Nothing Special   »   [go: up one dir, main page]

JP5689387B2 - Refrigerator and manufacturing method thereof - Google Patents

Refrigerator and manufacturing method thereof Download PDF

Info

Publication number
JP5689387B2
JP5689387B2 JP2011187265A JP2011187265A JP5689387B2 JP 5689387 B2 JP5689387 B2 JP 5689387B2 JP 2011187265 A JP2011187265 A JP 2011187265A JP 2011187265 A JP2011187265 A JP 2011187265A JP 5689387 B2 JP5689387 B2 JP 5689387B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
refrigerator
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011187265A
Other languages
Japanese (ja)
Other versions
JP2013050242A (en
JP2013050242A5 (en
Inventor
越後屋 恒
恒 越後屋
荒木 邦成
邦成 荒木
井関 崇
崇 井関
祐志 新井
祐志 新井
康人 寺内
康人 寺内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011187265A priority Critical patent/JP5689387B2/en
Publication of JP2013050242A publication Critical patent/JP2013050242A/en
Publication of JP2013050242A5 publication Critical patent/JP2013050242A5/en
Application granted granted Critical
Publication of JP5689387B2 publication Critical patent/JP5689387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refrigerator Housings (AREA)

Description

本発明は、真空断熱材を用いた冷蔵庫及びその製造方法に関する。 The present invention relates to a refrigerator and a manufacturing how using the vacuum heat insulating material.

昨今、地球温暖化防止等の地球環境保護の観点から、二酸化炭素の排出量削減については世界的に注目されている。冷蔵庫においてはこれまでも省エネルギのための施策として消費電力量の低減に注力しており、二酸化炭素の排出量削減には微力ながら貢献していると考えられる。しかしながら、現在のように世界的に広がりつつある節電のニーズにも対応すべく、今後も引き続き消費電力量の低い冷蔵庫が求められる。   Recently, from the viewpoint of protecting the global environment such as prevention of global warming, attention has been focused on reducing carbon dioxide emissions worldwide. Refrigerators have been focused on reducing power consumption as a measure to save energy, and it is thought that they contributed to the reduction of carbon dioxide emissions. However, refrigerators with low power consumption will continue to be demanded in order to meet the power-saving needs that are spreading globally like now.

一方、最近の社会背景として、夫婦の共働き化や核家族化等の傾向から、週末の休日に食材をまとめ買いする家庭が増えており、冷蔵庫の大容量化のニーズは益々高まりつつある。
従来から冷蔵庫の省エネルギ化のため、冷蔵庫箱体の断熱性能を向上させる検討がなされており、硬質ウレタンフォームに真空断熱材を併用して断熱性能を大幅に向上させた製品が発売され(市場に流通し)ている。ここで、真空断熱材は一般的には硬質ウレタンフォームの10倍以上の断熱性能を有している。冷蔵庫の断熱性能を向上させるためには、断熱性能のよい真空断熱材をより多用することが選択肢の一つである。
On the other hand, as a recent social background, due to the trend of couples working together and becoming a nuclear family, the number of households buying foods on weekend holidays is increasing, and the need for a large capacity refrigerator is increasing.
Conventionally, in order to save energy in refrigerators, investigations have been made to improve the heat insulation performance of refrigerator boxes, and products that have significantly improved heat insulation performance by combining vacuum insulation with rigid urethane foam have been released (market) Distributed). Here, the vacuum heat insulating material generally has a heat insulating performance 10 times or more that of rigid urethane foam. In order to improve the heat insulation performance of the refrigerator, it is one of the options to use more vacuum heat insulating materials with good heat insulation performance.

真空断熱材を用いた冷蔵庫の従来例としては、下記の特許文献1がある。
図9は、特許文献1の断熱箱体の製造途中の状態を示す斜視図である。
特許文献1には、冷蔵庫の箱体を形成する断熱箱体外箱の左右側壁面と天井面を構成する平板状の鉄板207に、3個の真空の充填体201aを互いに所定間隔の接続部202aを存して配置するとともに当該所定間隔の接続部202a内にシール部を有する真空断熱パネル201を配置した後に、鉄板207を、真空断熱パネル201とともに折り曲げる例が示されている。なお、図9中の接続部202aの破線は折り曲げ箇所を示している。
There exists the following patent document 1 as a prior art example of the refrigerator using a vacuum heat insulating material.
FIG. 9 is a perspective view showing a state in the middle of manufacturing the heat insulating box body of Patent Document 1. FIG.
In Patent Document 1, three vacuum fillers 201a are connected to each other at predetermined intervals on a flat iron plate 207 constituting the left and right side wall surfaces and the ceiling surface of a heat insulating box outer box forming a box of a refrigerator. An example is shown in which the iron plate 207 is bent together with the vacuum heat insulation panel 201 after the vacuum heat insulation panel 201 having the seal portion is arranged in the connection portion 202a having the predetermined interval and arranged with the 202a present. In addition, the broken line of the connection part 202a in FIG. 9 has shown the bending location.

これにより、外装体(真空断熱パネル201)の内容積に対する接合部分(接続部202a)の端面の長さの割合が少なくなるため、長期間使用時の真空断熱パネル201の断熱性能劣化を抑制でき、また、製造作業性を大幅に向上させ得るという有益な効果を奏した例が示されている。   Thereby, since the ratio of the length of the end surface of the joint part (connection part 202a) to the internal volume of the exterior body (vacuum heat insulation panel 201) is reduced, it is possible to suppress the heat insulation performance deterioration of the vacuum heat insulation panel 201 during long-term use. In addition, an example is shown in which a beneficial effect that the manufacturing workability can be greatly improved is shown.

図10は、特許文献2の真空断熱材を冷蔵庫の外箱に張り付ける場合の分解状態の断面図である。
また、特許文献2には、複数の独立した真空断熱材311A、311B、311C、311Dを備えた断熱箱体320、321において、複数の真空断熱材311A、311B、311C、311Dの被覆部材同士を熱溶着して繋ぎ、断熱箱体320の左右側面320A、320C、天井面320B及び背面320D等の隣り合う壁面に一度に真空断熱材301が貼り付けられる例が示されている。
FIG. 10 is a cross-sectional view in an exploded state when the vacuum heat insulating material of Patent Document 2 is attached to the outer box of the refrigerator.
Further, in Patent Document 2, a plurality of vacuum heat insulating materials 311A, 311B, 311C, and 311D are covered with each other in a heat insulating box 320 and 321 provided with a plurality of independent vacuum heat insulating materials 311A, 311B, 311C, and 311D. An example is shown in which the vacuum heat insulating material 301 is attached to adjacent wall surfaces such as the left and right side surfaces 320A and 320C, the ceiling surface 320B, and the back surface 320D of the heat insulating box 320 at a time by heat welding and connecting.

図11は、特許文献3の発泡断熱材を充填する以前の冷蔵庫の分解後方斜視図である。
また、特許文献3には、冷蔵庫401の外箱402の左右側板402Aと背板402Cに跨った真空断熱材470を配置した冷蔵庫401の例が示されている。
FIG. 11 is an exploded rear perspective view of the refrigerator before filling with the foam heat insulating material of Patent Document 3.
Patent Document 3 shows an example of the refrigerator 401 in which a vacuum heat insulating material 470 is disposed across the left and right side plates 402A and the back plate 402C of the outer box 402 of the refrigerator 401.

特開平7−98090号公報Japanese Patent Laid-Open No. 7-98090 特開平7−9656号公報Japanese Patent Laid-Open No. 7-9656 特開平10−205992号公報Japanese Patent Laid-Open No. 10-205992

近年、地球環境保護の一環から家庭用の冷蔵庫等の家電製品をはじめ、様々ないわゆる電気製品と称される機器の省エネルギ化が各業界において推進されている。その中で家庭用の冷蔵庫においては箱体の断熱性能を向上させるために、断熱性が高い真空断熱材がこれまで以上に多く採用されつつある。   In recent years, various industries have promoted energy saving of various so-called electric appliances including home appliances such as household refrigerators as part of global environmental protection. Among them, in order to improve the heat insulation performance of the box in the refrigerator for home use, a vacuum heat insulating material with high heat insulation is being adopted more and more than ever.

具体的には、冷蔵庫の左右側面、天井面、背面、底面及び各扉面の全部或いは一部に、それぞれ真空断熱材を配置するケースが見られ、真空断熱材の使用面積が拡大する傾向になっている。
しかし、今後も続く省エネルギ化をさらに推進するためには、真空断熱材1枚当たりの大きさ(断熱面積)を拡大したり、厚さを増やす(伝熱量の低減)等の対応が必要であるが、冷蔵庫の外箱と内箱の間の空間には真空断熱材以外にも様々な部品(放熱パイプ、制御部品等)が配置されていることからかなり困難な現状にある。
Specifically, there are cases where vacuum heat insulating materials are arranged on all or part of the left and right side surfaces, ceiling surface, back surface, bottom surface and door surfaces of the refrigerator, and the use area of the vacuum heat insulating materials tends to increase. It has become.
However, in order to further promote energy saving that will continue in the future, it is necessary to increase the size (heat insulation area) per vacuum insulation material or increase the thickness (reduction of heat transfer). However, in the space between the outer box and the inner box of the refrigerator, in addition to the vacuum heat insulating material, various parts (heat radiating pipes, control parts, etc.) are arranged, which is quite difficult.

ここで、真空断熱材1枚当たりの大きさを拡大する理由について述べる。真空断熱材は、空隙率の高い材料をガスや水分の透過率が極めて低い外包材で覆い、その内部を減圧した状態にするものである。   Here, the reason why the size per vacuum heat insulating material is enlarged will be described. The vacuum heat insulating material is a material in which a material having a high porosity is covered with an outer packaging material having a very low gas and moisture permeability, and the inside thereof is decompressed.

一方、硬質ウレタンフォームや発泡スチロフォーム等のいわゆる発泡系断熱材や、グラスウールやロックウール等のいわゆる繊維系断熱材等はそれぞれが単独の断熱材として使用される。真空断熱材を含め、これらの断熱材の断熱性能は、固体伝熱、気体伝熱、輻射伝熱の主に3つの伝熱性能により決まる。内部を減圧状態にする真空断熱材は気体伝熱が小さくなることから良好な断熱性能が得られる。   On the other hand, so-called foamed heat insulating materials such as rigid urethane foam and styrofoam, and so-called fiber heat insulating materials such as glass wool and rock wool are used as independent heat insulating materials. The heat insulation performance of these heat insulation materials, including vacuum heat insulation materials, is determined mainly by three heat transfer performances: solid heat transfer, gas heat transfer, and radiation heat transfer. Since the vacuum heat insulating material which makes the inside a pressure-reduced state has small gas heat transfer, favorable heat insulation performance is obtained.

しかしながら、真空断熱材には、前記したように、外包材を備えており、内部の減圧状態を長期に亘って維持するためには、ガスや水分の透過を低く抑える必要がある。そのため、外包材の多くは金属箔や金属蒸着層を含んだラミネートフィルムを採用している。真空断熱材の場合、この金属層を含んだ外包材を熱が伝達するヒートブリッジの影響(熱の回り込み)があるため、見掛けの断熱性能(熱伝導率)よりも実際の断熱性能が悪化するのが特徴である。   However, as described above, the vacuum heat insulating material is provided with the outer packaging material, and in order to maintain the internal reduced pressure state for a long period of time, it is necessary to suppress the permeation of gas and moisture. Therefore, many of the outer packaging materials employ a laminated film including a metal foil or a metal vapor deposition layer. In the case of vacuum insulation, the actual insulation performance is worse than the apparent insulation performance (thermal conductivity) due to the influence of heat bridge (heat wraparound) that heat is transmitted through the outer packaging material containing this metal layer. Is the feature.

発泡系断熱材や繊維系断熱材等はヒートブリッジの影響が殆んど無い。
真空断熱材のヒートブリッジの影響は、真空断熱材の芯材の大きさ(面積)に左右され、芯材が大きい程その影響は相対的に軽減されることから、真空断熱材1枚当たりの大きさをなるべく大きくすることが、断熱面積を広げるとともにヒートブリッジの影響を軽減し、冷蔵庫の断熱性能向上に寄与する。
Foamed heat insulating materials, fiber heat insulating materials, and the like are hardly affected by the heat bridge.
The influence of the heat bridge of the vacuum heat insulating material depends on the size (area) of the core material of the vacuum heat insulating material, and the influence is relatively reduced as the core material is larger. Increasing the size as much as possible increases the heat insulation area and reduces the influence of the heat bridge, contributing to the improvement of the heat insulation performance of the refrigerator.

特許文献1に示される真空断熱パネル201(図9参照)については、その大きさを拡大するように、冷蔵庫の断熱箱体外箱の左右側壁面と天井面を構成する平板状の鉄板207に、3個の充填体201aを互いにシール部を有する所定間隔の接続部202aを存して設けた真空断熱パネル201を配置した後に、鉄板207を折り曲げる例が示されている。しかしながら、鉄板207の折り曲げ部分、つまり断熱箱体のコーナ部分には真空断熱パネル201の充填体201aが存在していないため、コーナ部分の断熱性能が不足する。そのため、断熱箱体のコーナ部分からの熱漏洩量を抑制するという考えが不足している。   About the vacuum heat insulation panel 201 (refer FIG. 9) shown by patent document 1, in the flat iron plate 207 which comprises the left-right side wall surface and ceiling surface of the heat insulation box outer box of a refrigerator so that the magnitude | size may be expanded. An example is shown in which the iron plate 207 is bent after the vacuum heat insulation panel 201 provided with three fillers 201a provided with a connection portion 202a having a predetermined interval and having a seal portion therebetween. However, since the filler 201a of the vacuum heat insulation panel 201 does not exist in the bent portion of the iron plate 207, that is, the corner portion of the heat insulation box, the heat insulation performance of the corner portion is insufficient. Therefore, the idea of suppressing the amount of heat leakage from the corner portion of the heat insulating box is insufficient.

特許文献2に示される真空断熱材301については、複数の独立した真空断熱材311A、311B、311C、311Dを繋いで、断熱箱体320の複数の壁面に一度に貼り付けできる例が示されている。
しかし、断熱箱体320の隣り合う壁面に沿って(背面320Dと左右側面320A、320C、背面320Dと天井面320B等)折り曲げられた際に、真空断熱材311A、311B、311C、311D同士の干渉を防止するために所定の角度に形成させているが、この折り曲げ部311oには充填材が存在しないため、特許文献1と同様に、当該折り曲げ部分(折り曲げ部311o)の断熱性能が不足し、断熱箱体320のコーナ部分(折り曲げ部311o)からの熱漏洩量を抑制するという考えが不足している。
About the vacuum heat insulating material 301 shown by patent document 2, the example which can be stuck on the several wall surface of the heat insulation box 320 by connecting several independent vacuum heat insulating material 311A, 311B, 311C, 311D at once is shown. Yes.
However, interference between the vacuum heat insulating materials 311A, 311B, 311C, and 311D when folded along the adjacent wall surfaces of the heat insulating box 320 (the back surface 320D and the left and right side surfaces 320A and 320C, the back surface 320D and the ceiling surface 320B, etc.). However, since there is no filler in the bent portion 311o, the heat insulating performance of the bent portion (the bent portion 311o) is insufficient, as in Patent Document 1, The idea of suppressing the amount of heat leakage from the corner portion (bent portion 311o) of the heat insulating box 320 is insufficient.

また、特許文献1、2の課題を解決するために、断熱箱体のコーナ部分にも真空断熱材の充填材を存在させた場合、以下の2つの新たな課題が生じる。
図9の特許文献1のように鉄板207に真空断熱材の真空断熱パネル201を貼り付けた場合、コーナ部分の充填材が抵抗となり、折り曲げ加工が困難であり、また、図10の特許文献2のように複数の壁面(320A、320B、320C、320D)に真空断熱材301を一度に貼り付けるために、予め真空断熱材301を曲げる等で成形加工した場合を想定すると、真空断熱材301に成形された複数の面を同時に複数の壁面(320A、320B、320C、320D)に貼り付ける方法が困難であるという新たな課題がある。
Moreover, when the filler of a vacuum heat insulating material is made to exist also in the corner part of a heat insulation box in order to solve the subject of patent documents 1, 2, the following two new problems will arise.
When the vacuum heat insulating panel 201 of the vacuum heat insulating material is attached to the iron plate 207 as in Patent Document 1 in FIG. 9, the filler in the corner portion becomes resistance, and bending is difficult, and Patent Document 2 in FIG. Assuming that the vacuum heat insulating material 301 is formed by bending the vacuum heat insulating material 301 in advance to attach the vacuum heat insulating material 301 to a plurality of wall surfaces (320A, 320B, 320C, 320D) at once, There is a new problem that it is difficult to apply a plurality of molded surfaces to a plurality of wall surfaces (320A, 320B, 320C, 320D) at the same time.

すなわち、冷蔵庫の基本性能である箱体の断熱性能を高めるため、真空断熱材を多く採用する傾向にあるが、従来のバインダや加熱により成形された芯材からなる真空断熱材では外箱の折り曲げ部等への配置が難しい現状にある。   In other words, in order to improve the heat insulation performance of the box, which is the basic performance of the refrigerator, there is a tendency to use a lot of vacuum heat insulating material, but in the case of vacuum heat insulating material consisting of a core material formed by a conventional binder or heating, the outer box is bent. It is difficult to place them in departments.

また、図11の特許文献3に示される冷蔵庫401については、ヒートブリッジの影響を抑制するために、真空断熱材1枚当りの大きさが大きくなるように、冷蔵庫401の左右側板402Aと背板402Cに跨った真空断熱材470を用いる例が示されている。   Moreover, about the refrigerator 401 shown by patent document 3 of FIG. 11, in order to suppress the influence of a heat bridge, the left-right side board 402A and back board of the refrigerator 401 are enlarged so that the size per vacuum heat insulating material may become large. An example using a vacuum heat insulating material 470 straddling 402C is shown.

しかし、冷蔵庫401の外箱402を構成する鉄板は左右側板402Aと天板402Dが繋がっているのに対し、真空断熱材470の形状は左右側板(側壁)471と背板(背壁)473が繋がっていることから、外箱402が組み立てられた後に真空断熱材470を組み込むことになるため、特許文献3のような大きいサイズの真空断熱材470を、外箱402と内箱403との間の空間に差し込んだ後に外箱402に接着することはかなり困難な作業である。   However, while the iron plate constituting the outer box 402 of the refrigerator 401 is connected to the left and right side plates 402A and the top plate 402D, the shape of the vacuum heat insulating material 470 is the right and left side plates (side walls) 471 and the back plate (back wall) 473. Since the vacuum heat insulating material 470 is incorporated after the outer box 402 is assembled, the large size vacuum heat insulating material 470 as in Patent Document 3 is placed between the outer box 402 and the inner box 403. Adhering to the outer box 402 after being inserted into this space is a rather difficult operation.

冷蔵庫401の外箱402と内箱403との間には放熱パイプ、制御部の筐体等の様々な部品が配置されていることから、真空断熱材470がそれらの部品に当たって擦れることで、穴あきが発生する等の危険性が高い。また、予め外板である左右側板402A、背板402C、天板402Dには真空断熱材470を固定するための接着剤が塗布されているが、外箱402と内箱403の間に差し込みながら接着することは、実際上困難である。   Since various parts such as a heat radiating pipe and a casing of the control unit are arranged between the outer box 402 and the inner box 403 of the refrigerator 401, the vacuum heat insulating material 470 hits these parts and rubs against them. There is a high risk of occurrence of perforations. In addition, an adhesive for fixing the vacuum heat insulating material 470 is applied to the left and right side plates 402A, the back plate 402C, and the top plate 402D that are the outer plates in advance, while being inserted between the outer box 402 and the inner box 403. Bonding is practically difficult.

本発明は上記実状に鑑み、断熱箱体コーナ部においても断熱性能を低下させることなく熱漏洩を低減し、加工性や組立性が良好な冷蔵庫及びその製造方法の提供を目的とする。 In view of the above circumstances, also reduce heat leakage without degrading the heat insulating performance, workability and assembling efficiency is the sole purpose of providing good refrigerator and a manufacturing how the heat-insulating main body corners.

上記目的を達成すべく、第1の本発明に関わる冷蔵庫は、外郭を形成する外箱と貯蔵室を形成する内箱との間に断熱材と真空断熱材を備えた冷蔵庫であって、前記外箱は、複数の平面板が折り曲げ部にて折り曲げられた形状に形成される板材を含んで形成され、前記板材の内箱側の面に、前記複数の平面板に跨るように前記真空断熱材の芯材のある箇所を配設して、前記真空断熱材は、前記外箱の板材に接着により配置されるとともに前記折り曲げ部近傍に非接着部が設けられ、前記真空断熱材の非接着部が、当該非接着部に対向する前記板材の非接着の箇所の長さより長く形成されている。 In order to achieve the above object, a refrigerator according to the first aspect of the present invention is a refrigerator including a heat insulating material and a vacuum heat insulating material between an outer box forming an outer shell and an inner box forming a storage chamber, The outer box is formed to include a plate material formed in a shape in which a plurality of flat plates are bent at a bending portion, and the vacuum heat insulation is performed on the inner box side surface of the plate material so as to straddle the plurality of flat plates. The vacuum heat insulating material is disposed on the plate of the outer box by bonding and a non-bonding portion is provided in the vicinity of the bent portion , and the vacuum heat insulating material is non-bonded. The portion is formed longer than the length of the non-bonded portion of the plate material facing the non-bonded portion .

の本発明に関わる冷蔵庫の製造方法は、冷蔵庫の外郭を形成する両側面板と天面板を構成する外箱の板材の内側の面に沿って配設した真空断熱材を、前記両側面板と接着するとともに、前記天面板に対向する箇所を当該天面板より長く形成して前記天面板とは非接着とし、前記真空断熱材と前記天面板との間にクリアランスが形成されている。 According to a second aspect of the present invention, there is provided a refrigerator manufacturing method comprising: a vacuum heat insulating material disposed along the inner side surface of a plate member of an outer box forming a top plate and a side plate forming an outer shell of the refrigerator; In addition to being bonded, a portion facing the top plate is formed longer than the top plate so as not to be bonded to the top plate, and a clearance is formed between the vacuum heat insulating material and the top plate .

本発明によれば、断熱箱体コーナ部においても断熱性能を低下させることなく熱漏洩を低減し、加工性や組立性が良好な冷蔵庫及びその製造方法を実現できる。 According to the present invention, also reduce heat leakage without degrading the heat insulating performance in the heat-insulating main body corners, processability and assembling property can be achieved a good refrigerator and a manufacturing how.

本発明に係わる実施形態の真空断熱材を用いた冷蔵庫の正面図である。It is a front view of the refrigerator using the vacuum heat insulating material of embodiment concerning this invention. 図1の冷蔵庫のA−A線断面図である。It is AA sectional view taken on the line of the refrigerator of FIG. 図2の冷蔵庫のX−X線断面図である。It is XX sectional drawing of the refrigerator of FIG. 実施形態1の冷蔵庫に使用する真空断熱材を示す横断面図である。It is a cross-sectional view which shows the vacuum heat insulating material used for the refrigerator of Embodiment 1. 実施形態1の冷蔵庫の製造工程の一例を示した図である。It is the figure which showed an example of the manufacturing process of the refrigerator of Embodiment 1. FIG. 実施形態1の冷蔵庫の製造工程の一例を示した図である。It is the figure which showed an example of the manufacturing process of the refrigerator of Embodiment 1. FIG. 実施形態1の冷蔵庫の製造工程の一例を示した図である。It is the figure which showed an example of the manufacturing process of the refrigerator of Embodiment 1. FIG. 実施形態1の冷蔵庫の製造工程の一例を示した図である。It is the figure which showed an example of the manufacturing process of the refrigerator of Embodiment 1. FIG. 実施形態2の冷蔵庫の製造工程の一例を示した図である。It is the figure which showed an example of the manufacturing process of the refrigerator of Embodiment 2. 実施形態2の冷蔵庫の製造工程の一例を示した図である。It is the figure which showed an example of the manufacturing process of the refrigerator of Embodiment 2. 実施形態3の真空断熱材を外箱鋼板の門形形状に合うようにコの字状に折り曲げた後に外箱鋼板に接着する製造工程の一例を示した図である。It is the figure which showed an example of the manufacturing process which adhere | attaches the vacuum heat insulating material of Embodiment 3 on an outer box steel plate, after bend | folding in U shape so that it may match the portal shape of an outer box steel plate. 実施形態3の真空断熱材を外箱鋼板の門形形状に合うようにコの字状に折り曲げた後に外箱鋼板に接着する製造工程の一例を示した図である。It is the figure which showed an example of the manufacturing process which adhere | attaches the vacuum heat insulating material of Embodiment 3 on an outer box steel plate, after bend | folding in U shape so that it may match the portal shape of an outer box steel plate. 実施形態3の真空断熱材を、外箱鋼板を曲げる前の平坦な状態で真空断熱材を接着して配置する製造工程の一例を示した図である。It is the figure which showed an example of the manufacturing process which adhere | attaches and arrange | positions the vacuum heat insulating material of Embodiment 3 in the flat state before bending an outer case steel plate. 実施形態3の真空断熱材を、外箱鋼板を曲げる前の平坦な状態で真空断熱材を接着して配置する製造工程の一例を示した図である。It is the figure which showed an example of the manufacturing process which adhere | attaches and arrange | positions the vacuum heat insulating material of Embodiment 3 in the flat state before bending an outer case steel plate. 特許文献1の断熱箱体の製造途中の状態を示す斜視図である。It is a perspective view which shows the state in the middle of manufacture of the heat insulation box of patent document 1. 特許文献2の真空断熱材を冷蔵庫の外箱に張り付ける場合の分解状態の断面図である。It is sectional drawing of the decomposition | disassembly state in the case of sticking the vacuum heat insulating material of patent document 2 on the outer box of a refrigerator. 特許文献3の発泡断熱材を充填する以前の冷蔵庫の分解後方斜視図である。It is a decomposition | disassembly back perspective view of the refrigerator before being filled with the foam heat insulating material of patent document 3. FIG.

以下、本発明の実施形態について添付図面を参照して説明する。
図1は本発明に係わる実施形態の真空断熱材を用いた冷蔵庫の正面図であり、図2は図1の冷蔵庫のA−A線断面図である。
実施形態の冷蔵庫1は、上から冷蔵室2、製氷室3aと切替え室(上段冷凍室)3b、下段冷凍室4、および野菜室5を備えている。
冷蔵庫1の冷蔵室扉6a、6bは、それぞれヒンジ10a、10b等を中心に回動する所謂観音開きの扉であり、冷蔵室2の前面開口部を開閉する扉である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a front view of a refrigerator using a vacuum heat insulating material according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the refrigerator of FIG.
The refrigerator 1 of the embodiment includes a refrigerator room 2, an ice making room 3a, a switching room (upper freezer room) 3b, a lower freezer room 4, and a vegetable room 5 from above.
The refrigerator compartment doors 6 a and 6 b of the refrigerator 1 are so-called double doors that rotate around hinges 10 a and 10 b, respectively, and are doors that open and close the front opening of the refrigerator compartment 2.

貯氷室扉7aと上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9は、それぞれ製氷室3a、上段冷凍室3b、下段冷凍室4、および野菜室5の各前面開口部を開閉する扉であり、全て引き出し式の扉である。
これらの引き出し式扉(7a、7b、8、9)を引き出した場合には、それぞれ製氷室3a、上段冷凍室3b、下段冷凍室4、および野菜室5を形成する容器が各扉と共に引き出されてくる。
各扉6a〜9には、冷蔵庫1の本体を成す箱体1Hと各扉6a〜9とを密閉するためのパッキン11(図2参照)が、各扉6〜9を画成する箱体1H側外周縁に対向する位置に取着されている。
The ice storage room door 7a, the upper freezing room door 7b, the lower freezing room door 8, and the vegetable room door 9 open and close the front openings of the ice making room 3a, the upper freezing room 3b, the lower freezing room 4, and the vegetable room 5, respectively. It is a door, and all are drawer type doors.
When these drawer type doors (7a, 7b, 8, 9) are pulled out, the containers forming the ice making chamber 3a, the upper freezing chamber 3b, the lower freezing chamber 4, and the vegetable chamber 5 are pulled out together with the doors. Come.
In each door 6a-9, packing 11 (refer FIG. 2) for sealing the box 1H which comprises the main body of the refrigerator 1, and each door 6a-9 is the box 1H which defines each door 6-9. It is attached at a position facing the side outer periphery.

図2に示すように、冷蔵室2と製氷室3a及び上段冷凍室3bとの間には、冷蔵温度帯の冷蔵室2と冷凍温度帯の製氷室3a及び上段冷凍室3bとを区画断熱するために仕切断熱壁12が配置されている。仕切断熱壁12は厚さ30〜50mm程度の断熱壁で、スチロフォーム、発泡断熱材(ウレタンフォーム)、真空断熱材等、それぞれを単独使用又は複数の断熱材を組み合わせて製作されている。   As shown in FIG. 2, between the refrigerating room 2, the ice making room 3a, and the upper freezing room 3b, the refrigerating room 2 in the refrigerating temperature zone and the ice making room 3a and the upper freezing room 3b in the freezing temperature zone are partitioned and insulated. For this purpose, a partition heat insulation wall 12 is arranged. The partition heat insulating wall 12 is a heat insulating wall having a thickness of about 30 to 50 mm, and is made of a single material or a combination of a plurality of heat insulating materials such as styrofoam, foam heat insulating material (urethane foam), and vacuum heat insulating material.

製氷室3a及び上段冷凍室3bと下段冷凍室4との間には、各室3a、3b、4が同じ冷凍温度帯であるため室間を区画断熱する仕切り断熱壁ではなく単なる仕切りである仕切り部材13を設けている。仕切り部材13の前面には、パッキン11の受面13uが形成されている。
下段冷凍室4と野菜室5との間には、冷凍温度帯の下段冷凍室4と冷蔵温度帯の野菜室5とを区画断熱するための仕切断熱壁14を設けている。仕切断熱壁14は、仕切断熱壁12と同様に30〜50mm程度の断熱壁であり、同じくスチロフォーム、或いは発泡断熱材(ウレタンフォーム)、真空断熱材等で製作されている。
Between the ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4, since each of the chambers 3a, 3b and 4 is in the same freezing temperature zone, a partition which is not a partition heat insulating wall which partitions and insulates the chambers but a mere partition A member 13 is provided. A receiving surface 13 u of the packing 11 is formed on the front surface of the partition member 13.
A partition heat insulating wall 14 is provided between the lower freezer compartment 4 and the vegetable compartment 5 to insulate and heat the lower freezer compartment 4 in the freezing temperature zone and the vegetable compartment 5 in the refrigerated temperature zone. Similarly to the partition heat insulation wall 12, the partition heat insulation wall 14 is a heat insulation wall of about 30 to 50 mm, and is similarly made of styrofoam, foam heat insulation (urethane foam), vacuum heat insulation or the like.

基本的に冷蔵、冷凍等の貯蔵温度帯の異なる室の仕切りは、断熱する必要があることから、仕切断熱壁12、14を設置している。
仕切断熱壁12、14は、それぞれ発泡ポリスチレン33と真空断熱材50(50d、50e)で構成されている。この仕切断熱壁12、14については硬質ウレタンフォーム等の発泡断熱材23を充填してもよく、特に発泡ポリスチレン33と真空断熱材50に限定するものではない。
Basically, partitions of rooms with different storage temperature zones such as refrigeration and freezing need to be insulated, and therefore, partition heat insulation walls 12 and 14 are installed.
The partition heat insulation walls 12 and 14 are each comprised with the expanded polystyrene 33 and the vacuum heat insulating material 50 (50d, 50e). The partition heat insulating walls 12 and 14 may be filled with a foam heat insulating material 23 such as rigid urethane foam, and are not particularly limited to the foamed polystyrene 33 and the vacuum heat insulating material 50.

なお、箱体1H内には、上から冷蔵室2、製氷室3a及び上段冷凍室3b、下段冷凍室4、野菜室5の各貯蔵室を画設しているが、各貯蔵室の配置については特にこれに限定されない。
また、冷蔵室扉6a、6b、製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9の各扉に関しても、回転による開閉、引出しによる開閉、及び扉の分割数等、特に限定するものではない。
In addition, in the box 1H, the storage compartments of the refrigerator compartment 2, the ice making compartment 3a and the upper freezer compartment 3b, the lower freezer compartment 4, and the vegetable compartment 5 are arranged from the top. Is not particularly limited to this.
The doors of the refrigerator compartment doors 6a and 6b, the ice making compartment door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8 and the vegetable compartment door 9 are also opened / closed by rotation, opened / closed by a drawer, and the number of divided doors. There is no particular limitation.

冷蔵庫1の本体を成す箱体1Hは、冷蔵庫1の外郭を形成する外箱21と、貯蔵室を形成する内箱22とを備えている。
箱体1Hは、外箱21と内箱22との間に形成される空間(スペース)に断熱部を設けて箱体1H内の各貯蔵室(2、3a、3b、4、5)と冷蔵庫1の外部空間とを断熱している。
この外箱21側または内箱22側の何れかに真空断熱材50(50a、50b、50c)を上面部、背面(後面)部、および下面部に配置し、真空断熱材50以外の空間には硬質ウレタンフォーム等の発泡断熱材23を充填している。
A box 1H that forms the main body of the refrigerator 1 includes an outer box 21 that forms an outer shell of the refrigerator 1 and an inner box 22 that forms a storage chamber.
The box 1H is provided with a heat insulating portion in a space formed between the outer box 21 and the inner box 22, and each storage room (2, 3a, 3b, 4, 5) in the box 1H and a refrigerator. 1 is insulated from the external space.
The vacuum heat insulating material 50 (50a, 50b, 50c) is arranged on the upper surface portion, the back surface (rear surface) portion, and the lower surface portion on either the outer box 21 side or the inner box 22 side, and in a space other than the vacuum heat insulating material 50. Is filled with a foam heat insulating material 23 such as rigid urethane foam.

また、冷蔵庫1の冷蔵室2、冷凍室(3a、3b、4)、野菜室5等の各室を所定の温度に冷却するために冷凍室(3a、3b、4)の背側(後側)には、図2に示すように、庫内を冷却するための冷却器28が備えられている。冷却器28と圧縮機30と凝縮機31と不図示のキャピラリーチューブとを接続し、冷媒を循環させて冷凍サイクルを構成している。冷却器28の上方には送風機27が配設されており、送風機27は、冷却器28にて冷却された冷気を冷蔵庫1の内部に循環させて所定の低温に維持する。   Moreover, in order to cool each room, such as the refrigerator compartment 2, the freezer compartment (3a, 3b, 4), the vegetable compartment 5, etc. of the refrigerator 1, to the predetermined temperature, the back side (rear side) of the freezer compartment (3a, 3b, 4) 2), as shown in FIG. 2, a cooler 28 for cooling the inside of the cabinet is provided. The refrigeration cycle is configured by connecting the cooler 28, the compressor 30, the condenser 31, and a capillary tube (not shown) and circulating the refrigerant. A blower 27 is disposed above the cooler 28, and the blower 27 circulates the cold air cooled by the cooler 28 inside the refrigerator 1 and maintains it at a predetermined low temperature.

また、内箱22の天面の一部に、発泡断熱材23側に突出したケース45aを有する庫内灯45を配置し、冷蔵庫1の冷蔵室扉6a、6bを開扉したときの庫内を明るく、目視し易くしている。庫内灯45については、LED(Light Emitting Diode)、電球、蛍光灯、キセノンランプ等、特に限定されない。   Moreover, the inside lamp | ramp 45 which has the case 45a which protruded in the foaming heat insulating material 23 side in a part of top | upper surface of the inner box 22 is arrange | positioned, and the refrigerator compartment door 6a, 6b of the refrigerator 1 is opened. Is bright and easy to see. The interior lamp 45 is not particularly limited, such as an LED (Light Emitting Diode), a light bulb, a fluorescent lamp, or a xenon lamp.

庫内灯45が発泡断熱材23に対して突出して配置されることにより、ケース45aと外箱21の天面板21a1との間の発泡断熱材23の厚さが薄くなってしまう。そのため、図2の例では断熱性が高い真空断熱材50aを、ケース45aと外箱21の天面板21a1との間に配置して断熱性能を確保している。
庫内灯45の位置については、庫内が明るく目視し易くなれば、図示した位置に限定されない。
When the interior lamp 45 is disposed so as to protrude with respect to the foam heat insulating material 23, the thickness of the foam heat insulating material 23 between the case 45a and the top plate 21a1 of the outer box 21 becomes thin. Therefore, in the example of FIG. 2, the vacuum heat insulating material 50 a having high heat insulating properties is arranged between the case 45 a and the top plate 21 a 1 of the outer box 21 to ensure heat insulating performance.
The position of the interior light 45 is not limited to the illustrated position as long as the interior is bright and easily visible.

また、箱体1Hの背面上部(図2に示す冷蔵庫1の右上側)には、冷蔵庫1の運転を制御するための電気部品41が実装された基板や電源基板等を収納するための凹部40が形成されている。そして、電気部品41が実装された基板や電源基板を覆う態様でカバー42が覆設されている。   In addition, a concave portion 40 for storing a board on which an electrical component 41 for controlling the operation of the refrigerator 1 or a power supply board is accommodated is provided on the upper rear side of the box 1H (upper right side of the refrigerator 1 shown in FIG. 2). Is formed. And the cover 42 is covered by the aspect which covers the board | substrate with which the electrical component 41 was mounted, and a power supply board | substrate.

ここで、凹部40は発泡断熱材23側に電気部品41を収納する空間だけ窪んだ状態で配置されるため、断熱厚さを確保するためには必然的に内容積が犠牲になってしまう。一方、冷蔵庫1の容量(内容積)をより大きくとると凹部40と内箱22間の発泡断熱材23の厚さが薄くなってしまうという二律背反の関係(矛盾する関係)にある。   Here, since the recessed part 40 is arrange | positioned in the state where only the space which accommodates the electrical component 41 in the foam heat insulating material 23 side was depressed, in order to ensure heat insulation thickness, an internal volume will be sacrificed inevitably. On the other hand, if the capacity (internal volume) of the refrigerator 1 is further increased, the thickness of the foam heat insulating material 23 between the recess 40 and the inner box 22 is reduced (inconsistent relationship).

そこで、図2の例では発泡断熱材23の凹部40側の面に、断熱性が高い真空断熱材50bを配置して断熱性能を確保している。換言すると、発泡断熱材23と電気部品41との間に真空断熱材50bを配置している。
真空断熱材50bは凹部40の形状に合うように、後板21bから凹部40に沿って屈曲させ(折り曲げ)て成形したものを用いている。
また、箱体1Hの背面下部(図2の冷蔵庫1の右下部)に配置された圧縮機30や凝縮機31は発熱量が大きい部品であるため、庫内への熱侵入を防止するため、圧縮機30や凝縮機31から内箱22側への投影面に真空断熱材50cを配置している。
Therefore, in the example of FIG. 2, the heat insulating performance is ensured by disposing the vacuum heat insulating material 50b having high heat insulating properties on the surface of the foam heat insulating material 23 on the concave portion 40 side. In other words, the vacuum heat insulating material 50 b is disposed between the foam heat insulating material 23 and the electrical component 41.
The vacuum heat insulating material 50b is formed by bending (bending) the rear plate 21b along the recess 40 so as to match the shape of the recess 40.
In addition, since the compressor 30 and the condenser 31 arranged at the lower back of the box 1H (lower right of the refrigerator 1 in FIG. 2) are components that generate a large amount of heat, in order to prevent heat from entering the cabinet, A vacuum heat insulating material 50c is arranged on the projection surface from the compressor 30 or the condenser 31 to the inner box 22 side.

<<実施形態1>>
本発明の実施形態1の冷蔵庫1について、説明する。
図3は、図2の冷蔵庫のX−X線断面図である。
実施形態1の冷蔵庫1は、箱体1Hの外箱21を形成する外箱鋼板21aを冷蔵庫1の左・右側面板21a2、21a3と天面板21a1を1枚の鋼板で構成している。
そして、外箱鋼板21aの形状に沿って、外箱鋼板21aの内面(内側の面)に真空断熱材50aを配置したものである。すなわち、外箱鋼板21aの左側面板21a2の内面から天面板21a1の内面、そして右側面板21a3の内面まで、真空断熱材50aが連続した形状で配置されている。
<< Embodiment 1 >>
The refrigerator 1 of Embodiment 1 of this invention is demonstrated.
3 is a cross-sectional view of the refrigerator in FIG. 2 taken along the line XX.
In the refrigerator 1 of the first embodiment, the outer box steel plate 21a that forms the outer box 21 of the box 1H is configured of the left and right side plates 21a2 and 21a3 and the top plate 21a1 of the refrigerator 1 with a single steel plate.
And the vacuum heat insulating material 50a is arrange | positioned on the inner surface (inner surface) of the outer box steel plate 21a along the shape of the outer box steel plate 21a. That is, the vacuum heat insulating material 50a is arranged in a continuous shape from the inner surface of the left side plate 21a2 of the outer box steel plate 21a to the inner surface of the top plate 21a1 and the inner surface of the right side plate 21a3.

真空断熱材50aと外箱鋼板21aは、不図示の粘着タイプのホットメルト接着剤を用いて接着にて配置したが、外箱鋼板21aの折り曲げ部21aoである角部の図3中のB部(図5Bの非接着部分58a)については、ホットメルト接着剤を塗布することなく非接着部とした。真空断熱材50aと外箱鋼板21aとを固着する接着剤は、ホットメルト接着剤以外の接着手段を用いても構わない。   Although the vacuum heat insulating material 50a and the outer box steel plate 21a are arranged by adhesion using an adhesive type hot melt adhesive (not shown), a corner B portion in FIG. 3 which is a bent portion 21ao of the outer box steel plate 21a. (Non-adhesive portion 58a in FIG. 5B) was a non-adhesive portion without applying a hot melt adhesive. As an adhesive for fixing the vacuum heat insulating material 50a and the outer box steel plate 21a, an adhesive means other than the hot melt adhesive may be used.

ここで、図2に示す真空断熱材50(50a、50b、50c、50d、50e)について図4を用いて説明する。図4は実施形態1の真空断熱材を示す横断面図である。なお、図4では吸着剤54を強調(誇張)して示している。
真空断熱材50は、芯材51として、結合剤等で繊維同士が接着や結着していない無機繊維の積層体である平均繊維径4μmのグラスウールを用いている。このグラスウールは、ガラス繊維を遠心法にて単位面積当たりの質量(以下、目付量と称す)が所定値になるように、層状に積層したガラス繊維の集合体である。グラスウールは、結合剤等により成形されていないため綿状であり、嵩密度が大きいのが特徴である。
Here, the vacuum heat insulating material 50 (50a, 50b, 50c, 50d, 50e) shown in FIG. 2 will be described with reference to FIG. FIG. 4 is a cross-sectional view showing the vacuum heat insulating material of the first embodiment. In FIG. 4, the adsorbent 54 is highlighted (exaggerated).
The vacuum heat insulating material 50 uses, as the core material 51, glass wool having an average fiber diameter of 4 μm, which is a laminate of inorganic fibers in which fibers are not bonded or bound together by a binder or the like. This glass wool is an aggregate of glass fibers obtained by laminating glass fibers in a layered manner so that a mass per unit area (hereinafter referred to as a basis weight) becomes a predetermined value by a centrifugal method. Since glass wool is not formed with a binder or the like, it is cotton-like and has a high bulk density.

芯材51を内包する内袋52については、熱溶着可能な合成樹脂フィルムであれば特に限定されないが、高密度ポリエチレンフィルムを用いた。なお、内袋52として高密度ポリエチレンフィルムを用いているが、熱溶着可能な合成樹脂フィルムであればよく、高密度に限らずポリエチレン系のフィルムや、ポリプロピレン、ポリブチレンテレフタレート等のフィルムとしてもよい。   The inner bag 52 containing the core material 51 is not particularly limited as long as it is a synthetic resin film that can be heat-welded, but a high-density polyethylene film is used. In addition, although the high density polyethylene film is used as the inner bag 52, it may be a synthetic resin film that can be heat-welded, and is not limited to a high density, and may be a polyethylene film, a film of polypropylene, polybutylene terephthalate, or the like. .

内袋52を覆い外部空間に対して密閉する外被材53については、所定のガスバリヤ性を有する多層のラミネートフィルムでなるものであり、その構成についてはガスバリヤ性とともに熱溶着可能な性質をもち、所定の真空度を維持できるものであれば特に限定されない。
外被材53として、表面保護層、第一のガスバリヤ層、第二のガスバリヤ層、熱溶着層の4層構成からなるラミネートフィルムとした。
The outer covering material 53 that covers the inner bag 52 and seals against the outer space is made of a multilayer laminate film having a predetermined gas barrier property, and has a property capable of being thermally welded together with the gas barrier property, There is no particular limitation as long as the predetermined degree of vacuum can be maintained.
As the covering material 53, a laminate film having a four-layer structure of a surface protective layer, a first gas barrier layer, a second gas barrier layer, and a heat welding layer was used.

具体的な構成として、表面保護層をポリアミド、ポリプロピレン、ポリエチレンテレフタレート等の合成樹脂フィルムとし、ガスバリヤ性や防湿性等を考慮すると二軸延伸タイプのフィルムが好ましい。
第一及び第二のガスバリヤ層としては、金属、金属酸化物、無機系材料等からなるガスバリヤ膜を備えた二軸延伸タイプのフィルムが好ましく、例えばポリエチレンテレフタレート、エチレンビニルアルコール共重合体、ポリビニルアルコール等のフィルムがある。第一及び第二のガスバリヤ層の何れか一方又は両方に金属箔層を設けてもよい。
As a specific configuration, the surface protective layer is a synthetic resin film such as polyamide, polypropylene, or polyethylene terephthalate, and a biaxially stretched film is preferable in consideration of gas barrier properties and moisture resistance.
As the first and second gas barrier layers, a biaxially stretched film provided with a gas barrier film made of metal, metal oxide, inorganic material or the like is preferable. For example, polyethylene terephthalate, ethylene vinyl alcohol copolymer, polyvinyl alcohol There are films such as. A metal foil layer may be provided on either one or both of the first and second gas barrier layers.

熱溶着層としては、熱溶着時の強度が要求されるが、例えば低密度、中密度、高密度及び直鎖状低密度等のポリエチレンや、ポリプロピレン、ポリブチレンテレフタレート等のフィルムとすることが多い。
各層のフィルムは二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせられるが、接着剤や貼り合わせの方法については特にこれに限定するものではない。
また、外被材53のラミネート構成については4層構成に限定するものではなく、3層や5層又はそれ以外の複数層でも真空断熱材として所定の性能を確保できるものであればよい。
As the heat-welded layer, strength at the time of heat-welding is required, but for example, films such as polyethylene, polypropylene, polybutylene terephthalate, etc., such as low density, medium density, high density and linear low density are often used. .
The film of each layer is bonded by a dry laminating method through a two-component curable urethane adhesive, but the adhesive and the bonding method are not particularly limited thereto.
In addition, the laminate configuration of the jacket material 53 is not limited to a four-layer configuration, and three layers, five layers, or other plural layers may be used as long as the predetermined performance can be secured as a vacuum heat insulating material.

また、吸着剤54については、水分子やガス分子を微細孔で補足する物理吸着タイプの合成ゼオライトを用いたが、特にこれに限定するものではなく、水分やガス(少なくとも酸素O、窒素N、二酸化炭素CO)を吸着するものであれば、物理吸着、イオン結合等の化学反応型吸着のどちらでも構わない。但し、反応性が強く真空断熱材50を構成する材料を変質させたり、副生成物が発生するような材料は当然のことながら使用することはできない。 Further, as the adsorbent 54, a physical adsorption type synthetic zeolite that captures water molecules and gas molecules with fine pores was used. However, the adsorbent 54 is not particularly limited to this, and moisture or gas (at least oxygen O 2 , nitrogen N 2 , as long as it adsorbs carbon dioxide (CO 2 ), either physical adsorption or chemical reaction type adsorption such as ion bonding may be used. However, it is not possible to use a material that is highly reactive and that alters the material constituting the vacuum heat insulating material 50 or generates a by-product.

次に、冷蔵庫1の製造方法について、図5A〜図5Dを用いて説明する。
図5A〜図5Dは実施形態1の冷蔵庫の製造工程の一例を示した図である。
まず、図5Aに示すように、真空断熱材50aを後記の外箱鋼板21aの門形形状(図5D参照)に合うようにコの字状に折り曲げ成形する。この際、真空断熱材50aの折り曲げ部分58の形状は折り曲げの内側に略凸状になるようにした。真空断熱材50aの折り曲げ部分58は、対向する外箱鋼板21aの折り曲げ部21aoの長さより長い寸法をもつ。
この理由は図5B〜図5Dに示すように、外箱鋼板21aに真空断熱材50aを配置する際、外箱鋼板21aの折り曲げ後の寸法と真空断熱材50aの折り曲げ後の寸法にそれぞれ寸法誤差が生じるため、その寸法誤差を吸収する部分として設けるものである。
Next, the manufacturing method of the refrigerator 1 is demonstrated using FIG. 5A-FIG. 5D.
5A to 5D are diagrams illustrating an example of a manufacturing process of the refrigerator according to the first embodiment.
First, as shown in FIG. 5A, the vacuum heat insulating material 50a is bent and formed into a U-shape so as to match the portal shape (see FIG. 5D) of the outer box steel plate 21a described later. At this time, the shape of the bent portion 58 of the vacuum heat insulating material 50a was made to be substantially convex inside the bent portion. The bent portion 58 of the vacuum heat insulating material 50a has a dimension longer than the length of the bent portion 21ao of the opposing outer box steel plate 21a.
The reason for this is that, as shown in FIGS. 5B to 5D, when the vacuum heat insulating material 50a is disposed on the outer box steel plate 21a, the dimension error in the dimension after bending the outer box steel sheet 21a and the dimension after bending of the vacuum heat insulating material 50a. Therefore, it is provided as a part that absorbs the dimensional error.

真空断熱材50aの折り曲げ部分58の形状は、図5Aの前方視で曲率をもった形状としている。折り曲げ部分58の形成に際しては、曲率をもった形状の冶具、例えば、丸棒や丸棒様の突出した形状の冶具に真空断熱材50aを徐々に沿わせるようにして成形する。   The bent portion 58 of the vacuum heat insulating material 50a has a shape having a curvature as viewed from the front in FIG. 5A. In forming the bent portion 58, the vacuum heat insulating material 50a is gradually formed along a jig having a curved shape, for example, a round bar or a protruding jig like a round bar.

なお、折り曲げ部分58の形状は、外被材53が傷つかない程度の角部を有する形状、例えば蛇腹様の波打ち形状等でもよく、限定されない。例えば、角部と曲率をもった形状でも構わない。
しかし、折り曲げ部分58の形状は、曲率をもった形状(例えば円状横断面、楕円状横断面、その他の曲率がある形状等)の場合、応力集中が発生しづらく外被材53が傷つく可能性が低いため、最も好ましい。
The shape of the bent portion 58 may be a shape having a corner that does not damage the outer covering material 53, such as a bellows-like corrugated shape, and is not limited. For example, a shape having a corner and a curvature may be used.
However, if the shape of the bent portion 58 is a shape having a curvature (for example, a circular cross section, an elliptical cross section, or other shapes having a curvature), it is difficult for stress concentration to occur and the jacket material 53 can be damaged. Most preferred because of its low nature.

そして、図5Bに示すように、折り曲げ成形した真空断熱材50aを不図示の専用の治具や同じく不図示の設備等を用いて保持し、真空断熱材50aの天面板50a1を外箱鋼板21aの天面板21a1に配置する。このとき、外箱鋼板21aの左・右側面板21a2、21a3は、少し開いた状態にしておく。   Then, as shown in FIG. 5B, the bent heat insulating material 50a is held using a dedicated jig (not shown) or equipment (not shown), and the top plate 50a1 of the vacuum heat insulating material 50a is held in the outer box steel plate 21a. Arranged on the top plate 21a1. At this time, the left and right side plates 21a2 and 21a3 of the outer box steel plate 21a are left slightly open.

なお、外箱鋼板21aの内面側には、真空断熱材50aが配置される前に予め粘着タイプのホットメルト接着剤が非接着部分58aを除き、不図示のホットメルト塗布装置にて塗布しておく。ホットメルト塗布装置としては、例えば、ロールコータがある。ロールコータは、ホットメルト接着剤を所定厚さ塗布したロールと、コンベアに載せた鋼板21aとの間隔を調整し、鋼板21aの内面にロール上のホットメルト接着剤を転写し塗布する。   In addition, on the inner surface side of the outer box steel plate 21a, before the vacuum heat insulating material 50a is disposed, an adhesive type hot melt adhesive is applied in advance by a hot melt application device (not shown) except for the non-adhesive portion 58a. deep. An example of the hot melt coating apparatus is a roll coater. The roll coater adjusts the distance between the roll to which the hot melt adhesive is applied to a predetermined thickness and the steel plate 21a placed on the conveyor, and transfers and applies the hot melt adhesive on the roll to the inner surface of the steel plate 21a.

そして、図5Cに示すように、外箱鋼板21aの天面板21a1に真空断熱材50aの天面板50a1が押圧され接着された後、開いていた外箱鋼板21aの左・右側面板21a2、21a3を閉じることで、外箱鋼板21aの左・右側面板21a2、21a3が、真空断熱材50aの左・右側面板50a2、50a3に接着される(図5D参照)。   Then, as shown in FIG. 5C, after the top plate 50a1 of the vacuum heat insulating material 50a is pressed and bonded to the top plate 21a1 of the outer box steel plate 21a, the left and right side plates 21a2 and 21a3 of the outer box steel plate 21a that are opened are attached. By closing, the left and right side plates 21a2 and 21a3 of the outer box steel plate 21a are bonded to the left and right side plates 50a2 and 50a3 of the vacuum heat insulating material 50a (see FIG. 5D).

この際、真空断熱材50aのコーナ部の折り曲げ部分58を鋼板21とは接着をせずに浮かすことにより、外箱鋼板21aの寸法誤差と真空断熱材50aの寸法誤差が吸収され形状が合わないのを防ぐ。また、真空断熱材50aと外箱鋼板21aとの曲げの際の曲率の違いが吸収される。   At this time, the bent portion 58 of the corner portion of the vacuum heat insulating material 50a is floated without being bonded to the steel plate 21, so that the dimensional error of the outer case steel plate 21a and the dimensional error of the vacuum heat insulating material 50a are absorbed and the shape does not match. To prevent. Moreover, the difference in curvature at the time of bending between the vacuum heat insulating material 50a and the outer box steel plate 21a is absorbed.

すなわち、真空断熱材50aの非接着部(折り曲げ部分58)は、外箱鋼板21aと真空断熱材50aの折り曲げ寸法にそれぞれ誤差が存在するとともに外箱鋼板21aの曲げ加工のため、それぞれの寸法誤差や加工による引っ張り力等を吸収させる。すなわち、略凸状部分(折り曲げ部分58)を接着しないことで、当該部分が自由に移動できるいわゆる「遊び」としての役割を果たしている。   That is, the non-bonded portion (folded portion 58) of the vacuum heat insulating material 50a has errors in the bending dimensions of the outer box steel plate 21a and the vacuum heat insulating material 50a, and each dimensional error due to the bending of the outer box steel plate 21a. Absorbs the tensile force caused by or processing. That is, by not bonding the substantially convex portion (the bent portion 58), it plays a role of so-called “play” in which the portion can freely move.

このように、真空断熱材50aの外被材53に働く引張り荷重等の負荷を吸収できるため、外箱鋼板21aの曲げに沿って、真空断熱材50aを無理なく曲げることができる。従って、真空断熱材50aの長期信頼性(長期に亘る信頼性)を、曲げのない場合と同様維持することが可能である。   Thus, since the load such as a tensile load acting on the jacket material 53 of the vacuum heat insulating material 50a can be absorbed, the vacuum heat insulating material 50a can be bent without difficulty along the bending of the outer box steel plate 21a. Therefore, the long-term reliability (long-term reliability) of the vacuum heat insulating material 50a can be maintained as in the case without bending.

なお、外箱鋼板21aと真空断熱材50aとの接着に使用する接着手段については、特にホットメルト接着剤に限定するものではなく、真空断熱材50aが外箱鋼板21aに接着できるものであればよい。また、真空断熱材50aの側に接着手段を設けてもよく、これについても特に限定するものではない。   In addition, about the adhesion | attachment means used for adhesion | attachment with the outer box steel plate 21a and the vacuum heat insulating material 50a, it does not specifically limit to a hot-melt-adhesive, As long as the vacuum heat insulating material 50a can adhere | attach to the outer box steel plate 21a. Good. Further, an adhesive means may be provided on the vacuum heat insulating material 50a side, and this is not particularly limited.

実施形態1の冷蔵庫1の箱体1Hの断熱性能を、箱体1Hからの熱漏洩量として測定した結果を100(指数)とし、後記する比較例1〜3の断熱性能と比較する。
冷蔵庫箱体の熱漏洩量は、以下のように定義した。
冷蔵庫箱体の熱漏洩量(単位:W)とは、ある温度の部屋の中で、冷蔵庫1内でヒータに通電して温め、冷蔵庫1の各貯蔵室温度が設定したある温度に安定状態になったとき、冷蔵庫1からどれだけの熱量が漏れているかを確認する指標である。
The heat insulation performance of the box 1H of the refrigerator 1 of the first embodiment is measured as an amount of heat leakage from the box 1H, and the result is compared with the heat insulation performance of Comparative Examples 1 to 3 described later.
The amount of heat leakage of the refrigerator box was defined as follows.
The amount of heat leakage of the refrigerator box (unit: W) means that the heater is energized and heated in the refrigerator 1 in a room at a certain temperature, and each storage room temperature of the refrigerator 1 is stabilized at a set temperature. This is an index for confirming how much heat is leaking from the refrigerator 1.

実際には、冷蔵庫1を低温に設定した恒温室内に設置し、各貯蔵室内温度と室温の差が、冷蔵庫1の通常使用時の各貯蔵室内温度と室温の差と同じになるように、庫内に設置したヒータおよび庫内ファンを制御する。各貯蔵室内温度が設定した値に安定したときのヒータ入力とファン入力を合わせた値を熱漏洩量として、100(指数)としたものである。
つまり、上述の冷蔵庫1の熱漏洩量を100として基準とし、後記の実施形態、比較例と熱漏洩量の比較を行う。
In practice, the refrigerator 1 is installed in a temperature-controlled room set to a low temperature, and the difference between the temperature in each storage room and the room temperature is the same as the difference between each storage room temperature and room temperature during normal use of the refrigerator 1. Controls the heater and the internal fan installed inside. A value obtained by adding the heater input and the fan input when the temperature in each storage room is stabilized to a set value is defined as 100 (index) as a heat leakage amount.
That is, the amount of heat leakage of the refrigerator 1 described above is set as 100, and the amount of heat leakage is compared with the embodiments and comparative examples described later.

<<実施形態2>>
図6A、図6Bは、実施形態2の冷蔵庫の製造工程の一例を示した図である。
実施形態1では、外箱鋼板21aと真空断熱材50aをそれぞれ折り曲げた後に組み合わせる場合を例示したが、実施形態2においては、図6Aに示すように、外箱鋼板21aを曲げる前の平坦な状態で真空断熱材50aを配置したものである。
<< Embodiment 2 >>
6A and 6B are diagrams illustrating an example of a manufacturing process of the refrigerator according to the second embodiment.
In the first embodiment, the case where the outer box steel plate 21a and the vacuum heat insulating material 50a are combined after being bent is illustrated, but in the second embodiment, as shown in FIG. 6A, the flat state before the outer box steel plate 21a is bent. The vacuum heat insulating material 50a is arranged.

真空断熱材50aには、予め略凸部59を2箇所設けている。この略凸部59は、実施形態1で示した寸法吸収部の折り曲げ部分58と同じ寸法吸収部の役割を持つ。
図6Aに示す真空断熱材50aは、略凸部59の外箱鋼板21a側への投影面(図6Aの上下方向の投影面)は非接着部とされ、外箱鋼板21aの折り曲げ部21ao上に配置される。真空断熱材50aの略凸部59は、対向する外箱鋼板21aの折り曲げ部21aoの長さより長い寸法をもつ。
Two substantially convex portions 59 are provided in advance in the vacuum heat insulating material 50a. The substantially convex portion 59 has the same dimension absorbing portion role as the bent portion 58 of the dimension absorbing portion shown in the first embodiment.
In the vacuum heat insulating material 50a shown in FIG. 6A, the projection surface of the substantially convex portion 59 on the outer box steel plate 21a side (the projection surface in the vertical direction in FIG. 6A) is a non-adhesive portion, and on the bent portion 21ao of the outer box steel plate 21a. Placed in. The substantially convex portion 59 of the vacuum heat insulating material 50a has a dimension longer than the length of the bent portion 21ao of the opposed outer box steel plate 21a.

この非接着部の略凸部59は、前記の寸法吸収部の役割の他、外箱鋼板21aを折り曲げる際の外箱鋼板21aの内側を押さえる押さえ治具(図示せず)が挿入される空間でもあるため、一定の大きさの空間が必要である。この押さえ治具が挿入出来ないと、外箱鋼板21aの折り曲げ部の外側の形状がきちんとでない。   The substantially convex portion 59 of the non-adhesive portion is a space in which a pressing jig (not shown) for pressing the inner side of the outer box steel plate 21a when the outer box steel plate 21a is bent is inserted in addition to the role of the dimension absorbing portion. However, a certain amount of space is required. If the pressing jig cannot be inserted, the outer shape of the bent portion of the outer box steel plate 21a is not neat.

押さえ治具とは、外箱鋼板21aの天面板21a1と左・右側面板21a2、21a3との各折り曲げ部21aoの角度(約90度)をだすための角材状の形状を有する治具である。
実施形態2の冷蔵庫の箱体1Hの断熱性能を、箱体1Hからの熱漏洩量として測定した結果、実施形態1の100(指数)に対し、実施形態2の冷蔵庫1も100であった。
The holding jig is a jig having a square-like shape for taking out the angle (about 90 degrees) of each bent portion 21ao between the top plate 21a1 of the outer box steel plate 21a and the left and right side plates 21a2, 21a3.
As a result of measuring the heat insulation performance of the box 1H of the refrigerator of the second embodiment as the amount of heat leakage from the box 1H, the refrigerator 1 of the second embodiment was also 100 with respect to 100 (index) of the first embodiment.

<<実施形態3>>
実施形態1、2では、真空断熱材50aを外箱鋼板21aの天面板21a1および左・右側面板21a2、21a3の内面に接着するとともに、天面板21a1と左・右側面板21a2、21a3とのそれぞれの折り曲げ部に非接着部分58a(図5B参照)を設ける場合を例示したが、実施形態3では、真空断熱材150a、250a(図7A、図8A参照)をそれぞれ外箱鋼板21aの左・右側面板21a2、21a3の内面に接着するとともに、天面板21a1とは非接着としたものである(図7B、図8B参照)。
<< Embodiment 3 >>
In the first and second embodiments, the vacuum heat insulating material 50a is bonded to the inner surface of the top plate 21a1 and the left and right side plates 21a2 and 21a3 of the outer box steel plate 21a, and the top plate 21a1 and the left and right side plates 21a2 and 21a3 respectively. Although the case where the non-adhesive part 58a (refer FIG. 5B) is provided in a bending part was illustrated, in Embodiment 3, the vacuum heat insulating materials 150a and 250a (refer FIG. 7A and FIG. 8A) are each left and right side board of the outer case steel plate 21a. It adheres to the inner surfaces of 21a2 and 21a3 and is not adhered to the top plate 21a1 (see FIGS. 7B and 8B).

図7A、図7Bは、実施形態3の真空断熱材を外箱鋼板の門形形状に合うようにコの字状に折り曲げた後に外箱鋼板に接着する製造工程の一例を示した図である。なお、図7Bは上半分を切り欠いた断面で示している。
図7Aにおいて、外箱鋼板21aの左・右側面板21a2、21a3の内面、または、真空断熱材150aの天面板150a1から折り曲げ成形された左・右側面板150a2、150a3の外面に、接着剤が塗布されている。
FIG. 7A and FIG. 7B are diagrams showing an example of a manufacturing process in which the vacuum heat insulating material of Embodiment 3 is bonded to the outer box steel plate after being bent into a U-shape so as to match the portal shape of the outer box steel plate. . FIG. 7B shows a cross-section with the upper half cut away.
In FIG. 7A, an adhesive is applied to the inner surfaces of the left and right side plates 21a2 and 21a3 of the outer box steel plate 21a or the outer surfaces of the left and right side plates 150a2 and 150a3 formed by bending from the top plate 150a1 of the vacuum heat insulating material 150a. ing.

そして、図7Aの矢印に示すように、外箱鋼板21aの左・右側面板21a2、21a3を真空断熱材150aの左・右側面板150a2、150a3に向け閉じることで、外箱鋼板21aの左・右側面板21a2、21a3と真空断熱材150aの左・右側面板150a2、150a3とが接着される。   7A, the left and right side plates 21a2 and 21a3 of the outer box steel plate 21a are closed toward the left and right side plates 150a2 and 150a3 of the vacuum heat insulating material 150a, thereby the left and right sides of the outer box steel plate 21a. The face plates 21a2 and 21a3 are bonded to the left and right side plates 150a2 and 150a3 of the vacuum heat insulating material 150a.

この場合、真空断熱材150aを外箱鋼板21aに接着するに際して、真空断熱材150aの天面板150a1と外箱鋼板21aの天面板21a1とが接着されることなく、クリアランスc1を有して離間して構成している。従って、真空断熱材150aの左・右側面板150a2、150a3が外箱鋼板21aの左・右側面板21a2、21aに接着される際に、真空断熱材150aに引張り力等の負荷が加わることがなく、真空断熱材150aの長期に亘る信頼性(長期信頼性)を損うことが抑制される。   In this case, when the vacuum heat insulating material 150a is bonded to the outer box steel plate 21a, the top plate 150a1 of the vacuum heat insulating material 150a and the top plate 21a1 of the outer box steel plate 21a are not bonded to each other with a clearance c1. Is configured. Therefore, when the left and right side plates 150a2, 150a3 of the vacuum heat insulating material 150a are bonded to the left and right side plates 21a2, 21a of the outer box steel plate 21a, a load such as a tensile force is not applied to the vacuum heat insulating material 150a, It is suppressed that the long-term reliability (long-term reliability) of the vacuum heat insulating material 150a is impaired.

図8A、図8Bは、実施形態3の真空断熱材を、外箱鋼板を曲げる前の平坦な状態で真空断熱材を接着して配置する製造工程の一例を示した図である。
図8Aに示すように、真空断熱材250aは、天面板250a1が左・右側面板250a2、250a3より上方に位置した形状、すなわち外箱鋼板21aから離隔するよう形状に成形される。
8A and 8B are diagrams illustrating an example of a manufacturing process in which the vacuum heat insulating material according to the third embodiment is disposed by adhering the vacuum heat insulating material in a flat state before the outer box steel plate is bent.
As shown in FIG. 8A, the vacuum heat insulating material 250a is formed into a shape in which the top plate 250a1 is located above the left and right side plates 250a2, 250a3, that is, a shape separated from the outer box steel plate 21a.

外箱鋼板21aの左・右側面板21a2、21a3の内面または真空断熱材250aの左・右側面板250a2、250a3の外面に接着剤が塗布され、外箱鋼板21aの左・右側面板21a2、21a3の内面と真空断熱材250aの左・右側面板250a2、250a3の外面とが接着される。   An adhesive is applied to the inner surfaces of the left and right side plates 21a2 and 21a3 of the outer box steel plate 21a or the outer surfaces of the left and right side plates 250a2 and 250a3 of the vacuum heat insulating material 250a, and the inner surfaces of the left and right side plates 21a2 and 21a3 of the outer box steel plate 21a. Are bonded to the outer surfaces of the left and right side plates 250a2 and 250a3 of the vacuum heat insulating material 250a.

そして、図8Bの矢印に示すように、外箱鋼板21aの左側面板21a2および真空断熱材250aの左側面板250a2と、外箱鋼板21aの右側面板21a3および真空断熱材250aの右側面板250a3とを、外箱鋼板21aの天面板21aおよび真空断熱材250aの天面板250a1に対して、折り曲げ成形することで、図8Bに示す状態に形成される。   8B, the left side plate 21a2 of the outer box steel plate 21a and the left side plate 250a2 of the vacuum heat insulating material 250a, the right side plate 21a3 of the outer box steel plate 21a and the right side plate 250a3 of the vacuum heat insulating material 250a, 8B is formed by bending the top plate 21a of the outer box steel plate 21a and the top plate 250a1 of the vacuum heat insulating material 250a.

図8Bの状態においては、外箱鋼板21aの天面板21a1と真空断熱材250aの天面板250a1との間は、接着されておらず、クリアランスc2が形成される。
この場合、真空断熱材250aの天面板250a1は、図8Aに示すように、真空断熱材250aの天面板250a1が対向する外箱鋼板21aの長さより長く形成されるので、外箱鋼板21aの寸法誤差や真空断熱材250aの寸法誤差、図8Bに示すように折り曲げ成形する際の外箱鋼板21aの折り曲げ箇所と真空断熱材250aの折り曲げ箇所との曲率の違い等が吸収される。
そのため、図8Bの折り曲げ成形に際して、真空断熱材250aに引張り力等の負荷が加わることがない。
従って、真空断熱材250aの長期に亘る信頼性(長期信頼性)を損うことが抑制される。
In the state of FIG. 8B, the top plate 21a1 of the outer box steel plate 21a and the top plate 250a1 of the vacuum heat insulating material 250a are not bonded, and a clearance c2 is formed.
In this case, as shown in FIG. 8A, the top plate 250a1 of the vacuum heat insulating material 250a is formed longer than the length of the outer box steel plate 21a opposed to the top plate 250a1 of the vacuum heat insulating material 250a. An error, a dimensional error of the vacuum heat insulating material 250a, a difference in curvature between the bent portion of the outer casing steel plate 21a and the bent portion of the vacuum heat insulating material 250a at the time of bending as shown in FIG. 8B, and the like are absorbed.
Therefore, a load such as a tensile force is not applied to the vacuum heat insulating material 250a during the bending forming of FIG. 8B.
Therefore, it is suppressed that the long-term reliability (long-term reliability) of the vacuum heat insulating material 250a is impaired.

上記実施形態1〜3の構成によれば、冷蔵庫1の左・右側面板21a2、21a3と天面板21a1に跨って真空断熱材50a(150a、250a)を配置することで、真空断熱材50a(150a、250a)の面積を大きくできる。そのため、外包材の外被材53によるヒートブリッジの影響を軽減でき、真空断熱材50a(150a、250a)自体の平均熱伝導率を低くできる。   According to the configurations of the first to third embodiments, the vacuum heat insulating material 50a (150a, 250a) is disposed across the left and right side plates 21a2, 21a3 and the top surface plate 21a1 of the refrigerator 1, so that the vacuum heat insulating material 50a (150a , 250a) can be increased. Therefore, the influence of the heat bridge due to the outer covering material 53 of the outer packaging material can be reduced, and the average thermal conductivity of the vacuum heat insulating material 50a (150a, 250a) itself can be lowered.

また、真空断熱材50a(150a、250a)による被覆面積を大きくできると共に、冷蔵庫1の箱体1Hのコーナ部分(折り曲げ部分21ao)においても芯材51の板厚を保ったまま折り曲げて配置することが可能となり、断熱性能が良好であり消費電力量を低減できる。   Further, the area covered with the vacuum heat insulating material 50a (150a, 250a) can be increased, and the corner portion (folded portion 21ao) of the box 1H of the refrigerator 1 is also folded and arranged while maintaining the thickness of the core material 51. The heat insulation performance is good and the power consumption can be reduced.

さらに、真空断熱材50a(150a、250a)を外箱鋼板21aに貼り付ける際に、接着部と非接着部を設けることで、真空断熱材50a(150a、250a)が冷蔵庫1に組み込まれた際に、真空断熱材50a(150a、250a)に引張り力等の負荷がかかるのを軽減でき、長期に亘る信頼性を損なうことが抑制される。
そのため、性能面での信頼性が高い冷蔵庫を提供できるとともに、製造工程における組立性が良好な冷蔵庫1を提供することが可能である。
Further, when the vacuum heat insulating material 50a (150a, 250a) is attached to the outer box steel plate 21a, the vacuum heat insulating material 50a (150a, 250a) is incorporated into the refrigerator 1 by providing an adhesive portion and a non-adhesive portion. In addition, it is possible to reduce a load such as a tensile force applied to the vacuum heat insulating material 50a (150a, 250a), and it is possible to suppress deterioration of reliability over a long period of time.
Therefore, it is possible to provide a refrigerator 1 with high performance reliability and to provide a refrigerator 1 with good assemblability in the manufacturing process.

(比較例1)
比較例1では、実施形態1において、真空断熱材50aのコーナ部の折り曲げ部分58の形状を略凸状にすることなく平坦な形状とし、真空断熱材50aを前面(正面)視(図5A参照)でコの字形状とした以外は同じとして、外箱鋼板21aに真空断熱材50aを配置した。
(Comparative Example 1)
In Comparative Example 1, in the first embodiment, the shape of the bent portion 58 of the corner portion of the vacuum heat insulating material 50a is made flat without being substantially convex, and the vacuum heat insulating material 50a is viewed from the front (front) (see FIG. 5A). The vacuum heat insulating material 50a is arranged on the outer box steel plate 21a, except that the U-shape is the same.

その結果、真空断熱材50aの折り曲げ後の前面(正面)視でコの字形状の寸法(正面から見て幅寸法)が少しマイナス目(短め)にできたこともあり、外箱鋼板21aの折り曲げ後の寸法と形状が合わなかった。
この形状ズレに起因し、真空断熱材50aと鋼板21aを接着した際、真空断熱材50aの両側の側面板部分が鋼板21a側に引っ張られた状態になり、真空断熱材50aの外被材53が突っ張った状態のまま箱体1Hに組込まれた。
As a result, the U-shaped dimension (width dimension when viewed from the front) of the vacuum heat insulating material 50a after bending is slightly negative (short), and the outer casing steel plate 21a The size and shape after bending did not match.
Due to this shape deviation, when the vacuum heat insulating material 50a and the steel plate 21a are bonded, the side plate portions on both sides of the vacuum heat insulating material 50a are pulled to the steel plate 21a side, and the jacket material 53 of the vacuum heat insulating material 50a. Was incorporated into the box 1H while being stretched.

逆に、鋼板21aも真空断熱材50a側に引っ張られた状態となり、鋼板21aの表面に歪(波打ち状の歪)が発生した。なお、鋼板21aの板厚は、実施形態1〜3、比較例1〜3とも4〜5mmである。この鋼板21aの板厚は一例であり、限定されないのは勿論である。
比較例1の冷蔵庫1の箱体1Hの断熱性能を、箱体1Hからの熱漏洩量として測定した結果、実施形態1の100(指数)に対し、比較例1の冷蔵庫も100であった。
しかしながら、比較例1では、前記したように、真空断熱材50aの外被材53が突っ張った状態のまま箱体1Hに組込まれたことや、鋼板21aの表面に歪(波打ち状の歪)が発生するという実施形態1〜3にない不具合が発生した。
On the contrary, the steel plate 21a is also pulled to the vacuum heat insulating material 50a side, and strain (waving distortion) is generated on the surface of the steel plate 21a. In addition, the plate | board thickness of the steel plate 21a is 4-5 mm in all of Embodiments 1-3 and Comparative Examples 1-3. The plate thickness of the steel plate 21a is an example, and it is needless to say that it is not limited.
As a result of measuring the heat insulation performance of the box 1H of the refrigerator 1 of Comparative Example 1 as the amount of heat leakage from the box 1H, the refrigerator of Comparative Example 1 was 100 compared to 100 (index) of Embodiment 1.
However, in Comparative Example 1, as described above, the outer cover material 53 of the vacuum heat insulating material 50a is incorporated in the box 1H while being stretched, and the surface of the steel plate 21a has a distortion (a wavy distortion). A problem that does not occur in the first to third embodiments occurs.

(比較例2)
比較例2では、実施形態2おいて、真空断熱材50aに予め折り曲げ部分58の略凸部(図5B参照)を設けずに平坦なままの形状とし、非接着部を設けずに真空断熱材50aのほぼ全面を外箱鋼板21aに接着して配置した。
(Comparative Example 2)
In Comparative Example 2, in the second embodiment, the vacuum heat insulating material 50a is formed in a flat shape without providing the substantially convex portion (see FIG. 5B) of the bent portion 58 in advance, and the vacuum heat insulating material without providing a non-adhesive portion. Almost the entire surface of 50a was adhered to the outer box steel plate 21a.

その結果、外箱鋼板21aを、左・右側面板21a2、21a3と天面板21aとをそれぞれ折り曲げる際の押さえ治具(角材状の治具)が鋼板21aの左・右側面板21a2、21a3と天面板21aとの折り曲げ部分21aoに挿入できず、外箱鋼板21aの内側の一部しか押さえることができなかった。そのため、外箱鋼板21aの外側の左・右側面板21a2、21a3と天面板21aとの折り曲げ部分21aoに丸みが生じ、所定の形状に成形することができなかった。   As a result, the left and right side plates 21a2, 21a3 and the top plate of the steel plate 21a serve as pressing jigs (square bar-like jigs) for bending the outer box steel plate 21a into the left and right side plates 21a2, 21a3 and the top plate 21a, respectively. It could not be inserted into the bent portion 21ao with 21a, and only a part inside the outer box steel plate 21a could be pressed. For this reason, the bent portions 21ao of the left and right side plates 21a2, 21a3 and the top plate 21a outside the outer box steel plate 21a are rounded and cannot be formed into a predetermined shape.

また、真空断熱材50aの全面を外箱鋼板21aに接着したため、外箱鋼板21aを折り曲げる際に真空断熱材50aが曲げ方向に外箱鋼板21aにより引っ張られてしまい、外被材53に伸びが発生した。この外被材53の伸びは、真空断熱材50aの長期信頼性の面で問題が生じる可能性があると推測される。
比較例2の冷蔵庫1の箱体1Hの断熱性能を、箱体1Hからの熱漏洩量として測定した結果、実施形態1の100(指数)に対し、比較例2の冷蔵庫1は101と少し(1ポイント)悪化していた。
Further, since the entire surface of the vacuum heat insulating material 50a is bonded to the outer box steel plate 21a, the vacuum heat insulating material 50a is pulled by the outer case steel plate 21a in the bending direction when the outer case steel plate 21a is bent, and the outer covering material 53 is stretched. Occurred. It is estimated that the elongation of the jacket material 53 may cause a problem in terms of long-term reliability of the vacuum heat insulating material 50a.
As a result of measuring the heat insulation performance of the box 1H of the refrigerator 1 of the comparative example 2 as the amount of heat leakage from the box 1H, the refrigerator 1 of the comparative example 2 is a little as 101 (100) for the first embodiment (index). 1 point) It was getting worse.

また、比較例2の真空断熱材50aの外被材53に伸びが発生していたことから、経時変化を確認するために約1ヶ月後に同じ測定をしたところ、熱漏洩量は102であり、実施形態1に比較して2ポイント悪化していた。比較例2の冷蔵庫1を解体して真空断熱材50aを調べたところ、外被材53が伸びた部分のアルミ蒸着層が薄くなっており、スローリークの状態(ゆっくりした漏洩状態)にあった。
なお、実施形態1〜3及び比較例1についても同様に約1ヶ月後の箱体熱漏洩量を測定したが、特に悪化している様子はみられなかった。
In addition, since elongation occurred in the jacket material 53 of the vacuum heat insulating material 50a of Comparative Example 2, when the same measurement was performed after about one month to confirm the change with time, the amount of heat leakage was 102, Compared to the first embodiment, it was worse by 2 points. When the refrigerator 1 of Comparative Example 2 was disassembled and the vacuum heat insulating material 50a was examined, the aluminum vapor deposition layer in the portion where the covering material 53 was extended was thin, and was in a slow leak state (slow leak state). .
In addition, about Embodiment 1-3, and the comparative example 1 similarly, although the amount of box heat leaks after about one month was measured, the mode which was not getting worse was not seen.

(比較例3)
比較例3では、実施形態1おいて、真空断熱材50aのコーナ部の折り曲げ部分58の形状を略凸状(図5B参照)とせずに、真空断熱材50aの折り曲げ部の内側部分に予め溝加工を施した後にコの字形状とした以外は同じとして、外箱鋼板21aに真空断熱材50aを配置した。
(Comparative Example 3)
In Comparative Example 3, in Embodiment 1, the shape of the bent portion 58 of the corner portion of the vacuum heat insulating material 50a is not substantially convex (see FIG. 5B), and the groove is previously formed in the inner portion of the bent portion of the vacuum heat insulating material 50a. The vacuum heat insulating material 50a was arrange | positioned to the outer box steel plate 21a as it was the same except having made the U-shape after processing.

その結果、真空断熱材50aに「遊び」(実施形態1の図5Aの折り曲げ部分58、実施形態2の図6Bの略凸部59)が無いため、真空断熱材50aと外箱鋼板21aのそれぞれの寸法誤差分で若干形状が合わなかったがそのまま両者を貼り付けたところ、外箱鋼板21aの折り曲げ部分21aoの溝に少し隙間ができてしまった。   As a result, since there is no “play” in the vacuum heat insulating material 50a (the bent portion 58 in FIG. 5A in Embodiment 1 and the substantially convex portion 59 in FIG. 6B in Embodiment 2), each of the vacuum heat insulating material 50a and the outer box steel plate 21a. Although the shapes did not match slightly due to the dimensional error, when both were pasted as they were, a gap was formed in the groove of the bent portion 21ao of the outer box steel plate 21a.

比較例3の冷蔵庫1の箱体1Hの断熱性能を、箱体1Hからの熱漏洩量として測定した結果、実施形態1の100(指数)に対し、比較例3の冷蔵庫1は102であり、2ポイント悪化した。
これは、真空断熱材50aの折り曲げ部分58に設けた溝加工によって、断熱厚みが減少したことにより熱漏洩量が悪化したものと考えられる。
以上、比較例1〜3では、何れも、実施形態1〜3にない不具合が発生したり、熱漏洩量が多く、実施形態1〜3の構成に比較し、性能が悪化することが明らかとなった。
As a result of measuring the heat insulation performance of the box 1H of the refrigerator 1 of the comparative example 3 as the amount of heat leakage from the box 1H, the refrigerator 1 of the comparative example 3 is 102 with respect to 100 (index) of the first embodiment. 2 points worsened.
This is thought to be because the heat leakage amount deteriorated due to the decrease in the heat insulation thickness due to the groove processing provided in the bent portion 58 of the vacuum heat insulating material 50a.
As described above, in Comparative Examples 1 to 3, it is clear that all of the problems that are not found in Embodiments 1 to 3 occur or the amount of heat leakage is large, and the performance deteriorates compared to the configurations of Embodiments 1 to 3. became.

<<その他の実施形態>>
なお、前記実施形態1、2では、天面板21a1と左・右側面板21a2、21a3とを1枚の鋼板で形成した場合を例示したが、天面板21a1と左・右側面板21a2、21a3とを、複数の鋼板で構成してもよい。例えば、複数の鋼板をテルミット溶接、アーク溶接等で溶接したり、ネジ止め等で連結して、天面板21a1と左・右側面板21a2、21a3を形成してもよい。
<< Other Embodiments >>
In the first and second embodiments, the case where the top plate 21a1 and the left and right side plates 21a2, 21a3 are formed of one steel plate is illustrated. However, the top plate 21a1 and the left / right side plates 21a2, 21a3 are You may comprise with several steel plates. For example, the top plate 21a1 and the left and right side plates 21a2, 21a3 may be formed by welding a plurality of steel plates by thermite welding, arc welding, or the like, or connecting them with screws.

また、前記実施形態1、2では、外箱21と内箱22との間のスペースに発泡断熱材23を充填した場合を例示したが、発泡断熱材23に代替して繊維系断熱材のグラスファイバ等の発泡断熱材23以外の断熱材を用いてもよい。   Further, in the first and second embodiments, the case where the space between the outer box 21 and the inner box 22 is filled with the foam heat insulating material 23 is exemplified. A heat insulating material other than the foamed heat insulating material 23 such as a fiber may be used.

また、前記実施形態1、2では、鋼板を平面板の天面板21a1と左・右側面板21a2、21a3とに折り曲げて形成した場合を例示したが、平面板は天面板21a1と左・右側面板21a2、21a3に限られず、適宜選択可能である。
例えば、鋼板を平面板の天面板21a1と左側面板21a2に折り曲げて形成したり、鋼板を平面板の天右側面板21a3と底板21e(図2参照)に折り曲げて形成したり、鋼板を平面板の後板21bと左・右側面板21a2、21a3に折り曲げて形成してもよい。
In the first and second embodiments, the case where the steel plate is formed by bending the flat plate into the top plate 21a1 and the left / right side plates 21a2, 21a3 is exemplified. However, the flat plate is the top plate 21a1 and the left / right side plates 21a2. , 21a3, but can be selected as appropriate.
For example, the steel plate is formed by bending the flat plate on the top plate 21a1 and the left side plate 21a2, the steel plate is formed by bending the flat plate on the top right side plate 21a3 and the bottom plate 21e (see FIG. 2), or the steel plate is formed of the flat plate. The rear plate 21b and the left and right side plates 21a2 and 21a3 may be bent and formed.

なお、前記実施形態1、2では、冷蔵庫1の外郭を形成する外板21を鋼板で形成した場合を例示したが、所定の強度や所定の熱伝導性等の外板21に必要な諸性質が得られれば、外板21は鋼板以外の板材(材料)を用いて構成してもよい。
また、前記実施形態1、2では、冷凍室(3a、3b、4)と冷蔵室(2、5)とを具える冷蔵庫1を例示して説明したが、冷蔵温度帯の冷蔵室で成る冷蔵庫にも、本発明は適用可能である。また、冷蔵庫に限定されず冷凍温度帯の冷凍室で成る冷凍庫にも、本発明は有効に適用可能である。
In the first and second embodiments, the case where the outer plate 21 forming the outline of the refrigerator 1 is formed of a steel plate is exemplified. However, various properties necessary for the outer plate 21 such as predetermined strength and predetermined thermal conductivity. If obtained, the outer plate 21 may be configured using a plate material (material) other than a steel plate.
In the first and second embodiments, the refrigerator 1 including the freezer compartments (3a, 3b, 4) and the refrigerator compartments (2, 5) has been described as an example. However, the refrigerator comprising the refrigerator compartment in the refrigerator temperature zone. In addition, the present invention is applicable. Moreover, the present invention can be effectively applied to a freezer that is not limited to a refrigerator and includes a freezing room in a freezing temperature zone.

1 冷蔵庫
2 冷蔵室(貯蔵室)
3a 製氷室(貯蔵室)
3b 上段冷凍室(貯蔵室)
4 下段冷凍室(貯蔵室
5 野菜室(貯蔵室)
21 外箱
21a 鋼板
21a1 天面板(平面板)
21a2 左側面板(平面板、側面板)
21a3 右側面板(平面板、側面板)
21ao 折り曲げ部分(折り曲げ部)
21b 後板(平面板)
21e 底板(平面板)
22 内箱
23 発泡断熱材(断熱材)
27 送風機
50、50a 真空断熱材
51 芯材
58 折り曲げ部分(非接着部)
59 凸部(非接着部)
150a1、250a1 天面板(非接着の箇所)
1 Refrigerator 2 Cold room (storage room)
3a Ice making room (storage room)
3b Upper freezer room (storage room)
4 Lower freezer compartment (storage room 5 vegetable room (storage room)
21 Outer box 21a Steel plate 21a1 Top plate (flat plate)
21a2 Left side plate (plane plate, side plate)
21a3 Right side plate (plane plate, side plate)
21ao folded part (folded part)
21b Rear plate (flat plate)
21e Bottom plate (flat plate)
22 Inner box 23 Foam insulation (heat insulation)
27 Blower 50, 50a Vacuum heat insulating material 51 Core material 58 Bent part (non-adhesive part)
59 Convex (non-adhesive)
150a1, 250a1 Top plate (non-bonded part)

Claims (3)

外郭を形成する外箱と貯蔵室を形成する内箱との間に断熱材と真空断熱材を備えた冷蔵庫であって、
前記外箱は、複数の平面板が折り曲げ部にて折り曲げられた形状に形成される板材を含んで形成され、
前記板材の内箱側の面に、前記複数の平面板に跨るように前記真空断熱材の芯材のある箇所を配設して、
前記真空断熱材は、前記外箱の板材に接着により配置されるとともに前記折り曲げ部近傍に非接着部が設けられ
前記真空断熱材の非接着部が、当該非接着部に対向する前記板材の非接着の箇所の長さより長く形成される
ことを特徴とする冷蔵庫。
A refrigerator including a heat insulating material and a vacuum heat insulating material between an outer box forming an outer shell and an inner box forming a storage chamber,
The outer box is formed to include a plate material formed into a shape in which a plurality of flat plates are bent at a bending portion ,
On the surface on the inner box side of the plate material, a place with a core material of the vacuum heat insulating material is disposed so as to straddle the plurality of flat plates,
The vacuum heat insulating material is disposed on the plate of the outer box by bonding and a non-bonding portion is provided in the vicinity of the bent portion ,
The non-adhered part of the vacuum heat insulating material is formed longer than the length of the non-adhered part of the plate material facing the non-adhered part .
前記真空断熱材の非接着部が、前記内箱側に凸状に湾曲して配設されている
ことを特徴とする請求項に記載の冷蔵庫。
The refrigerator according to claim 1, non-adhesive portion of the vacuum heat insulating material, characterized in that convexly curved are disposed in said box-side.
冷蔵庫の外郭を形成する両側面板と天面板を構成する外箱の板材の内側の面に沿って配設した真空断熱材を、前記両側面板と接着するとともに、前記天面板に対向する箇所を当該天面板より長く形成して前記天面板とは非接着とし、前記真空断熱材と前記天面板との間にクリアランスが形成される
ことを特徴とする冷蔵庫の製造方法。
The vacuum heat insulating material disposed along the inner side surface of the plate of the outer box constituting the outer plate and the side plate forming the outer shell of the refrigerator is bonded to the side plate and the portion facing the top plate is A method for manufacturing a refrigerator, wherein the refrigerator is formed longer than the top plate and is not bonded to the top plate, and a clearance is formed between the vacuum heat insulating material and the top plate .
JP2011187265A 2011-08-30 2011-08-30 Refrigerator and manufacturing method thereof Expired - Fee Related JP5689387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011187265A JP5689387B2 (en) 2011-08-30 2011-08-30 Refrigerator and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011187265A JP5689387B2 (en) 2011-08-30 2011-08-30 Refrigerator and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2013050242A JP2013050242A (en) 2013-03-14
JP2013050242A5 JP2013050242A5 (en) 2013-09-26
JP5689387B2 true JP5689387B2 (en) 2015-03-25

Family

ID=48012419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011187265A Expired - Fee Related JP5689387B2 (en) 2011-08-30 2011-08-30 Refrigerator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5689387B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11448355B2 (en) 2021-01-12 2022-09-20 Whirlpool Corporation Vacuum insulated refrigerator structure with feature for controlling deformation and improved air withdrawal
US11614271B2 (en) 2020-12-29 2023-03-28 Whirlpool Corporation Vacuum insulated structure with sheet metal features to control vacuum bow

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9182158B2 (en) 2013-03-15 2015-11-10 Whirlpool Corporation Dual cooling systems to minimize off-cycle migration loss in refrigerators with a vacuum insulated structure
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US8944541B2 (en) 2012-04-02 2015-02-03 Whirlpool Corporation Vacuum panel cabinet structure for a refrigerator
EP2778580B1 (en) * 2013-03-15 2019-06-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
EP2778582B1 (en) * 2013-03-15 2018-04-25 Whirlpool Corporation Folded vacuum insulated structure
CN103410352B (en) * 2013-07-29 2017-03-01 张其明 Foldable mobile freezer
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US9476633B2 (en) 2015-03-02 2016-10-25 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US9897370B2 (en) 2015-03-11 2018-02-20 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US9441779B1 (en) 2015-07-01 2016-09-13 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
WO2017180147A1 (en) 2016-04-15 2017-10-19 Whirlpool Corporation Vacuum insulated refrigerator cabinet
WO2018022007A1 (en) 2016-07-26 2018-02-01 Whirlpool Corporation Vacuum insulated structure trim breaker
WO2018034665A1 (en) 2016-08-18 2018-02-22 Whirlpool Corporation Machine compartment for a vacuum insulated structure
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US11486627B2 (en) 2020-12-30 2022-11-01 Whirlpool Corporation Reinforcement assembly for an insulated structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191588U (en) * 1983-06-08 1984-12-19 松下冷機株式会社 insulation board
JPH0798090A (en) * 1993-09-30 1995-04-11 Toshiba Corp Vacuum heat insulation panel and manufacture for heat insulation box body in which vacuum heat insulation panel is used
US5834126A (en) * 1994-12-30 1998-11-10 Basf Corporation Barrier layer for use in refrigerator cabinets
JPH10205992A (en) * 1997-01-22 1998-08-04 Sanyo Electric Co Ltd Thermal insulation box of cooling refrigerator
JP2011099566A (en) * 2011-02-25 2011-05-19 Hitachi Appliances Inc Vacuum heat insulating panel and refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11614271B2 (en) 2020-12-29 2023-03-28 Whirlpool Corporation Vacuum insulated structure with sheet metal features to control vacuum bow
US11808514B2 (en) 2020-12-29 2023-11-07 Whirlpool Corporation Vacuum insulated structure with sheet metal features to control vacuum bow
US11448355B2 (en) 2021-01-12 2022-09-20 Whirlpool Corporation Vacuum insulated refrigerator structure with feature for controlling deformation and improved air withdrawal
US11708935B2 (en) 2021-01-12 2023-07-25 Whirlpool Corporation Vacuum insulated refrigerator structure with feature for controlling deformation and improved air withdrawal

Also Published As

Publication number Publication date
JP2013050242A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP5689387B2 (en) Refrigerator and manufacturing method thereof
JP4695663B2 (en) refrigerator
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
JP2010276308A (en) Refrigerator having vacuum heat insulating material
JP2009024922A (en) Refrigerator
JP2013061131A (en) Refrigerator having vacuum heat insulating material
JP5372877B2 (en) Vacuum heat insulating material and refrigerator using the same
JP5401258B2 (en) refrigerator
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP2013119878A (en) Core material of vacuum heat insulator, vacuum heat insulator including same, and refrigerator applied the vacuum heat insulator
JP2011153721A (en) Refrigerator
JP2009024921A (en) Refrigerator
JP2011149501A (en) Vacuum heat insulating material and refrigerator using the same
JP5571610B2 (en) Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
JP2011149624A (en) Refrigerator
JP2013040717A (en) Vacuum heat insulation material, and refrigerator using the same
JP2012026583A (en) Refrigerator
JP2016089963A (en) Vacuum heat insulation material and refrigeration using vacuum heat insulation material
JP2015055368A (en) Vacuum heat insulation material and refrigerator using the same
JP2012229849A (en) Refrigerator and freezer
JP6535202B2 (en) Vacuum insulation material and insulation box using the same
JP2013002580A (en) Vacuum thermal insulation material and refrigerator using the same
JP6000922B2 (en) Vacuum heat insulating material and cooling / heating equipment using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150128

R150 Certificate of patent or registration of utility model

Ref document number: 5689387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees