Nothing Special   »   [go: up one dir, main page]

JP5648289B2 - スパッタリング装置および半導体発光素子の製造方法 - Google Patents

スパッタリング装置および半導体発光素子の製造方法 Download PDF

Info

Publication number
JP5648289B2
JP5648289B2 JP2010006306A JP2010006306A JP5648289B2 JP 5648289 B2 JP5648289 B2 JP 5648289B2 JP 2010006306 A JP2010006306 A JP 2010006306A JP 2010006306 A JP2010006306 A JP 2010006306A JP 5648289 B2 JP5648289 B2 JP 5648289B2
Authority
JP
Japan
Prior art keywords
substrate
sapphire substrate
target
group iii
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010006306A
Other languages
English (en)
Other versions
JP2011144422A (ja
Inventor
三木 久幸
久幸 三木
健三 塙
健三 塙
泰典 横山
泰典 横山
保正 佐々木
保正 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2010006306A priority Critical patent/JP5648289B2/ja
Priority to US12/987,828 priority patent/US8882971B2/en
Publication of JP2011144422A publication Critical patent/JP2011144422A/ja
Application granted granted Critical
Publication of JP5648289B2 publication Critical patent/JP5648289B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0647Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

本発明は、スパッタリング装置およびそれを用いた半導体発光素子の製造方法に関する。
近年、半導体発光素子の進展が目覚しい。特に、短波長光用の半導体材料として、窒化ガリウム(GaN)などのIII族窒化物化合物半導体が注目を集めている。III族窒化物化合物半導体は、サファイア単結晶を始めとして、種々の酸化物やIII−V族化合物を基板として、その上に成長される。
このような化合物半導体の成長は、一般に有機金属気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法、分子線結晶成長(MBE:Molecular Beam Epitaxy)法、ハイドライド系気相成長(HVPE:Hydride Vapor Phase Epitaxy)法などの方法によって行われる。
これに対し、化合物半導体の成長に、運動エネルギを持った粒子(原子、分子)などを基板に衝突させる方法であるスパッタリング(スパッタ)法も用いられるようになってきた。
特許文献1には、基板上に、少なくともIII族窒化物化合物からなる中間層を積層し、該中間層上に、下地層を備えるn型半導体層、発光層、及びp型半導体層を順次積層するIII族窒化物化合物半導体発光素子の製造方法であって、前記基板に対してプラズマ処理を行う前処理工程と、該前処理工程に次いで、前記基板上に前記中間層をスパッタ法によって成膜するスパッタ工程とが備えられたIII族窒化物化合物半導体発光素子の製造方法が記載されている。
特開2008−109084号公報
ところで、一般に、スパッタリング法により化合物半導体を成膜する際に、結晶性に優れた化合物半導体膜を形成しようとすると、基板の温度を例えば600℃以上の高い温度に設定することが好ましい。これは、基板上に付着した化合物半導体を構成する粒子を、熱運動により結晶の格子位置にマイグレーションさせることにより、化合物半導体の結晶性を高めるためである。
しかし、例えば、基板にサファイアを用い、基板の加熱にハロゲンランプ等の赤外線ランプを用いると、赤外線ランプの放射する近赤外線(0.7μm〜2.5μm)は、サファイアにおいて透過率が高いため、基板を効率よく加熱しづらかった。
本発明は、基板を加熱する効率を向上させたスパッタリング装置およびそのスパッタリング装置による半導体発光素子の製造方法を提供することを目的とする。
かかる目的のもと、本発明が適用されるスパッタリング装置は、チャンバ内の下部に設置されたターゲットと、チャンバ内の上部に設置され、一方の表面がターゲットと対向するように配置されたサファイア基板と、チャンバ内においてサファイア基板の上方に設置され、4μm以上の波長を含む電磁波を放射し、サファイア基板を他方の表面側から加熱する加熱部材とを備え、サファイア基板は、サファイア基板を一方の表面の端部で保持するようにサファイア基板の形状に対応して切り抜かれた開口を有する基板ホルダにおいて、開口に嵌め込まれて保持され、電磁波がサファイア基板の他方の表面の全面にわたって照射されるとともに、加熱部材は、基板ホルダを保持する基板ホルダ保持部内に収納されている
このようなスパッタリング装置において、ターゲットは、III族元素、III族元素を含む混合物またはIII族元素を含む化合物であって、ターゲットとサファイア基板との間に窒素を含む雰囲気中に形成されたプラズマ放電により、サファイア基板上にIII族窒化物層を形成することを特徴とすることができる。
また、加熱部材は、熱分解窒化ホウ素(PBN)で覆われた炭素であることを特徴とすることができる。
他の観点から捉えると、本発明が適用される半導体発光素子の製造方法は、チャンバ内の下部に設置されたIII族元素、III族元素を含む混合物またはIII族元素を含む化合物のターゲットと、チャンバの上部に設置され、一方の表面がターゲットと対向するように配置されたサファイア基板と、サファイア基板の上方に設置された加熱部材とを備え、サファイア基板が、サファイア基板を一方の表面の端部で保持するようにサファイア基板の形状に対応して切り抜かれた開口を有する基板ホルダにおいて、開口に嵌め込まれて保持されるとともに、加熱部材は、基板ホルダを保持する基板ホルダ保持部内に収納されているスパッタリング装置において、加熱部材から放射される4μm以上の波長を含む電磁波をサファイア基板の他方の表面の全面に照射してサファイア基板を加熱する基板加熱工程と、ターゲットとサファイア基板との間に窒素を含む雰囲気において形成されたプラズマにより、サファイア基板上にIII族窒化物層を形成する工程とを含む。
このような半導体発光素子の製造方法において、加熱部材は、熱分解窒化ホウ素(PBN)で覆われた炭素であることを特徴とすることができる。
本発明によれば、基板を加熱する効率を向上させたスパッタリング装置およびそのスパッタリング装置による半導体発光素子の製造方法が提供できる。
本実施の形態が適用されるスパッタリング装置の一例の断面構成を示す図である。 本実施の形態に適用されるヒータの表面形状の一例を示す図である。 サファイアの電磁波に対する透過率、PBNヒータおよびハロゲンランプの電磁波の放射強度の波長依存性を示す図である。 本実施の形態が適用されるスパッタリング装置を用いて製造される半導体発光素子の断面構造の一例を示す図である。 図4に示す半導体発光素子を平面視したときの図である。 基板上にIII族窒化物化合物半導体層を形成する方法を説明するためのフローチャートである。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
(スパッタリング装置1)
図1は本実施の形態が適用されるスパッタリング(スパッタ)装置1の一例の断面構成を示す図である。
スパッタリング装置1は、内部が減圧状態に維持されてプラズマ放電20が形成されるチャンバ10と、チャンバ10内に設置され、基板110上に形成される膜の原料を供給するターゲット21を保持するカソード22と、基板110を保持し基板110の一表面がターゲット21の表面に対向するように基板110を保持する基板ホルダ60とを備えている。基板ホルダ60は、基板ホルダ保持部61に保持されている。
このスパッタリング装置1のように、基板110の表面とターゲット21の表面とが対向して配置する構成を平行平板型と呼ぶ。
そして、基板110は、図1において、スパッタリング装置1の上方に基板110の表面を下方に向けて配置されている。一方、ターゲット21は、同じく図1において、スパッタリング装置1の下方にターゲット21の表面を上方に向けて配置されている。すなわち、下方のターゲット21の表面から上方に飛び出した(スパッタされた)粒子が、上方に配置された基板110の表面に飛来する、いわゆるスパッタアップの構成となっている。
このスパッタアップの構成は、チャンバ10の側壁等に堆積した膜が剥離し、パーティクル(微粒子)となって、基板110上に付着し、歩留まりが低下することを抑制できる。
チャンバ10は、円筒状の形状を有し上方に向かう開口が形成されるとともにその内部にターゲット21を収容する収容部11と、円板状の形状を有しこの収容部11の上部に取り付けられ、基板ホルダ保持部61を保持する蓋部12とを備える。
ここで、収容部11および蓋部12は、ステンレス等の金属にて構成されている。また、蓋部12は、収容部11に対して開閉自在に取り付けられており、収容部11に対して閉じられた場合には、収容部11とともにチャンバ10を形成する。なお収容部11と蓋部12とが対向する部位には、図示しないOリング等のシール材が取り付けられている。
なお、収容部11および蓋部12は接地されて、電位の基準となっている。
また、蓋部12の中央部には、基板ホルダ保持部61の回転軸62を貫通させるための貫通孔が形成されている。基板ホルダ保持部61は、この回転軸62を中心に回転する構成であってもよい。なお、基板ホルダ保持部61とともに基板ホルダ60を回転させると、基板110に形成される膜の膜厚均一性が向上することがある。
そして、基板ホルダ保持部61を回転させる場合には、この貫通孔と回転軸62との間に、外気の流入なく回転自在に基板ホルダ60を保持するためのOリング等による図示しない軸シールが設けられている。
一方、収容部11の側面には、外部に設けられたガス供給部70からチャンバ10内部にガスを供給するための供給管13が貫通形成されている。
さらに、収容部11の底面には、チャンバ10を排気するため、排気管14が貫通形成されている。
そして、収容部11の底面には、カソード22に電力を供給するための貫通孔が設けられている。ターゲット21はカソード22に密着するように固定されている。また、カソード22と収容部11とは、電気的に絶縁されるとともに、減圧状態が維持できるようOリング等によるシール材を介して固定されている。
さらにまた、収容部11の側面には、外部からチャンバ10の内部を観察するための貫通孔(図示せず)も形成されている。
スパッタリング装置1は、高周波電力がターゲット21に効率よく供給されるように、コイルおよび可変コンデンサからなる第1インピーダンスマッチング回路を備えた第1マッチングボックス51を備えている。そして、第1インピーダンスマッチング回路の出力端子はカソード22に接続され、第1インピーダンスマッチング回路の入力端子は、電力を供給する第1電源に接続されている。
なお、直流(DC)スパッタリングの場合には、第1マッチングボックス51を設けず、または第1マッチングボックス51を迂回して、直流電力を直接カソード22に供給するようにすればよい。
また、ターゲット21の近傍に磁界を発生させることにより電子をマグネトロン運動させて高密度なプラズマ放電20を形成するマグネトロンスパッタリング方式の場合には、カソード22に永久磁石(マグネット)等からなるマグネトロンスパッタリング用のモジュールが設けられていてもよい。
さらに、スパッタリング装置1は、逆スパッタリング(逆スパッタ)を可能にするため、コイルおよび可変コンデンサからなる第2インピーダンスマッチング回路を備えた第2マッチングボックス52を備えている。第2インピーダンスマッチング回路の出力端子は基板ホルダ保持部61に接続されている。そして、第2インピーダンスマッチング回路の入力端子は、電力を供給する第2電源に接続されている。逆スパッタリングは、基板110の表面をプラズマ放電20に曝すことにより、基板110表面上に付着した有機物や酸化物を除去する。
逆スパッタリングを直流で行う場合には、第2インピーダンスマッチング回路を介さず、直流電力を直接基板ホルダ60に供給するようにすればよい。
前述したように、スパッタリング装置1の収容部11および蓋部12は接地されている。よって、収容部11および蓋部12と第1電源91または第2電源92との間に、高周波または直流の電圧が印加されることになる。
スパッタリング装置1の基板ホルダ60は、図1に示すように、基板110の周囲の端部で基板110が保持されるように、基板110の形状に対応して切り抜かれた開口を有している。そして、基板ホルダ60への基板110の着脱は、蓋部12を図1における上側に開放して、手作業によって行ってもよく、蓋部12を開放することなく、チャンバ10に隣接して設けたロードロック室内のロボットアーム(図示せず)によって行ってもよい。なお、チャンバ10内が外気およびチャンバ10外から飛来するパーティクル等で汚染されることを抑制するとともに、排気のための時間を短縮できることから、ロボットアームによる方法が好ましい。
さらにまた、スパッタリング装置1は、基板110を加熱するための加熱部材の一例としてのヒータ65を備えている。そして、ヒータ65に電力を供給し、基板110の温度を制御する基板加熱部64を備えている。本実施の形態では、ヒータ65は、基板110裏面の近傍に、基板110に接触することなく、基板110に対向して配置されている。
ヒータ65は、例えば炭素(カーボン)から構成された抵抗体66が熱分解窒化ホウ素(PBN:Pyrilytic Boron Nitride)で覆われて構成されている(後述する図2参照)。炭素は、例えばグラファイト(黒鉛)である。ヒータ65は、基板加熱部64から抵抗体66に電流が供給されることにより加熱される。そして、基板110は、ヒータ65から放射される電磁波を吸収して、温度が上昇する。ヒータ65の抵抗体66については、後に詳述する。
そして、スパッタリング装置1は、供給管13からガスをチャンバ10に供給するガス供給部70を備えている。本実施の形態では、ガス供給部70は、Ar源71から供給されるアルゴンと、N源72から供給される窒素との混合ガスを供給するようになっている。なお、アルゴンは不活性ガスであるため、ターゲット21の材料とは化合物を生成しないが、窒素はターゲット21の材料と反応して窒化物を生成する。
なお、ターゲット21に金属を用い、スパッタリングにより発生した金属と、プラズマにより発生した窒素のイオンやラジカル種との反応により、窒化物等の化合物を生成させる方法は、反応性スパッタリング(リアクティブスパッタリング)と呼ばれる。
そして、スパッタリング装置1は、ターボ分子ポンプ、クライオポンプ、オイル拡散ポンプなどの真空ポンプを有する排気部80を備え、排気管14を介してチャンバ10の排気を行うことができるようになっている。
そして、スパッタリング装置1は、上述した第1マッチングボックス51、第2マッチングボックス52、基板加熱部64、ガス供給部70、排気部80、第1電源91、第2電源92の動作を制御する制御部95を備えている。
なお、排気部80の排気速度の制御やガス供給部70のガス供給量の制御などにより、チャンバ10内は予め定められたガス圧に設定されるようになっている。
また、図示しないが、スパッタリング装置1は、ターゲット21の表面を覆う位置と覆わない位置とに移動できるように設けられたシャッタを備えてもよい。シャッタがターゲット21の表面を覆う位置にあるとき(シャッタ閉)は、ターゲット21から飛び出した(スパッタされた)粒子が基板110表面に飛来するのを抑制する。一方、シャッタがターゲット21の表面を覆わない位置にあるとき(シャッタ開)は、ターゲット21から飛び出した(スパッタされた)粒子が基板110表面に飛来し、膜が成長する。すなわち、シャッタは膜の基板110上での成長の開始および終了を設定することができる。
さらにまた、スパッタリング装置1は、ターゲット21を加熱または冷却する機構を備えていてもよい。
なお、本実施の形態が適用されるスパッタリング装置1として、ターゲット21を1個設けたシングルターゲットとしたが、2個以上のターゲット21を備えたマルチターゲットとしてもよい。さらに、膜形成時において、ターゲット21と基板110とを、相対的に移動させてもよい。
また、スパッタリング装置1は、平行平板型としたが、多角形筒型の基板ホルダとそれに対向するターゲットを用い、多角形筒型の基板ホルダを筒の中心軸を回転軸として回転させながら膜形成を行うカルーセル型であってもよい。
(ヒータ65)
ここで、ヒータ65について詳細に説明する。
図2は、本実施の形態に適用されるヒータ65の一例を示す図である。ヒータ65は円盤状であって、2枚の円盤状のPBNのディスクと、これらの2枚の円盤状のPBNのディスクに挟まれ、一方のディスクの内側の表面上に印刷法などで形成された厚さ10μm〜20μmの炭素(カーボン)の抵抗体66とから構成されている。図2(a)は、抵抗体66が渦巻き状に構成されたヒータ65を示している。端子AとBとがヒータ65の中央部(端子A)と端部(端子B)とから取り出されている。図2(b)は、図の右側と左側とにおいて、抵抗体66が中央部から折り返されながら周辺部に至るように構成されたヒータ65を示している。端子AとBとが共にヒータ65の中央部から取り出されている。すなわち、いずれのヒータ65も、抵抗体66をPBNが覆うように構成されている。
そして、端子Aと端子Bとの間に電流を流す(通電する)ことにより抵抗体66がジュール熱により発熱する。
なお、ヒータ65の抵抗体66の形状は、基板110を均一に加熱することができればよく、図2(a)および(b)に示したものに限らない。
以下では、このヒータ65をPBNヒータと略することがある。
例えば、図2(b)に示した、抵抗体66が中央部から折り返されながら周辺部に至るように構成されたヒータ65は、外径が6インチであって、端子Aと端子Bとの間に50Vで12Aの電流を流すと約600℃に加熱されるものであってもよい。このときの端子Aと端子Bとの間の抵抗値は約4.2Ωである。なお、ヒータ65の外径および抵抗値は予め定められた仕様に合わせて選択しうる。
図3は、サファイアの電磁波に対する透過率(サファイアの透過率)、PBNヒータおよびハロゲンランプが発する電磁波の放射強度(PBNヒータの放射強度およびハロゲンランプの放射強度)の波長依存性を示す図である。ここで、サファイアは、後述するように、本実施の形態において、基板110として用いられる。そして、PBNヒータは、本実施の形態において、ヒータ65として用いられている。そして、ハロゲンランプは、スパッタリング装置1等において、基板110の加熱ランプとして、広く用いられている。
図3の左側の縦軸は、サファイアの電磁波に対する透過率(サファイアの透過率)を%で示している。右側の縦軸は、PBNヒータおよびハロゲンランプが発する電磁波の放射強度(PBNヒータの放射強度およびハロゲンランプの放射強度)を任意単位(a.u.)で示している。
なお、ここでは、波長0.7μm〜2.5μmの電磁波を近赤外線、2.5μm〜4μmの電磁波を中赤外線、4μm〜1000μmの電磁波を遠赤外線と呼ぶ。
サファイアは、可視光域から4μmまで波長の電磁波を高い透過率で透過する。そして、4μm付近の波長から、電磁波はサファイアを透過しづらくなり、吸収されるようになる。よって、サファイアは、波長が4μm以上の遠赤外線領域の電磁波が照射されると、これらの電磁波を吸収して加熱されることになる。
図3に示すPBNヒータの放射強度は、600℃に加熱したときの電磁波の放射強度である。このPBNヒータは、3μm付近をピークとした電磁波を放射する。そして、4μm以上の遠赤外線領域でも、高い放射強度を有している。なお、PBNヒータにおける遠赤外線領域での放射強度は、PBNヒータの温度が高いほど大きくなる。
一方、ハロゲンランプは、1μm付近をピークとした電磁波を放射する。そして、2μm以上では、急激に放射強度が低下する。
以上の説明したように、PBNヒータは、4μm以上の遠赤外線領域の電磁波を放射する割合が高い。そして、4μm以上の遠赤外線領域の電磁波をサファイアに吸収させることで、サファイアを効率よく加熱することができる。
一方、ハロゲンランプは、4μm以上の遠赤外線領域の電磁波の放射の割合が低い。すなわち、4μm以上の遠赤外線領域の電磁波を吸収させることによるサファイアの加熱には向かない。よって、サファイア製の基板110の裏面に別の部材を接触させて置き、この部材を加熱して、熱伝導によりサファイア製の基板110を加熱するという、間接加熱の方法を取らざるを得ない。しかし、サファイア製の基板110とその裏面に置かれた部材との接触は必ずしも良好でないため、熱伝導が不十分になって、加熱に長時間を要したり、基板110の面内において加熱に不均一性が生じたり、成膜のたびに基板110の温度が異なるなどの不具合を生じる。
これに対し、本実施の形態では、上述したように、4μm以上の遠赤外線領域の電磁波を効率よく放射するPBNヒータをヒータ65に用いている。よって、サファイア製の基板110を効率よく加熱でき、加熱時間を短縮できる。また、基板110とヒータ65とは接触させることなく配置できるので、パーティクルの発生を抑制できる。
(半導体発光素子LC)
図4は、本実施の形態が適用されるスパッタリング装置1を用いて製造される半導体発光素子LCの断面構造の一例を示す図である。図5は、図4に示す半導体発光素子LCを平面視したときの図である。
この半導体発光素子LCは化合物半導体にて構成されている。なお、半導体発光素子LCを構成する化合物半導体としては、特に限定されるものではなく、例えば、III−V族化合物半導体、II−VI族化合物半導体、IV−IV族化合物半導体等が挙げられる。本実施の形態では、III−V族化合物半導体が好ましく、中でも、III族窒化物化合物半導体が好ましい。そして、以下では、III族窒化物化合物半導体を有する半導体発光素子LCを例として説明する。なお、例として図4に示す半導体発光素子LCは、青色光を出力する半導体発光素子LCである。
この半導体発光素子LCは、サファイア製の基板110と、基板110上に積層される中間層120と、中間層120上に積層される下地層130と、下地層130上に積層されるn型半導体層140と、n型半導体層140上に積層される発光層150と、発光層150上に積層されるp型半導体層160とを備えている。
ここで、n型半導体層140は、下地層130側に設けられるn型コンタクト層140aと発光層150側に設けられるn型クラッド層140bとを有している。また、発光層150は、障壁層150aと井戸層150bとが交互に積層され、2つの障壁層150aによって1つの井戸層150bを挟み込んだ構造を有している。さらに、p型半導体層160は、発光層150側に設けられるp型クラッド層160aと最上層に設けられるp型コンタクト層160bとを有する。なお、以下の説明においては、n型半導体層140、発光層150およびp型半導体層160を、まとめて積層半導体層100と称する。
半導体発光素子LCにおいては、p型半導体層160のp型コンタクト層160b上に透明正極170が積層され、さらにその上に正極ボンディングパッド180が形成されている。さらに、n型半導体層140のn型コンタクト層140aに形成された露出領域140cに負極ボンディングパッド190が積層されている。
さらにまた、半導体発光素子LCは、正極ボンディングパッド180および負極ボンディングパッド190のそれぞれの表面の一部を除いて、透明正極170の表面、積層半導体層100の表面および側面、下地層130および中間層120の側面を覆う保護層200を備える。
この半導体発光素子LCにおいては、正極ボンディングパッド180と、負極ボンディングパッド190とを介して積層半導体層100(より具体的にはp型半導体層160、発光層150およびn型半導体層140)に電流を流すことで、発光層150が青色光を出力するようになっている。
(半導体発光素子LCの製造方法)
まず、予め定められた直径と厚さとを有するサファイア製の基板110を、図1に示すスパッタリング装置1にセットする。そして、スパッタリング装置1にて、基板110上に、中間層120および下地層130を形成する。
続いて、下地層130が形成された基板110上に、図示しないMOCVD装置により、n型コンタクト層140aを形成し、n型コンタクト層140aの上にn型クラッド層140bを形成する。さらに、n型クラッド層140bの上に発光層150すなわち障壁層150aと井戸層150bとを交互に形成し、発光層150の上にp型クラッド層160aを形成し、p型クラッド層160aの上にp型コンタクト層160bを形成する。
さらに、p型コンタクト層160b上に透明正極170を積層する。また、エッチング等を用いてn型コンタクト層140aに露出領域140cを形成する。そして、透明正極170上に正極ボンディングパッド180を、露出領域140c上に負極ボンディングパッド190を設ける。
その後、基板110の下地層130の形成面とは反対の面を、予め定められた厚さになるまで研削及び研磨する。
そして、基板110の厚さが調整されたウェハを、例えば350μm角の正方形に切断することにより、半導体発光素子LCを得る。
なお、基板110上に結晶性に優れた下地層130が直接形成できる場合には、中間層120を設けなくともよい。
以下、各工程について、順番に説明する。
<中間層形成工程>
先ず、サファイア製の基板110を用意し、前処理を施す。前処理としては、例えば、スパッタ装置のチャンバ10内に基板110を配置し、中間層120を形成する前にスパッタするなどの方法によって行うことができる。具体的には、チャンバ10内において、基板110をArやNのプラズマ放電20中に曝す事によって上面を洗浄する前処理を行なってもよい。ArガスやNガスなどのプラズマ放電20を基板110に作用させることで、基板110の上面に付着した有機物や酸化物を除去することができる。
次に、基板110の上面に、スパッタリング法によって、中間層120を積層する。
スパッタリング法によって、単結晶構造を有する中間層120を形成する場合、窒素等のV族原料(窒素原料)をチャンバ10内に流通させるリアクティブスパッタリング法によって成膜する方法とすることが好ましい。
一般に、スパッタリング法においては、平坦な薄膜を成膜することが可能である。このことで、基板110の表面を完全に覆う中間層120を形成することができ、その上に積層する半導体層の結晶性を向上させることが可能である。中間層120をスパッタリング法によって成膜する場合、原料となるターゲット材料としてIII族窒化物化合物半導体を用い、Arガス等の不活性ガスのプラズマ放電20によるスパッタリングを行なうことも可能である。しかし、III族窒化物化合物半導体は一般に硬いために成膜速度を大きくできないなどの不具合を生じる。これに対し、リアクティブスパッタリング法を用いると、中間層120の結晶性を低下させずに、成膜速度を向上させることが可能である。
チャンバ10内の不活性ガスに対する窒素原料の流量比を、窒素原料が50%〜100%、望ましくは75%となるようにすることが望ましい。
また、スパッタリング法によって、柱状結晶(多結晶)構造を有する中間層120を形成する場合、チャンバ10内の不活性ガスの流量に対する窒素原料の流量比を、窒素原料が1%〜50%、望ましくは25%となるようにすることが望ましい。
中間層120を成膜する際の基板110の温度、つまり、中間層120の成長温度は、300℃以上とすることが好ましく、より好ましくは500℃以上の温度であり、700℃以上の温度とすることが最も好ましい。これは、中間層120を成膜する際の基板110の温度を高くすることによって粒子(原子または分子)のマイグレーションが生じやすくなり、単結晶または多結晶の中間層120を形成しやすいからである。なお、中間層120を成膜する際の基板110の温度は、スパッタリング装置1への負荷などを考えると、1000℃未満とすることが好ましい。可能であるならば1500℃以下の温度であれば中間層120の結晶性の向上が見られる。しかし、基板110の融点に近い2000℃以上の温度とすることはできない。中間層120を成膜する際の基板110の温度が上記温度範囲内であれば、結晶性の良い中間層120が得られる。
<下地層形成工程>
次に、中間層120を形成した後、中間層120が形成された基板110の上面に、単結晶の下地層130を形成する。下地層130は、スパッタリング法を用いて成膜することが望ましい。下地層130をスパッタリング法で成膜する際、中間層120と同様に、窒素等のV族原料をチャンバ10内に流通させるリアクティブスパッタリング法によって成膜する方法とすることが好ましい。
下地層130を成膜する際の基板110の温度、つまり、下地層130の成長温度も、中間層120の場合と同じく、800℃以上とすることが好ましく、より好ましくは900℃以上の温度であり、1000℃以上の温度とすることが最も好ましい。これは、下地層130を成膜する際の基板110の温度を高くすることによって粒子(原子または分子)のマイグレーションが生じやすくなり、転位のループ化が容易に進行するからである。下地層130を成膜する際の基板110の温度が上記温度範囲内であれば、結晶性の良い下地層130が得られる。
<n型半導体層形成工程>
下地層130の形成後、n型コンタクト層140a及びn型クラッド層140bを積層してn型半導体層140を形成する。n型コンタクト層140a及びn型クラッド層140bは、スパッタリング法で形成してもよく、MOCVD法で形成してもよい。MOCVD法を用いる方が、より結晶性が向上するので好ましい。
<発光層形成工程>
発光層150の形成は、スパッタリング法、MOCVD法のいずれの方法でもよいが、特にMOCVD法が好ましい。具体的には、障壁層150aと井戸層150bとを交互に繰り返して積層し、且つ、n型半導体層140側及びp型半導体層160側に障壁層150aが配される順で積層すればよい。
<p型半導体層形成工程>
また、p型半導体層160の形成は、スパッタリング法、MOCVD法のいずれの方法でもよい。具体的には、p型クラッド層160aとp型コンタクト層160bとを順次積層すればよい。
<透明正極形成工程>
p型半導体層160上に、スパッタリング法などの公知の方法を用いて、透明正極170を構成する材料の膜を形成し、公知のフォトリソグラフィーの手法によってパターニングし、透明正極170を形成する。
<露出領域形成工程>
公知のフォトリソグラフィーの手法によってパターニングして、予め定められた領域の積層半導体層100の一部をエッチングしてn型コンタクト層140aの一部を露出させ、露出領域140cを形成する。
なお、上述の透明正極形成工程と露出領域形成工程との順序を入れ替えもかまわない。入れ替える場合には、積層半導体層100の一部をエッチングして、露出領域140cを形成した後、フォトレジスト等のマスクで露出領域140cをカバーして、p型半導体層160の上面160c上に、スパッタリング法などの公知の方法を用いて透明正極170を形成する。
<電極形成工程>
透明正極170上に正極ボンディングパッド180と、露出領域140c上に負極ボンディングパッド190を形成する。
<保護層形成工程>
正極ボンディングパッド180および負極ボンディングパッド190のそれぞれの表面の一部を除いて、透明正極170の表面、積層半導体層100の表面および側面、下地層130および中間層120の側面を覆うように、SiOからなる保護層200を形成する。
<アニール工程>
そして、例えば窒素などの還元雰囲気下において、150℃以上600℃以下、より好ましくは200℃以上500℃以下でアニール処理する。このアニール工程は、透明正極170と正極ボンディングパッド180との密着性、および、露出領域140cと負極ボンディングパッド190との密着性を高めるために行われる。
このようにして、図4に示した半導体発光素子LCが得られる。
このようにして得られた半導体発光素子LCをランプ等に使用する場合には、基板110を半導体発光素子LC(チップ)毎に分割し、それぞれの半導体発光素子LCの基板110側をランプの基台にダイボンドした後、正極ボンディングパッド180の露出した表面に、金ボールを介して金線からなるボンディングワイヤを接続するとともに、負極ボンディングパッド190の露出した表面に、同じく金ボールを介して金線からなるボンディングワイヤを接続する。ここで、使用される金線の直径は10μm〜30μm程度である。
そして、両方の金線を介して半導体発光素子LCに電流を流すことにより、発光層150が発光することになる。
では、上述した半導体発光素子LCの製造方法におけるスパッタリング装置1の動作について説明する。
(スパッタリング装置1の動作)
図6は、基板110上にIII族窒化物化合物半導体層を形成する方法を説明するためのフローチャートである。以下では、図1を参照しつつ、図4に示す基板110上にIII族窒化物層の一例としてのIII族窒化物化合物半導体層を形成するためのフローチャートを説明する。III族窒化物化合物半導体層は中間層120または下地層130であってよい。
図6に示すフローチャートでは、既にターゲット21および基板110がチャンバ10内に設定されているとしている。そして、基板加熱工程(ステップ101)、基板表面逆スパッタリング工程(ステップ102)、III族窒化物化合物半導体層形成工程(ステップ103)が引き続いて行われる。
以下に詳細に説明する。なお、以下の説明では、ターゲット21および基板110をチャンバ10内に取り付ける工程を含んで説明する。
<ターゲット取付工程>
まず、基板110上に形成するIII族窒化物層がAlNである場合には、III族元素の一例としての金属アルミニウム(Al)からなる板状のターゲット21がカソード22に取り付けられる。
一方、基板110上に形成するIII族窒化物層がAlGaNである場合には、III族元素を含む化合物の一例としてのAlGa化合物からなる板状のターゲット21がカソード22に取り付けられる。なお、ターゲット21は、III族元素を含む混合物の一例として、金属アルミニウム(Al)と金属ガリウム(Ga)とを混合して焼結したものであってもよい。
さらに、基板110上に形成するIII族窒化物層がAlGaInNである場合には、III族元素を含む化合物の一例としてのAlGaIn化合物からなる板状のターゲット21がカソード22に取り付けられる。なお、ターゲット21は、III族元素を含む混合物の一例として、金属アルミニウム(Al)と金属ガリウム(Ga)と金属インジウム(In)とを混合して焼結したものであってもよい。
<基板取付工程>
そして、スパッタリング装置1の蓋部12を開放して手作業により、又は蓋部12を開放することなくロボットアームにより予め定められた直径と厚さとを有するサファイア製の基板110が、III族窒化物化合物半導体層を形成する表面を基板ホルダ60の開口から露出するようにして、基板ホルダ60に設定される。
そして、排気部80により、スパッタリング装置1のチャンバ10が予め定められた真空度になるまで排気される。
<基板加熱工程>
基板加熱部64により、ヒータ65に電流が供給され、基板110の温度が予め定められた温度に設定される(ステップ101)。基板110の温度としては、例えば、500℃〜800℃が用いうる。
なお、基板110の温度は、ヒータ65の近くに設置した熱電対などの温度計測手段によって計測された温度に基づいて制御される。基板110の温度を直接測定することは難しいが、予め熱電対を取り付けた基板110による予備実験により校正することができる。
<基板表面逆スパッタリング工程>
次に、ガス供給部70により、予め定められた流量の窒素がチャンバ10に供給される。そして、排気部80により排気速度が調整されて、チャンバ10内が予め定められたガス圧に設定される。
そして、基板110表面の吸着ガスや汚れ等を除去するため、第2電源92により基板ホルダ60に高周波電力が供給され、予め定められた時間、基板ホルダ60上の基板110の表面がスパッタリング(逆スパッタリング)される(ステップ102)。
なお、逆スパッタリングにおいては、基板110表面が荒れるのを抑制するため、質量の大きなアルゴンを混合せず、窒素のみで行うのが好ましい。
この基板表面逆スパッタリング工程においても、基板110は基板加熱部64により、予め定められた温度範囲に制御されている。
<III族窒化物化合物半導体層形成工程>
次いで、ガス供給部70により、予め定められた流量のアルゴンと窒素とがチャンバ10に供給される。そして、排気部80により排気速度が調整されて、チャンバ10内が予め定められたガス圧に設定される。例えば、アルゴンの流量を2sccm、窒素の流量を50sccm〜100sccmとすることができる。窒素の流量は上記の逆スパッタリングの時と同じでなくともよい。なお、窒素は、III族窒化物化合物半導体層を形成するための反応ガスなので、0%とすることはできないが、100%としてもよい。
そして、シャッタ閉の状態で、ターゲット21に第1電源91から予め定められた高周波電力を供給して、ターゲット21の表面近傍にプラズマ放電20を発生させる。
プラズマ放電20が安定したところで、シャッタを開にして、基板110表面にIII族窒化物化合物半導体層を形成する(ステップ103)。
なお、このIII族窒化物化合物半導体層形成工程においても、基板110は基板加熱部64により、予め定められた温度範囲に制御されている。
そして、予め定められた膜厚のIII族窒化物化合物半導体層が形成されたら、シャッタを閉にして、III族窒化物化合物半導体層の形成を終了する。III族窒化物化合物半導体層の厚さは、予め行なった膜形成における厚さと形成時間との関係から、膜形成時間(シャッタ開からシャッタ閉までの時間)により制御すればよい。
この後、プラズマ放電20を停止するとともに、チャンバ10からガスを排気する。次に、基板110の温度が、基板110をチャンバ10から取り出してよい状態になるまで待つ。そして、ガス供給部70により窒素をチャンバ10内に供給する等により大気圧に戻し蓋部12を開放するか、またはチャンバ10内を大気圧に戻すことなくロボットアームにて、III族窒化物化合物半導体層が形成された基板110を取り出す。
以上のようにして、スパッタリング装置1により、基板110上にIII族窒化物化合物半導体層が形成される。
上記のIII族窒化物化合物半導体層が中間層120であって、さらにスパッタリング装置1にて、中間層120上に積層して下地層130を形成する場合には、下地層130に適合したターゲット21を用いて、上記の製造方法を繰り返せばよい。
そして、前述した半導体発光素子LCの製造方法を経て、図4に示した半導体発光素子LCが製造される。
上述した半導体発光素子LCの製造方法では、III族窒化物化合物半導体層は、中間層120または下地層130として説明した。これに引き続く、n型半導体層140、発光層150、p型半導体層160についても、スパッタリング装置1を用いて、上述したと同様の手順により形成することができる。
なお、ここで基板110とは、サファイア製の基板110の他、中間層120、下地層130、n型半導体層140、発光層150、p型半導体層160等のいずれかの層までが順に積層された状態の基板110をも含むものとする。
1…スパッタリング装置、10…チャンバ、11…収納部、12…蓋部、13…供給管、14…排気管、20…プラズマ放電、21…ターゲット、22…カソード、60…基板ホルダ、64…基板加熱部、65…ヒータ、66…抵抗体、70…ガス供給部、71…Ar源、72…N源、80…排気部、91…第1電源、92…第2電源、95…制御部、100…積層半導体層、110…基板、120…中間層、130…下地層、140…n型半導体層、150…発光層、160…p型半導体層、170…透明正極、180…正極ボンディングパッド、190…負極ボンディングパッド、200…保護層、LC…半導体発光素子

Claims (5)

  1. チャンバ内の下部に設置されたターゲットと、
    前記チャンバ内の上部に設置され、一方の表面が前記ターゲットと対向するように配置されたサファイア基板と、
    前記チャンバ内において、前記サファイア基板の上方に設置され、4μm以上の波長を含む電磁波を放射し、当該サファイア基板を他方の表面側から加熱する加熱部材とを備え、
    前記サファイア基板は、当該サファイア基板を前記一方の表面の端部で保持するように当該サファイア基板の形状に対応して切り抜かれた開口を有する基板ホルダにおいて、当該開口に嵌め込まれて保持され、前記電磁波が当該サファイア基板の前記他方の表面の全面にわたって照射されるとともに、
    前記加熱部材は、前記基板ホルダを保持する基板ホルダ保持部内に収納されていることを特徴とするスパッタリング装置。
  2. 前記ターゲットは、III族元素、III族元素を含む混合物またはIII族元素を含む化合物であって、当該ターゲットと前記サファイア基板との間に窒素を含む雰囲気中に形成されたプラズマ放電により、前記サファイア基板上にIII族窒化物層を形成することを特徴とする請求項1に記載のスパッタリング装置。
  3. 前記加熱部材は、熱分解窒化ホウ素(PBN)で覆われた炭素であることを特徴とする請求項1または2に記載のスパッタリング装置。
  4. チャンバ内の下部に設置されたIII族元素、III族元素を含む混合物またはIII族元素を含む化合物のターゲットと、当該チャンバの上部に設置され、一方の表面が当該ターゲットと対向するように配置されたサファイア基板と、当該サファイア基板の上方に設置された加熱部材とを備え、
    前記サファイア基板が、当該サファイア基板を前記一方の表面の端部で保持するように当該サファイア基板の形状に対応して切り抜かれた開口を有する基板ホルダにおいて、当該開口に嵌め込まれて保持されるとともに、前記加熱部材は、当該基板ホルダを保持する基板ホルダ保持部内に収納されているスパッタリング装置において、
    前記加熱部材から放射される4μm以上の波長を含む電磁波を前記サファイア基板の他方の表面の全面に照射して、前記サファイア基板を加熱する基板加熱工程と、
    前記ターゲットと前記サファイア基板との間に窒素を含む雰囲気において形成されたプラズマにより、前記サファイア基板上にIII族窒化物層を形成する工程と
    を含むことを特徴とする半導体発光素子の製造方法。
  5. 前記加熱部材は、熱分解窒化ホウ素(PBN)で覆われた炭素であることを特徴とする請求項に記載の半導体発光素子の製造方法。
JP2010006306A 2010-01-14 2010-01-14 スパッタリング装置および半導体発光素子の製造方法 Active JP5648289B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010006306A JP5648289B2 (ja) 2010-01-14 2010-01-14 スパッタリング装置および半導体発光素子の製造方法
US12/987,828 US8882971B2 (en) 2010-01-14 2011-01-10 Sputtering apparatus and manufacturing method of semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006306A JP5648289B2 (ja) 2010-01-14 2010-01-14 スパッタリング装置および半導体発光素子の製造方法

Publications (2)

Publication Number Publication Date
JP2011144422A JP2011144422A (ja) 2011-07-28
JP5648289B2 true JP5648289B2 (ja) 2015-01-07

Family

ID=44368888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010006306A Active JP5648289B2 (ja) 2010-01-14 2010-01-14 スパッタリング装置および半導体発光素子の製造方法

Country Status (2)

Country Link
US (1) US8882971B2 (ja)
JP (1) JP5648289B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190024843A (ko) * 2017-08-31 2019-03-08 한국생산기술연구원 물리증착용 타겟 및 이를 이용한 나노 복합 코팅막 및 그 제조방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5819978B2 (ja) * 2011-10-28 2015-11-24 キヤノンアネルバ株式会社 成膜方法、真空処理装置、半導体発光素子の製造方法、半導体発光素子、照明装置
JP2013251423A (ja) * 2012-06-01 2013-12-12 Mitsubishi Heavy Ind Ltd 発光素子の保護膜の作製方法及び装置
CN104508795A (zh) 2012-06-15 2015-04-08 欧瑞康高级技术股份公司 用于沉积第iii族氮化物半导体膜的方法
DE112013003237B4 (de) 2012-06-26 2023-06-29 Canon Anelva Corporation Sputterverfahren zum Bilden einer epitaktischen Schicht, Sputtervorrichtung, Herstellverfahren eines lichtemittierenden Halbleiterelements, lichtemittierendes Halbleiterelement und Beleuchtungsvorrichtung
US20150348764A1 (en) * 2014-05-27 2015-12-03 WD Media, LLC Rotating disk carrier with pbn heater
JP2016069714A (ja) * 2014-10-01 2016-05-09 新日鐵住金株式会社 基材保持具およびそれを備える成膜装置
CN110923642B (zh) * 2019-11-11 2022-07-22 北京北方华创微电子装备有限公司 溅射装置
KR102475295B1 (ko) 2020-10-08 2022-12-08 주식회사 메카로 비대칭 열선 구조를 가진 페데스탈 히터 블럭

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939927U (ja) * 1982-09-07 1984-03-14 株式会社日立国際電気 薄膜生成装置の基板加熱装置
JPS63241921A (ja) * 1987-03-30 1988-10-07 Hitachi Ltd 分子線エピタキシ装置の基板加熱装置
US5075094A (en) * 1990-04-30 1991-12-24 The United States Of America As Represented By The Secretary Of The Navy Method of growing diamond film on substrates
JPH0774341B2 (ja) * 1990-09-25 1995-08-09 北陸電気工業株式会社 ビスマス層状構造化合物薄膜の製造方法
JPH0849061A (ja) * 1994-06-02 1996-02-20 Matsushita Electric Ind Co Ltd 誘電体薄膜の製造方法及びその製造装置
JP3015740B2 (ja) * 1996-08-12 2000-03-06 株式会社移動体通信先端技術研究所 超伝導薄膜の形成方法
JP3442935B2 (ja) * 1996-08-27 2003-09-02 株式会社東芝 気相成長用基板及びその加熱方法
US6143141A (en) * 1997-09-12 2000-11-07 Southwest Research Institute Method of forming a diffusion barrier for overlay coatings
JPH11335834A (ja) * 1998-05-26 1999-12-07 Matsushita Electric Ind Co Ltd 誘電体薄膜形成装置及び誘電体薄膜の形成方法
JP2001357964A (ja) * 2000-06-12 2001-12-26 Shin Etsu Chem Co Ltd 複層セラミックスヒーター
WO2003065766A2 (en) * 2002-01-30 2003-08-07 N.V. Bekaert S.A. Heating in a vacuum atmosphere in the presence of a plasma
JP2004315861A (ja) * 2003-04-14 2004-11-11 Matsushita Electric Ind Co Ltd 薄膜形成装置及び薄膜形成方法
JP2004335325A (ja) * 2003-05-09 2004-11-25 Ushio Inc 遠赤外線放射体
JP4433947B2 (ja) * 2004-09-02 2010-03-17 株式会社エピクエスト 高温用cvd装置
JP4659494B2 (ja) * 2005-03-23 2011-03-30 株式会社ミクニ 赤外線透過窓材、赤外線センサユニット、及び燃焼装置
JP2008109084A (ja) * 2006-09-26 2008-05-08 Showa Denko Kk Iii族窒化物化合物半導体発光素子の製造方法、及びiii族窒化物化合物半導体発光素子、並びにランプ
JP5272361B2 (ja) * 2006-10-20 2013-08-28 豊田合成株式会社 スパッタ成膜装置およびスパッタ成膜装置用のバッキングプレート
US20080121924A1 (en) * 2006-11-24 2008-05-29 Showa Denko K.K. Apparatus for manufacturing group iii nitride compound semiconductor light-emitting device, method of manufacturing group iii nitride compound semiconductor light-emitting device, group iii nitride compound semiconductor light-emitting device, and lamp
JP2008288451A (ja) * 2007-05-18 2008-11-27 Renesas Technology Corp 半導体装置の製造方法
WO2009029944A2 (en) * 2007-08-31 2009-03-05 Geoffrey Green Improved sputtering assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190024843A (ko) * 2017-08-31 2019-03-08 한국생산기술연구원 물리증착용 타겟 및 이를 이용한 나노 복합 코팅막 및 그 제조방법
KR102030456B1 (ko) 2017-08-31 2019-10-10 한국생산기술연구원 물리증착용 타겟 및 이를 이용한 나노 복합 코팅막 및 그 제조방법

Also Published As

Publication number Publication date
US8882971B2 (en) 2014-11-11
US20110198212A1 (en) 2011-08-18
JP2011144422A (ja) 2011-07-28

Similar Documents

Publication Publication Date Title
JP5648289B2 (ja) スパッタリング装置および半導体発光素子の製造方法
JP5444460B2 (ja) エピタキシャル膜形成方法、真空処理装置、半導体発光素子の製造方法、半導体発光素子、照明装置
US6429465B1 (en) Nitride semiconductor device and method of manufacturing the same
JP4184789B2 (ja) M’nベース物質の生成装置及び生成方法
JP5886426B2 (ja) エピタキシャル膜形成方法、スパッタリング装置、半導体発光素子の製造方法、半導体発光素子、および照明装置
CN112768584B (zh) 一种发光二极管芯片及其应用
JP5819978B2 (ja) 成膜方法、真空処理装置、半導体発光素子の製造方法、半導体発光素子、照明装置
KR101564251B1 (ko) 에피텍셜 막 형성방법, 스퍼터링 장치, 반도체 발광소자 제조방법, 반도체 발광소자, 및 조명장치
CN107492490A (zh) 半导体设备的成膜方法、氮化铝成膜方法以及电子装置
JP2007073672A (ja) 半導体発光素子及びその製造方法
JP5545576B2 (ja) 半導体基板、半導体層の製造方法、半導体基板の製造方法、半導体素子、発光素子、表示パネル、電子素子、太陽電池素子及び電子機器
JP5462124B2 (ja) EuドープZnO膜形成方法
US20110079507A1 (en) Manufacturing method of semiconductor element
JP3592055B2 (ja) 有機発光素子
CN105349953B (zh) 热氧化Zn3N2:III族元素制备p-型氧化锌的方法
JPH1070313A (ja) 気相成長用基板及びその加熱方法
JP6100047B2 (ja) 窒化ガリウム膜の形成方法、及び、窒化ガリウム膜の形成装置
JP2012216736A (ja) 半導体素子の製造方法
JP3816759B2 (ja) 成膜方法および成膜装置
JPH07291790A (ja) 分子線エピタキシー装置
JP2010045065A (ja) 発光装置の製造方法および発光装置
JP5513763B2 (ja) シリコン基板上にSi3N4へテロエピタキシャルバッファ層を有する窒化シリコン基板の作製方法および装置
JP2019149429A (ja) 成膜方法、半導体デバイスの製造方法及び半導体デバイス
JP4048316B2 (ja) 単結晶シリコン基板上の酸化亜鉛単結晶膜の製造方法及び製造装置並びに積層構造
JPH07291791A (ja) 分子線エピタキシー装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121019

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141027

R150 Certificate of patent or registration of utility model

Ref document number: 5648289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150