JP5660485B2 - Laminated magnet film mover - Google Patents
Laminated magnet film mover Download PDFInfo
- Publication number
- JP5660485B2 JP5660485B2 JP2010094440A JP2010094440A JP5660485B2 JP 5660485 B2 JP5660485 B2 JP 5660485B2 JP 2010094440 A JP2010094440 A JP 2010094440A JP 2010094440 A JP2010094440 A JP 2010094440A JP 5660485 B2 JP5660485 B2 JP 5660485B2
- Authority
- JP
- Japan
- Prior art keywords
- magnet film
- film
- magnet
- magnetization
- laminated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Hard Magnetic Materials (AREA)
- Thin Magnetic Films (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Description
本発明は回転電気機械などに適用される微小な積層磁石膜可動子に関し、特に、ソフト相とハード相とのナノスケール結晶組織からなる積層磁石膜を有する積層磁石膜可動子に関するものである。 The present invention relates to a minute laminated magnet film movable element applied to a rotary electric machine or the like, and more particularly to a laminated magnet film movable element having a laminated magnet film composed of a nanoscale crystal structure of a soft phase and a hard phase.
回転電気機械の小型軽量化に関して、例えば、情報通信機器などに利用される回転電気機械は体積約40 mm3、重さ300 mgまで小型軽量化したものが市場を形成している。これらの回転電気機械のトルクは当該回転電気機械の体積との関係においてスケーリング則に基づく累乗近似が成立ち、著しいトルク低下がある。したがって車載、情報家電、通信、精密計測、医療福祉機器分野の先端電気電子機器やロボットなどの駆動源として利用されるような本発明が対象とする回転電気機械ではトルクの向上が強く求められている。 Regarding the reduction in size and weight of rotating electrical machines, for example, rotating electrical machines used for information communication equipment and the like have a market that is reduced in size and weight to a volume of about 40 mm 3 and a weight of 300 mg. The torque of these rotating electrical machines has a power approximation based on the scaling law in relation to the volume of the rotating electrical machine, and there is a significant torque drop. Therefore, the improvement of torque is strongly demanded in the rotating electrical machine targeted by the present invention, which is used as a driving source for advanced electrical and electronic equipment and robots in the fields of in-vehicle, information appliances, communication, precision measurement, medical welfare equipment. Yes.
例えば、特許文献1には、スロットを設けた導電円筒状壁を有する円筒状本体を励磁巻線とし、外径1 mm以下、長さ2 mm以下の径方向空隙型DCブラシレスモータの血管内超音波走査システムへの応用が開示されている。 For example, in Patent Document 1, a cylindrical main body having a conductive cylindrical wall provided with a slot is used as an excitation winding, and an intravascular ultra-longitudinal DC brushless motor having an outer diameter of 1 mm or less and a length of 2 mm or less is used. Applications for acoustic scanning systems are disclosed.
上記にかかる微小な回転電気機械として、例えば所定形状に放電加工したNd2Fe14B焼結磁石を外径 0.76 mmの径方向に極対数1で磁化することで異方性バルク磁石可動子とし、これを固定子鉄心と組合せて外径1.6 mm、長さ2 mmの回転電気機械(DCブラシレスモータ)とする[非特許文献1参照]。あるいは、前記のような構成の異方性バルク磁石可動子を用いてH. Raisigel、M. Nakano、伊東らの、外径6 mm、長さ2.2 mm [非特許文献2参照]、外径 5 mm、長さ1 mm [非特許文献3参照]、並びに、外径 0.8 mm、長さ1.2 mm [非特許文献4参照]などの微小な回転電気機械が知られる。 As a micro rotating electric machine according to the above, for example, an anisotropic bulk magnet mover is obtained by magnetizing an Nd 2 Fe 14 B sintered magnet, which has been subjected to electric discharge machining into a predetermined shape, with a pole pair number of 1 in the radial direction of an outer diameter of 0.76 mm. This is combined with a stator core to form a rotating electric machine (DC brushless motor) having an outer diameter of 1.6 mm and a length of 2 mm [see Non-Patent Document 1]. Alternatively, using an anisotropic bulk magnet mover configured as described above, H. Raisigel, M. Nakano, Ito et al., Outer diameter 6 mm, length 2.2 mm [see Non-Patent Document 2], outer diameter 5 There are known minute rotating electrical machines such as mm, length 1 mm [see non-patent document 3], and outer diameter 0.8 mm, length 1.2 mm [see non-patent document 4].
上記のような異方性バルク磁石可動子に関しては、例えば、異方性Nd2Fe14B系焼結磁石を外径0.9 mmに研削加工した後、当該表面にDy, Tbなどのスパッタ膜を形成し、内部拡散を促す熱処理を施す表面改質で磁気特性を回復させ、残留磁化Mr ≦1.35 T、保磁力HcJ= 1.34 MA/m、(BH)max = 341 kJ/m3とした異方性バルク磁石可動子が知られている[特許文献2参照]。 Regarding the anisotropic bulk magnet mover as described above, for example, after grinding an anisotropic Nd 2 Fe 14 B-based sintered magnet to an outer diameter of 0.9 mm, a sputtered film such as Dy and Tb is applied to the surface. The magnetic properties are recovered by surface modification that is formed and subjected to heat treatment to promote internal diffusion, and remanent magnetization Mr ≤1.35 T, coercive force HcJ = 1.34 MA / m, (BH) max = 341 kJ / m 3 A bulk magnet mover is known [see Patent Document 2].
一方、上記のような異方性バルク磁石ではなく、異方性磁石膜としては、D. Hinzらの、750℃でのdie upset法によって厚さ300μmの磁石膜が知られる。この異方性磁石膜は面垂直方向の残留磁化Mr=1.25 T、保磁力HcJ=1.06 MA/m、(BH)max=290 kJ/m3が得られるとしている [非特許文献5参照]。このような高Mr型磁石膜は微小な回転電気機械の異方性磁石膜可動子としての利用が知られている[非特許文献6参照]。 On the other hand, as an anisotropic magnet film instead of the anisotropic bulk magnet as described above, a magnet film having a thickness of 300 μm is known by a die upset method at 750 ° C. by D. Hinz et al. This anisotropic magnet film is said to have a remanent magnetization Mr = 1.25 T in the direction perpendicular to the plane, a coercive force HcJ = 1.06 MA / m, and (BH) max = 290 kJ / m 3 [see Non-Patent Document 5]. Such a high Mr type magnet film is known to be used as an anisotropic magnet film mover for a minute rotating electric machine [see Non-Patent Document 6].
さらに、Topfer、およびT. Speliotisらは直径10 mm のFe-Si基板にスクリーン印刷した残留磁化Mr 0.42 T、15.8 kJ/m3、厚さ500μmのNd2Fe14Bボンド磁石膜を等方性磁石膜可動子とし、トルク55 μNmの微小電気機械システム(MEMS)モータとしている[非特許文献7参照]。
以上のように微小な可動子の磁石に関しては残留磁化Mrが0.42〜1.35 Tに至る広範な磁気特性、磁石膜からバルクに至る多様な材料形態が試行されている。
In addition, Topfer and T. Speliotis et al. Areotropically applied a Nd 2 Fe 14 B bonded magnet film with a residual magnetization of Mr 0.42 T, 15.8 kJ / m 3 , and a thickness of 500 μm, printed on a 10 mm diameter Fe-Si substrate. A magnetic membrane mover is used, and a micro electromechanical system (MEMS) motor having a torque of 55 μNm is used [see Non-Patent Document 7].
As described above, a wide range of magnetic properties in which the remanent magnetization Mr ranges from 0.42 to 1.35 T and various material forms from the magnet film to the bulk have been tried for the fine mover magnet.
ところで、本発明が対象とする直径2 mm以下のような微小な可動子を搭載する回転電気機械のトルクTは極対数をPn、電流をI(Id, Iq)、インダクタンスをL(Ld, Lq)、及び鎖交磁束をΦaとすれば、式1で示される。
(式1)
T = [Pn×Φa×Iq] + [Pn×(Ld-Lq)×Id]
By the way, the torque T of a rotating electrical machine equipped with a minute movable element having a diameter of 2 mm or less, which is the object of the present invention, is Pn as the number of pole pairs, I (Id, Iq) as current, and L (Ld, Lq as inductance). ) And the interlinkage magnetic flux is represented by Φa.
(Formula 1)
T = [Pn × Φa × Iq] + [Pn × (Ld-Lq) × Id]
ここで、右辺第1項は磁石トルク、第2項はリラクタンストルクである。なお、本発明が対象とする回転電気機械は可動子の外径が概ね2 mm以下である。このような実寸法の制約から本発明が対象とする積層磁石膜可動子は主に積層磁石膜で構成され、回転子鉄心をもたない。このような積層磁石膜可動子の発生トルクTは右辺第1項の磁石トルク(Pn×Φa×Iq)のみとなり、第2項のリラクタンストルクはない。 Here, the first term on the right side is the magnet torque, and the second term is the reluctance torque. Note that the rotating electric machine targeted by the present invention has an outer diameter of the mover of approximately 2 mm or less. Due to such actual size restrictions, the laminated magnet film mover targeted by the present invention is mainly composed of a laminated magnet film and does not have a rotor core. The torque T generated by such a laminated magnet film movable element is only the magnet torque (Pn × Φa × Iq) of the first term on the right side, and there is no reluctance torque of the second term.
なお、式1から、磁石トルクは極対数Pn、鎖交磁束密度Φa、すなわち空隙磁束密度Φg、固定子励磁巻線の通電電流Iに比例する。また、モータのトルク定数Kt(Nm/A)は固定子励磁巻線の通電電流Iに対するトルク勾配であり、Ktが大きいほど回転駆動力が増し、電流制御が容易となる。このことから回転電気機械の微小化に伴うトルク減少を抑制し、さらにKtを増して回転駆動力や制御性を高める手段として、1) 極対数Pnを増加する。2) 空隙磁束密度Φgを増加する。3) 空隙パーミアンスPgを高めて磁気抵抗を低減する。4)励磁電流Iq、または励磁巻線の巻数nを増すことで固定子側の励磁力を強めることなどがある。 From Equation 1, the magnet torque is proportional to the number of pole pairs Pn, the interlinkage magnetic flux density Φa, that is, the gap magnetic flux density Φg, and the energization current I of the stator excitation winding. Further, the torque constant Kt (Nm / A) of the motor is a torque gradient with respect to the energization current I of the stator excitation winding, and the greater the Kt, the greater the rotational driving force and the easier the current control. Therefore, 1) Increase the number of pole pairs Pn as a means to suppress the torque decrease accompanying the miniaturization of the rotating electrical machine and further increase the rotational driving force and controllability by increasing Kt. 2) Increase the gap magnetic flux density Φg. 3) Increase the air gap permeance Pg to reduce the magnetic resistance. 4) Increasing the excitation current Iq or the number of turns n of the excitation winding may increase the excitation force on the stator side.
しかしながら、本発明が対象とする微小な回転電気機械の可動子の外径は概ね2.0 mm以下である。このような可動子において、例えば特許文献2では、残留磁化Mr = 1.35 Tの異方性Nd2Fe14B系焼結磁石、すなわち、高い残留磁化Mrをもつ異方性バルク磁石可動子を開示している。しかし、このような微小な可動子に異方性バルク磁石を適用すると極対数Pnが1に限定される欠点がある。 However, the outer diameter of the mover of the minute electric rotating machine targeted by the present invention is approximately 2.0 mm or less. In such a mover, for example, Patent Document 2 discloses an anisotropic Nd 2 Fe 14 B based sintered magnet having a residual magnetization Mr = 1.35 T, that is, an anisotropic bulk magnet mover having a high residual magnetization Mr. doing. However, when an anisotropic bulk magnet is applied to such a fine mover, there is a disadvantage that the number of pole pairs Pn is limited to 1.
したがって、上記のような微小な異方性バルク磁石可動子を用いる回転電気機械の高トルク化手段としては、当該可動子の磁石の残留磁化Mrを高めることが有効である。しかしながら、特許文献3が開示する可動子は異方性Nd2Fe14B系バルク磁石を所定形状に機械加工したのち、当該表面にDy、Tbなどをスパッタなど物理的成膜手段で成膜し、熱処理により機械加工劣化による磁気特性を回復したもので、その残留磁化Mrは1.35 Tである。つまり、式1における右辺第1項の磁石トルク(Pn×Φa×Iq)において磁石にかかる極対数Pnを1とした状態で、Nd2Fe14B金属間化合物の理論限界1.6 Tまで残留磁化Mrを高めたと仮定してもトルクの向上は1.2倍未満にとどまっている。 Therefore, it is effective to increase the residual magnetization Mr of the magnet of the mover as means for increasing the torque of the rotating electric machine using the above-described minute anisotropic bulk magnet mover. However, in the mover disclosed in Patent Document 3, after anisotropic Nd 2 Fe 14 B-based bulk magnets are machined into a predetermined shape, Dy, Tb, etc. are formed on the surface by physical film forming means such as sputtering. The magnetic properties due to the deterioration of machining are recovered by heat treatment, and the remanent magnetization Mr is 1.35 T. In other words, with the magnet torque (Pn × Φa × Iq) of the first term on the right side in Equation 1 with the number of pole pairs Pn applied to the magnet set to 1, the residual magnetization Mr up to the theoretical limit of 1.6 T of the Nd 2 Fe 14 B intermetallic compound Assuming that the torque is increased, the torque improvement is less than 1.2 times.
一方、高Mr型磁石膜としては、D. Hinzらの厚さ300μmの磁石膜は面垂直方向の残留磁化Mr=1.25 T、保磁力HcJ=1.06 MA/m、(BH)max=290 kJ/m3が得られる [非特許文献5]。このような磁石膜は異方性磁石膜可動子として軸方向空隙型回転電気機械への適用に限られる。 On the other hand, as a high Mr type magnet film, a 300 μm thick magnet film of D. Hinz et al. Has a remanent magnetization Mr = 1.25 T in the direction perpendicular to the plane, a coercive force HcJ = 1.06 MA / m, (BH) max = 290 kJ / m 3 is obtained [Non-Patent Document 5]. Such a magnet film is limited to application to an axial gap type rotary electric machine as an anisotropic magnet film mover.
ところで、本発明が対象とするような微小な回転電気機械の例として、100 mm3以下のDCブラシレスモータの体積V mm3とトルクT mNmの関係は径方向空隙型でT = 3x10-4x V1.0922(相関係数0.9924)、軸方向空隙型でT= 3x10-6x V1.9022(相関係数0.9864)となり、動作、構造が同じ回転電気機械の体積とトルクには累乗近似が成り立つ。 By the way, as an example of a micro electric rotating machine as the object of the present invention, the relationship between the volume V mm 3 of a DC brushless motor of 100 mm 3 or less and the torque T mNm is a radial gap type and T = 3 × 10 −4 x V 1.0922 (correlation coefficient .9924), T in the axial direction gap type = 3x10 -6 x V 1.9022 (correlation coefficient 0.9864), and the operation, power approximation holds in volume and torque of the same rotary electric machine structure.
例えば、径方向空隙型と軸方向空隙型回転電気機械の体積100 mm3でのトルクを比較すると、それぞれ45、19 μNmとなり、径方向空隙型構造の回転電気機械が2倍以上強いトルクを発生させることができる。つまり、面垂直方向に異方性をもつ異方性磁石膜を構成要素とした異方性磁石膜可動子は軸方向に空隙をもつ回転電気機械の構造上、径方向空隙型回転電気機械に比べて、そのパーミアンスが低下する。このために高トルク化が困難である。 For example, when comparing the torque in the radial gap type and the axial gap type rotary electric machine having a volume 100 mm 3, respectively 45,19 μNm next, a strong torque rotary electric machine more than twice the radial gap structure occur Can be made. In other words, the anisotropic magnet film mover composed of an anisotropic magnet film having anisotropy in the direction perpendicular to the plane is a radial gap type rotary electric machine due to the structure of the rotary electric machine having a gap in the axial direction. Compared to this, the permeance is lowered. For this reason, it is difficult to increase the torque.
他方では、Topferら、およびT. Speliotisらのスクリーン印刷による残留磁化Mr 0.42 Tの等方性ボンド磁石膜を等方性磁石膜可動子として適用すると、残留磁化Mr = 1.35 Tのような高Mrをもつ異方性バルク磁石可動子から得られる径方向空隙型回転電気機械の空隙磁束密度Φaの40%未満にとどまる。このため、等方性磁石膜可動子をもちいたTopferらの回転電気機械は極対数Pnを10とするなど、極対数Pnを大幅に増さなければ相応のトルクが得られないという課題がある[非特許文献7]。 On the other hand, when the isotropic bonded magnet film with residual magnetization Mr 0.42 T by screen printing of Topfer et al. And T. Speliotis et al. Is applied as an isotropic magnet film mover, a high Mr like remanent magnetization Mr = 1.35 T It remains below 40% of the gap magnetic flux density Φa of the radial gap-type rotary electric machine obtained from the anisotropic bulk magnet mover having For this reason, the rotating electrical machine of Topfer et al. Using an isotropic magnet film mover has a problem that a corresponding torque cannot be obtained unless the number of pole pairs Pn is significantly increased, such as 10 pole pairs. [Non-Patent Document 7].
本発明は微小な径方向空隙型回転電気機械に適用されるような微小な積層磁石膜可動子に関する。 The present invention relates to a minute laminated magnet film mover as applied to a minute radial gap type rotary electric machine.
(1)ソフト相とハード相とのナノスケール結晶組織からなる複数の直径2 mm以下の中実または中空状等方性磁石膜を、寸法比L/Dを1以上(ただし、Lは積層方向の長さ、Dは直径)、かつ、相対密度RDを85%以上で構成し、並びに面内方向に任意の極対数をもつ積層磁石膜を含むことを特徴とする回転電気機械の積層磁石膜可動子。 (1) A solid or hollow isotropic magnet film with a diameter of 2 mm or less consisting of a nanoscale crystal structure of soft and hard phases, with a dimensional ratio L / D of 1 or more (where L is the direction of lamination) And a relative density RD of 85% or more, and includes a laminated magnet film having an arbitrary number of pole pairs in the in-plane direction. Movable child.
(2)前記磁石膜は、R-TM-B(RはNd、Pr、TMはFe、Co)系溶湯合金若しくはSm-Fe系溶湯合金の急冷凝固することにより、
又は、R-TM-B(RはNd、Pr、TMはFe、Co)系溶湯合金若しくは前記Sm-Fe系溶湯合金を物理的堆積法により成膜し、
その後、それらを結晶化又は窒化して、ハード磁性を発現させた、
Fe-B又はαFeのソフト相とR2TM14B系又はSm2Fe17N3系ハード相とからなることを特徴とする(1)項に記載する積層磁石膜可動子。
(2) The magnet film is obtained by rapid solidification of R-TM-B (R is Nd, Pr, TM is Fe, Co) -based molten alloy or Sm-Fe-based molten alloy,
Alternatively, R-TM-B (R is Nd, Pr, TM is Fe, Co) -based molten alloy or the Sm-Fe-based molten alloy is formed by physical deposition,
After that, they were crystallized or nitrided to develop hard magnetism,
The laminated magnet film mover as described in the item (1), comprising a soft phase of Fe-B or αFe and an R 2 TM 14 B system or Sm 2 Fe 17 N 3 system hard phase.
(3)前記磁石膜は、
Fe-B又はαFe のソフト相とR-TM-B(RはNd、Pr、TMはFe、Co)系合金又はSm-Fe系合金を交互に物理的に成膜したのち、それらを結晶化又は窒化して、ハード磁性を発現させた、
Fe-B、αFeのソフト相とR2TM14B系又はSm2Fe17N3系のハード相とからなることを特徴とする(1)項に記載する積層磁石膜可動子。
(3) The magnet film
The Fe-B or αFe soft phase and R-TM-B (R is Nd, Pr, TM is Fe, Co) alloy or Sm-Fe alloy are physically deposited alternately and then crystallized. Or nitriding to develop hard magnetism,
The laminated magnet film mover according to item (1), comprising a soft phase of Fe-B and αFe and a hard phase of R 2 TM 14 B system or Sm 2 Fe 17 N 3 system.
(4)前記磁石膜は、非磁性膜を付加した複合膜であることを特徴とする(2)又は(3)項に記載する積層磁石膜可動子。 (4) The laminated magnet film movable element described in (2) or (3) , wherein the magnet film is a composite film to which a nonmagnetic film is added.
(5)前記磁石膜は、残留磁化Mrの50%程度が磁化反転しても残留磁化Mrの90%以上の磁化が回復する磁化のスプリングバック特性をもつことを特徴とする(2)又は(3)項に記載する積層磁石膜可動子。 (5) the magnet film, the residual about 50% of the magnetization Mr is characterized by having a spring-back characteristics of the magnetization to recover more than 90% of the magnetization of the residual magnetization Mr be magnetization reversal (2) or ( The laminated magnet film movable element described in the item 3) .
(6)前記磁石膜は、面内方向の残留磁化Mr 1 T以上、保磁力HcJ 300 kA/m以上であり、かつ面内方向に極対数2以上に多極磁化されていることを特徴とする(2)又は(3)項に記載する積層磁石膜可動子。 (6) The magnet film has a remanent magnetization Mr 1 T or more in the in-plane direction, a coercive force HcJ 300 kA / m or more, and is multipolarly magnetized with a pole pair number of 2 or more in the in-plane direction. The laminated magnet film movable element described in (2) or (3) .
(7)前記磁石膜は、面内方向の残留磁化Mr 0.95 T以上、保磁力HcJ 600 kA/m以上であり、かつ面内方向に極対数4以上に多極磁化されていることを特徴とする(2)又は(3)項に記載する積層磁石膜可動子。 (7) The magnet film has a residual magnetization Mr 0.95 T or more in the in-plane direction, a coercive force HcJ 600 kA / m or more, and is multipolarly magnetized to have a pole pair number 4 or more in the in-plane direction. The laminated magnet film movable element described in (2) or (3) .
本発明にかかる微小な積層磁石膜可動子を備えた回転電気機械は、高トルクが得られ、径方向空隙型DCブラシレスモータ、PM型ステッピングモータ、或いは発電機などとして情報機器、医療機器、産業機器分野における各種電気電子機器の性能が向上する。 The rotary electric machine provided with the minute laminated magnet film mover according to the present invention can obtain a high torque, and can be used as a radial gap type DC brushless motor, a PM stepping motor, a generator, etc. The performance of various electrical and electronic equipment in the equipment field is improved.
先ず、本発明で言うソフト相とハード相とのナノスケール結晶組織からなる等方性磁石膜について説明する。
本発明にかかる磁石膜を構成するハード相としてR2TM14B(Rは希土類元素のうちNd、またはPr、TMは遷移金属元素のうちFe、Co)、R2TM17N3(Rは希土類元素のうちSm、TMは遷移金属元素のうちFe)を例示できる。このような、ハード相と交換結合する高い飽和磁化MsのαFeなどのソフト相が存在すると、逆磁界の下でソフト相から先に磁化反転し、高い保磁力HcJが得られない。しかし、ソフト相のサイズを磁壁幅以下に抑えると、逆磁界における不均一磁化反転が抑制される。その結果、保磁力HcJがハード相の磁気異方性Haに支配されるようになり、保磁力HcJの低下が抑えられる。さらに、ソフト相から、より高い磁束を得るには、磁石中のソフト相の体積比を増す必要がある。そのためにはハード相のサイズをできる限り小さくすることが必要である。ハード相の大きさは、やはり磁壁幅以下であればよいが、あまり狭いと保磁力HcJの維持が困難になる。このため、磁壁幅程度に抑える。なお磁壁幅はπ(A/Ku)1/2、(A:交換スティッフネス定数、Ku:磁気異方性エネルギー)で見積もられる。
First, an isotropic magnet film composed of a nanoscale crystal structure of a soft phase and a hard phase according to the present invention will be described.
R 2 TM 14 B (R is Nd of rare earth elements, or Pr, TM is Fe, Co of transition metal elements), R 2 TM 17 N 3 (R is a hard phase constituting the magnetic film according to the present invention. Among rare earth elements, Sm and TM can be exemplified by Fe) among transition metal elements. When such a soft phase such as αFe having high saturation magnetization Ms exchange-coupled with the hard phase exists, magnetization is reversed first from the soft phase under a reverse magnetic field, and a high coercive force HcJ cannot be obtained. However, if the size of the soft phase is suppressed to be equal to or smaller than the domain wall width, nonuniform magnetization reversal in a reverse magnetic field is suppressed. As a result, the coercive force HcJ is dominated by the magnetic anisotropy Ha of the hard phase, and a decrease in the coercive force HcJ is suppressed. Furthermore, in order to obtain a higher magnetic flux from the soft phase, it is necessary to increase the volume ratio of the soft phase in the magnet. For this purpose, it is necessary to make the size of the hard phase as small as possible. The size of the hard phase may be equal to or smaller than the domain wall width, but if it is too small, it is difficult to maintain the coercive force HcJ. For this reason, it is suppressed to about the domain wall width. The domain wall width is estimated by π (A / Ku) 1/2, (A: exchange stiffness constant, Ku: magnetic anisotropy energy).
本発明にかかるナノスケール結晶組織の具体的な構成としては、図1(a)のようにソフト相をαFe、ハード相をNd2Fe14Bとしたとき、それぞれ60 nm以下、及び数nm程度とし、前記αFeよりも小さなハード相11を、ソフト相12と交互に103以上堆積した多層構造の磁石膜。 あるいは図1(b)のように10 〜50 nmの範囲のソフト相12とハード相11とがランダムに分布する構成を例示することができる。なお、このような磁石膜は何れも磁気的には等方性である。 As a specific structure of the nanoscale crystal structure according to the present invention, when the soft phase is αFe and the hard phase is Nd 2 Fe 14 B as shown in FIG. And a magnetic film having a multilayer structure in which 10 3 or more of hard phases 11 smaller than αFe are alternately deposited with soft phases 12. Alternatively, as shown in FIG. 1B, a configuration in which the soft phase 12 and the hard phase 11 in the range of 10 to 50 nm are randomly distributed can be exemplified. Such a magnet film is magnetically isotropic.
さらに、本発明にかかる図1(a)の構成の残留磁化Mr 1 T以上の等方性高Mr型磁石膜としてはPLD(パルスレーザディポジション)によるαFeとNd2Fe14BとがTaなどの非磁性基板にある磁石膜が例示できる[H. Fukunaga, H. Nakayama, M. Nakano, M. Ishimaru, M. Itakura, and F.Yamashita, Intermag 2008, FG-06参照]。また、図1(b)の構成の残留磁化Mr 1 T以上の等方性高Mt型磁石膜としては溶湯合金の急冷凝固によるFeB、αFe、Nd2Fe14Bの3相から成る磁石膜が例示できる [金清裕和、広沢哲,日本応用磁気学会誌,vol.22, pp.385-387 (1998)参照]。あるいは、高HcJ型磁石膜としてαFeとPr2Fe14Bとの磁石膜が例示できる[H. Yamamoto, K. Takasugi, F. Yamashita, Proc. 17th Int. Workshop on Rare-Earth Magnets and Their Applications, Newark, DE, US. pp.307-314 (2002)参照]。 Furthermore, as the isotropic high Mr type magnet film having a remanent magnetization Mr 1 T or more of the configuration of FIG. 1A according to the present invention, αFe and Nd 2 Fe 14 B by PLD (pulse laser deposition) are Ta and the like. The magnetic film on the non-magnetic substrate can be exemplified [see H. Fukunaga, H. Nakayama, M. Nakano, M. Ishimaru, M. Itakura, and F. Yamashita, Intermag 2008, FG-06]. In addition, as an isotropic high Mt type magnet film having a remanent magnetization Mr 1 T or more with the configuration shown in FIG. 1B, a magnet film composed of three phases of FeB, αFe, and Nd 2 Fe 14 B by rapid solidification of a molten alloy is used. Illustrative examples are available [see Hirokazu Kanei, Satoshi Hirosawa, Journal of Japan Society of Applied Magnetics, vol.22, pp.385-387 (1998)]. Alternatively, as a high HcJ type magnet film, a magnet film of αFe and Pr 2 Fe 14 B can be exemplified [H. Yamamoto, K. Takasugi, F. Yamashita, Proc. 17th Int. Workshop on Rare-Earth Magnets and Their Applications, Newark, DE, US. Pp.307-314 (2002)].
ところで、図1(b)のソフト相とハード相の大きさを20 nm程度に調整したナノスケール結晶組織から成る磁気的に等方性の磁石膜はレマネンスエンハンスメントによって残留磁化Mrは容易に1 T以上となる。また、保磁力HcJは400 kA/mに達する。とくに、αFeとR2TM14Bとの接触界面で充分な磁気的結合を付与し、それぞれの厚さを磁壁幅程度までナノスケール組織制御した場合の詳細な計算機解析によれば、結晶粒径10 nm程度の均一なナノスケール結晶組織を形成すれば、磁気的に等方性の磁石膜の(BH)max は200 kJ/m3 程度まで期待できる。 By the way, the remanence enhancement of the magnetically isotropic magnet film consisting of a nanoscale crystal structure with the soft and hard phases adjusted to about 20 nm in FIG. 1 T or more. The coercive force HcJ reaches 400 kA / m. In particular, according to detailed computer analysis when sufficient magnetic coupling is given at the contact interface between αFe and R 2 TM 14 B, and the thickness of each is controlled to the nanoscale structure to the domain wall width, the crystal grain size If a uniform nanoscale crystal structure of about 10 nm is formed, the (BH) max of a magnetically isotropic magnet film can be expected to be about 200 kJ / m 3 .
以上のように、本発明にかかる磁石膜はR-TM-B(RはNd、Pr、TMはFe、Co)系溶湯合金、Sm-Fe系溶湯合金の急冷凝固、あるいは前記合金を物理的堆積法で成膜、あるいは、Fe-B、αFe のソフト相、R-TM-B(RはNd、Pr、TMはFe、Co)系合金、あるいはSm-Fe系合金を交互に物理的に成膜したのち、それらを必要に応じて適宜結晶化、あるいは窒化し、ハード磁性を発現させたFe-B、αFeのソフト相、R2TM14B、またはSm2Fe17N3系ハード相とのナノスケール結晶組織から成るものである。なお、当該磁石膜は必要に応じて適宜非鉄金属、有機高分子などの非磁性材料を保護膜として付加した複合膜であっても差支えない。 As described above, the magnet film according to the present invention is obtained by rapid solidification of an R-TM-B (R is Nd, Pr, TM is Fe, Co) -based molten alloy, Sm-Fe-based molten alloy, or the alloy is physically solidified. Film deposition by deposition method, or physically alternate Fe-B, αFe soft phase, R-TM-B (R is Nd, Pr, TM is Fe, Co) alloy, or Sm-Fe alloy After film formation, they are appropriately crystallized or nitrided as necessary to develop hard magnetism Fe-B, αFe soft phase, R 2 TM 14 B, or Sm 2 Fe 17 N 3 hard phase And a nanoscale crystal structure. The magnet film may be a composite film in which a nonmagnetic material such as a nonferrous metal or an organic polymer is appropriately added as a protective film as necessary.
上記のような、等方性磁石膜にて構成する本発明にかかる積層磁石膜可動子は、直径2 mm以下の複数の等方性磁石膜を寸法比L/Dを1以上(ただし、Lは積層方向の長さ、Dは直径)に積層し、かつ相対密度RD 85%以上の積層磁石膜としたのち、当該積層磁石膜の面内方向に磁化するものである。なお直径2 mm以下に限定する理由は、本発明が対象とする径方向空隙型回転電気機械の体積が概ね100 mm3以下だからである。 The laminated magnet film mover according to the present invention configured with an isotropic magnet film as described above has a dimension ratio L / D of 1 or more (however, L Is a laminated magnet film having a relative density of RD 85% or more, and then magnetized in the in-plane direction of the laminated magnet film. The reason why the diameter is limited to 2 mm or less is that the volume of the radial gap type rotary electric machine targeted by the present invention is approximately 100 mm 3 or less.
また、直径2 mm以下の複数の等方性磁石膜を寸法比L/Dを1以上(ただし、Lは積層方向の長さ、Dは直径)に積層し、かつ相対密度RD 85%以上の積層磁石膜の構成要素とする理由は積層磁石膜可動子の面内方向に多極磁化したとき、積層磁石膜可動子の形状磁気異方性を、より効果的に引出すことができるからである。 In addition, a plurality of isotropic magnet films with a diameter of 2 mm or less are laminated with a dimensional ratio L / D of 1 or more (where L is the length in the lamination direction and D is the diameter), and the relative density RD is 85% or more. The reason why it is a constituent element of the laminated magnet film is that the shape magnetic anisotropy of the laminated magnet film mover can be more effectively extracted when multipolar magnetization is performed in the in-plane direction of the laminated magnet film mover. .
次に、本発明にかかる、好ましい磁石膜の特性として、磁化のスプリングバック特性について図2(a)(b)を用いて説明する。先ず、図2(a)で本発明で言う磁化のスプリングバック特性の定義を説明する。図のように、残留磁化Mrから減磁界-Hを印加し、任意の磁化Mまで磁化反転させる。その後、減磁界-Hを除いたときの磁化をMr’としたとき、磁化反転率を(Mr-M)/Mr、磁化の復元率Mr’/Mrとした。 Next, as a preferable characteristic of the magnetic film according to the present invention, the springback characteristic of magnetization will be described with reference to FIGS. First, the definition of the springback characteristic of magnetization referred to in the present invention will be described with reference to FIG. As shown in the figure, a demagnetizing field -H is applied from the residual magnetization Mr, and the magnetization is reversed to an arbitrary magnetization M. Thereafter, when the magnetization when the demagnetizing field -H is removed is Mr ', the magnetization reversal rate is (Mr-M) / Mr, and the magnetization restoration rate Mr' / Mr.
図2(b)は本発明にかかるソフト相(Fe3B、αFe)とハード相(Nd2Fe14B)とのナノスケール結晶組織からなる等方性磁石膜の磁化反転率と復元率の関係を示す特性図である。なお、比較例はハード相(Nd2Fe14B)のみの単相磁石膜である。図から明らかなように、実施例にかかる磁石膜は残留磁化Mrの50%程度が磁化反転しても残留磁化Mrの90%以上の磁化が回復する強いスプリングバック特性をもつ。このようなスプリングバック特性は、本発明にかかる微小回転電気機械において回転軸が何らかの理由で拘束されたとき、積層磁石膜可動子の減磁耐力を確保するのに有効だからである。 FIG. 2 (b) shows the magnetization reversal rate and recovery rate of an isotropic magnet film composed of a nanoscale crystal structure of a soft phase (Fe 3 B, αFe) and a hard phase (Nd 2 Fe 14 B) according to the present invention. It is a characteristic view which shows a relationship. The comparative example is a single-phase magnet film having only a hard phase (Nd 2 Fe 14 B). As is apparent from the figure, the magnet film according to the example has a strong springback characteristic in which the magnetization of 90% or more of the residual magnetization Mr is recovered even when about 50% of the residual magnetization Mr is reversed. This is because such a spring back characteristic is effective in securing the demagnetization resistance of the laminated magnet film movable element when the rotating shaft is constrained for some reason in the micro rotating electric machine according to the present invention.
以上のような磁石膜は面内方向の残留磁化Mr 1 T以上、保磁力HcJ 300 kA/m以上の特性を例示することができ、この場合は面内方向に極対数2以上に多極磁化した積層磁石膜可動子とすることで、DCブラシレスモータのような径方向空隙型回転電気機械とすることができる。 The magnet film as described above can exemplify the characteristics of the remanent magnetization Mr 1 T or more in the in-plane direction and the coercive force HcJ 300 kA / m or more. By using the laminated magnet film movable element, a radial gap type rotary electric machine such as a DC brushless motor can be obtained.
一方、面内方向の残留磁化Mr 0.95 T以上、保磁力HcJ 600 kA/m以上の場合には、面内方向に極対数4以上に多極磁化した積層磁石膜可動子とし、PM型ステッピングモータのような径方向空隙型回転電気機械とすることができる。 On the other hand, in the case where the residual magnetization Mr 0.95 T or more in the in-plane direction and the coercive force HcJ 600 kA / m or more, a multi-pole magnetized multi-layer magnetized mover with a pole pair number of 4 or more in the in-plane direction is used. It can be set as a radial direction rotary electric machine like this.
本発明を実施例により更に詳しく説明する。ただし、本発明は実施例に限定されるものではない。 The present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.
先ず、石英坩堝に装填した10gの溶湯合金(合金組成Nd4.5FebalCo5B18.5Cr2)を10 MPaのアルゴンガス雰囲気中、直径0.7 mmのオリフィスを介し、周速30 m/secで回転するCu製ロール表面に50 MPaで吐出することで急冷凝固した幅2 mm、厚さ45μmの非晶質膜とした。 First, a surface of a Cu roll rotating at a peripheral speed of 30 m / sec through 10 g of argon alloy in a 10 MPa argon gas atmosphere with 10 g of molten alloy (alloy composition Nd4.5FebalCo5B18.5Cr2) loaded in a quartz crucible The amorphous film having a width of 2 mm and a thickness of 45 μm was rapidly solidified by discharging at 50 MPa.
次に、上記非晶質膜を10-4 Torrの真空中、昇温速度200℃/min、680℃×10 minの熱処理を施した。熱処理後の膜の面内方向の4.8 MA/mパルス着磁後の磁気特性は残留磁化Mr 1.05 T、保磁力HcJ 330 kA/mであった。 Next, the amorphous film was subjected to heat treatment in a vacuum of 10 −4 Torr at a heating rate of 200 ° C./min and 680 ° C. × 10 min. The magnetic characteristics after 4.8 MA / m pulse magnetization in the in-plane direction of the heat-treated film were remanent magnetization Mr 1.05 T and coercive force HcJ 330 kA / m.
図3は上記結晶化した急冷凝固Nd4.5FebalCo5B18.5Cr2磁石膜のX線回折パターンを示す特性図である。磁石膜の保磁力HcJが330 kA/mという水準は個々の結晶粒径が10〜50 nmの範囲でなければ得られないこと、ならびに図3から本発明にかかるソフト相(FeB、αFe)とハード相(Nd2Fe14B)とのナノスケール結晶組織からなる等方性磁石膜であることがわかる。 Figure 3 is a characteristic diagram showing the X-ray diffraction pattern of the rapidly solidified Nd 4.5 Fe bal Co 5 B 18.5 Cr 2 magnet film described above crystallization. The magnetic film coercive force HcJ of 330 kA / m cannot be obtained unless the individual crystal grain size is in the range of 10 to 50 nm, and the soft phase (FeB, αFe) according to the present invention is shown in FIG. It can be seen that the film is an isotropic magnet film composed of a nanoscale crystal structure with a hard phase (Nd 2 Fe 14 B).
次に、上記本発明にかかる等方性磁石膜にポリアミド系非磁性膜を保護膜として付加し、直径約1.63 mm、かつ任意の寸法比L/D(ただし、Lは積層方向の長さ、Dは直径)に積層し、160℃、10 MPaの圧力で任意の相対密度RDの積層磁石膜とした。さらに当該積層磁石膜の面内方向に4.8 MA/mパルス磁化することにより、本発明にかかる積層磁石膜可動子の必須の構成要素である積層磁石膜とした。 Next, a polyamide-based nonmagnetic film is added as a protective film to the isotropic magnet film according to the present invention, the diameter is about 1.63 mm, and an arbitrary dimensional ratio L / D (where L is the length in the stacking direction, D is a laminated magnetic film having an arbitrary relative density RD at 160 ° C. and a pressure of 10 MPa. Furthermore, a laminated magnet film, which is an essential component of the laminated magnet film movable element according to the present invention, was obtained by performing 4.8 MA / m pulse magnetization in the in-plane direction of the laminated magnet film.
一方、上記ポリアミド系非磁性膜を付加した等方性磁石膜を355μm以下のフレーク状粉砕物とし、これを160℃、1000 MPaで圧縮し、直径約1.63 mmの任意の密度と寸法比L/Dをもつボンド磁石とした。さらに、当該磁石の径方向に4.8 MA/mパルス磁化することにより、本発明の比較例となる可動子の必須の構成要素である等方性ボンド磁石とした。 On the other hand, the isotropic magnet film with the polyamide-based nonmagnetic film added thereto is made into a flaky pulverized product of 355 μm or less, which is compressed at 160 ° C. and 1000 MPa, and has an arbitrary density of about 1.63 mm in diameter and a dimensional ratio L / A bonded magnet with D was used. Furthermore, an isotropic bonded magnet which is an essential component of the mover as a comparative example of the present invention was obtained by performing 4.8 MA / m pulse magnetization in the radial direction of the magnet.
ところで、以上のような面内方向に極対数1で磁化した可動子構成要素としての磁石が、図4のように一様な外部磁界Hexに暴露したとする。ここで、回転方向(磁気トルクの発生方向)の反時計回りを正とし、Hex(固定子からの回転磁界に相当)のS極中心が磁石のN極の真上から反時計回りに回ると考える。するとHexのS極中心が磁石のN極の真上にある場合、トルクはゼロであり、半時計回りにHexのS極中心が回転すると磁気トルクは徐々に増加し、90度回転した位置で最大の磁気トルクとなる。さらに回転すると磁気トルクは再び徐々に減少し、180度でゼロとなる。なお、極対数1で磁化した磁石を試料とした磁気トルク計によるトルク計測値は極対数1の回転電気機械におけるトルクと等価である。 By the way, it is assumed that the magnet as the mover component magnetized with the pole pair number 1 in the in-plane direction as described above is exposed to a uniform external magnetic field Hex as shown in FIG. Here, if the counterclockwise direction of the rotation direction (magnetic torque generation direction) is positive, and the S pole center of Hex (corresponding to the rotating magnetic field from the stator) rotates counterclockwise from directly above the N pole of the magnet Think. Then, when the S pole center of Hex is directly above the N pole of the magnet, the torque is zero, and when the S pole center of Hex rotates counterclockwise, the magnetic torque gradually increases, at a position rotated 90 degrees. Maximum magnetic torque. When it further rotates, the magnetic torque gradually decreases again, and becomes zero at 180 degrees. Note that the torque measured by a magnetic torque meter using a magnet magnetized with one pole pair as a sample is equivalent to the torque in a rotating electric machine with one pole pair.
図5に示す表1は実施例、ならびに比較例を含む極対数1に磁化した各試料を外部磁界Hex 8 kA/mとした磁気トルク計で測定したトルクを試料の履歴とともに一括して示す特性表である。 Table 1 shown in FIG. 5 is a characteristic that collectively shows torque measured with a magnetic torque meter with an external magnetic field Hex of 8 kA / m for each sample magnetized to a pole pair number of 1 including examples and comparative examples together with the history of the sample. It is a table.
図6に示す表2は外部磁界Hexを変化させたときの実施例、ならびに比較例を含む極対数1に磁化した各試料をトルク、ならびに回転電気機械のトルク定数に相当する外部磁界Hexに対するトルク勾配を示す特性表である。ただし、各試料番号は表1に対応している。 Table 2 shown in FIG. 6 shows an example in which the external magnetic field Hex is changed, and torque for each sample magnetized to the pole pair number 1 including the comparative example, and torque with respect to the external magnetic field Hex corresponding to the torque constant of the rotating electrical machine. It is a characteristic table | surface which shows a gradient. However, each sample number corresponds to Table 1.
ところで、図4の負荷角θに対するトルク(M×Hex sinθ)は式1右辺第1項の磁石トルク(Pn×Φa×Iq)に相当する。ここで、PnとΦaは試料にかかり、IqはHexにかかる。また、寸法比L/Dとトルクは原点をゼロとする1次関数である。したがって、表1の寸法比L/D=1でのトルクは各試料の任意の寸法比L/Dにおけるトルクと原点を結ぶ一次式から外挿(内挿)法により求めた。 Meanwhile, the torque (M × Hex sin θ) with respect to the load angle θ in FIG. 4 corresponds to the magnet torque (Pn × Φa × Iq) in the first term on the right side of Equation 1. Here, Pn and Φa are applied to the sample, and Iq is applied to Hex. The dimensional ratio L / D and torque are linear functions with the origin as zero. Therefore, the torque at the dimensional ratio L / D = 1 in Table 1 was obtained by an extrapolation (interpolation) method from a linear expression connecting the torque and the origin at an arbitrary dimensional ratio L / D of each sample.
また、図7のように、表2に示した外部磁界Hexに対するトルク勾配dT/dHexは試料の材料形態、すなわち、膜、またはフレーク状粉末としたとき、それらの寸法比L/Dの原点をゼロとした一次関数となる。図7のように材料形態が膜、あるいはフレーク状粉末の面内方向磁化の場合、寸法比L/Dに対するトルク勾配dT/dHexの傾きが異なる。すなわち、同じ面内方向磁化のときフレーク状粉末よりも膜のトルク勾配dT/dHexの方が寸法比L/Dの依存性が強い。これは、同じ面内方向磁化のときフレーク状粉末よりも膜のパーミアンスが高く、結果として反磁界が小さいために試料の寸法比L/Dの影響を受けにくいことを意味する。また、両者のトルク勾配dT/dHexの比から本発明にかかる積層磁石膜可動子を用いた回転電気機械のトルク定数は355μm以下、厚さ45μmのフレーク状粉末の場合に比べて1.13倍となる。 In addition, as shown in FIG. 7, when the torque gradient dT / dHex with respect to the external magnetic field Hex shown in Table 2 is the material form of the sample, that is, a film or flake powder, the origin of the dimensional ratio L / D is set as the origin. It is a linear function with zero. As shown in FIG. 7, when the material form is in-plane direction magnetization of a film or flaky powder, the gradient of the torque gradient dT / dHex with respect to the dimensional ratio L / D is different. That is, when the magnetization is in the same in-plane direction, the torque gradient dT / dHex of the film is more dependent on the dimensional ratio L / D than the flaky powder. This means that when the magnetization is in the same in-plane direction, the film has higher permeance than the flaky powder, and as a result, the demagnetizing field is small, so that it is not easily affected by the dimensional ratio L / D of the sample. In addition, the torque constant of the rotating electric machine using the laminated magnet film mover according to the present invention is 1.13 times that of a flaky powder having a thickness of 355 μm or less and a thickness of 45 μm, based on the ratio of the torque gradient dT / dHex between the two. .
なお、本発明が対象とする微小な可動子の必須の構成要素をボンド磁石とする場合、上記のような355μm以下、厚さ45μmという粗大なフレーク状粉末を結合剤とともに、そのまま直接圧縮成形型キャビティに充填することは困難である。あるいは射出成形材料への適用も困難である。したがって、微小な可動子の必須の構成要素をボンド磁石とする場合、当該フレーク状粉末は、例えば150μm以下に調整される。すなわち、本発明にかかる積層磁石膜可動子とフレーク状粉末を結合剤で固めたボンド磁石を可動子の構成要素とした場合、かかる回転電気機械のトルク定数の差はさらに拡がることになる。 When the essential component of the micro movable element targeted by the present invention is a bonded magnet, the coarse flaky powder having a thickness of 355 μm or less and a thickness of 45 μm as described above together with a binder is directly compression-molded. It is difficult to fill the cavity. Or application to injection molding materials is also difficult. Therefore, when the essential component of the minute mover is a bonded magnet, the flaky powder is adjusted to, for example, 150 μm or less. That is, when the laminated magnet film movable element according to the present invention and a bonded magnet obtained by solidifying flake-like powder with a binder are used as constituent elements of the movable element, the difference in torque constant between the rotating electric machines is further expanded.
ところで、図5に示す表1における寸法比L/D=2のトルクは、寸法比L/Dとトルク勾配dT/dHexの原点をゼロとする一次式の傾きから求めている。試料の寸法比L/Dが大きくなると、試料を構成する材料形態の差が反磁界の差に反映される。このため、本発明にかかる可動子の必須な構成要素である積層磁石膜の寸法比L/D=2におけるトルクはL/D=1のトルクを単純に2倍した値と、ほぼ等しい。しかし、フレーク状粉末を固めた試料のL/D=2のトルクは本発明と異なり、材料形態の差に起因するパーミアンス(反磁界)の差によって12%程度減少する。 By the way, the torque having the dimension ratio L / D = 2 in Table 1 shown in FIG. 5 is obtained from the slope of the linear expression with the origin of the dimension ratio L / D and the torque gradient dT / dHex being zero. When the dimensional ratio L / D of the sample is increased, the difference in the material form constituting the sample is reflected in the difference in the demagnetizing field. For this reason, the torque at the dimensional ratio L / D = 2 of the laminated magnet film, which is an essential component of the mover according to the present invention, is substantially equal to a value obtained by simply doubling the torque of L / D = 1. However, unlike the present invention, the torque of L / D = 2 of the sample in which the flaky powder is hardened is reduced by about 12% due to the difference in permeance (demagnetizing field) due to the difference in material form.
また、表1の磁気トルク比は密度5.88 Mg/m3のボンド磁石(試料番号 ボンド磁石1)を基準として寸法比L/D=1、および2の磁気トルクを規格化した値である。表のように、寸法比L/D=1の場合では本発明にかかる積層磁石膜の相対密度RDが85%以上のとき、密度5.88 Mg/m3のボンド磁石基準で120%を越えるトルクの増加がある。 In addition, the magnetic torque ratios in Table 1 are values obtained by standardizing the dimensional ratio L / D = 1 and the magnetic torque of 2 based on a bond magnet (sample number Bond magnet 1) having a density of 5.88 Mg / m 3 . As shown in the table, in the case of the dimensional ratio L / D = 1, when the relative density RD of the laminated magnet film according to the present invention is 85% or more, the torque exceeding 120% on the basis of a bonded magnet having a density of 5.88 Mg / m 3 There is an increase.
なお、フレーク状粉末を結合剤とともに1000 MPa程度で圧縮したボンド磁石の相対密度RDは概ね80%が限度である。これに対して本発明にかかる積層磁石膜は10 MPa程度の圧力で相対密度RDの水準を容易に85%以上とすることができる。 The relative density RD of a bonded magnet obtained by compressing flaky powder together with a binder at about 1000 MPa is approximately 80%. In contrast, the laminated magnet film according to the present invention can easily make the level of the relative density RD 85% or more at a pressure of about 10 MPa.
11:ハード相、12:ソフト相 11: Hard phase, 12: Soft phase
Claims (6)
前記磁石膜は、R-TM-B(RはNd、Pr、TMはFe、Co)系溶湯合金若しくはSm-Fe系溶湯合金の急冷凝固することにより、
又は、R-TM-B(RはNd、Pr、TMはFe、Co)系溶湯合金若しくは前記Sm-Fe系溶湯合金を物理的堆積法により成膜し、その後、それらを結晶化又は窒化して、ハード磁性を発現させた、Fe-B又はαFeのソフト相と、R 2 TM 14 B系又はSm 2 Fe 17 N 3 系ハード相と、からなることを特徴とする回転電気機械の積層磁石膜可動子。 A solid or hollow isotropic magnet film with a diameter of 2 mm or less consisting of a nanoscale crystal structure of soft and hard phases, with a dimensional ratio L / D of 1 or more (where L is the length in the stacking direction) , D is the diameter), and constitutes the relative density RD of 85% or more, and viewing including the laminated magnet film with any number of pole pairs in the plane direction,
The magnet film is obtained by rapid solidification of R-TM-B (R is Nd, Pr, TM is Fe, Co) -based molten alloy or Sm-Fe-based molten alloy,
Alternatively, an R-TM-B (R is Nd, Pr, TM is Fe, Co) -based molten alloy or the Sm-Fe-based molten alloy is formed into a film by physical deposition, and then crystallized or nitrided. A laminated magnet for a rotating electrical machine, characterized by comprising a soft phase of Fe-B or αFe that exhibits hard magnetism and an R 2 TM 14 B-based or Sm 2 Fe 17 N 3- based hard phase Membrane mover.
前記磁石膜は、Fe-B又はαFe のソフト相とR-TM-B(RはNd、Pr、TMはFe、Co)系合金又はSm-Fe系合金を交互に物理的に成膜したのち、それらを結晶化又は窒化して、ハード磁性を発現させた、Fe-B、αFeのソフト相とRThe magnet film is formed by alternately forming Fe-B or αFe soft phase and R-TM-B (R is Nd, Pr, TM is Fe, Co) -based alloy or Sm-Fe-based alloy alternately. , They are crystallized or nitrided to develop hard magnetism, Fe-B, αFe soft phase and R 22 TMTM 1414 B系又はSmB system or Sm 22 FeFe 1717 NN 3Three 系のハード相と、からなることを特徴とする回転電気機械の積層磁石膜可動子。A laminated magnet film mover for a rotary electric machine, characterized by comprising a hard phase of the system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010094440A JP5660485B2 (en) | 2010-04-15 | 2010-04-15 | Laminated magnet film mover |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010094440A JP5660485B2 (en) | 2010-04-15 | 2010-04-15 | Laminated magnet film mover |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011229218A JP2011229218A (en) | 2011-11-10 |
JP5660485B2 true JP5660485B2 (en) | 2015-01-28 |
Family
ID=45043975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010094440A Expired - Fee Related JP5660485B2 (en) | 2010-04-15 | 2010-04-15 | Laminated magnet film mover |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5660485B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013120798A (en) * | 2011-12-06 | 2013-06-17 | Nissan Motor Co Ltd | Thick rare earth magnet film, and low-temperature solidification molding method |
CN105679479B (en) * | 2014-11-20 | 2017-08-25 | 有研稀土新材料股份有限公司 | The preparation method of permanent-magnet material and permanent-magnet material |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3643215B2 (en) * | 1997-07-04 | 2005-04-27 | 株式会社Neomax | Method for producing laminated permanent magnet |
JP2006128436A (en) * | 2004-10-29 | 2006-05-18 | Matsushita Electric Ind Co Ltd | Permanent magnet motor |
-
2010
- 2010-04-15 JP JP2010094440A patent/JP5660485B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011229218A (en) | 2011-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sugimoto | Current status and recent topics of rare-earth permanent magnets | |
US8072109B2 (en) | Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, and iron core-equipped permanent magnet motor | |
JP4564993B2 (en) | Rare earth magnet and manufacturing method thereof | |
JP4719568B2 (en) | Powder magnet and rotating machine using the same | |
JP5327433B2 (en) | Method for manufacturing rotor magnet of micro rotating electric machine | |
US7876012B2 (en) | Dynamo electric machine with an alloy member | |
US8269391B2 (en) | Micro rotor and rotary electric machine incorporating same | |
JP2011078269A (en) | Rotor for axial gap type permanent magnet rotary machine | |
JP4422953B2 (en) | Method for manufacturing permanent magnet | |
JP5660485B2 (en) | Laminated magnet film mover | |
US8044547B2 (en) | Radial-direction gap type magnet motor | |
JP5445940B2 (en) | Magnetic circuit of micro rotating electrical machine | |
Yamashita et al. | Investigation on magnetic torque of multi-polarly micro rotor using shape-magnetic-anisotropy | |
WO2006109615A1 (en) | Stacked permanent magnet | |
JP2004153867A (en) | Radial anisotropic sintered magnet, its manufacturing method, and magnet rotor and motor | |
JP2011029293A (en) | Rare earth magnet and magnet motor for transportation equipment using the same | |
EP3067899B1 (en) | Magnetic material, permanent magnet, motor, and power generator | |
JPH07272929A (en) | Rare earth element-fe-b-thin film permanent magnet | |
JP3683442B2 (en) | Multistage long multipole magnetized cylindrical magnet rotor and permanent magnet motor | |
JP3643215B2 (en) | Method for producing laminated permanent magnet | |
JP2004356544A (en) | Thick-film-exchange spring magnet, manufacturing method thereof, and magnet motor | |
JP3425409B2 (en) | Hard magnetic material, generator and motor | |
JP2004146542A (en) | Solid material for magnet and its manufacturing method | |
JP2011114990A (en) | Isotropic film magnet laminated micro rotary electric machine | |
JPH03177544A (en) | Permanent magnet alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140312 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140512 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5660485 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |