Optical probes with correction components for astigmatism correction |
US10806329B2 (en) | 2018-01-24 | 2020-10-20 | Canon U.S.A., Inc. | Optical probes with optical-correction components |
US10606064B2 (en) | 2018-01-24 | 2020-03-31 | Canon U.S.A., Inc. | Optical probes with astigmatism correction |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04335609A (ja) * | 1991-05-13 | 1992-11-24 | Nikon Corp | 小型広角レンズ |
JPH08313803A (ja) * | 1995-05-19 | 1996-11-29 | Olympus Optical Co Ltd | 広角レンズ |
JP2008116877A (ja) * | 2006-11-08 | 2008-05-22 | Fujinon Corp | 内視鏡用対物レンズ |
JP2009047947A (ja) * | 2007-08-21 | 2009-03-05 | Fujinon Corp | 撮像レンズおよび撮像装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51120723A (en) * | 1975-04-15 | 1976-10-22 | Olympus Optical Co Ltd | Objective lens for deplicating |
JPH0648327B2 (ja) | 1984-07-28 | 1994-06-22 | オリンパス光学工業株式会社 | 内視鏡対物レンズ |
US5781350A (en) * | 1994-01-27 | 1998-07-14 | Asahi Kogaku Kogyo Kabushiki Kaisha | Objective lens for endoscope |
US5805359A (en) | 1995-05-19 | 1998-09-08 | Olympus Optical Co., Ltd. | Wide-angle lens system |
JP2005352060A (ja) * | 2004-06-09 | 2005-12-22 | Fujinon Corp | 小型の大口径広角レンズおよびこれを備えたカメラ |
US8274593B2 (en) * | 2011-01-08 | 2012-09-25 | Largan Precision Co., Ltd. | Optical lens system |
TWI428626B (zh) * | 2011-01-28 | 2014-03-01 | Largan Precision Co Ltd | 透鏡系統 |
TWI416196B (zh) * | 2011-04-15 | 2013-11-21 | Largan Precision Co Ltd | 影像擷取鏡頭 |
-
2011
- 2011-10-21 JP JP2012540821A patent/JP5690354B2/ja not_active Expired - Fee Related
- 2011-10-21 WO PCT/JP2011/074292 patent/WO2012057021A1/ja active Application Filing
-
2013
- 2013-04-23 US US13/868,568 patent/US9395515B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04335609A (ja) * | 1991-05-13 | 1992-11-24 | Nikon Corp | 小型広角レンズ |
JPH08313803A (ja) * | 1995-05-19 | 1996-11-29 | Olympus Optical Co Ltd | 広角レンズ |
JP2008116877A (ja) * | 2006-11-08 | 2008-05-22 | Fujinon Corp | 内視鏡用対物レンズ |
JP2009047947A (ja) * | 2007-08-21 | 2009-03-05 | Fujinon Corp | 撮像レンズおよび撮像装置 |
Also Published As
Publication number | Publication date |
---|---|
US20130235176A1 (en) | 2013-09-12 |
JPWO2012057021A1 (ja) | 2014-05-12 |
US9395515B2 (en) | 2016-07-19 |
WO2012057021A1 (ja) | 2012-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5690354B2 (ja) | 撮像光学系及び撮像装置 | |
JP6501810B2 (ja) | 撮像レンズ | |
KR101612444B1 (ko) | 접사 렌즈계 및 이를 구비한 촬상 장치 | |
JP4453276B2 (ja) | 撮像レンズ,撮像ユニット及びこれを備える携帯端末 | |
WO2004038478A1 (ja) | 撮像レンズ | |
JP3976714B2 (ja) | 撮影レンズ | |
CN109073864B (zh) | 内窥镜对物光学系统 | |
JP4981466B2 (ja) | 光学系及びそれを有する撮像装置 | |
US20030117723A1 (en) | Photographic lens | |
JP2004170460A (ja) | 撮像光学系、並びにそれを用いたディジタルスチルカメラ、ビデオカメラ及びモバイル機器 | |
JP5339190B2 (ja) | 結像レンズ、カメラおよび携帯情報端末装置 | |
KR20160049871A (ko) | 촬영 렌즈 광학계 | |
JP2008020513A (ja) | 単焦点撮像レンズ及びそれを備えた撮像装置 | |
JP5418884B2 (ja) | 撮像光学系、カメラ装置および携帯情報端末装置 | |
JP2005024581A (ja) | 結像光学系及びそれを用いた撮像装置 | |
JP2001108895A (ja) | バックフォーカスの長い望遠レンズ及びそれを用いた撮像装置 | |
KR100627051B1 (ko) | 렌즈 시스템 및 이를 구비한 휴대용 모바일 기기 | |
JP2006053218A (ja) | カメラヘッド | |
KR20110094979A (ko) | 렌즈광학계 | |
JP2007086308A (ja) | 結像光学系及びそれを備えた交換レンズ装置 | |
CN110651213B (zh) | 内窥镜用物镜光学系统 | |
US7230775B2 (en) | Electronic imaging system | |
JP2000019391A (ja) | 撮影レンズ | |
JPWO2019146147A1 (ja) | 対物光学系、撮像装置及び内視鏡 | |
KR20150080329A (ko) | 촬영 렌즈 광학계 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150130 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5690354 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |