JP5658782B2 - Method for producing carbonaceous film - Google Patents
Method for producing carbonaceous film Download PDFInfo
- Publication number
- JP5658782B2 JP5658782B2 JP2013064281A JP2013064281A JP5658782B2 JP 5658782 B2 JP5658782 B2 JP 5658782B2 JP 2013064281 A JP2013064281 A JP 2013064281A JP 2013064281 A JP2013064281 A JP 2013064281A JP 5658782 B2 JP5658782 B2 JP 5658782B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- kpa
- carbonization
- electric furnace
- internal pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 238000000034 method Methods 0.000 claims description 122
- 229920001721 polyimide Polymers 0.000 claims description 104
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 71
- 229910002804 graphite Inorganic materials 0.000 claims description 61
- 239000010439 graphite Substances 0.000 claims description 61
- 230000008569 process Effects 0.000 claims description 56
- 239000011261 inert gas Substances 0.000 claims description 35
- 238000010438 heat treatment Methods 0.000 claims description 33
- 238000005087 graphitization Methods 0.000 claims description 17
- 229920006254 polymer film Polymers 0.000 claims description 14
- 238000010000 carbonizing Methods 0.000 claims description 8
- 239000010408 film Substances 0.000 description 151
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 122
- 238000003763 carbonization Methods 0.000 description 120
- 229910052757 nitrogen Inorganic materials 0.000 description 60
- 239000007770 graphite material Substances 0.000 description 48
- 239000007789 gas Substances 0.000 description 40
- 230000001965 increasing effect Effects 0.000 description 39
- 230000004927 fusion Effects 0.000 description 24
- 238000000354 decomposition reaction Methods 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 12
- 239000010410 layer Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 238000012545 processing Methods 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 9
- 230000017525 heat dissipation Effects 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000006837 decompression Effects 0.000 description 7
- 238000011109 contamination Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 238000010030 laminating Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- -1 gasket Substances 0.000 description 3
- 108010025899 gelatin film Proteins 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920005575 poly(amic acid) Polymers 0.000 description 2
- 229920002577 polybenzoxazole Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 1
- DNYDWFIQGPJANT-UHFFFAOYSA-N 2-[3-(1h-benzimidazol-2-yl)phenyl]-1h-benzimidazole Chemical compound C1=CC=C2NC(C=3C=CC=C(C=3)C=3NC4=CC=CC=C4N=3)=NC2=C1 DNYDWFIQGPJANT-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000006358 imidation reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229920000889 poly(m-phenylene isophthalamide) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- UGQZLDXDWSPAOM-UHFFFAOYSA-N pyrrolo[3,4-f]isoindole-1,3,5,7-tetrone Chemical compound C1=C2C(=O)NC(=O)C2=CC2=C1C(=O)NC2=O UGQZLDXDWSPAOM-UHFFFAOYSA-N 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Description
本発明は、電子機器、精密機器などで放熱部材として使用される炭素質フィルムの製造方法に関する。 The present invention relates to a method for producing a carbonaceous film used as a heat radiating member in electronic equipment, precision equipment, and the like.
グラファイトは抜群の耐熱性、耐薬品性、熱伝導性、電気伝導性、低ガス透過性のため熱拡散・放熱材料、耐熱シール材、ガスケット、燃料電池用セパレータ、等として広く使用されている。グラファイトはa−b面方向と、c軸方向でその熱的・電気的性質が大きく異なり、a−b面方向とc軸方向の熱伝導度の異方性は50〜400倍に達する。グラファイト放熱フィルムはこの様な性質を利用して、発生した熱をすばやく広範囲に拡散させる事を目的とするものである。放熱用途として用いられるグラファイトの製造方法として、以下に述べる二つの方法がある。 Graphite is widely used as a heat diffusion / heat dissipation material, heat-resistant sealing material, gasket, fuel cell separator, etc. because of its outstanding heat resistance, chemical resistance, thermal conductivity, electrical conductivity, and low gas permeability. Graphite has greatly different thermal and electrical properties in the ab plane direction and c axis direction, and the anisotropy of thermal conductivity in the ab plane direction and c axis direction reaches 50 to 400 times. The purpose of the graphite heat-dissipating film is to quickly diffuse a wide range of generated heat using such properties. There are two methods for producing graphite used for heat dissipation as described below.
その一つは、一般に膨張グラファイト法と呼ばれる方法である。これは天然グラファイト鉛を硫酸などの強酸で処理することで層間化合物を形成させ、これを加熱・膨張させた際に生じる膨張グラファイトを圧延したシート状のグラファイトのフィルムの事である(非特許文献1)。この様な膨張グラファイトフィルムは面状方向に100〜400W/(m・K)程度の熱伝導度を示し、放熱材料として使用されている。 One of them is a method generally called an expanded graphite method. This is a sheet-like graphite film obtained by rolling expanded graphite produced when natural graphite lead is treated with a strong acid such as sulfuric acid to form an intercalation compound, which is heated and expanded (Non-Patent Document). 1). Such an expanded graphite film exhibits a thermal conductivity of about 100 to 400 W / (m · K) in the planar direction and is used as a heat dissipation material.
もう一つの方法が、ポリオキサジアゾール、ポリベンゾチアゾール、ポリベンゾビスチアゾール、ポリベンゾオキサゾール、ポリベンゾビスオキサゾール、ポリチアゾール、ポリイミド、ポリフェニレンビニレン、またはポリアミド等の高分子フィルムをアルゴン、ヘリウム等の不活性雰囲気下や真空下で熱処理する高分子熱分解法(特許文献1、2、3)が知られている。具体的にはこれらの高分子フィルムを、例えば不活性ガス中、好ましくは窒素ガス中で1000℃程度の予備加熱を行ない、ガラス状の炭素質フィルムを調製する炭化工程と、その後に調製した炭素質フィルムを2400℃以上の温度で処理する黒鉛化工程の二つの工程を経る事によってグラファイトフィルムを得る事が出来る。放熱材料として見た高分子グラファイトフィルムは、600〜1800W/(m・K)の非常に高い熱伝導度を示し、薄いシートの作製が可能で25μm以下のシートも容易に作製できるという特徴がある。より詳細にその方法を説明すると以下の通りである。 Another method is to use a polymer film such as polyoxadiazole, polybenzothiazole, polybenzobisthiazole, polybenzoxazole, polybenzobisoxazole, polythiazole, polyimide, polyphenylene vinylene, or polyamide such as argon or helium. Polymer pyrolysis methods (Patent Documents 1, 2, and 3) in which heat treatment is performed in an inert atmosphere or in a vacuum are known. Specifically, these polymer films are preliminarily heated at, for example, about 1000 ° C. in an inert gas, preferably in a nitrogen gas to prepare a glassy carbonaceous film, and then the carbon prepared. A graphite film can be obtained by passing through two processes of the graphitization process which processes a quality film at the temperature of 2400 degreeC or more. The polymer graphite film viewed as a heat dissipation material has a very high thermal conductivity of 600 to 1800 W / (m · K), and is characterized in that a thin sheet can be produced and a sheet of 25 μm or less can be easily produced. . The method will be described in more detail as follows.
特許文献1、2の実施例1、2には、以下のように、枚葉で原料フィルムを熱処理する方法が開示されている。25ミクロンのPAフィルム(ポリ(m−フェニレンイソフタルアミド))、PI(ポリ(ピロメリットイミド)) 、PBI(ポリ(m−フェニレンベンゾイミダゾール)) 、PBBI(ポリ(m−フェニレンベンゾビスイミダゾール))をステンレスの枠に固定し、電気炉を用いて、アルゴン中毎分10℃ の速度で室温から700℃まで予備的な加熱処理をした。ステンレスの枠がない場合、PAフィルムはこの温度領域でもとの寸法の50%に縮むので、ステンレス枠による固定は結果的に張力を加えながら予備加熱処理をした事を意味する。この様にして予備熱処理したフィルムを黒鉛板でサンドイッチし、アルゴン気流中、毎分10℃ の速度で昇温し、所望の温度(Tp)で1時間熱処理した。熱処理後毎分20℃ の速度で降温させた。使用した炉は、カーボンヒーターを用いた電気炉である。得られた黒色のフィルムはTpが1400℃ 以下ではもろくフレキシビリティのないものであったが、1800℃ 以上ではフレキシビリティのあるフィルムになった。 Examples 1 and 2 of Patent Documents 1 and 2 disclose a method of heat-treating a raw material film with a sheet as follows. 25 micron PA film (poly (m-phenyleneisophthalamide)), PI (poly (pyromellitimide)), PBI (poly (m-phenylenebenzimidazole)), PBBI (poly (m-phenylenebenzobisimidazole)) Was fixed to a stainless steel frame and preheated from room temperature to 700 ° C. at a rate of 10 ° C. per minute in argon using an electric furnace. In the absence of a stainless steel frame, the PA film shrinks to 50% of its original size even in this temperature range, so fixing with the stainless steel frame means that a preheating treatment was applied while applying tension as a result. The film preliminarily heat-treated in this way was sandwiched between graphite plates, heated in an argon stream at a rate of 10 ° C. per minute, and heat-treated at a desired temperature (Tp) for 1 hour. After the heat treatment, the temperature was lowered at a rate of 20 ° C. per minute. The furnace used was an electric furnace using a carbon heater. The obtained black film was fragile and inflexible at Tp of 1400 ° C. or lower, but became flexible at 1800 ° C. or higher.
高分子熱分解法で用いられる原料フィルムの一つであるポリイミドフィルムは、炭化工程で熱分解とともに収縮が起こり初期サイズの7〜8割ほどまでサイズの縮小が起こる。200mm角サイズのポリイミドフィルムを黒鉛材上に1枚水平に置き、フィルムの上面から全く荷重をかけない状態で1000℃まで熱処理を行なうと、炭化収縮により表面が大きく波打った炭化フィルムが得られてくる。炭化フィルムの波打ちを抑制する為には、黒鉛材や膨張黒鉛製ガスケット等の合紙でポリイミドフィルムを挟み、ポリイミドフィルムを固定して炭化処理を行なう事で波打ちのない炭化フィルムを得る事が可能となる。しかしポリイミドフィルムを合紙で固定して熱処理を行なうと、フィルム上もしくは合紙上にフィルムの分解ガス由来と考えられる小さい異物が発生し、その異物がフィルムの収縮の際に引っ掛かり炭化フィルム上に傷を作ってしまうという問題があった。この現象は2枚のポリイミドフィルムを直接に重ねて上下を合紙で固定して炭化処理を行なった場合にさらに顕著に現れる。フィルム間ではさらに異物の発生が促進してしまうという問題があった。 The polyimide film, which is one of the raw material films used in the polymer pyrolysis method, shrinks with pyrolysis in the carbonization step, and the size is reduced to about 70 to 80% of the initial size. When a 200 mm square polyimide film is placed horizontally on a graphite material and subjected to heat treatment up to 1000 ° C. without applying any load from the top surface of the film, a carbonized film having a large undulating surface due to carbonization shrinkage is obtained. Come. In order to suppress the undulation of the carbonized film, it is possible to obtain a carbonized film with no undulation by sandwiching the polyimide film with graphite paper, expanded graphite gasket, etc., and fixing the polyimide film and carbonizing it. It becomes. However, when the polyimide film is fixed with interleaving paper and heat treatment is performed, small foreign matter is generated on the film or interleaving paper, which is thought to be derived from the decomposition gas of the film, and the foreign matter is caught when the film shrinks and scratches on the carbonized film There was a problem of making. This phenomenon appears more prominently when two polyimide films are directly stacked and carbonized by fixing the top and bottom with interleaving paper. There was a problem that the generation of foreign matter was further promoted between the films.
また、フィルムを多数枚重ねた場合や、フィルム上面からの荷重を増やしフィルム同士の密着度が増した状態で炭化処理を行なった場合にフィルム同士が融着を起こしてしまうという問題があった。一度融着を起こしてしまった炭化フィルムはその後の黒鉛化過程においても元に戻る事はなく、結果として割れたグラファイトフィルムや、表面状態が極めて悪いグラファイトフィルムが得られてくる。 In addition, when a number of films are stacked, or when carbonization is performed in a state where the load from the upper surface of the film is increased and the degree of adhesion between the films is increased, there is a problem that the films cause fusion. Once the carbonized film has been fused, it does not return to its original state in the subsequent graphitization process, and as a result, a cracked graphite film or a graphite film with an extremely poor surface state can be obtained.
この問題は膨張黒鉛製のガスケット等の合紙をフィルム間に挟んで処理する事で解決される。しかし膨張黒鉛製の合紙は通常200〜250μmと厚く、一定容積内での炭化処理量が極端に落ち込んでしまうという問題があった。例えば、有効深さ20cmの容器に50μmのポリイミドフィルムを直接積層した場合は一度に4000枚処理する事が可能であるが、200μmガスケットを合紙として使用した場合は処理量が約800枚と1/5に減少してしまう。 This problem can be solved by sandwiching interleaf paper such as expanded graphite gasket between the films. However, expanded graphite slip sheets are usually as thick as 200 to 250 μm, and there is a problem that the amount of carbonization treatment within a certain volume is extremely reduced. For example, when a 50 μm polyimide film is directly laminated on a container having an effective depth of 20 cm, 4000 sheets can be processed at a time, but when a 200 μm gasket is used as a slip sheet, the processing amount is about 800 sheets and 1 It will decrease to / 5.
フィルム間に合紙を挟まずにポリイミドフィルムを直接に積層して炭化処理をおこない、良質の炭素質フィルムを生産性良く作製する事は、本発明の目的の一つである。 It is one of the objects of the present invention to produce a high-quality carbonaceous film with high productivity by directly laminating a polyimide film without sandwiching a slip sheet between the films and performing carbonization treatment.
我々は上記異物や融着の原因が、ポリイミドフィルムからの分解ガスが系外に排出されずに炭化固着してしまったものである事を突き止め、分解ガスを速やかに系外に除去する事を目的として減圧条件での炭化処理検討を行なった。 We have determined that the cause of the above foreign matter and fusion is that the decomposition gas from the polyimide film is carbonized and fixed without being discharged out of the system, and that the decomposition gas can be quickly removed from the system. The purpose of this study was to examine carbonization under reduced pressure conditions.
本発明の第一は、高分子フィルムを熱処理し炭素質フィルムを製造する方法であって、炭化工程の少なくとも一部が減圧で行なわれる事を特徴とする炭素質フィルムの製造方法である。ここで「炭化工程の少なくとも一部が減圧で行なわれる」とは、炭化工程の少なくとも一部において、加熱装置(炉ともいう)内の気体の圧力を加熱装置外よりも低くすることをいう。 The first of the present invention is a method for producing a carbonaceous film by heat-treating a polymer film, wherein the carbonization film is produced by performing at least a part of the carbonization step under reduced pressure. Here, “at least a part of the carbonization step is performed under reduced pressure” means that the gas pressure in the heating device (also referred to as a furnace) is made lower than that outside the heating device in at least a part of the carbonization step.
本発明の第二は、重ねたポリイミドフィルムを炭化する工程において、その工程が減圧で行なわれる事を特徴とする前記記載の炭素質フィルムの製造方法である。ここで「重ねたポリイミドフィルム」とは、ポリイミドフィルムどうしが、黒鉛材などを挟むことなく直接積層されたものをいう。 The second of the present invention is the method for producing a carbonaceous film as described above, wherein in the step of carbonizing the laminated polyimide film, the step is performed under reduced pressure. Here, the “superimposed polyimide film” refers to a film in which polyimide films are directly laminated without sandwiching a graphite material or the like.
本発明の第三は、重ねたポリイミドフィルム層が10層以上であること事を特徴とする前記記載の炭素質フィルムの製造方法である。 A third aspect of the present invention is the method for producing a carbonaceous film as described above, wherein the number of the laminated polyimide film layers is 10 or more.
本発明の第四は、ポリイミドフィルムに上から荷重をかけて熱処理する事を特徴とする前記記載の炭素質フィルムの製造方法である。 A fourth aspect of the present invention is the above-described method for producing a carbonaceous film, wherein the polyimide film is heat-treated by applying a load from above.
本発明の第五は、減圧の範囲が−0.001kPa〜−0.1MPaである事を特徴とする前記記載の炭素質フィルムの製造方法である。ここで「減圧が−0.001kPa」とは、加熱装置内の気体の圧力が加熱装置外の気体の圧力(通常は大気圧と考えられる)よりも0.001kPa低いことをいう。同様に「減圧が−0.1kPa」は、加熱装置内の気体の圧力が加熱装置外の気体の圧力よりも0.1kPa低いことを意味する。 A fifth aspect of the present invention is the method for producing a carbonaceous film as described above, wherein the reduced pressure range is -0.001 kPa to -0.1 MPa. Here, “reduced pressure is −0.001 kPa” means that the pressure of the gas inside the heating apparatus is 0.001 kPa lower than the pressure of the gas outside the heating apparatus (usually considered to be atmospheric pressure). Similarly, “decompression is −0.1 kPa” means that the pressure of the gas in the heating device is 0.1 kPa lower than the pressure of the gas outside the heating device.
本発明の第六は、減圧の範囲が−0.01kPa〜−0.08MPaである事を特徴とする前記記載の炭素質フィルムの製造方法である。 The sixth of the present invention is the method for producing a carbonaceous film as described above, wherein the reduced pressure range is from -0.01 kPa to -0.08 MPa.
本発明の第七は、不活性ガスを導入しながら−0.01kPa〜−0.08MPaの範囲で減圧して炭化する事を特徴とする前記記載の炭素質フィルムの製造方法である。 7th of this invention is the manufacturing method of the said carbonaceous film characterized by depressurizing and carbonizing in the range of -0.01kPa--0.08MPa, introducing inert gas.
本発明の第八は、処理物の体積をV(L)、導入する不活性ガスの量をV1(L/s)とした時にV/V1(s)の値が0.01以上1000以下である事を特徴とする前記記載の炭素質フィルムの製造方法である。ここで「処理物の体積V」とは、処理するポリイミドフィルム、ポリイミドフィルムの容器、黒鉛材など、加熱装置内に配置して加熱する全ての部材の総体積を表す。また「不活性ガスの量V1」とは、加熱装置外の気体の圧力(通常は大気圧と考えられる)における不活性ガスの導入速度(L/s)をいう。 In the eighth aspect of the present invention, the value of V / V1 (s) is 0.01 or more and 1000 or less when the volume of the treated product is V (L) and the amount of the inert gas to be introduced is V1 (L / s). The method for producing a carbonaceous film as described above, wherein Here, the “volume V of the processed material” represents the total volume of all members to be heated by being placed in a heating device, such as a polyimide film to be processed, a container of polyimide film, and a graphite material. The “inert gas amount V1” refers to the introduction rate (L / s) of the inert gas at the pressure of the gas outside the heating device (usually considered to be atmospheric pressure).
本発明の第九は、高分子フィルムの厚みが10μm以上250μm以下である事を特徴とする前記記載の炭素質フィルムの製造方法である。 The ninth of the present invention is the method for producing a carbonaceous film as described above, wherein the polymer film has a thickness of 10 μm to 250 μm.
本発明の第十は、高分子フィルムの面積が40000mm2以上である事を特徴とする前記記載の炭素質フィルムの製造方法である。 The tenth aspect of the present invention is the method for producing a carbonaceous film as described above, wherein the area of the polymer film is 40000 mm 2 or more.
本発明の第十一は、2枚以上の高分子フィルムを直接積層したものから炭素質フィルムを製造する前記記載の炭素質フィルムの製造方法である。 The eleventh aspect of the present invention is the method for producing a carbonaceous film as described above, wherein a carbonaceous film is produced from a laminate obtained by directly laminating two or more polymer films.
本発明の第十二は、10枚以上の高分子フィルムを直接積層したものから炭素質フィルムを製造する前記記載の炭素質フィルムの製造方法である。 A twelfth aspect of the present invention is the above-described carbonaceous film production method for producing a carbonaceous film from a laminate obtained by directly laminating 10 or more polymer films.
炭化工程で原料フィルム同士の異物発生や融着を防ぐ事で、良質の炭素質フィルムを生産性良く提供する事が出来る。 By preventing the generation of foreign matter and fusion between raw material films in the carbonization process, it is possible to provide a high quality carbonaceous film with high productivity.
(減圧度と熱拡散率に関して)
ポリイミドフィルムを不活性ガス下、1000℃まで処理すると500℃付近から徐々に分解が始まり、一酸化炭素や二酸化炭素、窒素やアンモニアなどの低分子気体やベンゼン、アニリンやフェノール、ベンゾニトリルなどの低分子有機物が分解ガスとして観測される。900℃付近になるとこれらの分解ガスの発生はほぼ収束し、最終的に1000℃まで処理した後は6割ほどに重量が減少した炭素質フィルムが得られてくる。上記成分の他にも同定困難な低分子量物質が多数観測され、これらの有機物成分は炭化処理後に不揮発性のタール成分として回収される。
(Degree of decompression and thermal diffusivity)
When the polyimide film is treated under inert gas up to 1000 ° C, it gradually decomposes around 500 ° C, and low molecular gases such as carbon monoxide, carbon dioxide, nitrogen and ammonia, and low concentrations such as benzene, aniline, phenol and benzonitrile. Molecular organic matter is observed as a decomposition gas. When the temperature reaches about 900 ° C., the generation of these cracked gases almost converges, and after processing to 1000 ° C., a carbonaceous film having a weight reduced by about 60% can be obtained. In addition to the above components, many low molecular weight substances that are difficult to identify are observed, and these organic components are recovered as non-volatile tar components after carbonization.
このタール成分はフィルムから分解ガスとして発生した直後ではガス状、もしくは微細な霧状として存在している。フィルムを黒鉛材で挟んで処理した場合など、分解ガスの抜けが悪い条件下ではフィルム周辺にガスが滞留してしまう恐れがある。滞留したガスは凝集を起こし、タールとしてフィルム表面および黒鉛材に付着する。付着したタール成分はそのまま昇温とともに炭化され、フィルムや合紙上に異物として残存してしまう。ガス分の凝集を抑える為には、減圧雰囲気での炭化処理を行なえば良い。減圧下で炭化処理を行なう事によって、分解ガスの凝集を防ぎ異物の発生を大幅に抑制する事が出来る。その抑制効果は減圧度が大きいほど高い。例えば面積の広いポリイミドフィルムを黒鉛材に挟んで炭化処理を行なう場合には、面積の狭いポリイミドフィルムに比べてガスが抜ける行程が長くなる為により異物が発生しやすくなる事が予測される。こういった場合においても、減圧度をさらに高めて炭化処理を行なう事によって異物の発生を抑える事が出来る。 This tar component is present in the form of gas or fine mist immediately after being generated as a decomposition gas from the film. In the case where the film is sandwiched between graphite materials and processed, the gas may stay around the film under conditions where the decomposition gas does not escape easily. The staying gas causes aggregation and adheres to the film surface and the graphite material as tar. The adhering tar component is carbonized as the temperature rises as it is, and remains as a foreign substance on the film or interleaf. In order to suppress agglomeration of the gas component, carbonization in a reduced pressure atmosphere may be performed. By performing carbonization under reduced pressure, the decomposition gas can be prevented from agglomerating and the generation of foreign matter can be greatly suppressed. The suppression effect is higher as the degree of decompression is larger. For example, when a carbonization treatment is performed by sandwiching a polyimide film having a large area between graphite materials, it is expected that foreign substances are more likely to be generated due to a longer gas escape process than a polyimide film having a small area. Even in such a case, the occurrence of foreign matters can be suppressed by further increasing the degree of vacuum and performing carbonization.
また、ポリイミドフィルムを高真空下(101Pa以下)で1000℃まで炭化処理を行なうと、不活性ガス気流下(大気圧)で炭化処理を行なった時に比べて、単位面積当たりの重量が減少した炭素質フィルムが得られてくる。これは高真空下で熱処理を行なう事によって、フィルム内部からより多く出ガスが発生するためであると考えられる。 In addition, when carbonizing a polyimide film under high vacuum (10 1 Pa or less) up to 1000 ° C., the weight per unit area is reduced compared to when carbonizing under an inert gas stream (atmospheric pressure). A carbonaceous film is obtained. This is considered to be because more outgas is generated from the inside of the film by heat treatment under high vacuum.
ポリイミドフィルムからグラファイトフィルムを作製する工程は、炭化工程と黒鉛化工程に分かれる。熱拡散能力の高いグラファイトフィルムを得る為にはグラファイトの層を綺麗に配向させる必要がある。このようなグラファイト層が揃った良質なグラファイトフィルムを得るには、炭化処理後の時点である程度炭素平面を発達および配向させる事が好ましい。炭素平面の配向は炭化処理の昇温速度の調整によって操作する事が出来る。炭化処理速度は遅い方がより炭素平面が配向しやすい。例えば、同一のポリイミドフィルムを1000℃まで処理した場合、炭化処理速度が速い場合に比べて遅い場合は炭素配向度が良く、厚みが薄く面積の広い炭化フィルムが得られてくる。 The process of producing a graphite film from a polyimide film is divided into a carbonization process and a graphitization process. In order to obtain a graphite film with high thermal diffusion capability, it is necessary to orient the graphite layer neatly. In order to obtain a good quality graphite film having such a graphite layer, it is preferable to develop and orient the carbon plane to some extent after the carbonization treatment. The orientation of the carbon plane can be manipulated by adjusting the heating rate of carbonization. The lower the carbonization rate, the easier the carbon plane is oriented. For example, when the same polyimide film is processed up to 1000 ° C., a carbonized film having a good carbon orientation and a small thickness and a large area can be obtained when the carbonization rate is low as compared with the case where the carbonization rate is high.
一方、高真空下で炭化処理を行なった場合は、フィルム内部からより多くガスが発生する為に、炭素構造が一部破壊された炭化フィルムが得られてくる。構造を乱された炭素平面は続く黒鉛化工程においてグラファイト層の成長が妨げられてしまい、結果として熱拡散能力が低下したグラファイトフィルムとなってしまう。減圧条件下で炭化処理を行なうと炭化フィルム上の異物を除去する事は出来るが、101Pa以下程度の高真空下で炭化処理を行なってしまうと、グラファイトフィルムの熱拡散能力は低下してしまう。 On the other hand, when carbonization is performed under a high vacuum, more gas is generated from the inside of the film, so that a carbonized film having a partially broken carbon structure can be obtained. The structure-disturbed carbon plane hinders the growth of the graphite layer in the subsequent graphitization process, resulting in a graphite film with reduced thermal diffusion capacity. Foreign matter on the carbonized film can be removed by carbonization under reduced pressure conditions, but if the carbonization is performed under a high vacuum of about 10 1 Pa or less, the thermal diffusion capacity of the graphite film is reduced. End up.
上記問題を解決する為には炭素面を破壊しない程度の減圧下で炭化処理を行なう必要性がある。その減圧度は好ましくは−0.001kPa以上−0.1MPa以下、より好ましくは−0.01kPa以上−0.09MPa以下、さらに好ましくは−0.01kPa以上−0.08MPa以下である。減圧度が−0.001kPaより小さい場合は減圧度が小さ過ぎるので異物除去効果が十分に発揮されない恐れがある。逆に減圧度が−0.1MPaより大きい場合は得られるグラファイトフィルムの熱拡散率が低下してしまう恐れがある。 In order to solve the above problem, it is necessary to perform carbonization under reduced pressure that does not destroy the carbon surface. The degree of reduced pressure is preferably −0.001 kPa or more and −0.1 MPa or less, more preferably −0.01 kPa or more and −0.09 MPa or less, and further preferably −0.01 kPa or more and −0.08 MPa or less. If the degree of decompression is less than -0.001 kPa, the degree of decompression is too small, and the foreign matter removal effect may not be sufficiently exhibited. Conversely, if the degree of vacuum is greater than -0.1 MPa, the thermal diffusivity of the resulting graphite film may be reduced.
(炭化フィルムの表面性)
異物による炭化フィルムの引っ掛かり傷は、その後の黒鉛化工程においても消える事は無く、そこから更に傷が広がり裂けを生じてしまったり、グラファイトフィルムの割れを誘発してしまったりと様々な問題を引き起こす。また、この炭素フィルム上に付いた傷がグラファイト層の発達を阻害し、熱拡散率の低下を引き起こすといった問題も出てくる。グラファイトフィルムを熱源に接続して放熱を行なう場合、グラファイトフィルム上に傷や裂けが存在するとその部分が大きな熱抵抗となり、グラファイトフィルムの放熱性能が大きく低下してしまう。グラファイトフィルムの放熱性能を最大限に発揮させる為にも、表面傷は出来る限り抑制しなくてはならない。
(Surface property of carbonized film)
The scratches on the carbonized film due to foreign materials will not disappear in the subsequent graphitization process, causing further problems such as the cracks spreading further and causing cracks or inducing cracks in the graphite film. . In addition, there is a problem that scratches on the carbon film inhibit the development of the graphite layer and cause a decrease in thermal diffusivity. When a graphite film is connected to a heat source for heat dissipation, if there is a scratch or tear on the graphite film, the portion becomes a large thermal resistance, and the heat dissipation performance of the graphite film is greatly reduced. In order to maximize the heat dissipation performance of graphite film, surface flaws must be suppressed as much as possible.
一見すると異物が無いように見える炭化フィルムにおいても目視で確認できない細かい異物が付着している場合がある。これらの異物も黒鉛化工程において消失する事は無く、結果として黒鉛微粉の付着したグラファイトフィルムが得られてくる事となる。この黒鉛微粉は作業の際に微粉塵として舞い上がるため、周囲を汚してしまうという事の他にも、作業者や周囲の人が粉塵を吸い込んでしまうという危険性も孕んでいる。また、小型機器等にグラファイトフィルムを使用する場合は、粘着層や保護フィルム層を設ける場合が一般的であるが、表面に細かい黒鉛微粉が付着したグラファイトフィルムにおいては接着性の低下を引き起こす可能性がある。これら粘着層および保護フィルム層とグラファイトフィルムの接着性が低下する事によって界面に接触抵抗が生じてしまい、前述と同様にグラファイトフィルムの放熱性能を最大限に生かせない可能性も出てくる。 Even in a carbonized film that appears to have no foreign matter at first glance, fine foreign matter that cannot be visually confirmed may adhere. These foreign substances are not lost in the graphitization step, and as a result, a graphite film having graphite fine particles adhered thereto is obtained. Since this graphite fine powder soars as fine dust during work, in addition to polluting the surroundings, there is also a danger that workers and the surrounding people will inhale dust. In addition, when using a graphite film for small equipment, etc., it is common to provide an adhesive layer or protective film layer, but in graphite films with fine graphite fine particles adhering to the surface, it may cause a decrease in adhesion There is. When the adhesion between the adhesive layer and the protective film layer and the graphite film is lowered, contact resistance is generated at the interface, and there is a possibility that the heat dissipation performance of the graphite film cannot be maximized as described above.
本発明の炭化処理方法にて異物を除去すればこれらの問題は解決でき、表面状態の綺麗な放熱性能の高いグラファイトフィルムを得る事が出来る。 If the foreign matter is removed by the carbonization method of the present invention, these problems can be solved, and a graphite film having a clean surface state and high heat dissipation performance can be obtained.
(融着改善)
炭化処理量を増やすという観点でポリイミドフィルムを多数枚直接に積層して炭化処理を行なう事は効果的である。しかし、ポリイミドフィルムを2枚直接に重ねて黒鉛材ではさみ炭化処理を行なった場合、1枚のみを処理した時に比べてフィルム間では分解ガスがより多く発生するので異物が発生しやすくなってしまう。このようなフィルムを直接に積層した場合においても、本発明の炭化処理方法を用いれば異物の発生を大幅に削減できる。
(Improvement of fusion)
From the viewpoint of increasing the amount of carbonization treatment, it is effective to perform carbonization treatment by directly laminating a large number of polyimide films. However, when two polyimide films are directly stacked and carbonized with a graphite material, a larger amount of decomposition gas is generated between the films than when only one sheet is processed, so that foreign matter is likely to be generated. . Even when such films are directly laminated, the occurrence of foreign matter can be greatly reduced by using the carbonization method of the present invention.
直接積層枚数がさらに多くなった場合や、波打ちを抑える為にフィルムにかける荷重を増やしフィルム同士の密着性が高くなった場合には、炭化フィルムがお互いに融着するという現象が起こる。200mm角サイズのポリイミドフィルムを10枚直接に積層し、不活性ガス気流下(大気圧)、上から荷重をかけない状態で1000℃まで炭化処理を行なうと、大きく表面が波打った炭化フィルムが得られてくるものの、フィルム同士の融着は発生しない。波打ちを抑制するために上から一定量の荷重をかけた場合には、炭化フィルムの平面性は高くなるものの一部が融着を起こしてしまう。これはフィルム間の密着性が高くなる事で分解ガスが抜けづらくなり、フィルム間で凝集したタール分が接着剤のように働いて昇温とともにそのまま固化してしまう為であると考えられる。 When the number of directly laminated layers is increased, or when the load applied to the film is increased to suppress the undulation and the adhesion between the films is increased, a phenomenon occurs in which the carbonized films are fused to each other. When 10 sheets of 200mm square size polyimide film are directly laminated and carbonized to 1000 ° C under an inert gas stream (atmospheric pressure) without applying a load from above, a carbonized film with a large undulating surface is obtained. Although it is obtained, no fusion between the films occurs. When a certain amount of load is applied from above in order to suppress undulations, a part of the carbonized film will be fused, although the flatness will be high. This is thought to be due to the fact that the decomposition gas is difficult to escape due to the high adhesion between the films, and the tar content aggregated between the films works like an adhesive and solidifies as it is raised.
前述のようにポリイミドフィルムは炭化工程においてサイズの収縮が起こる為に重しをかけないフリーな状態で熱処理を行なうと、表面全体が大きく波打った炭化フィルムが得られてくる。このまま続く黒鉛化処理を行なうと歪んだグラファイトフィルムが得られてくるのみならず、炭化処理後に得られるガラス状のフィルムは大変に機械的強度が弱い為に、波打った炭化フィルムでは作業性が極めて悪くなるといった問題も表れてくる。さらにポリイミドフィルムを多数枚積層して炭化処理を行なう場合は重なったフィルム同士で波打ちが増幅され、さらに表面波打ちが大きくなってしまう。この波打ちはフィルムの上から重しを乗せる、または上下から板でかしめる等の手段を用いて平面状に荷重をかけながら炭化処理を行なう事によって抑制する事が出来る。積層するポリイミドフィルムの枚数が増えるほど波打ちを起こす力が大きくなっていくので、かける荷重を重ねる枚数に応じて適宜変更していく必要性がある。 As described above, since the polyimide film undergoes shrinkage in size in the carbonization process, when the heat treatment is performed in a free state where no weight is applied, a carbonized film having a largely undulated surface can be obtained. If the graphitization treatment is continued as it is, not only a distorted graphite film is obtained, but also the glassy film obtained after carbonization treatment has a very low mechanical strength, so that the workability is not good with a wavy carbonized film. The problem of becoming extremely bad also appears. Further, when carbonization treatment is performed by laminating a large number of polyimide films, the undulation is amplified between the overlapping films, and the undulation is further increased. This undulation can be suppressed by performing carbonization treatment while applying a load in a planar manner using means such as placing a weight on the film or caulking with a plate from above and below. As the number of polyimide films to be laminated increases, the force that causes undulations increases, so it is necessary to appropriately change the applied load according to the number of sheets to be overlaid.
以上の事より、ポリイミドフィルムを直接に積層し炭化処理を行なう場合にはポリイミドフィルムに荷重をかけながら炭化処理を行なう必要性があるが、フィルム同士が融着を起こしやすくなるという問題が生じてくる。こういった場合においても本発明の方法は極めて効果的であり、減圧下で炭化処理を行なう事によってフィルム間での分解ガスの滞留を防ぎ、複数枚直接に積層した場合においても融着を防止する事が可能となる。 From the above, when the polyimide film is directly laminated and carbonized, it is necessary to perform the carbonization while applying a load to the polyimide film, but there is a problem that the films are likely to be fused. come. Even in such a case, the method of the present invention is extremely effective, and the carbonization treatment under reduced pressure prevents the decomposition gas from staying between the films, and also prevents the fusion even when plural sheets are directly laminated. It becomes possible to do.
(不活性ガスの導入)
多層積層したポリイミドフィルムを炭化処理する場合は、減圧下で処理を行なうと同時に不活性ガスを導入するとより効果的に異物及び融着を防止する事が可能となる。焼成部の一方から不活性ガスを導入し、もう一方から排気を同時に行なう事によって焼成部に不活性ガスの流路が発生し、フィルム間に滞留する分解ガスをさらに速やかに系外に除去する事が出来る。この時、不活性ガスの流量V1(単位:L/s)と排気量V2(単位:L/s)を調整して、炉内部を適当な減圧状態に維持する事が重要である。導入する不活性ガスの量は多いほど効果が高いが、量が多過ぎる場合にはフィルムからの分解ガスが出にくくなってしまう為に好ましくない。また、不活性ガスの使用が多くなるとコストが高くなってしまうという問題もある。処理物の体積をVとした場合、処理物の体積と必要な不活性ガスの量は比例関係で表わす事が出来る。ここで言う処理物の体積Vとは、炉の焼成部の体積を指すのではなく、処理するポリイミドフィルム、ポリイミドフィルムの容器、合紙など、加熱装置内に配置して加熱する全ての部材の総体積を表す。不活性ガスの流量V1を処理物の体積Vで除した値V/V1の値(単位:s)が好ましくは0.01以上1000以下、より好ましくは0.1以上100以下、さらに好ましくは1以上10以下である。V/V1の値が0.01未満である場合は、導入する不活性ガスの量が処理物に対して多すぎるので良くない。また、V/V1の値が1000より大きい場合は不活性ガスの量が少なすぎる為に異物及び融着を十分に防止出来ない可能性がある。
(Introduction of inert gas)
When carbonizing a multilayer laminated polyimide film, foreign substances and fusion can be more effectively prevented by introducing the inert gas simultaneously with the treatment under reduced pressure. By introducing an inert gas from one of the firing sections and exhausting from the other at the same time, a flow path for the inert gas is generated in the firing section, and the decomposition gas staying between the films is removed more quickly from the system. I can do it. At this time, it is important to adjust the flow rate V1 (unit: L / s) of the inert gas and the displacement V2 (unit: L / s) to maintain the inside of the furnace in an appropriate reduced pressure state. The larger the amount of the inert gas introduced, the higher the effect. However, when the amount is too large, it is not preferable because the decomposition gas from the film becomes difficult to be emitted. There is also a problem that the cost increases when the use of inert gas increases. When the volume of the processed product is V, the volume of the processed product and the necessary amount of inert gas can be expressed in a proportional relationship. The volume V of the processed material referred to here does not indicate the volume of the firing part of the furnace, but includes all the members to be placed and heated in the heating device such as the polyimide film to be processed, the polyimide film container, and the interleaf. Represents the total volume. A value V / V1 (unit: s) obtained by dividing the flow rate V1 of the inert gas by the volume V of the processed material is preferably 0.01 or more and 1000 or less, more preferably 0.1 or more and 100 or less, and further preferably 1 It is 10 or less. When the value of V / V1 is less than 0.01, the amount of the inert gas to be introduced is too much for the processed material, which is not good. On the other hand, if the value of V / V1 is larger than 1000, the amount of inert gas is too small, and foreign matter and fusion may not be sufficiently prevented.
使用する不活性ガスの種類に関しては、窒素やアルゴン、ヘリウム等が挙げられる。前記不活性ガスであるならばどのガスを使用しても炭化処理の際にフィルムに影響を与える事はなく、同品質のものが得られてくる。この中でもコストの観点から窒素が好ましく用いられる。 Nitrogen, argon, helium etc. are mentioned regarding the kind of inert gas to be used. As long as the inert gas is used, no matter which gas is used, the film is not affected during carbonization, and the same quality can be obtained. Among these, nitrogen is preferably used from the viewpoint of cost.
前記雰囲気条件に関して、炭化処理中常にこの雰囲気条件で処理を行なう必要はなく、少なくとも分解ガスが一番多く発生する400〜700℃付近のみがこの雰囲気条件であれば良い。例えば、400℃付近まで高真空下で処理を行ない、その後不活性ガスを導入し所定の減圧度を維持する方法や、700℃を過ぎた時点で不活性ガスの流量を減らす・高真空下での処理に切り替える等の方法が考えられる。このような処理方法にする事で不活性ガスを処理中に常に流し続ける必要性がなくなり、不活性ガスの消費量を大幅に削減する事が出来る。 With respect to the atmospheric conditions, it is not always necessary to perform the treatment under the atmospheric conditions during the carbonization treatment, and at least the vicinity of 400 to 700 ° C. at which the most decomposition gas is generated may be the atmospheric conditions. For example, processing is performed under high vacuum up to around 400 ° C., and then an inert gas is introduced to maintain a predetermined degree of decompression, or the flow rate of the inert gas is reduced when 700 ° C. is exceeded. A method such as switching to the above processing is conceivable. By adopting such a treatment method, it is not necessary to constantly flow the inert gas during the treatment, and the consumption of the inert gas can be greatly reduced.
また、本発明の効果をさらに発揮させる為に、炉内の不活性ガス流路を最適化する事は好ましい。焼成部や焼成する容器の形状に合わせて不活性ガス導入口および排気口を設計する事や、ポリイミドフィルムを入れる容器自体を通気性が良くなる構造にする事はさらに効果的である。 In order to further exhibit the effects of the present invention, it is preferable to optimize the inert gas flow path in the furnace. It is more effective to design the inert gas introduction port and the exhaust port in accordance with the shape of the firing part and the container to be fired, and to make the container itself into which the polyimide film is put into a structure having good air permeability.
この不活性ガスを導入しながら減圧雰囲気下で炭化処理する方法は、多数積層したポリイミドフィルムを処理する場合のみならず、1枚だけを処理する場合においても効果的である。特に面積の広いポリイミドフィルムの場合は、ガスが抜けづらくなってくる為に、減圧のみでは完全に異物を除去出来なくなる時もある。そのような場合に不活性ガスを導入しながら減圧雰囲気で炭化を行なう事によってより効果的に異物を除去する事が可能となる。 The method of carbonizing under a reduced pressure atmosphere while introducing an inert gas is effective not only when processing a large number of laminated polyimide films but also when processing only one sheet. In particular, in the case of a polyimide film having a large area, it becomes difficult for gas to escape, and thus it may be impossible to completely remove foreign substances only by reducing the pressure. In such a case, it is possible to remove foreign substances more effectively by performing carbonization in a reduced pressure atmosphere while introducing an inert gas.
多くの枚数のポリイミドフィルムを処理した場合はガスの発生時に一時的に炉内が常圧もしくは加圧状態になってしまう事が想定できる。分解ガスの量を予測してなるべく処理雰囲気を減圧状態に保つ事も、異物や融着を改善するポイントとなる。 When a large number of polyimide films are processed, it can be assumed that the inside of the furnace is temporarily at normal pressure or pressure when gas is generated. Predicting the amount of cracked gas and keeping the processing atmosphere in a reduced pressure state as much as possible is also a point for improving foreign matter and fusion.
(フィルム厚みに関して)
原料ポリイミドフィルムの厚みが厚いほど、炭化処理の際に発生する分解ガスの量は多くなり、より異物の発生や融着が起こりやすくなってくる。グラファイトフィルム自体の熱拡散能力は熱伝導率(単位:W/(m・K))で表わされるが、実際に熱を輸送する能力は、この熱伝導率の値にグラファイトフィルムの厚みを掛けた値が指標となる。例えば平面方向の熱伝導率が同じ1000W/(m・K)のグラファイトフィルムであっても、厚みが25μmと40μmでは40μmのグラファイトフィルムの方が高い熱輸送能力を有するという事となる。すなわち、同一面積を使用した場合に40μmのグラファイトフィルムはより熱源からの熱を拡散しやすいという事となる。最小限の面積で大量の熱輸送を行ないたいという観点において、厚いグラファイトフィルムを作製する事は極めて有効な手段である。
(Regarding film thickness)
As the thickness of the raw material polyimide film increases, the amount of decomposition gas generated during the carbonization treatment increases, and the generation of foreign matter and fusion are more likely to occur. The thermal diffusion capacity of the graphite film itself is expressed by thermal conductivity (unit: W / (m · K)), but the ability to actually transport heat is obtained by multiplying the value of this thermal conductivity by the thickness of the graphite film. The value is an indicator. For example, even with a graphite film having the same thermal conductivity in the plane direction of 1000 W / (m · K), a 40 μm graphite film has a higher heat transport capability at a thickness of 25 μm and 40 μm. That is, when the same area is used, the 40 μm graphite film is more likely to diffuse the heat from the heat source. From the viewpoint of carrying out a large amount of heat transport with a minimum area, it is extremely effective to produce a thick graphite film.
一般的に、高分子グラファイト法では出来上がり厚みの厚いフィルムを作製する場合、厚みの厚いポリイミドフィルムを原料として用いる必要性がある。前述のように厚みの厚いポリイミドフィルムは炭化処理においてより異物や融着が発生しやすい。さらに厚みの厚いポリイミドフィルムは薄いものに比べて、同一容積内での処理枚数が低下してしまう為にフィルム間に挟む合紙等はなるべく使用しない事が好まれる。本発明の減圧下での炭化方法を用いる事で、厚みの厚いポリイミドフィルムでも合紙を用いる事なく炭化処理が可能となる。この時も不活性ガスを流しながらの減圧炭化処理は極めて効果的である。厚みの厚いポリイミドフィルムを処理する場合は、薄い時に比べ不活性ガスの流量をさらに多くすれば良い。 In general, in the case of producing a thick film with the polymer graphite method, it is necessary to use a thick polyimide film as a raw material. As described above, a thick polyimide film is more susceptible to foreign matters and fusion during carbonization. Further, since a thick polyimide film has a smaller number of processed sheets in the same volume than a thin film, it is preferable to use a slip sheet sandwiched between films as much as possible. By using the carbonization method under reduced pressure of the present invention, even a thick polyimide film can be carbonized without using a slip sheet. Also at this time, the reduced pressure carbonization treatment while flowing an inert gas is extremely effective. When processing a thick polyimide film, the flow rate of the inert gas may be further increased as compared with a thin film.
(排気方法に関して)
排気方法に関しては、真空ポンプや排気ファンを使用した方法など、焼成炉自体の安全性を損なわない範囲であれば既知のあらゆる方法を用いる事が出来る。特に真空ポンプは様々な種類のものが各社から市販されており、操作も簡便な事から本発明に好適に用いられる。本発明の圧力範囲−0.001kPa〜−0.1MPaで用いる事が出来る真空ポンプとしては、アスピレーター(水流ポンプ)、ドライ真空ポンプ、メカニカルブースターポンプ、油回転ポンプ、ソープションポンプ、油エゼクタポンプなどが挙げられる。減圧度の調整は真空ポンプの排気部にバルブを取り付け、排気量を調節して使用すれば良い。ここで「圧力−0.001kPa」とは真空ポンプで0.001kPaだけ減圧することをいい、「圧力−0.1kPa」とは真空ポンプで0.1kPaだけ減圧することをいう。
(Exhaust method)
Regarding the exhaust method, any known method can be used as long as it does not impair the safety of the firing furnace itself, such as a method using a vacuum pump or an exhaust fan. In particular, various types of vacuum pumps are commercially available from various companies and can be suitably used in the present invention because of their simple operation. Examples of the vacuum pump that can be used in the pressure range of -0.001 kPa to -0.1 MPa of the present invention include an aspirator (water flow pump), a dry vacuum pump, a mechanical booster pump, an oil rotary pump, a sorption pump, and an oil ejector pump. Is mentioned. The degree of decompression can be adjusted by attaching a valve to the exhaust part of the vacuum pump and adjusting the exhaust amount. Here, “pressure−0.001 kPa” means that the pressure is reduced by 0.001 kPa with a vacuum pump, and “pressure−0.1 kPa” means that the pressure is reduced by 0.1 kPa with a vacuum pump.
(出ガスの処理に関して)
ポリイミドフィルムの分解ガスには前述した成分の他に様々な低分子量物質が含まれていて、ポリイミドフィルムを炭化処理した際にはこれらの物質が不揮発性のタール状物質として得られてくる。多くの枚数のポリイミドフィルムを一度に炭化する場合には、この発生したタールの処理は一つの課題となってくる。タールの成分には有毒なものも多く、掃除の手間や人体に対する危険性などを考えると出ガスは効率的に処理する必要がある。また、ヒーターや断熱材にタールが付着したまま連続運転を続けると劣化が促進するという恐れもある。この事から炭化処理時の分解ガスは発生後、素早く炉の外部に誘導する必要性がある。真空ポンプにて高真空中(101Pa以下)でポリイミドフィルムを処理した場合、フィルムから発生した出ガスは一気に炉内で拡散を起こしてしまう。その為、真空ポンプの排気方向に上手く出ガスが誘導されずに炉の内部に滞留してしまい、炉を汚染してしまう。上手く炉の外へ出ガスを誘導する為には、高真空下で炭化処理を行なうのではなく、一方から不活性ガスを導入し、一方から排気を行ない炉内に不活性ガスの流れを作れば良い。こうする事で発生した出ガスが速やかに炉外に排出され、炉内を汚染する危険性が大幅に減少する。本発明の炭化処理方法においては分解ガスの処理も有効に行なう事が出来る。
(Regarding treatment of outgas)
The cracked gas of the polyimide film contains various low molecular weight substances in addition to the above-described components, and these substances are obtained as nonvolatile tar-like substances when the polyimide film is carbonized. When a large number of polyimide films are carbonized at one time, the treatment of the generated tar becomes a problem. Many tar components are toxic, and it is necessary to treat the outgas efficiently considering the time and effort of cleaning and the danger to the human body. Further, if the continuous operation is continued with tar attached to the heater or the heat insulating material, there is a risk that deterioration will be accelerated. For this reason, it is necessary to quickly introduce the cracked gas during carbonization to the outside of the furnace after it is generated. When a polyimide film is processed in a high vacuum (10 1 Pa or less) with a vacuum pump, the outgas generated from the film diffuses in the furnace all at once. For this reason, the outgas is not guided well in the exhaust direction of the vacuum pump, but stays in the furnace and contaminates the furnace. In order to guide the gas out of the furnace successfully, do not perform carbonization under high vacuum, but introduce an inert gas from one side and exhaust from one side to create a flow of inert gas in the furnace. It ’s fine. By doing so, the generated gas is quickly discharged out of the furnace, and the risk of contaminating the furnace is greatly reduced. In the carbonization method of the present invention, the treatment of the cracked gas can be performed effectively.
(黒鉛化に関して)
本発明の方法で作製した炭素質フィルムは2400℃以上の高温で熱処理する黒鉛化過程を経る事により、さらに良質な炭素質フィルム(グラファイトフィルム)にする事が出来る。この黒鉛化過程は炭化処理後に炉を一度降温させた後に再度炉を昇温させて行っても良いし、途中で降温過程を経る事なく一度に黒鉛化を行っても良い。
(Regarding graphitization)
The carbonaceous film produced by the method of the present invention can be made into a higher quality carbonaceous film (graphite film) through a graphitization process in which heat treatment is performed at a high temperature of 2400 ° C. or higher. This graphitization process may be performed by once lowering the temperature of the furnace after carbonization and then increasing the temperature of the furnace again, or may be performed at once without passing through the temperature lowering process.
以下、実施例および比較例により、本発明をさらに具体的に説明していく。なお実施例及び比較例における窒素気流の流量は、電気炉外の大気圧における窒素ガスの流量を表す。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, the flow volume of the nitrogen airflow in an Example and a comparative example represents the flow volume of the nitrogen gas in the atmospheric pressure outside an electric furnace.
(ポリイミドフィルムAの作製方法)
4,4’−オキシジアニリンの1当量を溶解したDMF(ジメチルフォルムアミド)溶液に、ビロメリット酸二無水物の1当量を溶解してポリアミド酸溶液(18.5wt%)を得た。
(Preparation method of polyimide film A)
In a DMF (dimethylformamide) solution in which 1 equivalent of 4,4′-oxydianiline was dissolved, 1 equivalent of pyromellitic dianhydride was dissolved to obtain a polyamic acid solution (18.5 wt%).
この溶液を冷却しながら、ポリアミド酸に含まれるカルボン酸基に対して、1当量の無水酢酸、1当量のイソキノリン、およびDMFを含むイミド化触媒を添加し脱泡した。次にこの混合溶液が、乾燥後に所定の厚さになるようにアルミ箔上に塗布した。アルミ箔上の混合溶液層を、熱風オーブン、遠赤外線ヒーターを用いて乾燥した。 While this solution was cooled, an imidation catalyst containing 1 equivalent of acetic anhydride, 1 equivalent of isoquinoline, and DMF was added to the carboxylic acid group contained in the polyamic acid to degas. Next, this mixed solution was applied onto an aluminum foil so as to have a predetermined thickness after drying. The mixed solution layer on the aluminum foil was dried using a hot air oven and a far infrared heater.
以下に出来上がり厚みが75μmの場合におけるフィルム作製をする場合の乾燥条件を示す。アルミ箔上の混合溶液層は、熱風オーブンで120℃において240秒乾燥して、自己支持性を有するゲルフィルムにした。そのゲルフィルムをアルミ箔から引き剥がし、フレームに固定した。さらに、ゲルフィルムを、熱風オーブンにて120℃で30秒、275℃で40秒、400℃で43秒、450℃で50秒、および遠赤外線ヒーターにて460℃で23秒段階的に加熱して乾燥した。 The drying conditions for film production when the finished thickness is 75 μm are shown below. The mixed solution layer on the aluminum foil was dried in a hot air oven at 120 ° C. for 240 seconds to form a self-supporting gel film. The gel film was peeled off from the aluminum foil and fixed to the frame. Further, the gel film was heated stepwise in a hot air oven at 120 ° C. for 30 seconds, 275 ° C. for 40 seconds, 400 ° C. for 43 seconds, 450 ° C. for 50 seconds, and a far infrared heater at 460 ° C. for 23 seconds. And dried.
なお、その他厚みのフィルムを作製する場合には、厚みに比例して焼成時間を調整した。例えば厚さ50μmのフィルムの場合には、75μmの場合よりも焼成時間を2/3倍に、125μmのフィルムの場合には、5/3倍に設定した。なお、厚みが厚い場合には、ポリイミドフィルムの溶媒やイミド化触媒蒸発による発泡を防ぐために低温での焼成時間を十分とる必要がある。 In addition, when producing films with other thicknesses, the firing time was adjusted in proportion to the thickness. For example, in the case of a film having a thickness of 50 μm, the baking time was set to 2/3 times that in the case of 75 μm, and in the case of a film having a thickness of 125 μm, it was set to 5/3 times. When the thickness is large, it is necessary to take a sufficient baking time at a low temperature in order to prevent foaming due to evaporation of the solvent or imidization catalyst of the polyimide film.
(実施例1)
上記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−0.01kPaを保ったまま昇温を続けた。室温まで冷却後、得られた炭化フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)を測定した。またフィルム処理前後において炉内汚れの評価も行なった。続けてこの炭化フィルムを、縦250mm×横250mm×厚み250μmの膨張黒鉛シートで上下から挟み、グラファイト化炉を用いて2900℃まで2℃/minで昇温してグラファイト化処理をおこなった。室温まで冷却後、熱処理後のグラファイトフィルムを、縦250mm×横250mm×厚み125μmのポリイミドフィルムで上下から挟み圧縮成型機を用いて後面状加圧工程を実施した。加えた圧力は10MPaとした。最終的に得られたグラファイトフィルムの熱拡散率を、光交流法による熱拡散率測定装置(アルバック理工(株)社から入手可能な(商品名)「LaserPit」)を用いて、20℃の雰囲気下、10Hzにおいて測定した。その結果を表1にまとめた。なおここで「内圧が真空ポンプにて−0.01kPaである」とは、電気炉の内圧が電気炉外よりも0.01kPa低いことをいう。
Example 1
A polyimide film A (PI-A) of 50 μm thickness prepared by the above method is sandwiched between graphite materials and carbonized by heating to 1000 ° C. at 2 ° C./min using an electric furnace. Was done. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously raised while maintaining the internal pressure at -0.01 kPa with a vacuum pump. After cooling to room temperature, the thickness and surface state of the obtained carbonized film and the weight per unit area (g / m 2 ) were measured. In addition, before and after the film processing, the contamination in the furnace was also evaluated. Subsequently, the carbonized film was sandwiched from above and below by an expanded graphite sheet having a length of 250 mm, a width of 250 mm, and a thickness of 250 μm, and a graphitization treatment was performed by raising the temperature to 2900 ° C. at 2 ° C./min using a graphitization furnace. After cooling to room temperature, the graphite film after heat treatment was sandwiched from above and below by a polyimide film having a length of 250 mm × width of 250 mm × thickness of 125 μm, and a back surface pressing step was performed using a compression molding machine. The applied pressure was 10 MPa. The thermal diffusivity of the finally obtained graphite film was measured using an optical AC method thermal diffusivity measuring apparatus (trade name “LaserPit” available from ULVAC-RIKO Co., Ltd.) in an atmosphere of 20 ° C. The measurement was performed at 10 Hz below. The results are summarized in Table 1. Here, “the internal pressure is −0.01 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 0.01 kPa lower than the outside of the electric furnace.
(実施例2)
上記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−0.1kPaを保ったまま昇温を続けた。その後は実施例1と同じ工程で行った。結果を表1にまとめた。なおここで「内圧が真空ポンプにて−0.1kPaである」とは、電気炉の内圧が電気炉外よりも0.1kPa低いことをいう。
(Example 2)
A polyimide film A (PI-A) of 50 μm thickness prepared by the above method is sandwiched between graphite materials and carbonized by heating to 1000 ° C. at 2 ° C./min using an electric furnace. Was done. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously raised while maintaining the internal pressure at -0.1 kPa with a vacuum pump. Thereafter, the same process as in Example 1 was performed. The results are summarized in Table 1. Here, “the internal pressure is −0.1 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 0.1 kPa lower than the outside of the electric furnace.
(実施例3)
上記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−0.5kPaを保ったまま昇温を続けた。その後は実施例1と同じ工程で行った。結果を表1にまとめた。なおここで「内圧が真空ポンプにて−0.5kPaである」とは、電気炉の内圧が電気炉外よりも0.5kPa低いことをいう。
Example 3
A polyimide film A (PI-A) of 50 μm thickness prepared by the above method is sandwiched between graphite materials and carbonized by heating to 1000 ° C. at 2 ° C./min using an electric furnace. Was done. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously increased while the internal pressure was kept at -0.5 kPa with a vacuum pump. Thereafter, the same process as in Example 1 was performed. The results are summarized in Table 1. Here, “the internal pressure is −0.5 kPa by a vacuum pump” means that the internal pressure of the electric furnace is 0.5 kPa lower than the outside of the electric furnace.
(実施例4)
上記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−1kPaを保ったまま昇温を続けた。その後は実施例1と同じ工程で行った。結果を表1にまとめた。なおここで「内圧が真空ポンプにて−1kPaである」とは、電気炉の内圧が電気炉外よりも1kPa低いことをいう。
Example 4
A polyimide film A (PI-A) of 50 μm thickness prepared by the above method is sandwiched between graphite materials and carbonized by heating to 1000 ° C. at 2 ° C./min using an electric furnace. Was done. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously increased while maintaining the internal pressure at -1 kPa with a vacuum pump. Thereafter, the same process as in Example 1 was performed. The results are summarized in Table 1. Here, “the internal pressure is −1 kPa by a vacuum pump” means that the internal pressure of the electric furnace is 1 kPa lower than the outside of the electric furnace.
(実施例5)
上記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−10kPaを保ったまま昇温を続けた。その後は実施例1と同じ工程で行った。結果を表1にまとめた。なおここで「内圧が真空ポンプにて−10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
(Example 5)
A polyimide film A (PI-A) of 50 μm thickness prepared by the above method is sandwiched between graphite materials and carbonized by heating to 1000 ° C. at 2 ° C./min using an electric furnace. Was done. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously increased while maintaining the internal pressure at -10 kPa with a vacuum pump. Thereafter, the same process as in Example 1 was performed. The results are summarized in Table 1. Here, “the internal pressure is −10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
減圧下で窒素を流しながら炭化処理を行なうと、表面傷の無い炭化フィルムが得られてくる事が分かった。また炉内の汚染もほとんど無い事が分かった。 It was found that a carbonized film without surface scratches can be obtained when carbonization is performed while flowing nitrogen under reduced pressure. It was also found that there was almost no contamination inside the furnace.
(実施例6)
上記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素を流さずに行ない、内圧は真空ポンプにて−10kPaを保ったまま昇温を続けた。その後は実施例1と同じ工程で行った。結果を表1にまとめた。なおここで「内圧が真空ポンプにて−10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
(Example 6)
A polyimide film A (PI-A) of 50 μm thickness prepared by the above method is sandwiched between graphite materials and carbonized by heating to 1000 ° C. at 2 ° C./min using an electric furnace. Was done. The carbonization was performed without flowing nitrogen, and the temperature was continuously raised while the internal pressure was kept at -10 kPa by a vacuum pump. Thereafter, the same process as in Example 1 was performed. The results are summarized in Table 1. Here, “the internal pressure is −10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
ポリイミドフィルムを1枚処理する場合は、窒素を流さなくても減圧下で炭化処理を行なえば表面傷の無い炭化フィルムが得られてくる事が分かった。しかし窒素を流さない時に比べて若干炉内が汚れる事が分かった。 In the case of treating one polyimide film, it was found that a carbonized film having no surface flaws can be obtained by performing carbonization under reduced pressure without flowing nitrogen. However, it was found that the inside of the furnace became slightly dirty as compared to when nitrogen was not flowed.
(実施例7)
上記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素を流さずに行ない、内圧は真空ポンプにて−80kPaを保ったまま昇温を続けた。その後は実施例1と同じ工程で行った。結果を表1にまとめた。なおここで「内圧が真空ポンプにて−80kPaである」とは、電気炉の内圧が電気炉外よりも80kPa低いことをいう。
(Example 7)
A polyimide film A (PI-A) of 50 μm thickness prepared by the above method is sandwiched between graphite materials and carbonized by heating to 1000 ° C. at 2 ° C./min using an electric furnace. Was done. The carbonization treatment was performed without flowing nitrogen, and the temperature was continuously raised while maintaining the internal pressure at −80 kPa with a vacuum pump. Thereafter, the same process as in Example 1 was performed. The results are summarized in Table 1. Here, “the internal pressure is −80 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 80 kPa lower than the outside of the electric furnace.
比較的高い減圧下での炭化処理においても、表面傷が無く、熱拡散率の高い炭化フィルムが得られてくる事が分かった。 It was found that a carbonized film having a high thermal diffusivity without surface flaws can be obtained even in a carbonization process under a relatively high reduced pressure.
(比較例1)
上記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧が±0kPaを保ったまま昇温を続けた。その後は実施例1と同じ工程で行った。結果を表1にまとめた。
(Comparative Example 1)
A polyimide film A (PI-A) of 50 μm thickness prepared by the above method is sandwiched between graphite materials and carbonized by heating to 1000 ° C. at 2 ° C./min using an electric furnace. Was done. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously raised while the internal pressure was maintained at ± 0 kPa. Thereafter, the same process as in Example 1 was performed. The results are summarized in Table 1.
窒素気流中のみの条件では炭化フィルムの表面傷を完全に取り除くことは出来なかった。 The surface flaws of the carbonized film could not be removed completely only under conditions of nitrogen flow.
(比較例2)
上記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧が+2kPaを保ったまま昇温を続けた。その後は実施例1と同じ工程で行った。結果を表1にまとめた。なおここで「内圧が真空ポンプにて+2kPaである」とは、電気炉の内圧が電気炉外よりも2kPa高いことをいう。
(Comparative Example 2)
A polyimide film A (PI-A) of 50 μm thickness prepared by the above method is sandwiched between graphite materials and carbonized by heating to 1000 ° C. at 2 ° C./min using an electric furnace. Was done. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously increased while maintaining the internal pressure at +2 kPa. Thereafter, the same process as in Example 1 was performed. The results are summarized in Table 1. Here, “the internal pressure is +2 kPa by the vacuum pump” means that the internal pressure of the electric furnace is 2 kPa higher than the outside of the electric furnace.
窒素加圧の条件で炭化処理を行なうと、常圧下での処理に比べ炭化フィルムの表面傷がさらに増えてしまった。また、炉内汚染の度合いも大きくなってしまう事が分かった。 When carbonization was performed under the condition of nitrogen pressurization, the surface damage of the carbonized film was further increased as compared with the treatment under normal pressure. It was also found that the degree of contamination in the furnace also increased.
(比較例3)
上記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素を流さずに行ない、内圧は真空ポンプにて10-1kPaを保ったまま昇温を続けた。その後は実施例1と同じ工程で行った。結果を表1にまとめた。なおここで「内圧が真空ポンプにて10-1kPaである」とは、電気炉の内圧が電気炉外よりも10-1kPa高いことをいう。
(Comparative Example 3)
A polyimide film A (PI-A) of 50 μm thickness prepared by the above method is sandwiched between graphite materials and carbonized by heating to 1000 ° C. at 2 ° C./min using an electric furnace. Was done. The carbonization treatment was performed without flowing nitrogen, and the temperature was continuously raised while maintaining the internal pressure at 10 −1 kPa with a vacuum pump. Thereafter, the same process as in Example 1 was performed. The results are summarized in Table 1. Here, “the internal pressure is 10 −1 kPa by a vacuum pump” means that the internal pressure of the electric furnace is 10 −1 kPa higher than the outside of the electric furnace.
高真空下では傷の無い炭化フィルムが得られてくるものの、その後の黒鉛化工程では熱拡散率の低いグラファイトフィルムが得られてくることが分かった。また、炉内汚染の度合いも大きくなってしまう事が分かった。 It was found that a carbonized film without scratches was obtained under high vacuum, but a graphite film having a low thermal diffusivity was obtained in the subsequent graphitization step. It was also found that the degree of contamination in the furnace also increased.
(実施例8)
上記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−0.01kPaを保ったまま昇温を続けた。室温まで冷却後、得られた炭化フィルムの厚みと表面状態、および単位面積当たりの重量(g/m2)を測定した。またフィルム処理前後において炉内汚れの評価も行なった。続けてこの炭化フィルムを、縦250mm×横250mm×厚み250μmの膨張黒鉛シートで上下から挟み、グラファイト化炉を用いて2900℃まで2℃/minで昇温してグラファイト化処理をおこなった。室温まで冷却後、熱処理後のグラファイトフィルムを、縦250mm×横250mm×厚み125μmのポリイミドフィルムで上下から挟み圧縮成型機を用いて後面状加圧工程を実施した。加えた圧力は10MPaとした。最終的に得られたグラファイトフィルムの熱拡散率を、光交流法による熱拡散率測定装置(アルバック理工(株)社から入手可能な(商品名)「LaserPit」)を用いて、20℃の雰囲気下、10Hzにおいて測定した。その結果を表2にまとめた。なおここで「内圧が真空ポンプにて−0.01kPaである」とは、電気炉の内圧が電気炉外よりも0.01kPa低いことをいう。
(Example 8)
A 75 μm thick polyimide film B (PI-B) (length 200 mm × width 200 mm) produced by the above method is sandwiched between graphite materials, and heated to 1000 ° C. at a rate of 2 ° C./min using an electric furnace. Was done. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously raised while maintaining the internal pressure at -0.01 kPa with a vacuum pump. After cooling to room temperature, the thickness and surface state of the obtained carbonized film and the weight per unit area (g / m 2 ) were measured. In addition, before and after the film processing, the contamination in the furnace was also evaluated. Subsequently, the carbonized film was sandwiched from above and below by an expanded graphite sheet having a length of 250 mm, a width of 250 mm, and a thickness of 250 μm, and a graphitization treatment was performed by raising the temperature to 2900 ° C. at 2 ° C./min using a graphitization furnace. After cooling to room temperature, the graphite film after heat treatment was sandwiched from above and below by a polyimide film having a length of 250 mm × width of 250 mm × thickness of 125 μm, and a back surface pressing step was performed using a compression molding machine. The applied pressure was 10 MPa. The thermal diffusivity of the finally obtained graphite film was measured using an optical AC method thermal diffusivity measuring apparatus (trade name “LaserPit” available from ULVAC-RIKO Co., Ltd.) in an atmosphere of 20 ° C. The measurement was performed at 10 Hz below. The results are summarized in Table 2. Here, “the internal pressure is −0.01 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 0.01 kPa lower than the outside of the electric furnace.
(実施例9)
上記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−0.1kPaを保ったまま昇温を続けた。その後は実施例8と同じ工程で行った。結果を表2にまとめた。なおここで「内圧が真空ポンプにて−0.1kPaである」とは、電気炉の内圧が電気炉外よりも0.1kPa低いことをいう。
Example 9
A 75 μm thick polyimide film B (PI-B) (length 200 mm × width 200 mm) produced by the above method is sandwiched between graphite materials, and heated to 1000 ° C. at a rate of 2 ° C./min using an electric furnace. Was done. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously raised while maintaining the internal pressure at -0.1 kPa with a vacuum pump. Thereafter, the same process as in Example 8 was performed. The results are summarized in Table 2. Here, “the internal pressure is −0.1 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 0.1 kPa lower than the outside of the electric furnace.
(実施例10)
上記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−0.5kPaを保ったまま昇温を続けた。その後は実施例8と同じ工程で行った。結果を表2にまとめた。なおここで「内圧が真空ポンプにて−0.5kPaである」とは、電気炉の内圧が電気炉外よりも0.5kPa低いことをいう。
(Example 10)
A 75 μm thick polyimide film B (PI-B) (length 200 mm × width 200 mm) produced by the above method is sandwiched between graphite materials, and heated to 1000 ° C. at a rate of 2 ° C./min using an electric furnace. Was done. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously increased while the internal pressure was kept at -0.5 kPa with a vacuum pump. Thereafter, the same process as in Example 8 was performed. The results are summarized in Table 2. Here, “the internal pressure is −0.5 kPa by a vacuum pump” means that the internal pressure of the electric furnace is 0.5 kPa lower than the outside of the electric furnace.
(実施例11)
上記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−1kPaを保ったまま昇温を続けた。その後は実施例8と同じ工程で行った。結果を表2にまとめた。なおここで「内圧が真空ポンプにて−1kPaである」とは、電気炉の内圧が電気炉外よりも1kPa低いことをいう。
(Example 11)
A 75 μm thick polyimide film B (PI-B) (length 200 mm × width 200 mm) produced by the above method is sandwiched between graphite materials, and heated to 1000 ° C. at a rate of 2 ° C./min using an electric furnace. Was done. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously increased while maintaining the internal pressure at -1 kPa with a vacuum pump. Thereafter, the same process as in Example 8 was performed. The results are summarized in Table 2. Here, “the internal pressure is −1 kPa by a vacuum pump” means that the internal pressure of the electric furnace is 1 kPa lower than the outside of the electric furnace.
(実施例12)
上記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−10kPaを保ったまま昇温を続けた。その後は実施例8と同じ工程で行った。結果を表2にまとめた。なおここで「内圧が真空ポンプにて−10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
(Example 12)
A 75 μm thick polyimide film B (PI-B) (length 200 mm × width 200 mm) produced by the above method is sandwiched between graphite materials, and heated to 1000 ° C. at a rate of 2 ° C./min using an electric furnace. Was done. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously increased while maintaining the internal pressure at -10 kPa with a vacuum pump. Thereafter, the same process as in Example 8 was performed. The results are summarized in Table 2. Here, “the internal pressure is −10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
(実施例13)
上記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素を流さずに行ない、内圧は真空ポンプにて−10kPaを保ったまま昇温を続けた。その後は実施例8と同じ工程で行った。結果を表2にまとめた。なおここで「内圧が真空ポンプにて−10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
(Example 13)
A 75 μm thick polyimide film B (PI-B) (length 200 mm × width 200 mm) produced by the above method is sandwiched between graphite materials, and heated to 1000 ° C. at a rate of 2 ° C./min using an electric furnace. Was done. The carbonization was performed without flowing nitrogen, and the temperature was continuously raised while the internal pressure was kept at -10 kPa by a vacuum pump. Thereafter, the same process as in Example 8 was performed. The results are summarized in Table 2. Here, “the internal pressure is −10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
(実施例14)
上記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素を流さずに行ない、内圧は真空ポンプにて−80kPaを保ったまま昇温を続けた。その後は実施例8と同じ工程で行った。結果を表2にまとめた。なおここで「内圧が真空ポンプにて−80kPaである」とは、電気炉の内圧が電気炉外よりも80kPa低いことをいう。
(Example 14)
A 75 μm thick polyimide film B (PI-B) (length 200 mm × width 200 mm) produced by the above method is sandwiched between graphite materials, and heated to 1000 ° C. at a rate of 2 ° C./min using an electric furnace. Was done. The carbonization treatment was performed without flowing nitrogen, and the temperature was continuously raised while maintaining the internal pressure at −80 kPa with a vacuum pump. Thereafter, the same process as in Example 8 was performed. The results are summarized in Table 2. Here, “the internal pressure is −80 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 80 kPa lower than the outside of the electric furnace.
75μmのポリイミドフィルムを炭化処理した場合は、50μmの時に比べて炭化フィルム上の異物および傷が発生しやすい事が分かった。これはポリイミドフィルムの厚みが厚くなるほど、分解ガスの発生が多くなる為であると考えられる。減圧下で炭化処理を行なうと、炭化フィルムの表面傷を減らす事は可能だが、完全に無くすことは出来なかった。また、50μmの時と同様に窒素気流中での処理を行なうと炉内の汚れが減少する事が分かった。 It was found that when a 75 μm polyimide film was carbonized, foreign matter and scratches on the carbonized film were more likely to occur than when it was 50 μm. This is considered to be because the generation of decomposition gas increases as the thickness of the polyimide film increases. When carbonization is performed under reduced pressure, it is possible to reduce surface scratches on the carbonized film, but it cannot be completely eliminated. Further, it was found that if the treatment was performed in a nitrogen stream as in the case of 50 μm, the contamination in the furnace was reduced.
(実施例15)
上記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量5L/min)で行ない、内圧は真空ポンプにて−10kPaを保ったまま昇温を続けた。その後は実施例8と同じ工程で行った。結果を表2にまとめた。なおここで「内圧が真空ポンプにて−10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
(Example 15)
A 75 μm thick polyimide film B (PI-B) (length 200 mm × width 200 mm) produced by the above method is sandwiched between graphite materials, and heated to 1000 ° C. at a rate of 2 ° C./min using an electric furnace. Was done. Carbonization was performed in a nitrogen stream (flow rate: 5 L / min), and the temperature was continuously increased while maintaining the internal pressure at -10 kPa with a vacuum pump. Thereafter, the same process as in Example 8 was performed. The results are summarized in Table 2. Here, “the internal pressure is −10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
窒素流量を増やして減圧下で炭化処理を行なった場合、75μmのポリイミドフィルムでも完全に表面異物および傷を除去する事が出来た。 When the carbonization treatment was performed under reduced pressure by increasing the nitrogen flow rate, the surface foreign matter and scratches could be completely removed even with a 75 μm polyimide film.
(比較例4)
上記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧が±0kPaを保ったまま昇温を続けた。その後は実施例8と同じ工程で行った。結果を表2にまとめた。
(Comparative Example 4)
A polyimide film A (PI-A) of 50 μm thickness prepared by the above method is sandwiched between graphite materials and carbonized by heating to 1000 ° C. at 2 ° C./min using an electric furnace. Was done. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously raised while the internal pressure was maintained at ± 0 kPa. Thereafter, the same process as in Example 8 was performed. The results are summarized in Table 2.
窒素気流中のみの条件では炭化フィルムの表面傷を取り除くことは出来なかった。 The surface flaws of the carbonized film could not be removed only under conditions of nitrogen flow.
(比較例5)
上記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧が+2kPaを保ったまま昇温を続けた。その後は実施例8と同じ工程で行った。結果を表2にまとめた。なおここで「内圧が真空ポンプにて+2kPaである」とは、電気炉の内圧が電気炉外よりも2kPa高いことをいう。
(Comparative Example 5)
A polyimide film A (PI-A) of 50 μm thickness prepared by the above method is sandwiched between graphite materials and carbonized by heating to 1000 ° C. at 2 ° C./min using an electric furnace. Was done. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously increased while maintaining the internal pressure at +2 kPa. Thereafter, the same process as in Example 8 was performed. The results are summarized in Table 2. Here, “the internal pressure is +2 kPa by the vacuum pump” means that the internal pressure of the electric furnace is 2 kPa higher than the outside of the electric furnace.
窒素加圧の条件で炭化処理を行なうと、常圧下での処理に比べ炭化フィルムの表面傷がさらに増えてしまった。また、炉内の汚れも多くなってしまった。 When carbonization was performed under the condition of nitrogen pressurization, the surface damage of the carbonized film was further increased as compared with the treatment under normal pressure. In addition, the amount of dirt in the furnace has increased.
(比較例6)
上記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)を黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素を流さずに行ない、内圧は真空ポンプにて10-1kPaを保ったまま昇温を続けた。その後は実施例8と同じ工程で行った。結果を表2にまとめた。なおここで「内圧が真空ポンプにて10-1kPaである」とは、電気炉の内圧が電気炉外よりも10-1kPa高いことをいう。
(Comparative Example 6)
A polyimide film A (PI-A) of 50 μm thickness prepared by the above method is sandwiched between graphite materials and carbonized by heating to 1000 ° C. at 2 ° C./min using an electric furnace. Was done. The carbonization treatment was performed without flowing nitrogen, and the temperature was continuously raised while maintaining the internal pressure at 10 −1 kPa with a vacuum pump. Thereafter, the same process as in Example 8 was performed. The results are summarized in Table 2. Here, “the internal pressure is 10 −1 kPa by a vacuum pump” means that the internal pressure of the electric furnace is 10 −1 kPa higher than the outside of the electric furnace.
高真空下では比較的傷の少ない炭化フィルムが得られてくるものの、その後の黒鉛化工程では熱拡散率の低いグラファイトフィルムが得られてくることが分かった。また、炉内の汚れも多くなってしまった。 It was found that a carbonized film with relatively few scratches was obtained under high vacuum, but a graphite film with a low thermal diffusivity was obtained in the subsequent graphitization step. In addition, the amount of dirt in the furnace has increased.
(実施例16)
前記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−0.01kPaを保ったまま昇温を続けた。室温まで冷却後、得られた炭化フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で10枚、50枚、75枚、100枚を直接積層したものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表3にまとめた。なおここで「内圧が真空ポンプにて−0.01kPaである」とは、電気炉の内圧が電気炉外よりも0.01kPa低いことをいう。
(Example 16)
A laminate of two 50 μm thick polyimide films A (PI-A) (length 200 mm × width 200 mm) produced directly by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously raised while maintaining the internal pressure at -0.01 kPa with a vacuum pump. After cooling to room temperature, whether or not the obtained carbonized film was fused was evaluated in three stages: ◯: no fusion, Δ: slight fusion, x: overall fusion. Evaluation was also made as to whether or not 10 sheets, 50 sheets, 75 sheets, and 100 sheets were directly laminated in the same process, after being carbonized. The results are summarized in Table 3. Here, “the internal pressure is −0.01 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 0.01 kPa lower than the outside of the electric furnace.
(実施例17)
前記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−0.1kPaを保ったまま昇温を続けた。その後は実施例16と同じ工程で行った。結果を表3にまとめた。なおここで「内圧が真空ポンプにて−0.1kPaである」とは、電気炉の内圧が電気炉外よりも0.1kPa低いことをいう。
(Example 17)
A laminate of two 50 μm thick polyimide films A (PI-A) (length 200 mm × width 200 mm) produced directly by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously raised while maintaining the internal pressure at -0.1 kPa with a vacuum pump. Thereafter, the same process as in Example 16 was performed. The results are summarized in Table 3. Here, “the internal pressure is −0.1 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 0.1 kPa lower than the outside of the electric furnace.
(実施例18)
前記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−0.5kPaを保ったまま昇温を続けた。その後は実施例16と同じ工程で行った。結果を表3にまとめた。なおここで「内圧が真空ポンプにて−0.5kPaである」とは、電気炉の内圧が電気炉外よりも0.5kPa低いことをいう。
(Example 18)
A laminate of two 50 μm thick polyimide films A (PI-A) (length 200 mm × width 200 mm) produced directly by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously increased while the internal pressure was kept at -0.5 kPa with a vacuum pump. Thereafter, the same process as in Example 16 was performed. The results are summarized in Table 3. Here, “the internal pressure is −0.5 kPa by a vacuum pump” means that the internal pressure of the electric furnace is 0.5 kPa lower than the outside of the electric furnace.
(実施例19)
前記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−1kPaを保ったまま昇温を続けた。その後は実施例16と同じ工程で行った。結果を表3にまとめた。なおここで「内圧が真空ポンプにて−1kPaである」とは、電気炉の内圧が電気炉外よりも1kPa低いことをいう。
(Example 19)
A laminate of two 50 μm thick polyimide films A (PI-A) (length 200 mm × width 200 mm) produced directly by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously increased while maintaining the internal pressure at -1 kPa with a vacuum pump. Thereafter, the same process as in Example 16 was performed. The results are summarized in Table 3. Here, “the internal pressure is −1 kPa by a vacuum pump” means that the internal pressure of the electric furnace is 1 kPa lower than the outside of the electric furnace.
(実施例20)
前記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−10kPaを保ったまま昇温を続けた。その後は実施例16と同じ工程で行った。結果を表3にまとめた。なおここで「内圧が真空ポンプにて−10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
(Example 20)
A laminate of two 50 μm thick polyimide films A (PI-A) (length 200 mm × width 200 mm) produced directly by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously increased while maintaining the internal pressure at -10 kPa with a vacuum pump. Thereafter, the same process as in Example 16 was performed. The results are summarized in Table 3. Here, “the internal pressure is −10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
減圧下で窒素を流しながら炭化処理を行なうと、多数枚ポリイミドフィルムを積層した場合においても融着を起こさずに炭化を行なう事が出来た。 When carbonization was performed while flowing nitrogen under reduced pressure, carbonization could be performed without causing fusion even when a large number of polyimide films were laminated.
(実施例21)
前記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素を流さずに行ない、内圧は真空ポンプにて−10kPaを保ったまま昇温を続けた。その後は実施例16と同じ工程で行った。結果を表3にまとめた。なおここで「内圧が真空ポンプにて−10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
(Example 21)
A laminate of two 50 μm thick polyimide films A (PI-A) (length 200 mm × width 200 mm) produced directly by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. The carbonization was performed without flowing nitrogen, and the temperature was continuously raised while the internal pressure was kept at -10 kPa by a vacuum pump. Thereafter, the same process as in Example 16 was performed. The results are summarized in Table 3. Here, “the internal pressure is −10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
(実施例22)
前記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素を流さずに行ない、内圧は真空ポンプにて−80kPaを保ったまま昇温を続けた。その後は実施例16と同じ工程で行った。結果を表3にまとめた。なおここで「内圧が真空ポンプにて−80kPaである」とは、電気炉の内圧が電気炉外よりも80kPa低いことをいう。
(Example 22)
A laminate of two 50 μm thick polyimide films A (PI-A) (length 200 mm × width 200 mm) produced directly by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. The carbonization treatment was performed without flowing nitrogen, and the temperature was continuously raised while maintaining the internal pressure at −80 kPa with a vacuum pump. Thereafter, the same process as in Example 16 was performed. The results are summarized in Table 3. Here, “the internal pressure is −80 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 80 kPa lower than the outside of the electric furnace.
窒素を流さずに減圧雰囲気のみで多数枚積層のポリイミドフィルムを処理した場合においても、融着を起こさずに炭化を行なう事が出来た。しかし、積層枚数が多い場合は窒素を流しながら炭化を行なう事によって、さらに融着を起こさずにポリイミドフィルムを炭化する事が可能となった。 Even when a multi-layered polyimide film was processed only in a reduced-pressure atmosphere without flowing nitrogen, carbonization could be performed without causing fusion. However, when the number of laminated layers is large, the polyimide film can be carbonized without causing further fusion by performing carbonization while flowing nitrogen.
(実施例23)
前記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量5L/min)で行ない、内圧は真空ポンプにて−10kPaを保ったまま昇温を続けた。その後は実施例16と同じ工程で行った。結果を表3にまとめた。なおここで「内圧が真空ポンプにて−10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
(Example 23)
A laminate of two 50 μm thick polyimide films A (PI-A) (length 200 mm × width 200 mm) produced directly by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. Carbonization was performed in a nitrogen stream (flow rate: 5 L / min), and the temperature was continuously increased while maintaining the internal pressure at -10 kPa with a vacuum pump. Thereafter, the same process as in Example 16 was performed. The results are summarized in Table 3. Here, “the internal pressure is −10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
窒素の流量を増やした場合、さらに融着を防止する事が出来た。 When the flow rate of nitrogen was increased, fusion could be further prevented.
(比較例7)
前記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧が±0kPaを保ったまま昇温を続けた。その後は実施例16と同じ工程で行った。結果を表3にまとめた。
(Comparative Example 7)
A laminate of two 50 μm thick polyimide films A (PI-A) (length 200 mm × width 200 mm) produced directly by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously raised while the internal pressure was maintained at ± 0 kPa. Thereafter, the same process as in Example 16 was performed. The results are summarized in Table 3.
(比較例8)
前記方法によって作製した厚さ50μmのポリイミドフィルムA(PI−A)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧が+2kPaを保ったまま昇温を続けた。その後は実施例16と同じ工程で行った。結果を表3にまとめた。なおここで「内圧が真空ポンプにて+2kPaである」とは、電気炉の内圧が電気炉外よりも2kPa高いことをいう。
(Comparative Example 8)
A laminate of two 50 μm thick polyimide films A (PI-A) (length 200 mm × width 200 mm) produced directly by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously increased while maintaining the internal pressure at +2 kPa. Thereafter, the same process as in Example 16 was performed. The results are summarized in Table 3. Here, “the internal pressure is +2 kPa by the vacuum pump” means that the internal pressure of the electric furnace is 2 kPa higher than the outside of the electric furnace.
内圧が常圧および加圧の場合はフィルム同士が融着を起こしてしまった。 When the internal pressure was normal pressure and pressurization, the films were fused.
(実施例24)
前記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−0.01kPaを保ったまま昇温を続けた。室温まで冷却後、得られた炭化フィルムが融着しているかどうかを、○:融着なし、△:わずかに融着、×:全面的に融着の3段階で評価を行なった。同様の工程で10枚、50枚、75枚、100枚を直接積層したものに関しても、炭化処理後に融着しているかどうかの評価を行なった。その結果を表4にまとめた。なおここで「内圧が真空ポンプにて−0.01kPaである」とは、電気炉の内圧が電気炉外よりも0.01kPa低いことをいう。
(Example 24)
A laminate of two 75 μm-thick polyimide films B (PI-B) (length 200 mm × width 200 mm) directly produced by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously raised while maintaining the internal pressure at -0.01 kPa with a vacuum pump. After cooling to room temperature, whether or not the obtained carbonized film was fused was evaluated in three stages: ◯: no fusion, Δ: slight fusion, x: overall fusion. Evaluation was also made as to whether or not 10 sheets, 50 sheets, 75 sheets, and 100 sheets were directly laminated in the same process, after being carbonized. The results are summarized in Table 4. Here, “the internal pressure is −0.01 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 0.01 kPa lower than the outside of the electric furnace.
(実施例25)
前記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−0.1kPaを保ったまま昇温を続けた。その後は実施例24と同じ工程で行った。結果を表4にまとめた。なおここで「内圧が真空ポンプにて−0.1kPaである」とは、電気炉の内圧が電気炉外よりも0.1kPa低いことをいう。
(Example 25)
A laminate of two 75 μm-thick polyimide films B (PI-B) (length 200 mm × width 200 mm) directly produced by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously raised while maintaining the internal pressure at -0.1 kPa with a vacuum pump. Thereafter, the same process as in Example 24 was performed. The results are summarized in Table 4. Here, “the internal pressure is −0.1 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 0.1 kPa lower than the outside of the electric furnace.
(実施例26)
前記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−0.5kPaを保ったまま昇温を続けた。その後は実施例24と同じ工程で行った。結果を表4にまとめた。なおここで「内圧が真空ポンプにて−0.5kPaである」とは、電気炉の内圧が電気炉外よりも0.5kPa低いことをいう。
(Example 26)
A laminate of two 75 μm-thick polyimide films B (PI-B) (length 200 mm × width 200 mm) directly produced by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously increased while the internal pressure was kept at -0.5 kPa with a vacuum pump. Thereafter, the same process as in Example 24 was performed. The results are summarized in Table 4. Here, “the internal pressure is −0.5 kPa by a vacuum pump” means that the internal pressure of the electric furnace is 0.5 kPa lower than the outside of the electric furnace.
(実施例27)
前記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−1kPaを保ったまま昇温を続けた。その後は実施例24と同じ工程で行った。結果を表4にまとめた。なおここで「内圧が真空ポンプにて−1kPaである」とは、電気炉の内圧が電気炉外よりも1kPa低いことをいう。
(Example 27)
A laminate of two 75 μm-thick polyimide films B (PI-B) (length 200 mm × width 200 mm) directly produced by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously increased while maintaining the internal pressure at -1 kPa with a vacuum pump. Thereafter, the same process as in Example 24 was performed. The results are summarized in Table 4. Here, “the internal pressure is −1 kPa by a vacuum pump” means that the internal pressure of the electric furnace is 1 kPa lower than the outside of the electric furnace.
(実施例28)
前記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧は真空ポンプにて−10kPaを保ったまま昇温を続けた。その後は実施例24と同じ工程で行った。結果を表4にまとめた。なおここで「内圧が真空ポンプにて−10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
(Example 28)
A laminate of two 75 μm-thick polyimide films B (PI-B) (length 200 mm × width 200 mm) directly produced by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously increased while maintaining the internal pressure at -10 kPa with a vacuum pump. Thereafter, the same process as in Example 24 was performed. The results are summarized in Table 4. Here, “the internal pressure is −10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
(実施例29)
前記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素を流さずに行ない、内圧は真空ポンプにて−10kPaを保ったまま昇温を続けた。その後は実施例24と同じ工程で行った。結果を表4にまとめた。なおここで「内圧が真空ポンプにて−10kPaである」とは、電気炉の内圧が電気炉外よりも10kPa低いことをいう。
(Example 29)
A laminate of two 75 μm-thick polyimide films B (PI-B) (length 200 mm × width 200 mm) directly produced by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. The carbonization was performed without flowing nitrogen, and the temperature was continuously raised while the internal pressure was kept at -10 kPa by a vacuum pump. Thereafter, the same process as in Example 24 was performed. The results are summarized in Table 4. Here, “the internal pressure is −10 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 10 kPa lower than the outside of the electric furnace.
(実施例30)
前記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素を流さずに行ない、内圧は真空ポンプにて−80kPaを保ったまま昇温を続けたその後は実施例24と同じ工程で行った。結果を表4にまとめた。なおここで「内圧が真空ポンプにて−80kPaである」とは、電気炉の内圧が電気炉外よりも80kPa低いことをいう。
(Example 30)
A laminate of two 75 μm-thick polyimide films B (PI-B) (length 200 mm × width 200 mm) directly produced by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. The carbonization treatment was performed without flowing nitrogen, and the temperature was continuously increased while maintaining the internal pressure at −80 kPa with a vacuum pump. The results are summarized in Table 4. Here, “the internal pressure is −80 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 80 kPa lower than the outside of the electric furnace.
75μmのポリイミドフィルムを炭化処理した場合は、50μmの時に比べて融着が起こりやすい事が分かった。これはポリイミドフィルムの厚みが厚くなるほど、分解ガスの発生が多くなる為であると考えられる。窒素を流しながら減圧下で炭化処理を行なうと融着を更に抑制する事が出来た。 It was found that when a 75 μm polyimide film was carbonized, fusion was more likely to occur than when it was 50 μm. This is considered to be because the generation of decomposition gas increases as the thickness of the polyimide film increases. When carbonization was performed under reduced pressure while flowing nitrogen, the fusion could be further suppressed.
(実施例31)
前記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量5L/min)で行ない、内圧は真空ポンプにて−80kPaを保ったまま昇温を続けた。その後は実施例24と同じ工程で行った。結果を表4にまとめた。なおここで「内圧が真空ポンプにて−80kPaである」とは、電気炉の内圧が電気炉外よりも80kPa低いことをいう。
(Example 31)
A laminate of two 75 μm-thick polyimide films B (PI-B) (length 200 mm × width 200 mm) directly produced by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. Carbonization was performed in a nitrogen stream (flow rate 5 L / min), and the temperature was continuously increased while the internal pressure was kept at −80 kPa with a vacuum pump. Thereafter, the same process as in Example 24 was performed. The results are summarized in Table 4. Here, “the internal pressure is −80 kPa with a vacuum pump” means that the internal pressure of the electric furnace is 80 kPa lower than the outside of the electric furnace.
窒素の流量を増やした場合、さらに融着を防止する事が出来た。 When the flow rate of nitrogen was increased, fusion could be further prevented.
(比較例9)
前記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧が±0kPaを保ったまま昇温を続けた。その後は実施例24と同じ工程で行った。結果を表4にまとめた。
(Comparative Example 9)
A laminate of two 75 μm-thick polyimide films B (PI-B) (length 200 mm × width 200 mm) directly produced by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously raised while the internal pressure was maintained at ± 0 kPa. Thereafter, the same process as in Example 24 was performed. The results are summarized in Table 4.
(比較例10)
前記方法によって作製した厚さ75μmのポリイミドフィルムB(PI−B)(縦200mm×横200mm)2枚を直接に積層したものを黒鉛材に挟み、電気炉を用いて、1000℃まで2℃/minで昇温して炭化処理を行なった。炭化処理は窒素気流中(流量1L/min)で行ない、内圧が+2kPaを保ったまま昇温を続けた。その後は実施例24と同じ工程で行った。結果を表4にまとめた。なおここで「内圧が真空ポンプにて+2kPaである」とは、電気炉の内圧が電気炉外よりも2kPa高いことをいう。
(Comparative Example 10)
A laminate of two 75 μm-thick polyimide films B (PI-B) (length 200 mm × width 200 mm) directly produced by the above method was sandwiched between graphite materials, and an electric furnace was used up to 2 ° C./1000° C. The temperature was raised in min and carbonization was performed. Carbonization was performed in a nitrogen stream (flow rate: 1 L / min), and the temperature was continuously increased while maintaining the internal pressure at +2 kPa. Thereafter, the same process as in Example 24 was performed. The results are summarized in Table 4. Here, “the internal pressure is +2 kPa by the vacuum pump” means that the internal pressure of the electric furnace is 2 kPa higher than the outside of the electric furnace.
内圧が常圧および加圧の場合はフィルム同士が融着を起こしてしまった。 When the internal pressure was normal pressure and pressurization, the films were fused.
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。 It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
10 黒鉛製板
20 ポリイミドフィルム
10
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013064281A JP5658782B2 (en) | 2013-03-26 | 2013-03-26 | Method for producing carbonaceous film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013064281A JP5658782B2 (en) | 2013-03-26 | 2013-03-26 | Method for producing carbonaceous film |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008230370A Division JP5236402B2 (en) | 2008-09-09 | 2008-09-09 | Method for producing carbonaceous film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013126949A JP2013126949A (en) | 2013-06-27 |
JP5658782B2 true JP5658782B2 (en) | 2015-01-28 |
Family
ID=48777702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013064281A Active JP5658782B2 (en) | 2013-03-26 | 2013-03-26 | Method for producing carbonaceous film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5658782B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6660308B2 (en) * | 2015-01-09 | 2020-03-11 | 株式会社カネカ | gasket |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005023713A1 (en) * | 2003-09-02 | 2005-03-17 | Kaneka Corporation | Filmy graphite and process for producing the same |
JP4963616B2 (en) * | 2006-03-23 | 2012-06-27 | Jx日鉱日石エネルギー株式会社 | Adsorbent for removing trace components in hydrocarbon oil and method for producing the same |
JP5438882B2 (en) * | 2006-09-15 | 2014-03-12 | 株式会社カネカ | Graphite film with excellent folding characteristics |
-
2013
- 2013-03-26 JP JP2013064281A patent/JP5658782B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013126949A (en) | 2013-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5586469B2 (en) | Method for producing carbonaceous film and method for producing graphite film | |
WO2015064519A1 (en) | Graphite laminate | |
JP6121168B2 (en) | Polyimide film and method for producing the same | |
TWI757416B (en) | Graphite sheet material with high performance and method for preparing the same and electronic device | |
WO2012026408A1 (en) | Graphite film and process for producing graphite film | |
WO2006129632A1 (en) | Process for producing graphite film and graphite film produced thereby | |
WO2014046187A1 (en) | Method for manufacturing carbonaceous film and method for manufacturing graphite film | |
JP6979535B2 (en) | Polyimide film for roll type graphite sheet | |
JP2009280433A (en) | Graphite composite film | |
JP2017114098A (en) | Laminated film | |
US20230111677A1 (en) | Production method for graphite sheet, and polyimide film for graphite sheet | |
TW201936377A (en) | Long laminate, method for producing same, and printed wiring board | |
JP2011105531A (en) | Graphite film and graphite composite film | |
US20230128003A1 (en) | Production method for graphite sheet, and polyimide film for graphite sheet | |
JP2004299937A (en) | Method of producing graphite film | |
JP2014156387A (en) | Method for producing graphite film and graphite composite film | |
US11945912B2 (en) | Polyimide film comprising omnidirectional polymer chain, method for manufacturing same, and graphite sheet manufactured using same | |
JP5658782B2 (en) | Method for producing carbonaceous film | |
TWI796501B (en) | Membrane composite and method for producing the same | |
JP2009203153A (en) | Method for production of carbonaceous film | |
JP4684354B2 (en) | Filmy graphite | |
JP5236402B2 (en) | Method for producing carbonaceous film | |
WO2014013711A1 (en) | Graphite composite material | |
JP5434163B2 (en) | Method for producing graphite sheet | |
JP2007177024A (en) | Aromatic polyimide film and method for producing the same, and graphite sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130328 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130328 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140715 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141128 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5658782 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |