Nothing Special   »   [go: up one dir, main page]

JP5662274B2 - Flow rate and particle size measuring method and system - Google Patents

Flow rate and particle size measuring method and system Download PDF

Info

Publication number
JP5662274B2
JP5662274B2 JP2011165732A JP2011165732A JP5662274B2 JP 5662274 B2 JP5662274 B2 JP 5662274B2 JP 2011165732 A JP2011165732 A JP 2011165732A JP 2011165732 A JP2011165732 A JP 2011165732A JP 5662274 B2 JP5662274 B2 JP 5662274B2
Authority
JP
Japan
Prior art keywords
phase
flow velocity
particle size
measurement object
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011165732A
Other languages
Japanese (ja)
Other versions
JP2013029423A (en
Inventor
田 竜 朗 内
田 竜 朗 内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011165732A priority Critical patent/JP5662274B2/en
Publication of JP2013029423A publication Critical patent/JP2013029423A/en
Application granted granted Critical
Publication of JP5662274B2 publication Critical patent/JP5662274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

本発明は、流速及び粒径計測方法、ならびにそのシステムに関する。   The present invention relates to a flow rate and particle size measurement method, and a system thereof.

ガスタービン、蒸気タービン、水車等に代表されるターボ型流体機械や、ピストンエンジン、ギヤポンプ、スクリューポンプ等に代表される容積型流体機械、また熱交換器等の各種流体機械、あるいは単純な配管内部等を流れる流体の内部流動を把握する際に、ピトー管を用いた気相流速の計測が行われている。   Turbo fluid machines represented by gas turbines, steam turbines, water turbines, etc., positive displacement fluid machines represented by piston engines, gear pumps, screw pumps, etc., various fluid machines such as heat exchangers, or simple pipe interiors When grasping the internal flow of the fluid flowing through the gas phase, the gas phase flow velocity is measured using a Pitot tube.

近年、非接触光学計測が進歩して粒子画像速度計法(Particle Image Velocimetry、以下PIVと称する)、粒子追跡速度計法(Particle Tracking Velocimetry、以下PTVと称する)、あるいは高速度カメラ等を用いて計測する可能性が見出されてきた。   In recent years, non-contact optical measurement has progressed and particle image velocimetry (hereinafter referred to as PIV), particle tracking velocimetry (hereinafter referred to as PTV), or a high-speed camera is used. The possibility of measuring has been found.

これらの手法を用いて流速を計測する場合、流体機械あるいは配管内部の流れに追従できるほど小さな固体または液体の微粒子或いは微小な気泡をトレーサとして積極的に混入する必要がある。   When measuring the flow velocity using these techniques, it is necessary to actively mix solid or liquid fine particles or minute bubbles that are small enough to follow the flow in the fluid machine or the pipe as a tracer.

また、トレーサを混入せずに、蒸気タービン内部の凝縮した水滴や自動車用エンジン内部の微粒化した液体燃料そのものをトレーサとして利用する場合、気流にこれらの凝縮水滴や微粒化した液体燃料が追従しているかどうかが問題となる。トレーサとしての凝縮水滴や微粒化した液体燃料が気流に追従できない程粒径が大きい場合、流速計測誤差は非常に大きくなる。   In addition, when the water droplets condensed inside the steam turbine or the atomized liquid fuel inside the automobile engine are used as a tracer without mixing the tracer, these condensed water droplets and atomized liquid fuel follow the air flow. Whether or not it is a problem. If the particle diameter is so large that the condensed water droplets or atomized liquid fuel as a tracer cannot follow the airflow, the flow velocity measurement error becomes very large.

以下に記載する特許文献1では、PIV手法に基づいて流体機械内部の流速計測を行うための装置を記載しているが、粒径の計測を行うことはできなかった。   In Patent Document 1 described below, an apparatus for measuring a flow velocity inside a fluid machine based on the PIV method is described, but the particle size cannot be measured.

特開2010−243197号公報JP 2010-243197 A

従来の手法には、流体機械内部の画像を撮影可能にするため、透明な材料で製作した流体機械の筐体へ微小粒子をトレーサとして積極的に混入し、流速を計測するものがあった。   In the conventional technique, in order to be able to take an image of the inside of the fluid machine, there is a technique in which fine particles are actively mixed as a tracer into the casing of the fluid machine made of a transparent material and the flow velocity is measured.

しかしこの手法は、実験室で行なうことを前提に製作した試験装置であって、筐体を計測用に透明な材料で製作する必要がある。実機寸法の蒸気タービン等のケーシングを、透明材料で製作することは困難である。さらに、仮に透明材料で製作できたとしても、凝縮した水膜がケーシング内壁面に付着し、計測対象面としてのレーザシート光から散乱する光がケーシング面で再度散乱し、屈折することとなる。   However, this method is a test apparatus manufactured on the premise that it is performed in a laboratory, and it is necessary to manufacture the casing with a transparent material for measurement. It is difficult to manufacture a casing such as a steam turbine of actual machine size using a transparent material. Furthermore, even if it can be made of a transparent material, the condensed water film adheres to the inner wall surface of the casing, and the light scattered from the laser sheet light as the measurement target surface is scattered again and refracted on the casing surface.

1本のプローブに計測機能を収納し、ターボ機械内部の流速を計測する事例も報告されている。また、位相ドップラ粒子分析計(Phase Doppler Particle Analyzer、以下PDPAという)等の計測原理を用いた装置により、流体機械内部を計測することも考えられていた。流速と粒径とを同時に計測することが可能な装置を用いて、流体機械の内部流動を把握することが望ましいが、流速と粒径を同時に計測することが可能な装置は従来は特に光学系の計測ヘッド部が大きく、流体機械内部に設置することが困難であった。   An example of measuring the flow velocity inside a turbomachine by storing the measurement function in one probe has been reported. In addition, it has been considered to measure the inside of a fluid machine with an apparatus using a measurement principle such as a phase Doppler particle analyzer (hereinafter referred to as PDPA). It is desirable to grasp the internal flow of a fluid machine using a device that can measure the flow velocity and particle size at the same time. The measuring head part of this was large and difficult to install inside the fluid machine.

本発明は上記事情に鑑みてなされたものであり、装置改造や計測信頼性の低下、大幅なコスト増加を伴うことなく、粒径及び流速の高精度な同時計測を可能とする流速及び粒径計測方法、ならびにそのシステムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and the flow velocity and the particle size that enable highly accurate simultaneous measurement of the particle size and the flow velocity without remodeling the apparatus, lowering the measurement reliability, and significantly increasing the cost. It aims at providing a measuring method and its system.

本発明の流速及び粒径計測システムは、
風洞実験における第1の測定対象物内を流れる作動流体に係わる第1の相の流速を測定するとともに、実機における第2の測定対象物内を流れる前記作動流体に係わる第1の相の流速を測定する第1の測定装置と、
風洞実験における前記第1の測定対象物を流れる前記作動流体中の粒子に係わる第2の相の流速及び粒径を測定する第2の測定装置と、
実機における前記第2の測定対象物内を流れる前記作動流体中の粒子に係わる第2の相の流速を測定する第3の測定装置と、
風洞実験により前記第1の測定装置及び前記第2の測定装置にて測定された前記第1の相の流速、前記第2の相の流速及び粒径から、前記第1の相の流速、前記第2の相の流速、前記粒子の粒径の間に成立する相関式を予め求め、前記相関式に対し、実機において前記第1の測定装置及び前記第3の測定装置にて測定した前記第1の相の流速と、前記第2の相の流速とを導入して、前記測定対象物内を流れる前記粒子の粒径を算出する演算装置と、
を備え
前記相関式において、係数をC3、C4とし、前記第1の相の流速と前記第2の相の流速との比に相当するスリップ比をSとした場合に、風洞吹出口からの距離xを関数とするスリップ比S(x)と、前記粒径dとの間に、S(x)=C3・e C4・d という関係が成立することを特徴とする。
The flow velocity and particle size measurement system of the present invention is
In the wind tunnel experiment, the flow velocity of the first phase related to the working fluid flowing in the first measurement object is measured, and the flow velocity of the first phase related to the working fluid flowing in the second measurement object in the actual machine is measured. A first measuring device for measuring;
A second measuring device for measuring a flow velocity and a particle size of a second phase related to particles in the working fluid flowing in the first measurement object in a wind tunnel experiment ;
A third measuring device for measuring a flow velocity of the second phase related to particles in the working fluid flowing in the second measurement object in an actual machine;
From the flow velocity of the first phase, the flow velocity and the particle size of the second phase measured by the first measurement device and the second measurement device by a wind tunnel experiment, the flow velocity of the first phase, A correlation equation established between the flow velocity of the second phase and the particle diameter of the particles is obtained in advance, and the correlation equation is measured with the first measurement device and the third measurement device in the actual machine . An arithmetic device for introducing the flow velocity of one phase and the flow velocity of the second phase to calculate the particle size of the particles flowing in the measurement object;
Equipped with a,
In the above correlation equation, when the coefficients are C3 and C4, and the slip ratio corresponding to the ratio between the flow velocity of the first phase and the flow velocity of the second phase is S, the distance x from the wind tunnel outlet is The relationship S (x) = C3 · e C4 · d is established between the slip ratio S (x) as a function and the particle diameter d .

本発明の流速及び粒径計測方法は、
風洞実験における第1の測定対象物内を流れる作動流体に係わる第1の相の流速、前記作動流体中を流れる粒子に係わる第2の相の流速、前記粒子の粒径を測定し、前記第1の相の流速、前記第2の相の流速、前記粒子の粒径の間に成立する相関式を求める工程と、
実機における第2の測定対象物内を流れる前記作動流体に係わる第1の相の流速と、前記第2の測定対象物を流れる前記作動流体中の粒子に係わる第2の相の流速をそれぞれ測定する工程と、
演算装置を用いて、前記相関式に対し、測定した前記第1の相の流速と、前記第2の相の流速とを導入して、前記測定対象物内を流れる前記粒子の粒径を算出する工程と、
を備え
前記相関式において、係数をC3、C4とし、前記第1の相の流速と前記第2の相の流速との比に相当するスリップ比をSとした場合に、風洞吹出口からの距離xを関数とするスリップ比S(x)と、前記粒径dとの間に、S(x)=C3・e C4・d という関係が成立することを特徴とする。
The flow rate and particle size measurement method of the present invention is:
In the wind tunnel experiment, the flow velocity of the first phase related to the working fluid flowing in the first measurement object, the flow velocity of the second phase related to the particles flowing in the working fluid, and the particle size of the particles are measured, Obtaining a correlation equation established between the flow velocity of one phase, the flow velocity of the second phase, and the particle size of the particles;
The flow velocity of the first phase related to the working fluid flowing in the second measurement object in the actual machine and the flow velocity of the second phase related to particles in the working fluid flowing in the second measurement object, respectively. Measuring process;
Using an arithmetic device, the measured flow rate of the first phase and the flow rate of the second phase are introduced into the correlation equation, and the particle size of the particles flowing in the measurement object is calculated. And a process of
Equipped with a,
In the above correlation equation, when the coefficients are C3 and C4, and the slip ratio corresponding to the ratio between the flow velocity of the first phase and the flow velocity of the second phase is S, the distance x from the wind tunnel outlet is The relationship S (x) = C3 · e C4 · d is established between the slip ratio S (x) as a function and the particle diameter d .

本発明の流速及び粒径計測方法、ならびにそのシステムによれば、装置改造等の大幅なコスト増加を伴うことなく、粒径及び流速を高精度に同時計測を行うことが可能である。   According to the flow velocity and particle size measuring method and the system of the present invention, it is possible to simultaneously measure the particle size and the flow velocity with high accuracy without significantly increasing the cost such as device modification.

本発明の実施の形態による流速及び粒径計測システムを用いて行う計測方法における工程を示したフローチャート。The flowchart which showed the process in the measuring method performed using the flow velocity and particle size measuring system by embodiment of this invention. 同流速及び粒径計測方法における相関式を求めるための風洞実験を示した斜視図。The perspective view which showed the wind tunnel experiment for calculating | requiring the correlation type | formula in the same flow velocity and particle size measuring method. 気相流速、液相流速、粒径の関係を示した説明図。Explanatory drawing which showed the relationship between a gaseous-phase flow velocity, a liquid phase flow velocity, and a particle size. 風洞実験により得られた液相流速と粒径との関係を示すグラフ。The graph which shows the relationship between the liquid phase flow velocity obtained by the wind tunnel experiment, and a particle size. 風洞実験により得られたスリップ比(気相流速/液相流速)と粒径との関係を示すグラフ。The graph which shows the relationship between the slip ratio (gas-phase flow velocity / liquid-phase flow velocity) obtained by the wind tunnel experiment, and a particle size. ピトー管をタービンに取り付けた状態を示す平面図。The top view which shows the state which attached the pitot tube to the turbine. 図6におけるA−A’線に沿う同ピトー管をタービンに取り付けた状態の断面構造を示す縦断面図。The longitudinal cross-sectional view which shows the cross-section of the state which attached the pitot tube in alignment with the A-A 'line in FIG. 6 to the turbine. 同流速及び粒径計測方法における液相流速を求めるためのPIV計測装置の概略を示した断面図。Sectional drawing which showed the outline of the PIV measuring device for calculating | requiring the liquid phase flow velocity in the flow velocity and particle size measuring method. 同PIV計測装置の先端部分の概略を示す平面図。The top view which shows the outline of the front-end | tip part of the PIV measuring device. 図9におけるB−B’線に沿う同PIV計測装置の先端部分の断面構造を示す縦断面図。The longitudinal cross-sectional view which shows the cross-section of the front-end | tip part of the same PIV measuring device in alignment with the B-B 'line in FIG. 同PIV計測装置をタービンに取り付けた状態を示す平面図。The top view which shows the state which attached the same PIV measuring device to the turbine. 図11におけるC−C’線に沿う同PIV計測装置をタービンに取り付けた状態の断面構造を示す縦断面図。The longitudinal cross-sectional view which shows the cross-section of the state which attached the same PIV measuring device in alignment with the C-C 'line in FIG. 11 to the turbine. タービン内実測結果に基づく液相流速と翼間位置との関係を示すグラフ。The graph which shows the relationship between the liquid phase flow velocity based on the actual measurement result in a turbine, and the position between blades. 同流速及び粒径計測方法における相関式に基づいて求めた粒径と翼間位置との関係を示すグラフ。The graph which shows the relationship between the particle size calculated | required based on the correlation type | formula in the flow velocity and particle size measurement method, and the position between blades.

以下、本発明の実施の形態による流速及び粒径計測方法、ならびにそのシステムについて、図面を参照して説明する。本実施の形態では、ターボ機械内の粒体の内部流動を把握する場合を例にとり説明する。   Hereinafter, a flow velocity and particle size measurement method and system according to an embodiment of the present invention will be described with reference to the drawings. In the present embodiment, a case where the internal flow of particles in a turbo machine is grasped will be described as an example.

本実施の形態では、計測対象となるパラメータ数Nが3(気相流速、粒径、液相流速)であり、図1のフローチャートにこれらのパラメータを求める手順について工程別に示す。   In the present embodiment, the number N of parameters to be measured is 3 (gas phase flow rate, particle size, liquid phase flow rate), and the procedure for obtaining these parameters is shown for each process in the flowchart of FIG.

尚、本実施の形態では、作動流体による第1の相が気相に相当し、作動流体中を流れる粒子による第2の相が液相に相当する。   In the present embodiment, the first phase by the working fluid corresponds to the gas phase, and the second phase by the particles flowing in the working fluid corresponds to the liquid phase.

ステップS11として、気相流速Vg、粒径d、液相流速Vlの相関式1であるf(d)=Vg/Vlを風洞試験を行うことにより導出する。   As step S11, f (d) = Vg / Vl, which is correlation 1 of the gas phase flow velocity Vg, the particle diameter d, and the liquid phase flow velocity Vl, is derived by conducting a wind tunnel test.

ステップS12として、ターボ機械内部の2つの計測パラメータ数である気相流速Vg、液相流速Vlを実測する。   As step S12, the gas phase flow velocity Vg and the liquid phase flow velocity Vl which are two measurement parameters inside the turbo machine are measured.

ステップS13として、ステップS11により求めた相関式に、ステップS12により求めた2つの計測パラメータである気相流速Vg、液相流速Vlを適用し、残る1つの計測パラメータである粒径dを算出する。これにより、粒径dと気相流速Vg、液相流速Vlの同時計測が可能となる。   In step S13, the gas phase flow velocity Vg and the liquid phase flow velocity Vl, which are the two measurement parameters obtained in step S12, are applied to the correlation equation obtained in step S11, and the remaining one measurement parameter, the particle diameter d, is calculated. . This enables simultaneous measurement of the particle size d, the gas phase flow velocity Vg, and the liquid phase flow velocity Vl.

本実施の形態では、このようなステップS11〜S13を備えたことにより、相関式1を導出し、気相流速Vg、液相流速Vlを実測し、これらを用いて粒径dを求めており、具体的には、それぞれのステップにおいて行う処理の内容について詳述する。   In this embodiment, by providing such steps S11 to S13, the correlation equation 1 is derived, the gas phase flow velocity Vg and the liquid phase flow velocity Vl are measured, and the particle diameter d is obtained using these. Specifically, the contents of processing performed in each step will be described in detail.

先ず、ステップS11における風洞実験により相関式を求める工程について説明する。   First, a process for obtaining a correlation equation by a wind tunnel experiment in step S11 will be described.

図2に示されたような風洞吹出口33から気流を出すエッフェル型風洞31、平均水滴径25μm、最大水滴径100μmの水滴を矢印38の方向に噴霧するスプレーノズル32、レーザ光37を出力するトランスミッタ34、レーザ光37を受光するレシーバ35、気相流速を計測するため計測点近傍に設置されたピトー管36を備えたPDPAを用いる。エッフェル型風洞31内に噴霧するスプレーノズル32によって、気液二相の流れが形成される。この流れは、矢印38の方向に流動する。PDPAにより得られた結果に対し、コンピュータ40及びモニタ41を用いて処理を行う。   As shown in FIG. 2, an Eiffel type wind tunnel 31 for generating an air flow from the wind tunnel outlet 33, a spray nozzle 32 for spraying water droplets having an average water droplet diameter of 25 μm and a maximum water droplet diameter of 100 μm in the direction of arrow 38, and laser light 37 are output. A PDPA provided with a transmitter 34, a receiver 35 that receives the laser light 37, and a Pitot tube 36 installed in the vicinity of the measurement point for measuring the gas phase flow velocity is used. A gas-liquid two-phase flow is formed by the spray nozzle 32 spraying into the Eiffel type wind tunnel 31. This flow flows in the direction of arrow 38. The result obtained by PDPA is processed using the computer 40 and the monitor 41.

ここで、トランスミッタ34、レシーバ35、ピトー管36は、水滴が流れる矢印38の方向へ移動できるように、トラバース装置39に取り付けてある。   Here, the transmitter 34, the receiver 35, and the Pitot tube 36 are attached to the traverse device 39 so that the transmitter 34, the receiver 35, and the Pitot tube 36 can move in the direction of an arrow 38 through which water drops flow.

風洞吹出口33から所定距離離れた位置における流速計測範囲を−150〜1000m/s、粒径計測範囲を0.5〜4000μm、最大サンプリングレートを800mHzとする。   The flow velocity measurement range at a position away from the wind tunnel outlet 33 by a predetermined distance is −150 to 1000 m / s, the particle size measurement range is 0.5 to 4000 μm, and the maximum sampling rate is 800 mHz.

このような構成を備えたPDPAを用いて風洞実験を行うと、図3に示されたように、気相流速Vg中に異なる粒径dの水滴が混入して液相流速Vlで並進する流れ場が形成される。液相流速Vlと粒径dは図2を用いて説明したPDPAを用いて計測する。   When a wind tunnel experiment is performed using a PDPA having such a configuration, as shown in FIG. 3, a flow in which water droplets having different particle diameters d are mixed in the gas phase flow velocity Vg and translated at the liquid phase flow velocity Vl. A field is formed. The liquid phase flow rate Vl and the particle size d are measured using the PDPA described with reference to FIG.

気相流速が10、30、125m/sの3条件において、スプレーノズル32への給水流量、及び風洞吹出口33からの距離xをそれぞれ固定して風洞実験を行い得られた各気相流速における液相流速Vlと粒径dとの関係を図4に示す。   Under the three conditions of the gas phase flow rate of 10, 30, 125 m / s, the feed water flow rate to the spray nozzle 32 and the distance x from the wind tunnel outlet 33 are respectively fixed, and the respective gas phase flow rates obtained by conducting the wind tunnel experiment are shown. The relationship between the liquid phase flow rate Vl and the particle size d is shown in FIG.

図4に示すように、気相流速Vgが10m/s、水滴の粒径が1〜10μmの場合は、水滴の液相流速Vlは、ほぼ気相流速Vgと同じ速度で流動する。しかし、気相流速Vgが上昇し、あるいは粒径dが大きくなるに従って液相流速Vlは気相流速Vgに追従できなくなることが分かる。   As shown in FIG. 4, when the gas phase flow velocity Vg is 10 m / s and the particle size of the water droplet is 1 to 10 μm, the liquid phase flow velocity Vl of the water droplet flows at substantially the same speed as the gas phase flow velocity Vg. However, it is understood that the liquid phase flow rate Vl cannot follow the gas phase flow rate Vg as the gas phase flow rate Vg increases or the particle size d increases.

この図4中には、3種類の気相流速Vgにおける液相流速Vlと粒径dとの関係を示す曲線を併せて示す。この曲線は、気相流速Vg、風洞吹出口33からの距離xを関数とする係数C1、C2を導入した以下の式(1)のような指数関数により表現することができる。
Vl(x)=C1・e−c2・d (1)
FIG. 4 also shows a curve showing the relationship between the liquid phase flow rate Vl and the particle size d for three types of gas phase flow rates Vg. This curve can be expressed by an exponential function such as the following equation (1) in which coefficients C1 and C2 having a function of the gas phase flow velocity Vg and the distance x from the wind tunnel outlet 33 are introduced.
Vl (x) = C1 · e− c2 · d (1)

さらに、この式(1)を、スリップ比S(=Vg/Vl)を導入して正規化すると、気相流速、風洞吹出口からの距離xを関数とし係数C3、C4を用いて以下の式(2)のような指数関数を得ることができる。
S(x)=C3・eC4・d (2)
Furthermore, when this equation (1) is normalized by introducing the slip ratio S (= Vg / Vl), the following equation is obtained using coefficients C3 and C4 with the gas phase flow velocity and the distance x from the wind tunnel outlet as a function. An exponential function like (2) can be obtained.
S (x) = C3 · e C4 · d (2)

この式(2)を用いて、気相流速Vg毎にスリップ比Sと粒径dとの関係を図示すると、図5のようである。この式(2)は、ステップS12における気相流速Vg、粒径d、液相流速Vlの相関式に相当するものである。   Using this equation (2), the relationship between the slip ratio S and the particle diameter d for each gas phase flow velocity Vg is shown in FIG. This equation (2) corresponds to the correlation equation of the gas phase flow velocity Vg, the particle diameter d, and the liquid phase flow velocity Vl in step S12.

図5に示すように、気相流速Vgが10m/sの場合には、粒径dが大きくなると、スリップ比Sは若干大きな値を示している。一方、気相流速Vgが125m/sの場合には、粒径dが大きくなると、気相流速Vgが10m/sの場合と比較して、スリップ比Sが大きな値を示している。よって、気相流速Vgが速く、粒径dが大きい場合には、スリップ比Sは、式(2)に示すように、指数関数的に大きくなっていることが分かる。   As shown in FIG. 5, when the gas phase flow velocity Vg is 10 m / s, the slip ratio S shows a slightly large value as the particle diameter d increases. On the other hand, when the gas phase flow velocity Vg is 125 m / s, the slip ratio S is larger when the particle size d is larger than when the gas phase flow velocity Vg is 10 m / s. Therefore, it is understood that when the gas phase flow velocity Vg is fast and the particle size d is large, the slip ratio S increases exponentially as shown in the equation (2).

本実施の形態では、このような相関式を導出するために行う風洞試験において、粒径dと液相流速Vlの計測にPDPAを用いる場合について説明した。しかし風洞試験に用いる装置はPDPAに限定されず、これらのパラメータを計測することが可能なPTV、高速度カメラ、画像干渉法、画像解析法等の他の計測原理に基づく計測装置を用いてもよい。   In the present embodiment, the case where PDPA is used for the measurement of the particle diameter d and the liquid phase flow velocity Vl in the wind tunnel test performed to derive such a correlation equation has been described. However, the device used for the wind tunnel test is not limited to PDPA, and a measurement device based on other measurement principles such as PTV, high-speed camera, image interferometry, image analysis method and the like capable of measuring these parameters may be used. Good.

また、これらのパラメータの計測は必ずしも同時である必要はなく、複数の装置を組み合わせて個別にパラメータを計測し相関式を導出してもよい。   The measurement of these parameters does not necessarily have to be performed at the same time, and a correlation equation may be derived by measuring parameters individually by combining a plurality of devices.

さらに、気相流速Vgは図6、及び図6におけるA−A’線に沿う縦断面を示した図7に示されたようなピトー管101を用いて計測する。   Further, the gas phase flow velocity Vg is measured by using a Pitot tube 101 as shown in FIG. 6 and FIG. 7 showing a longitudinal section along the line A-A ′ in FIG. 6.

図6、図7に示すように、ターボ機械における羽根(タービン翼)102、ノズル(静翼)103の間にピトー管101を設置する。矢印104で示された方向に蒸気が流れ、ピトー管101により計測領域101aにおける気相流速Vgが計測される。   As shown in FIGS. 6 and 7, a Pitot tube 101 is installed between a blade (turbine blade) 102 and a nozzle (static blade) 103 in a turbo machine. Steam flows in the direction indicated by the arrow 104, and the gas phase flow velocity Vg in the measurement region 101a is measured by the Pitot tube 101.

次に、図1におけるステップS12の工程、即ちターボ機械内部の2つの計測パラメータ数として気相流速Vg及び液相流速Vlの実測について説明する。ターボ機械内部の気相流速Vgの実測を、図8、図9を用いて説明する。 液相流速Vlの実測には、特許文献1において提案されている図8に示されたPIV計測装置1を用いて行なう。このPIV計測装置1は、レーザ光3を発振するPIV用レーザ発振装置2、レーザ光3をタービン内へ導くミラー10等の光学系、レーザ光3をシート状のレーザシート光6に変換するシート光形成用光学系4、レーザシート光6をタービン内のボアスコープ視野5へ向けて出力するガラス窓11、レーザシート光6で照明されたボアスコープ視野5におけるトレーサの2次元画像を撮影するためのボアスコープ7、ボアスコープ7に接続された撮像素子を含むPIV用カメラ8が1本のプローブとして構成されており、さらにPIV用カメラ8を動作させるためのカメラ用電源13、PIV用レーザ発振装置2の発振とPIV用カメラ8の撮影の同期を制御する同期コントローラ14、PIV用レーザ発振装置2に電源電力を供給するレーザ電源15、全体の動作を制御するコンピュータ16が設けられている。   Next, the process of step S12 in FIG. 1, that is, the actual measurement of the gas phase flow velocity Vg and the liquid phase flow velocity Vl as two measurement parameter numbers inside the turbomachine will be described. The actual measurement of the gas phase flow velocity Vg inside the turbo machine will be described with reference to FIGS. The actual measurement of the liquid phase flow velocity Vl is performed using the PIV measuring device 1 shown in FIG. The PIV measuring device 1 includes a PIV laser oscillation device 2 that oscillates laser light 3, an optical system such as a mirror 10 that guides the laser light 3 into a turbine, and a sheet that converts the laser light 3 into a sheet-like laser sheet light 6. In order to take a two-dimensional image of the tracer in the borescope visual field 5 illuminated with the optical system 4 for light formation, the glass window 11 for outputting the laser sheet light 6 toward the borescope visual field 5 in the turbine, and the laser sheet light 6 Borescope 7, a PIV camera 8 including an image sensor connected to the borescope 7 is configured as one probe, a camera power supply 13 for operating the PIV camera 8, and a PIV laser oscillation A synchronization controller 14 for controlling the synchronization of the oscillation of the apparatus 2 and the photographing of the PIV camera 8 and the power supply power to the PIV laser oscillation apparatus 2 The power supply 15, a computer 16 for controlling the entire operation is provided.

さらに、PIV計測装置1は、光端部分の拡大を示す図9、並びに図9のB−B’線に沿う縦断面を示す図10のように、レーザシート光形成用光学系4において、レーザ光発振装置2から発振されたレーザ光3がレーザシート光6に変換されて放射され、一方、パージ孔21から空気が供給されて、計測を阻害する要因のガラス窓11に付着する水滴が除去される。ボアスコープ7は、プローブの長手方向と平行に、計測対象の流体側へ向けて直線状に延在し、流体内に現れた画像をPIV用カメラ8に伝送するための画像伝送路と、画像伝送路の先端部においてボアスコープ視野5の方向を変更するための図示されていない視野側プリズムとを有する。また、ボアスコープ視野5における中心に相当し一点鎖線で示された視野方向がレーザシート光6の照射方向に対して常に直交するように、両者のなす角度は90度を維持するように設定されている。尚、ボアスコープ視野5の視野方向とボアスコープ7の長手方向とのなす角度は120度に設定されており、レーザシート光6の照射方向とボアスコープ7とのなす角度は30度に設定されている。 PIV計測装置1を、図11、並びに図11におけるC−C’線に沿う縦断面を図12に示す。これらの図に示すように、タービン内における羽根(タービン翼)102、ノズル(静翼)103の間にPIV計測装置1を設置する。図12において、矢印104で示された方向に蒸気が流れる。PIV計測装置1において、図9、図10を用いて説明したように、レーザシート光6が照射されボアスコープ視野5が形成される。このボアスコープ視野5が計測領域に対応し、この領域における粒子流速Vlの計測を行う。尚、図6、図7に示された気相流速Vgを計測するためのピトー管101は、ノズル(静翼)103に対してピトー管101の計測領域101aとPIV計測装置1の計測領域1aとが一致し周方向に異なる位置にそれぞれ取り付けて計測を行う。   Furthermore, as shown in FIG. 9 showing an enlargement of the optical end portion and FIG. 10 showing a longitudinal section along the line BB ′ in FIG. The laser beam 3 oscillated from the optical oscillation device 2 is converted into the laser sheet beam 6 and emitted, while air is supplied from the purge hole 21 to remove water droplets adhering to the glass window 11 which hinders measurement. Is done. The borescope 7 extends in a straight line toward the fluid to be measured in parallel with the longitudinal direction of the probe, and an image transmission path for transmitting an image appearing in the fluid to the PIV camera 8; A field-side prism (not shown) for changing the direction of the borescope field of view 5 at the tip of the transmission line. Further, the angle formed by the two is set to maintain 90 degrees so that the viewing direction corresponding to the center in the borescope viewing field 5 and indicated by the one-dot chain line is always orthogonal to the irradiation direction of the laser sheet light 6. ing. The angle formed between the viewing direction of the borescope visual field 5 and the longitudinal direction of the borescope 7 is set to 120 degrees, and the angle formed between the irradiation direction of the laser sheet light 6 and the borescope 7 is set to 30 degrees. ing. FIG. 11 shows a vertical cross section of the PIV measuring apparatus 1 taken along line C-C ′ in FIG. 11 and FIG. 11. As shown in these drawings, the PIV measuring device 1 is installed between a blade (turbine blade) 102 and a nozzle (static blade) 103 in the turbine. In FIG. 12, steam flows in the direction indicated by the arrow 104. In the PIV measuring apparatus 1, as described with reference to FIGS. 9 and 10, the laser sheet light 6 is irradiated and the borescope visual field 5 is formed. The borescope visual field 5 corresponds to a measurement region, and the particle flow velocity Vl in this region is measured. The pitot tube 101 for measuring the gas phase flow velocity Vg shown in FIGS. 6 and 7 has a measurement region 101a of the pitot tube 101 and a measurement region 1a of the PIV measuring device 1 with respect to the nozzle (static blade) 103. Are attached to each other at different positions in the circumferential direction.

以下、図13を用いて、気相流速Vgと液相流速Vlを計測した結果について説明する。出力が35mWで、低圧6段落3600rpmの実機サイズの蒸気タービンの最終段落ノズル出口に、図11、図12を用いて説明したようにPIV計測装置1を取り付けて、ノズル出口湿り度3.4%、5.4%の2条件で計測を行った。PIV計測装置1は、図11、図12においてノズル(静翼)103の高さ方向(Y方向)を固定し、翼間ピッチ方向(X方向)へトラバースして計測した。   Hereinafter, the results of measuring the gas phase flow rate Vg and the liquid phase flow rate Vl will be described with reference to FIG. As described with reference to FIGS. 11 and 12, the PIV measuring device 1 is attached to the final stage nozzle outlet of a steam turbine having an output of 35 mW and a low pressure of 6 stage 3600 rpm, and the nozzle outlet wetness is 3.4%. Measurement was performed under two conditions of 5.4%. 11 and 12, the PIV measuring apparatus 1 fixed the height direction (Y direction) of the nozzle (static blade) 103 and traversed in the inter-blade pitch direction (X direction).

図13に、翼間位置X/Xtに対するピトー管101を用いて計測した気相流速Vg、PIV計測装置1を用いて計測した液相流速Vlのそれぞれの関係を示す。ここで、横軸の翼間位置X/Xtは、二つのノズル(静翼)103の間において、中心を「0」、上流側のノズル(静翼)103の位置を「1」、下流側のノズル(静翼)103の位置を「−1」とする翼間距離で無次元化された座標軸上の位置を示す。   FIG. 13 shows the relationship between the gas phase flow velocity Vg measured using the Pitot tube 101 and the liquid phase flow velocity Vl measured using the PIV measuring device 1 with respect to the interblade position X / Xt. Here, the position X / Xt between the blades on the horizontal axis is “0” for the center between the two nozzles (stator blades) 103, “1” for the position of the upstream nozzle (stator blade) 103, and the downstream side. The position on the coordinate axis made dimensionless by the inter-blade distance, where the position of the nozzle (stator blade) 103 is “−1”.

図13において、翼間位置X/Xtにおいて下流に相当するX/X=−0.3の位置では、湿り度が3.4%のとき、気相流速Vg∽に対する液相流速Vlの比を示すスリップ比は約46%であり、湿り度が5.4%のときはスリップ比が約55%にまで減速していることが確認される。   In FIG. 13, at the position X / X = −0.3, which corresponds to the downstream position at the blade position X / Xt, when the wetness is 3.4%, the ratio of the liquid phase flow rate Vl to the gas phase flow rate Vg∽ The slip ratio shown is about 46%, and when the wetness is 5.4%, it is confirmed that the slip ratio has been reduced to about 55%.

一方、翼間位置X/Xtにおいてより上流側の−0.3<X/Xt<0.7の範囲では、スリップ比は湿り度が3.4%のとき約92%、湿り度が5.4%のとき約74%から83%の間で流動していることがわかる。 よって、翼間位置X/Xtにおいて、上流側の位置の方が下流側の位置よりも、スリップ比が大きいことが分かる。   On the other hand, in the range of −0.3 <X / Xt <0.7 on the upstream side at the interblade position X / Xt, the slip ratio is about 92% when the wetness is 3.4%, and the wetness is 5. It can be seen that when it is 4%, it flows between about 74% and 83%. Therefore, it can be seen that the slip ratio is higher at the upstream position than at the downstream position at the interblade position X / Xt.

次に、図14に示すように、図1におけるステップS13の工程、即ち、ステップS11により求めた相関式に、ステップS12により求めた2つの計測パラメータである気相流速Vg、液相流速Vlを適用し、残る1つの計測パラメータである粒径dを算出した結果について説明する。   Next, as shown in FIG. 14, the gas phase flow velocity Vg and the liquid phase flow velocity Vl, which are the two measurement parameters obtained in step S12, are added to the correlation equation obtained in step S13 in FIG. The result of applying and calculating the particle size d, which is one remaining measurement parameter, will be described.

図13に示した気相流速Vg、液相流速Vlの比(スリップ比)を求めて数式1に適用することで、粒径dを求めることができる。この結果を、図14のグラフにおいて、翼間距離X/Xtに対する粒径dとして示す。 The particle diameter d can be obtained by obtaining the ratio (slip ratio) of the gas phase flow velocity Vg and the liquid phase flow velocity Vl shown in FIG. This result is shown as the particle diameter d with respect to the blade distance X / Xt in the graph of FIG.

この図14より、ノズル(静翼)103の下流に位置する翼間距離X/Xtが−0.3の位置では、粒径dが90〜120μmの粒子が流動し、翼間距離−0.3<X/Xt<0.7の範囲の位置では、粒径dが50μm以下の粒子が流動することがわかる。 As shown in FIG. 14, at the position where the blade distance X / Xt located downstream of the nozzle (stationary blade) 103 is −0.3, particles having a particle diameter d of 90 to 120 μm flow, and the blade distance −0. It can be seen that particles having a particle diameter d of 50 μm or less flow at positions in the range of 3 <X / Xt <0.7.

本実施の形態によれば、流体機械や配管等の内部流動を把握する際に、作動流体の流速とトレーサの流速及び粒径の相関関係を予め求めておき、作動流体の流速とトレーサの流速を実測することで粒径を算出することが可能となる。   According to the present embodiment, when grasping the internal flow of a fluid machine or piping, the correlation between the flow rate of the working fluid and the flow rate and particle size of the tracer is obtained in advance, and the flow rate of the working fluid and the flow rate of the tracer are obtained. It is possible to calculate the particle size by actually measuring.

相関関係を導出する際、相関式を構成するN個のパラメータの全てを同時計測することが可能な装置を用いて相関式を導出してもよいが、これに限らず、相関式を構成する少なくとも1つ以上のパラメータの計測が可能な複数の装置を組合せて全てのパラメータを計測することによって相関式を導出してもよい。   When deriving the correlation, the correlation equation may be derived using an apparatus capable of simultaneously measuring all of the N parameters constituting the correlation equation. A correlation equation may be derived by measuring all parameters by combining a plurality of devices capable of measuring at least one parameter.

上述した実施の形態では、蒸気タービン内の気液二相流の流速粒径計測を例として説明した。本実施の形態では上述したように、作動流体による第1の相が気相に相当し、作動流体中を流れる粒子による第2の相が液相に相当する。   In the embodiment described above, the flow velocity particle size measurement of the gas-liquid two-phase flow in the steam turbine has been described as an example. In the present embodiment, as described above, the first phase of the working fluid corresponds to the gas phase, and the second phase of the particles flowing in the working fluid corresponds to the liquid phase.

しかし、本発明はこれに限定されず、例えば自動車用エンジン内における気相(第1の相)と気体中の微細化した液体燃料による液相(第2の相)とを対象とする流れ場、ビール等の炭酸飲料の工場等における液相(第1の相)と液体中の気泡による気相(第2の相)とを対象とする流れ場、あるいは製粉工場、化粧品工場等における気相(第1の相)と気体中の粒子としての粉体(固体)による固相(第2の相)とを対象とする流れ場等、様々な混相流における第1、第2の相の流速、第2の相の粒径等の計測に対しても適用することができる。   However, the present invention is not limited to this, and, for example, a flow field that targets a gas phase (first phase) in an automobile engine and a liquid phase (second phase) by a fine liquid fuel in the gas. , A flow field for a liquid phase (first phase) in a carbonated beverage factory such as beer and a gas phase (second phase) due to bubbles in the liquid, or a gas phase in a flour mill, cosmetic factory, etc. Flow velocity of the first and second phases in various multiphase flows, such as a flow field for (first phase) and a solid phase (second phase) of powder (solid) as particles in a gas It can also be applied to the measurement of the particle size of the second phase.

1 PIV計測装置
2 PIV用レーザ発振装置
3、37 レーザ光
4 シート光形成用光学系
5 ボアスコープ視野
6 レーザシート光
7 ボアスコープ
8 PIV用カメラ
10 ミラー
11 ガラス窓
13 カメラ用電源
14 同期コントローラ
15 レーザ電源
16、40 コンピュータ
21 パージ孔
31 エッフェル型風洞
32 スプレーノズル
33 風洞吹出口
34 トランスミッタ
35 レシーバ36、101 ピトー管
39 トラバース装置
41 モニタ
102 羽根(タービン翼)
103 ノズル(静翼)
DESCRIPTION OF SYMBOLS 1 PIV measuring device 2 Laser oscillator 3 for PIV, 37 Laser light 4 Optical system for sheet light formation 5 Borescope visual field 6 Laser sheet light 7 Borescope 8 PIV camera 10 Mirror 11 Glass window 13 Camera power supply 14 Synchronous controller 15 Laser power source 16, 40 Computer 21 Purge hole 31 Eiffel type wind tunnel 32 Spray nozzle 33 Wind tunnel outlet 34 Transmitter 35 Receiver 36, 101 Pitot tube 39 Traverse device 41 Monitor 102 Blade (turbine blade)
103 nozzles (static blades)

Claims (10)

風洞実験における第1の測定対象物内を流れる作動流体に係わる第1の相の流速を測定するとともに、実機における第2の測定対象物内を流れる前記作動流体に係わる第1の相の流速を測定する第1の測定装置と、
風洞実験における前記第1の測定対象物を流れる前記作動流体中の粒子に係わる第2の相の流速及び粒径を測定する第2の測定装置と、
実機における前記第2の測定対象物内を流れる前記作動流体中の粒子に係わる第2の相の流速を測定する第3の測定装置と、
風洞実験により前記第1の測定装置及び前記第2の測定装置にて測定された前記第1の相の流速、前記第2の相の流速及び粒径から、前記第1の相の流速、前記第2の相の流速、前記粒子の粒径の間に成立する相関式を予め求め、前記相関式に対し、実機において前記第1の測定装置及び前記第3の測定装置にて測定した前記第1の相の流速と、前記第2の相の流速とを導入して、前記測定対象物内を流れる前記粒子の粒径を算出する演算装置と、
を備え
前記相関式において、係数をC3、C4とし、前記第1の相の流速と前記第2の相の流速との比に相当するスリップ比をSとした場合に、風洞吹出口からの距離xを関数とするスリップ比S(x)と、前記粒径dとの間に、S(x)=C3・e C4・d という関係が成立することを特徴とする流速及び粒径計測システム。
In the wind tunnel experiment, the flow velocity of the first phase related to the working fluid flowing in the first measurement object is measured, and the flow velocity of the first phase related to the working fluid flowing in the second measurement object in the actual machine is measured. A first measuring device for measuring;
A second measuring device for measuring a flow velocity and a particle size of a second phase related to particles in the working fluid flowing in the first measurement object in a wind tunnel experiment ;
A third measuring device for measuring a flow velocity of the second phase related to particles in the working fluid flowing in the second measurement object in an actual machine;
From the flow velocity of the first phase, the flow velocity and the particle size of the second phase measured by the first measurement device and the second measurement device by a wind tunnel experiment, the flow velocity of the first phase, A correlation equation established between the flow velocity of the second phase and the particle diameter of the particles is obtained in advance, and the correlation equation is measured with the first measurement device and the third measurement device in the actual machine . An arithmetic device for introducing the flow velocity of one phase and the flow velocity of the second phase to calculate the particle size of the particles flowing in the measurement object;
Equipped with a,
In the above correlation equation, when the coefficients are C3 and C4, and the slip ratio corresponding to the ratio between the flow velocity of the first phase and the flow velocity of the second phase is S, the distance x from the wind tunnel outlet is A flow rate and particle size measurement system characterized in that a relationship of S (x) = C3 · e C4 · d is established between a slip ratio S (x) as a function and the particle size d .
前記第の測定装置が、レーザ光を発振するレーザ光発振部と、前記レーザ光をシート状に変換したレーザシート光を測定対象物内を流れる作動流体内に照射するレーザシート光形成部と、前記レーザシート光により照明されたトレーサの2次元画像を撮像する画像撮像部と、前記レーザ光発振部の発振と前記画像撮影装置の撮像の同期を制御する同期コントローラとを有する粒子画像速度計法(PIV)計測装置であることを特徴とする請求項1に記載の流速及び粒径計測システム。 The third measurement device includes a laser beam oscillation unit that oscillates a laser beam, and a laser sheet beam forming unit that irradiates the working fluid flowing in the measurement object with the laser sheet beam obtained by converting the laser beam into a sheet shape; A particle image velocimeter having an image capturing unit that captures a two-dimensional image of the tracer illuminated by the laser sheet light, and a synchronization controller that controls the synchronization of the oscillation of the laser light oscillation unit and the imaging of the image capturing device law (PIV) flow rate and particle size measuring system according to claim 1, characterized in that a measuring device. 前記第の測定装置として、粒子追跡速度計法(PTV)装置、レーザドップラー流速計(LDV)、又は高速度カメラのいずれかが用いられることを特徴とする請求項1に記載の流速及び粒径計測システム。 2. The flow velocity and particle according to claim 1, wherein any one of a particle tracking velocimetry (PTV) device, a laser Doppler velocimeter (LDV), or a high-speed camera is used as the third measuring device. Diameter measurement system. 前記第1の測定装置として、ピトー管が用いられることを特徴とする請求項1乃至のいずれか1項に記載の流速及び粒径計測システム。 The first as a measuring device, a flow rate and particle size measurement system according to any one of claims 1 to 3, characterized in that the Pitot tube is used. 前記第1の測定対象物、前記第2の測定対象物は蒸気タービンであり、前記第1の相は気相、前記第2の相は液相、前記粒子は水滴であることを特徴とする請求項1乃至のいずれかに記載の流速及び粒径計測システム。 The first measurement object and the second measurement object are steam turbines, the first phase is a gas phase, the second phase is a liquid phase, and the particles are water droplets. The flow velocity and particle size measurement system according to any one of claims 1 to 4 . 風洞実験における第1の測定対象物内を流れる作動流体に係わる第1の相の流速、前記作動流体中を流れる粒子に係わる第2の相の流速、前記粒子の粒径を測定し、前記第1の相の流速、前記第2の相の流速、前記粒子の粒径の間に成立する相関式を求める工程と、
実機における第2の測定対象物内を流れる前記作動流体に係わる第1の相の流速と、前記第2の測定対象物を流れる前記作動流体中の粒子に係わる第2の相の流速をそれぞれ測定する工程と、
演算装置を用いて、前記相関式に対し、測定した前記第1の相の流速と、前記第2の相の流速とを導入して、前記測定対象物内を流れる前記粒子の粒径を算出する工程と、
を備え
前記相関式において、係数をC3、C4とし、前記第1の相の流速と前記第2の相の流速との比に相当するスリップ比をSとした場合に、風洞吹出口からの距離xを関数とするスリップ比S(x)と、前記粒径dとの間に、S(x)=C3・e C4・d という関係が成立することを特徴とする流速及び粒径計測方法。
In the wind tunnel experiment, the flow velocity of the first phase related to the working fluid flowing in the first measurement object, the flow velocity of the second phase related to the particles flowing in the working fluid, and the particle size of the particles are measured, Obtaining a correlation equation established between the flow velocity of one phase, the flow velocity of the second phase, and the particle size of the particles;
The flow velocity of the first phase related to the working fluid flowing in the second measurement object in the actual machine and the flow velocity of the second phase related to particles in the working fluid flowing in the second measurement object, respectively. Measuring process;
Using an arithmetic device, the measured flow rate of the first phase and the flow rate of the second phase are introduced into the correlation equation, and the particle size of the particles flowing in the measurement object is calculated. And a process of
Equipped with a,
In the above correlation equation, when the coefficients are C3 and C4, and the slip ratio corresponding to the ratio between the flow velocity of the first phase and the flow velocity of the second phase is S, the distance x from the wind tunnel outlet is A flow rate and particle size measuring method, wherein a relationship of S (x) = C3 · e C4 · d is established between a slip ratio S (x) as a function and the particle size d .
前記第1の測定対象物、前記第2の測定対象物は蒸気タービンであり、前記第1の相は気相、前記第2の相は液相、前記粒子は水滴であることを特徴とする請求項6に記載の流速及び粒径計測方法。 The first measurement object and the second measurement object are steam turbines, the first phase is a gas phase, the second phase is a liquid phase, and the particles are water droplets. The flow velocity and particle size measuring method according to claim 6 . 前記第1の測定対象物、前記第2の測定対象物は自動車用エンジンであり、前記第1の相は気相、前記第2の相は液相、前記粒子は液体燃料であることを特徴とする請求項6に記載の流速及び粒径計測方法。 The first measurement object and the second measurement object are automotive engines, the first phase is a gas phase, the second phase is a liquid phase, and the particles are liquid fuel. The flow rate and particle size measuring method according to claim 6 . 前記第1の測定対象物、前記第2の測定対象物は炭酸飲料であり、前記第1の相は気相、前記第2の相は液相、前記粒子は気泡であることを特徴とする請求項6に記載の流速及び粒径計測方法。 The first measurement object and the second measurement object are carbonated drinks, the first phase is a gas phase, the second phase is a liquid phase, and the particles are bubbles. The flow velocity and particle size measuring method according to claim 6 . 前記第1の測定対象物、前記第2の測定対象物は製粉、化粧品であり、前記第1の相は気相、前記第2の相は固相、前記粒子は粉体であることを特徴とする請求項6に記載の流速及び粒径計測方法。 The first measurement object and the second measurement object are milling and cosmetics, the first phase is a gas phase, the second phase is a solid phase, and the particles are powder. The flow rate and particle size measuring method according to claim 6 .
JP2011165732A 2011-07-28 2011-07-28 Flow rate and particle size measuring method and system Active JP5662274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011165732A JP5662274B2 (en) 2011-07-28 2011-07-28 Flow rate and particle size measuring method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011165732A JP5662274B2 (en) 2011-07-28 2011-07-28 Flow rate and particle size measuring method and system

Publications (2)

Publication Number Publication Date
JP2013029423A JP2013029423A (en) 2013-02-07
JP5662274B2 true JP5662274B2 (en) 2015-01-28

Family

ID=47786590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011165732A Active JP5662274B2 (en) 2011-07-28 2011-07-28 Flow rate and particle size measuring method and system

Country Status (1)

Country Link
JP (1) JP5662274B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6450196B2 (en) * 2015-01-13 2019-01-09 三菱日立パワーシステムズ株式会社 Steam turbine droplet measuring apparatus and steam turbine
KR102136291B1 (en) * 2019-07-05 2020-07-21 경상대학교 산학협력단 Two-phase flow identification method
KR102136292B1 (en) * 2019-07-17 2020-07-21 경상대학교 산학협력단 Slug and plug flow type classification method of two-phase flow
CN113311186B (en) * 2021-05-24 2023-10-17 苏州西热节能环保技术有限公司 Method for accurately predicting flue gas flow field based on PIV and PDPA

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152460U (en) * 1979-04-19 1980-11-04
JPS56118642A (en) * 1980-02-23 1981-09-17 Mitsubishi Heavy Ind Ltd Measuring apparatus for distribution of size of droplet sprayed from nozzle
JPS57199943A (en) * 1981-06-03 1982-12-08 Hitachi Ltd Measuring device for wetness of steam
JPS6232342A (en) * 1985-08-05 1987-02-12 Hitachi Ltd Measuring instrument for flow of wet steam
SE462704B (en) * 1987-12-09 1990-08-20 Hg Tech Ab PROCEDURES FOR ATOMIZING SCIENCES AND DEVICES FOR IMPLEMENTATION OF THE PROCEDURE
JPH0228538A (en) * 1989-05-26 1990-01-30 Hitachi Ltd Steam wettability measuring instrument
JPH07174687A (en) * 1993-12-20 1995-07-14 Zexel Corp Particle analysis method utilizing laser doppler method
DE4410422C1 (en) * 1994-03-25 1995-06-01 Ruck Bodo Priv Doz Dr Ing Particle aerodynamic dia. measuring system
JP3462679B2 (en) * 1996-10-30 2003-11-05 三菱重工業株式会社 5-hole pitot tube
JP2004069494A (en) * 2002-08-06 2004-03-04 Mitsubishi Heavy Ind Ltd Jet flow speed measurement device
JP2005164560A (en) * 2003-11-28 2005-06-23 Hironari Kikura Dark-field particle measurement device and method therefor
JP2005221311A (en) * 2004-02-04 2005-08-18 Toto Ltd Method and device for measuring aerosol particle speed and composite structure manufacturing device using the measuring device
JP2007248436A (en) * 2006-03-20 2007-09-27 Kanagawa Acad Of Sci & Technol Method and instrument for measuring internal flow in droplet dropping behavior
WO2008132995A1 (en) * 2007-04-12 2008-11-06 The University Of Electro-Communications Particle measuring device and particle size measuring device
US8373858B2 (en) * 2008-12-10 2013-02-12 Livermore Instruments, Inc. System and method for real time determination of size and chemical composition of aerosol particles
JP4861447B2 (en) * 2009-04-01 2012-01-25 株式会社東芝 Fluid velocity measurement system and fluid velocity measurement method

Also Published As

Publication number Publication date
JP2013029423A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
Sang et al. Modeling and experimental studies of mass transfer in the cavity zone of a rotating packed bed
JP5662274B2 (en) Flow rate and particle size measuring method and system
Wernet Development of digital particle imaging velocimetry for use in turbomachinery
Jedelsky et al. Air–liquid interactions in a pressure-swirl spray
Liou et al. LDV study of developing flows through a smooth duct with a 180 deg straight-corner turn
Rehder et al. Experimental investigation of turbine leakage flows on the three-dimensional flow field and endwall heat transfer
Elfert et al. Detailed flow investigation using PIV in a typical turbine cooling geometry with ribbed walls
Norman et al. Flow Visualization of Perforated Baffles and Impellers for Stirred Tank Reactor with Single Stage Rushton Turbine
Facciolo A study on axially rotating pipe and swirling jet flows
Wang et al. Spray trajectory and 3D droplets distribution of liquid jet in crossflow with digital inline holography
JP2010243197A (en) System for measuring fluid velocity
Fischer et al. Investigation of the tip clearance flow in a compressor cascade using a novel laser measurement technique with high temporal resolution
Milanovic et al. PIV study of the near-field region of a turbulent round jet
Guan et al. Effects of the structured lips on spray characteristics in prefilming airblast atomization
CN102252943B (en) Method for measuring critical contact angle after interface impact by fogdrop and judging adhesion condition
Disimile et al. Mixing characteristics of twin impinging circular jets
Schroll et al. Investigation of the effect of rotation on the flow in a two-pass cooling system with smooth and ribbed walls using PIV
Nogueira et al. Multiple Δt strategy for particle image velocimetry (PIV) error correction, applied to a hot propulsive jet
Elfert et al. PIV-measurement of secondary flow in a rotating two-pass cooling system with an improved sequencer technique
Dupoiron Experimental Study of Gas-Liquid Flow Through a Multi-Stage, Mixed-Flow Electric Submersible Pump
Restrepo et al. Condensation shock topologies in carbon dioxide and a non-condensable gas mixture in supersonic nozzles
Kovacevic et al. Flow visualization at suction of a twin screw compressor
Phung et al. A Novel Experiment Approach for Measurement Breakup Length, Cone Angle, Sheet Velocity, and Film Thickness in Swirl Air-Blast Atomizers
Cejpek et al. Design and realization of an aerodynamic tunnel for spraying nozzles
Honami et al. Flow behavior with an oscillating motion of the impinging jet in a dump diffuser combustor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141204

R151 Written notification of patent or utility model registration

Ref document number: 5662274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151