Nothing Special   »   [go: up one dir, main page]

JP5646224B2 - Porous inorganic oxide and process for producing the same - Google Patents

Porous inorganic oxide and process for producing the same Download PDF

Info

Publication number
JP5646224B2
JP5646224B2 JP2010143303A JP2010143303A JP5646224B2 JP 5646224 B2 JP5646224 B2 JP 5646224B2 JP 2010143303 A JP2010143303 A JP 2010143303A JP 2010143303 A JP2010143303 A JP 2010143303A JP 5646224 B2 JP5646224 B2 JP 5646224B2
Authority
JP
Japan
Prior art keywords
inorganic oxide
porous
particles
porous inorganic
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010143303A
Other languages
Japanese (ja)
Other versions
JP2012006783A (en
Inventor
友紀子 榎本
友紀子 榎本
中山 徳夫
徳夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2010143303A priority Critical patent/JP5646224B2/en
Publication of JP2012006783A publication Critical patent/JP2012006783A/en
Application granted granted Critical
Publication of JP5646224B2 publication Critical patent/JP5646224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Inorganic Insulating Materials (AREA)

Description

本発明は、細孔構造を有する多孔質無機酸化物およびその製法に関する。 The present invention relates to a porous inorganic oxide having a pore structure and a method for producing the same.

無機酸化物のゾルゲルと、テンプレートとして界面活性剤を用い、多孔質の無機酸化物を得る方法が知られている。酸化物としては二酸化珪素や酸化チタンがあげられ、低誘電損失材料・反射防止材料・低屈折率材料・フィラー・光触媒といった用途に用いられる。
例えば特許文献1は、多孔質の無機酸化物からなる低誘電率材料が記載されている。例えば特許文献2には、多孔質の無機酸化物からなる低屈折率光学材料が記載されている。例えば特許文献3には、多孔質の無機酸化物からなる遮熱・断熱材料が記載されている。例えば特許文献4には、多孔質の無機酸化物からなる軽量化材料が記載されている。
二酸化珪素多孔質体の細孔構造は用いるテンプレートの構造や調整条件に依存し、キュービック型結晶構造を有するもの、ヘキサゴナル型結晶構造(例えば、非特許文献1および2)を有するものがそれぞれ知られている。
A method of obtaining a porous inorganic oxide using a sol-gel of an inorganic oxide and a surfactant as a template is known. Examples of the oxide include silicon dioxide and titanium oxide, which are used for applications such as low dielectric loss materials, antireflection materials, low refractive index materials, fillers, and photocatalysts.
For example, Patent Document 1 describes a low dielectric constant material made of a porous inorganic oxide. For example, Patent Document 2 describes a low refractive index optical material made of a porous inorganic oxide. For example, Patent Document 3 describes a heat shielding / heat insulating material made of a porous inorganic oxide. For example, Patent Document 4 describes a light weight material made of a porous inorganic oxide.
The pore structure of the silicon dioxide porous body depends on the structure of the template used and the adjusting conditions, and those having a cubic crystal structure and those having a hexagonal crystal structure (for example, Non-Patent Documents 1 and 2) are known. ing.

特開2003−86676号公報JP 2003-86676 A 特開平6−3501号公報JP-A-6-3501 特開2009−108222号公報JP 2009-108222 A 特開2003−165719号公報JP 2003-165719 A C.T.Kresge ほか4名、Nature、359、p.710〜712(1992)C. T. T. et al. Kresge and 4 others, Nature, 359, p. 710-712 (1992) D.Zhao ほか6名、Science、279、548(1998)D. Zhao and 6 others, Science, 279, 548 (1998)

上述のように二酸化珪素や酸化チタン多孔質体は広く用いられているが、いずれも多孔質であるがゆえに比表面積が大きかった。このため、低誘電材料として用いる場合に、水分や不純物が細孔に入り込んだり吸着することにより、誘電率が上がる等の問題点があった。 As described above, porous silicon dioxide and titanium oxide are widely used, but both have a large specific surface area because they are porous. For this reason, when used as a low dielectric material, there are problems such as an increase in dielectric constant due to moisture or impurities entering or adsorbing into the pores.

本発明者らは鋭意検討を行い、特定の細孔構造ならびに比表面積を有する多孔質無機酸化物が前記課題を解決できることを見出した。また細孔構造を有する多孔質無機酸化物を特定温度において焼成することで、細孔構造を維持しつつも比表面積を低減し、前記課題を解決できることを見出した。
すなわち本発明の要旨は以下の通りである:
[1]キュービック型細孔構造を有し、かつ窒素吸着により求められる比表面積が10m/g以下である多孔質無機酸化物。
[2]無機酸化物が二酸化珪素である[1]に記載の多孔質無機酸化物。
[3]キュービック型細孔構造を有する多孔質無機酸化物を、さらに800℃以上で焼成して得られる多孔質無機酸化物。
[4]無機酸化物が二酸化珪素である[3]に記載の多孔質無機酸化物。
[5]キュービック型細孔構造を有する多孔質無機酸化物を、さらに800℃以上で焼成して比表面積の減少した多孔質無機酸化物を得る方法。
[6]無機酸化物が二酸化珪素である[5]に記載の方法。
[7][5]に記載の方法で得られる多孔質無機酸化物。
The present inventors have intensively studied and found that a porous inorganic oxide having a specific pore structure and specific surface area can solve the above-mentioned problems. Further, it has been found that by firing a porous inorganic oxide having a pore structure at a specific temperature, the specific surface area can be reduced while maintaining the pore structure, and the above problems can be solved.
That is, the gist of the present invention is as follows:
[1] A porous inorganic oxide having a cubic pore structure and a specific surface area determined by nitrogen adsorption of 10 m 2 / g or less.
[2] The porous inorganic oxide according to [1], wherein the inorganic oxide is silicon dioxide.
[3] A porous inorganic oxide obtained by further firing a porous inorganic oxide having a cubic type pore structure at 800 ° C. or higher.
[4] The porous inorganic oxide according to [3], wherein the inorganic oxide is silicon dioxide.
[5] A method of obtaining a porous inorganic oxide having a reduced specific surface area by further firing a porous inorganic oxide having a cubic type pore structure at 800 ° C. or higher.
[6] The method according to [5], wherein the inorganic oxide is silicon dioxide.
[7] A porous inorganic oxide obtained by the method according to [5].

本発明の多孔質無機酸化物は、比表面積が抑えられているため水分や不純物が細孔に入り込みにくく、低誘電損失材料として優れる。また、気体の透過性が低いため、フィラーとして用いる場合の断熱性に優れている。   Since the porous inorganic oxide of the present invention has a reduced specific surface area, moisture and impurities are less likely to enter the pores, and is excellent as a low dielectric loss material. Moreover, since the gas permeability is low, it is excellent in heat insulation when used as a filler.

本発明を以下詳細に説明する。
(多孔質無機酸化物)
多孔質無機酸化物とは、0.1 nm〜100 nm程度の微細孔を有する無機酸化物をいう。微細孔径は1nm〜50 nmが好ましい。
無機酸化物としては、二酸化珪素、酸化チタン、酸化ジルコニウム、チタン酸バリウム、酸化アルミニウム、酸化亜鉛などをあげることができ、二酸化珪素であることが好ましい。
The present invention is described in detail below.
(Porous inorganic oxide)
The porous inorganic oxide refers to an inorganic oxide having fine pores of about 0.1 nm to 100 nm. The fine pore diameter is preferably 1 nm to 50 nm.
Examples of the inorganic oxide include silicon dioxide, titanium oxide, zirconium oxide, barium titanate, aluminum oxide, and zinc oxide, and silicon dioxide is preferable.

(キュービック型細孔構造)
多孔質体の細孔構造は、小角X線回折(SAXS)及び透過型電子顕微鏡(TEM)による断面観察で確認することができる。本発明の多孔質体から得られた回折像は、複数の円環状のパターンを有し、キュービック相構造を有することを示す。
キュービック型細孔構造を持つ多孔質無機酸化物の作り方を以下に説明する。
公知の方法により、無機酸化物のゾルゲルと、テンプレートとして界面活性剤を用い、乾燥後に、テンプレートを焼成除去して多孔質の無機酸化物を得ることができる。
(Cubic pore structure)
The pore structure of the porous body can be confirmed by cross-sectional observation with a small angle X-ray diffraction (SAXS) and a transmission electron microscope (TEM). The diffraction image obtained from the porous body of the present invention has a plurality of annular patterns and shows a cubic phase structure.
A method for producing a porous inorganic oxide having a cubic type pore structure will be described below.
By a known method, a sol-gel of an inorganic oxide and a surfactant as a template can be used, and after drying, the template can be baked and removed to obtain a porous inorganic oxide.

(テンプレート)
テンプレートとして式(1a)または(1b)に示す化合物を用いることが好ましい。式(1a)または(1b)に示す化合物は分散液としたときに希釈濃度によらず粒子径が一定であるため、濃度に拠らずメソ孔がキュービック相を形成し、かつ平均孔径が5nm〜30nm程度の金属酸化物多孔質体を形成することができるため、好ましい。
式(1a)または(1b)に示す化合物は、国際公開WO2005/073282号パンフレットに記載されている方法により製造することができる。
(template)
It is preferable to use a compound represented by the formula (1a) or (1b) as a template. The compound represented by the formula (1a) or (1b) has a constant particle size regardless of the dilution concentration when used as a dispersion, so that the mesopores form a cubic phase regardless of the concentration, and the average pore size is 5 nm. Since a metal oxide porous body of about ˜30 nm can be formed, it is preferable.
The compound represented by the formula (1a) or (1b) can be produced by the method described in International Publication WO2005 / 073282.

(式中、R4およびR5は、水素原子あるいは炭素数1〜18のアルキル基を表し、少なくともどちらか一方は水素原子である。R6およびR7は、水素原子あるいはメチル基を表し、少なくともどちらか一方は水素原子であり、R8およびR9は、水素原子あるいはメチル基を表し、少なくともどちらか一方は水素原子であり、R10およびR11は、水素原子あるいはメチル基を表し、少なくともどちらか一方は水素原子である。nは、20以上300以下の整数を表す。(1a)においてl+mは2以上300以下の整数を表す。(1b)l+m+oは3以上450以下の整数を表す。)
他の界面活性剤、例えばPluronic P123をテンプレートとして用いることもできる。ただし、5nm〜30nm程度の平均細孔径かつキュービック相構造を有するメソポーラス材料を安定的に製造するのが難しい場合がある。
(微細粒子)
(In the formula, R 4 and R 5 represent a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, and at least one of them is a hydrogen atom. R 6 and R 7 represent a hydrogen atom or a methyl group, and at least one of them is Is a hydrogen atom, R8 and R9 represent a hydrogen atom or a methyl group, at least one of them is a hydrogen atom, R10 and R11 represent a hydrogen atom or a methyl group, and at least one of them is a hydrogen atom N represents an integer of 20 to 300. In (1a), l + m represents an integer of 2 to 300. (1b) l + m + o represents an integer of 3 to 450.)
Other surfactants such as Pluronic P123 can also be used as a template. However, it may be difficult to stably produce a mesoporous material having an average pore diameter of about 5 nm to 30 nm and a cubic phase structure.
(Fine particles)

式(1a)または(1b)に示す化合物は、テンプレートとして用いる際に体積50%平均粒子径が5nm〜30nm程度の微粒子が媒体中に分散した分散液として用いることができる。なお、本発明における体積50%平均粒子径とは、全体積を100%としたときの累積体積が50%時の粒子の直径をいい、動的光散乱式粒子径分布測定装置やマイクロトラック粒度分布測定装置を使用して測定することができる。式(1a)または(1b)に示す化合物のナノサイズ微粒子が分散した分散液の調製法は、WO2009/87961号国際公開パンフレットに記載されている。例えば、式(1b)に示す化合物10重量部と溶媒の蒸留水40重量部を100mlのオートクレーブに装入し、140℃、800rpmの速度で30分間加熱撹拌の後、撹拌を保ったまま室温まで冷却することによって得られる。
このようにして、式(1a)または(1b)に示す化合物がナノサイズ粒子として媒体中に分散した分散液が得られ、多孔質無機酸化物の製造に用いることができる。
The compound represented by the formula (1a) or (1b) can be used as a dispersion in which fine particles having a volume 50% average particle diameter of about 5 nm to 30 nm are dispersed in a medium when used as a template. The 50% volume average particle diameter in the present invention means the diameter of a particle when the total volume is 100% when the total volume is 100%, and is a dynamic light scattering particle size distribution measuring device or a microtrack particle size. It can be measured using a distribution measuring device. A method for preparing a dispersion in which nano-sized fine particles of the compound represented by formula (1a) or (1b) are dispersed is described in WO2009 / 87961. For example, 10 parts by weight of the compound represented by the formula (1b) and 40 parts by weight of distilled water as a solvent are placed in a 100 ml autoclave, heated and stirred at 140 ° C. and 800 rpm for 30 minutes, and then kept at room temperature while maintaining stirring. Obtained by cooling.
In this way, a dispersion in which the compound represented by the formula (1a) or (1b) is dispersed as nano-sized particles in the medium can be obtained, and can be used for the production of the porous inorganic oxide.

(多孔質無機酸化物の製造方法)
本発明の酸化物多孔体は、テンプレート(好ましくは式(1)で示される末端分岐型共重合体)粒子と無機酸化物の有機無機複合体を形成した後、テンプレートを除去することにより製造される。具体的には、以下の工程を含む。
(Method for producing porous inorganic oxide)
The porous oxide body of the present invention is produced by forming an organic-inorganic composite of template (preferably terminal branched copolymer represented by formula (1)) particles and an inorganic oxide, and then removing the template. The Specifically, the following steps are included.

工程(a):上述の末端分岐型共重合体粒子の存在下で、無機物を形成する元素のアルコキシド(以下、ケイ素も含めて金属アルコキシドと呼ぶことがある)および/またはその部分加水分解縮合物のゾル−ゲル反応を行う;
工程(b):前記工程(a)において得られた反応溶液を乾燥し、ゾル−ゲル反応を完結し有機無機複合体を得る;
工程(c):前記有機無機複合体からテンプレートを除去し、酸化物多孔質体を調製する。
以下、各工程を順に説明する。
Step (a): An alkoxide of an element that forms an inorganic substance in the presence of the above-described terminally branched copolymer particles (hereinafter sometimes referred to as a metal alkoxide including silicon) and / or a partial hydrolysis-condensation product thereof A sol-gel reaction of
Step (b): The reaction solution obtained in the step (a) is dried to complete the sol-gel reaction to obtain an organic-inorganic composite;
Step (c): The template is removed from the organic-inorganic composite to prepare an oxide porous body.
Hereinafter, each process is demonstrated in order.

[工程(a)]
工程(a)においては、具体的に、前記テンプレート粒子(A)記金属アルコキシドおよび/またはその部分加水分解縮合物(B)、水および/または水の一部または全部を任意の割合で溶解する溶媒(C)を混合して混合組成物を調製するとともに、前記金属アルコキシドおよび/またはその部分加水分解縮合物のゾル−ゲル反応を行う。なお、混合組成物には、金属アルコキシドの加水分解・重縮合反応を促進させる目的で、ゾル−ゲル反応用触媒(D)を含んでいてもよい。
[Step (a)]
In the step (a), specifically, the template particle (A) metal alkoxide and / or its partial hydrolysis condensate (B), water and / or a part or all of water are dissolved in an arbitrary ratio. A solvent (C) is mixed to prepare a mixed composition, and a sol-gel reaction of the metal alkoxide and / or a partially hydrolyzed condensate thereof is performed. The mixed composition may contain a sol-gel reaction catalyst (D) for the purpose of promoting the hydrolysis / polycondensation reaction of the metal alkoxide.

混合組成物は、さらに具体的には、成分(B)または成分(B)を「水および/または水の一部または全部を任意の割合で溶解する溶媒(C)」に溶解した溶液に、「ゾル−ゲル反応用触媒(D)」、さらに必要に応じて水を添加して攪拌混合して、成分(B)のゾル−ゲル反応を行い、このゾル−ゲル反応を継続させながら重合体粒子(A)を添加することにより調製される。重合体粒子(A)は水性分散液として添加することができる。また、成分(B)または成分(B)を前記溶媒(C)に溶解した溶液に、重合体粒子(A)の水性分散液を添加して攪拌混合した後に、触媒(D)、さらに必要に応じて水を添加して攪拌混合することで調製することもできる。   More specifically, the mixed composition is prepared by dissolving a component (B) or a component (B) in a “solvent (C) that dissolves water and / or a part or all of water in an arbitrary ratio”. “Sol-gel reaction catalyst (D)”, water is added if necessary and stirred and mixed, and the sol-gel reaction of component (B) is carried out. It is prepared by adding particles (A). The polymer particles (A) can be added as an aqueous dispersion. Further, after adding an aqueous dispersion of polymer particles (A) to a solution in which component (B) or component (B) is dissolved in the solvent (C) and stirring and mixing, catalyst (D) and further necessary Accordingly, it can be prepared by adding water and stirring and mixing.

[金属アルコキシドおよび/またはその部分加水分解縮合物(B)]
本発明における金属ないし非金属のアルコキシドは、下記式(12)で表されるものを指す。
(R)xM(OR)y (12)
式中、Rは、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよい不飽和基(アクリロイル基、メタクリロイル基、ビニル基など)を表す。
Mとしては、Si、Al、Zn、Zr、Tiなどゾル−ゲル反応で無色の無機酸化物となる元素が用いられる。それらの中でもSi、Al、Zr、チタンTiなどが好ましく、Siがとりわけ好ましい
本発明の組成物において、成分(C)は、金属アルコキシドおよび/またはその部分加水分解縮合物(B)を、さらに加水分解させる目的で添加される。
[Metal alkoxide and / or its partial hydrolysis condensate (B)]
The metal or non-metal alkoxide in the present invention refers to that represented by the following formula (12).
(R 1 ) xM (OR 2 ) y (12)
In the formula, R 1 represents a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, an unsaturated group which may have a substituent (acryloyl group, methacryloyl group, Vinyl group, etc.).
As M, an element that becomes a colorless inorganic oxide by a sol-gel reaction such as Si, Al, Zn, Zr, or Ti is used. Among them, Si, Al, Zr, titanium Ti and the like are preferable, and Si is particularly preferable. In the composition of the present invention, the component (C) further contains a metal alkoxide and / or a partial hydrolysis condensate (B) thereof. It is added for the purpose of decomposing.

また、成分(C)は、テンプレートを用いて水性分散液を得るときに使用する溶媒と、水性分散液、成分(B)および後述するゾル−ゲル反応用触媒(D)(以下、「成分D」ということもある)を混合するときに使用する溶媒の両方を含む。 水については特に制限されず、蒸留水、イオン交換水、市水、工業用水などを使用可能であるが、蒸留水やイオン交換水を使用することが好ましい。   Component (C) includes a solvent used when an aqueous dispersion is obtained using a template, an aqueous dispersion, component (B), and a sol-gel reaction catalyst (D) (hereinafter referred to as “component D”). ”) And the solvent used when mixing. The water is not particularly limited, and distilled water, ion exchange water, city water, industrial water, and the like can be used, but it is preferable to use distilled water or ion exchange water.

水の一部または全部を任意の割合で溶解する溶媒としては、水と親和性を有する有機溶媒であって、テンプレート化合物が分散可能なものであれば特に限定されないが、例えばメタノール、エタノール、プロピルアルコール、イソプロピルアルコール、アセトン、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルイミダゾリジノン、エチレングリコール、テトラエチレングリコール、ジメチルアセトアミド、N−メチル−2−ピロリドン、テトラヒドロフラン、ジオキサン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2−メトキシエタノール(メチルセルソルブ)、2−エトキシエタノール(エチルセルソルブ)、酢酸エチルなどが挙げられる。
中でも、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、アセ
トニトリル、ジメチルスルホキシド、ジメチルホルムアミド、アセトン、テトラヒドロフラン、ジオキサンは、水との親和性が高いため、好ましい。
The solvent for dissolving a part or all of water in an arbitrary ratio is not particularly limited as long as it is an organic solvent having an affinity for water and can disperse the template compound. For example, methanol, ethanol, propyl Alcohol, isopropyl alcohol, acetone, acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylimidazolidinone, ethylene glycol, tetraethylene glycol, dimethylacetamide, N-methyl-2-pyrrolidone, tetrahydrofuran, dioxane, methyl ethyl ketone, cyclohexanone, cyclopentanone, Examples include 2-methoxyethanol (methyl cellosolve), 2-ethoxyethanol (ethyl cellosolve), and ethyl acetate.
Among these, methanol, ethanol, propyl alcohol, isopropyl alcohol, acetonitrile, dimethyl sulfoxide, dimethylformamide, acetone, tetrahydrofuran, and dioxane are preferable because of their high affinity with water.

水を用いる場合、添加する水の量は、通常は前記成分(C)および前記成分(D)の混合物100重量部に対し、例えば1重量部以上1000000重量部以下の範囲であり、好ましくは10重量部以上10000重量部以下の範囲である。   When water is used, the amount of water to be added is usually in the range of, for example, 1 part by weight or more and 1000000 parts by weight or less, preferably 10 parts by weight, with respect to 100 parts by weight of the mixture of the component (C) and the component (D). It is the range of not less than 10000 parts by weight.

水の一部または全部を任意の割合で溶解する溶媒としては、添加する溶媒の量は、通常は前記成分(C)および前記成分(D)の混合物100重量部に対し、例えば1重量部以上1000000重量部以下の範囲であり、好ましくは10重量部以上10000重量部以下の範囲である。   As a solvent for dissolving a part or all of water in an arbitrary ratio, the amount of the solvent to be added is usually 1 part by weight or more with respect to 100 parts by weight of the mixture of the component (C) and the component (D). The range is 1 million parts by weight or less, preferably 10 parts by weight or more and 10,000 parts by weight or less.

また、金属アルコキシド類の加水分解重縮合時の好ましい反応温度は、1℃以上100℃以下であり、より好ましくは20℃以上60℃以下であり、反応時間は10分以上72時間以下であり、より好ましくは1時間以上24時間以下である。   Moreover, the preferable reaction temperature at the time of hydrolysis polycondensation of metal alkoxides is 1 ° C. or more and 100 ° C. or less, more preferably 20 ° C. or more and 60 ° C. or less, and the reaction time is 10 minutes or more and 72 hours or less, More preferably, it is 1 hour or more and 24 hours or less.

[ゾル−ゲル反応用触媒(D)]
本発明で用いる混合組成物において、金属アルコキシドの加水分解・重縮合反応における反応を促進させる目的で、以下に示すような加水分解・重縮合反応の触媒となりうるものを含んでいてもよい。
金属アルコキシドの加水分解・重縮合反応の触媒として使用されるものは、「最新ゾル−ゲル法による機能性薄膜作製技術」(平島碩著、株式会社総合技術センター、29頁)や「ゾル−ゲル法の科学」(作花済夫著、アグネ承風社、154頁)等に記載されている一般的なゾル−ゲル反応で用いられる触媒である。
[Sol-gel reaction catalyst (D)]
In the mixed composition used in the present invention, for the purpose of accelerating the reaction in the hydrolysis / polycondensation reaction of the metal alkoxide, it may contain a catalyst that can be a catalyst for the hydrolysis / polycondensation reaction as shown below.
What is used as a catalyst for the hydrolysis and polycondensation reaction of metal alkoxides is “functional thin film production technology by the latest sol-gel method” (Satoru Hirashima, General Technology Center, page 29) and “sol-gel” It is a catalyst used in a general sol-gel reaction described in “Science of Law” (Sakuo Sakuo, Agne Jofu Co., Ltd., page 154).

触媒(D)としては、酸触媒、アルカリ触媒、有機スズ化合物、チタニウムテトライソプロポキシド、ジイソプロポキシチタニウムビスアセチルアセトナート、ジルコニウムテトラブトキシド、ジルコニウムテトラキスアセチルアセトナート、アルミニウムトリイソプロポキシド、アルミニウムトリスアセチルアセトナート、トリメトキシボランなどの金属アルコキシド等が挙げられる。
[工程(b)]
As the catalyst (D), acid catalyst, alkali catalyst, organotin compound, titanium tetraisopropoxide, diisopropoxytitanium bisacetylacetonate, zirconium tetrabutoxide, zirconium tetrakisacetylacetonate, aluminum triisopropoxide, aluminum tris Examples thereof include metal alkoxides such as acetylacetonate and trimethoxyborane.
[Step (b)]

工程(b)においては、前記工程(a)において得られた反応溶液(混合組成物)を乾燥して有機無機複合体を得る。
工程(b)における有機無機複合体は、例えば、基材に反応溶液(混合組成物)を塗布した後、所定時間加熱して溶媒(C)を除去し、ゾル−ゲル反応を完結させることによって得られるゾル−ゲル反応物の形態で得ることができる。あるいは、前記溶媒(C)を除去しないで、さらにゾル−ゲル反応させることによって得られるゾル−ゲル反応物を、基材に塗布後所定時間加熱して溶媒(C)を除去し、該混合組成物におけるゾル−ゲル反応を完結させることによって得られるゾル−ゲル反応物の形態で得ることもできる。
In the step (b), the reaction solution (mixed composition) obtained in the step (a) is dried to obtain an organic-inorganic composite.
The organic-inorganic composite in the step (b) is obtained by, for example, applying a reaction solution (mixed composition) to a substrate and then heating for a predetermined time to remove the solvent (C) and complete the sol-gel reaction. It can be obtained in the form of the resulting sol-gel reactant. Alternatively, without removing the solvent (C), a sol-gel reaction product obtained by further sol-gel reaction is applied to a substrate and heated for a predetermined time to remove the solvent (C), and the mixed composition It can also be obtained in the form of a sol-gel reactant obtained by completing the sol-gel reaction in the product.

なお、ゾル-ゲル反応が完結した状態とは、理想的には全てがM−O−Mの結合を形成した状態であるが、一部アルコキシル基(M−OR)、M−OH基を残すものの、固体(ゲル)の状態に移行した状態を含むものである。
つまり、混合組成物(反応溶液)を加熱乾燥することによりゾル−ゲル反応が完結し、成分(B)より金属酸化物が得られ、この金属酸化物を主とするマトリックスが形成される。有機無機複合体は、このマトリックス中に、テンプレートから構成される重合体微粒子が分散した構造となる。
The state in which the sol-gel reaction is completed is ideally a state in which all M-O-M bonds are formed, but some alkoxyl groups (M-OR 2 ) and M-OH groups are partially formed. Although it remains, it includes a state in which it has shifted to a solid (gel) state.
That is, the sol-gel reaction is completed by heating and drying the mixed composition (reaction solution), a metal oxide is obtained from the component (B), and a matrix mainly composed of this metal oxide is formed. The organic-inorganic composite has a structure in which polymer fine particles composed of a template are dispersed in this matrix.

このゾル−ゲル反応物における金属酸化物は、有機無機複合体中において連続したマトリックス構造体となる。金属酸化物は、上記のとおり特に制限されるものではないが、コーティング膜として、機械的特性などを向上させるという観点からは、金属酸化物は連続したマトリックス構造体となる方が好ましい。そのような金属酸化物の構造体は、金属アルコキシドを加水分解及び重縮合させる、すなわちゾル−ゲル反応により得られる。   The metal oxide in the sol-gel reaction product becomes a continuous matrix structure in the organic-inorganic composite. The metal oxide is not particularly limited as described above, but the metal oxide is preferably a continuous matrix structure from the viewpoint of improving mechanical properties as a coating film. Such a metal oxide structure is obtained by hydrolysis and polycondensation of a metal alkoxide, that is, by a sol-gel reaction.

本発明において、複合体は、その形状を、粒子状又は膜状とすることができる。また、複合体を基板上あるいは多孔質支持体上に積層して、積層複合体としたものであってもよい。   In the present invention, the shape of the composite can be a particle or a film. Alternatively, the composite may be laminated on a substrate or a porous support to form a laminated composite.

粒子状の複合体の製造方法としては、本発明の混合分散液を所定温度で乾燥した後、得られた固体を粉砕や分級等の処理により成形する方法、あるいは凍結乾燥法のように低温度で溶媒除去して乾燥した後、得られた固体を粉砕や分級の処理により成形する方法、さらにはスプレードライヤーにより、10μm以下の複合体微粒子を噴霧乾燥装置(スプレードライヤー)により噴霧し、溶媒を揮発させることにより白色の粉体を得る方法などがある。   As a method for producing a particulate composite, the mixed dispersion of the present invention is dried at a predetermined temperature, and then the obtained solid is formed by a treatment such as pulverization or classification, or a low temperature such as a freeze drying method. After the solvent is removed by drying, the obtained solid is formed by pulverization or classification, and further, fine particles of 10 μm or less are sprayed by a spray dryer (spray dryer) with a spray dryer, and the solvent is removed. There is a method of obtaining white powder by volatilization.

膜状の複合体の製造方法は、目的とする用途、基材の種類さらに形状等に応じて、ディップコート、スピンコート、スプレーコート、流下塗布、ブレードコート、バーコート、ダイコート、その他の適宜な方法を用いることができる。基材は金属、ガラス、セラミックス、ポリマーなどの成形物、シート、フィルムなどの他、多孔質支持体を用いることができる。   According to the intended use, the type of substrate and the shape, etc., the film-like composite can be produced by dip coating, spin coating, spray coating, flow coating, blade coating, bar coating, die coating, or other appropriate methods. The method can be used. As the substrate, a porous support can be used in addition to a molded product such as metal, glass, ceramics, and polymer, a sheet, a film, and the like.

多孔質支持体と膜状の複合体の製造方法としては、多孔質支持体を本発明の混合組成物中に浸漬し、多孔質支持体を所定温度で保持して乾燥する方法を例示することができる。
本発明に用いられる多孔質支持体としては、例えば、二酸化珪素、アルミナ、ジルコニア、チタニア等のセラミックス、ステンレス、アルミニウム等の金属、紙、樹脂等の多孔質体を挙げることができる。
As a method for producing a porous support and a membrane-like composite, a method of immersing the porous support in the mixed composition of the present invention and holding the porous support at a predetermined temperature and drying is exemplified. Can do.
Examples of the porous support used in the present invention include porous materials such as ceramics such as silicon dioxide, alumina, zirconia, and titania, metals such as stainless steel and aluminum, paper, and resins.

ゾル−ゲル反応を完結させるための加熱温度は室温以上300℃以下であり、より好ましくは80℃以上200℃以下である。反応時間は10分以上72時間以下であり、より好ましくは1時間以上24時間以下である。   The heating temperature for completing the sol-gel reaction is from room temperature to 300 ° C., more preferably from 80 ° C. to 200 ° C. The reaction time is 10 minutes to 72 hours, more preferably 1 hour to 24 hours.

[工程(c)]
工程(c)においては、工程(b)で得られた有機無機複合体からテンプレート粒子を除去し、金属酸化物多孔質体を調製する。
テンプレート粒子を除去する方法としては、焼成により分解除去する方法、VUV光(真空紫外光)、遠赤外線、マイクロ波、プラズマを照射して分解除去する方法、溶剤や水を用いて抽出除去する方法などが挙げられる。焼成により分解除去する場合、好ましい温度は300℃〜600℃である。
[Step (c)]
In step (c), template particles are removed from the organic-inorganic composite obtained in step (b) to prepare a metal oxide porous body.
As a method for removing template particles, a method for decomposing and removing by firing, a method for decomposing and removing by irradiating with VUV light (vacuum ultraviolet light), far infrared rays, microwaves and plasma, a method for extracting and removing using solvent and water. Etc. When removing by decomposition by firing, the preferred temperature is 300 ° C to 600 ° C.

焼成温度が低すぎる場合、テンプレート粒子が除去されず、一方高すぎる場合、金属酸化物の融点に近くなるためメソ孔が崩れる場合がある。焼成は、一定温度で行っても良いし、室温から除々に昇温しても構わない。焼成の時間は、温度に応じて変えられるが、1時間から24時間の範囲で行うのが好ましい。焼成は空気中で行ってもよいし、窒素、アルゴンなどの不活性ガス中で行ってもよい。また、減圧下、または真空中で行っても構わない
VUV光を照射して分解除去する場合、VUVランプ、エキシマレーザー、エキシマランプを使用することが出来る。空気中でVUV光を照射する際に発生するオゾン(O)の酸化作用を併用しても構わない。マイクロ波としては、2.45GHzまたは28GHzの周波数いずれでも構わない。マイクロ波の出力は特に制限されずテンプレート粒子が除去される条件が選ばれる。
If the calcination temperature is too low, the template particles are not removed, while if it is too high, the mesopores may collapse due to being close to the melting point of the metal oxide. Firing may be performed at a constant temperature, or may be gradually raised from room temperature. The firing time can be changed according to the temperature, but it is preferably performed in the range of 1 hour to 24 hours. Firing may be performed in air or in an inert gas such as nitrogen or argon. In addition, VUV lamps, excimer lasers, and excimer lamps can be used in the case of decomposing and removing by irradiating VUV light, which may be performed under reduced pressure or in vacuum. May be used in combination with oxidation action of ozone (O 3) generated at the time of irradiating the VUV light in air. As the microwave, any frequency of 2.45 GHz or 28 GHz may be used. The output of the microwave is not particularly limited, and a condition for removing the template particles is selected.

溶剤や水を用いて抽出を行う場合、例えば、溶剤としてはエチレングリコール、テトラエチレングリコール、イソプロピルアルコール、アセトン、アセトニトリル、メタノール、エタノール、シクロヘキサン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルイミダゾリジノン、キシレン、トルエン、クロロホルム、ジクロロメタンなどを使用することができる。抽出の操作は、加温下で行っても良い。また超音波(US)処理を併用しても良い。なお、抽出操作を行った後はメソ孔に残存する水分、溶剤を取り除くため減圧下、熱処理を行うのが好ましい。   When performing extraction using a solvent or water, for example, the solvent includes ethylene glycol, tetraethylene glycol, isopropyl alcohol, acetone, acetonitrile, methanol, ethanol, cyclohexane, dimethyl sulfoxide, dimethylformamide, dimethylimidazolidinone, xylene, toluene , Chloroform, dichloromethane and the like can be used. The extraction operation may be performed under heating. Further, ultrasonic (US) treatment may be used in combination. In addition, after performing extraction operation, in order to remove the water | moisture content and solvent which remain | survive in a mesopore, it is preferable to heat-process under reduced pressure.

このようにして得られる酸化物多孔質体は、メソポーラス構造体であり、キュービック構造を有する。テンプレートとして式(1)で示される末端分岐型共重合体を用いると、均一なメソ孔を有し、その平均孔径が10〜30nm、好ましくは20〜30nmである酸化物多孔質体を得ることができる。   The oxide porous body thus obtained is a mesoporous structure and has a cubic structure. When the terminal branched copolymer represented by the formula (1) is used as a template, an oxide porous body having uniform mesopores and an average pore diameter of 10 to 30 nm, preferably 20 to 30 nm is obtained. Can do.

(比表面積)
多孔質体の比表面積は、窒素吸着によって求めることができる。粒子の窒素吸脱着測定を、オートソーブ3(カンタクローム社製)を用いて測定し、比表面積をBET(Brunauer-Emmett-Teller)法で、細孔容積をBJH(Barrett-Joyner-Halenda)法により算出した。
(Specific surface area)
The specific surface area of the porous body can be determined by nitrogen adsorption. Measurement of nitrogen adsorption / desorption of particles using Autosorb 3 (manufactured by Cantachrome), specific surface area by BET (Brunauer-Emmett-Teller) method, and pore volume by BJH (Barrett-Joyner-Halenda) method Calculated.

(本発明の多孔質体)
本発明に係る、比表面積が10m/g以下である多孔質無機酸化物は、以下のように調製することができる。すなわち、前述したキュービック相構造を有するメソポーラス材料は無機酸化物のゾルゲルを300〜600℃程度で焼成することにより得られるものであるが、この段階では比表面積が通常200〜1000m/gとなっている。このような多孔質無機酸化物をさらに800℃以上、好ましくは850〜1000℃で焼成することにより、本発明の多孔質無機酸化物が得られる。
焼成温度が800℃未満では、比表面積が10m/gを上回る場合があり、焼成温度が1000℃を超えると、無機酸化物自体の構造が変化して細孔が失われるおそれがある。
(Porous material of the present invention)
The porous inorganic oxide according to the present invention having a specific surface area of 10 m 2 / g or less can be prepared as follows. That is, the mesoporous material having the cubic phase structure described above is obtained by baking a sol-gel of inorganic oxide at about 300 to 600 ° C., but at this stage, the specific surface area is usually 200 to 1000 m 2 / g. ing. By firing such a porous inorganic oxide at 800 ° C. or higher, preferably 850 to 1000 ° C., the porous inorganic oxide of the present invention can be obtained.
When the calcination temperature is less than 800 ° C., the specific surface area may exceed 10 m 2 / g, and when the calcination temperature exceeds 1000 ° C., the structure of the inorganic oxide itself may change and pores may be lost.

本発明による多孔質体が10m/g以下の比表面積を示す理由は、
キュービック相構造を有する多孔体を800℃以上で焼成することにより、キュービック相構造を形成する細孔同士を連結している貫通孔表面のシラノール基が脱水縮合を起こして閉塞するためであると考えられる。キュービック相構造を形成する細孔も貫通孔と同様に収縮すると考えられるが、径が大きい為に閉塞するまでには至らず、クローズドポアを有する多孔体となると推定される。
The reason why the porous body according to the present invention has a specific surface area of 10 m 2 / g or less is as follows:
It is thought that by firing a porous body having a cubic phase structure at 800 ° C. or higher, silanol groups on the surface of the through-holes connecting the pores forming the cubic phase structure are dehydrated and blocked. It is done. The pores forming the cubic phase structure are also considered to shrink in the same manner as the through-holes. However, since the diameter is large, the pores are not closed and are estimated to be a porous body having closed pores.

焼成は、一定温度で行っても良いし、室温から除々に昇温しても構わない。焼成の時間は、温度に応じて変えられるが、1時間から24時間の範囲で行うのが好ましい。焼成は空気中で行ってもよいし、窒素、アルゴンなどの不活性ガス中で行ってもよい。また、減圧下、または真空中で行っても構わない
多孔質体の細孔がヘキサゴナル(六方晶)構造である場合には、800℃以上で焼成を行っても比表面積の変化が小さく、10m/g以下とならないことがある。
Firing may be performed at a constant temperature, or may be gradually raised from room temperature. The firing time can be changed according to the temperature, but it is preferably performed in the range of 1 hour to 24 hours. Firing may be performed in air or in an inert gas such as nitrogen or argon. In addition, when the pores of the porous body that may be performed under reduced pressure or in a vacuum have a hexagonal (hexagonal) structure, the change in the specific surface area is small even when firing at 800 ° C. or higher. It may not be 2 / g or less.

<末端分岐型共重合体の合成例>
数平均分子量(Mn)、重量平均分子量(Mw)および分子量分布(Mw/Mn)はGPCを用い、本文中に記載した方法で測定した。また、融点(Tm)はDSCを用い、測定して得られたピークトップ温度を採用した。なお、測定条件によりポリアルキレングリコール部分の融点も確認されるが、ここでは特に断りのない場合ポリオレフィン部分の融点のことを指す。H−NMRについては、測定サンプル管中で重合体を、ロック溶媒と溶媒を兼ねた重水素化−1,1,2,2−テトラクロロエタンに完全に溶解させた後、120℃において測定した。ケミカルシフトは、重水素化−1,1,2,2−テトラクロロエタンのピークを5.92ppmとして、他のピークのケミカルシフト値を決定した。分散液中の粒子の粒子径はマイクロトラックUPA(HONEYWELL社製)にて、体積50%平均粒子径を測定した。分散液中の粒子の形状観察は、試料を200倍から500倍に希釈し、リンタングステン酸によりネガティブ染色した後、透過型電子顕微鏡(TEM/日立製作所製H−7650)で100kVの条件にて行なった。
[合成例1]
<Synthesis example of terminal branched copolymer>
Number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) were measured by GPC using the method described in the text. Moreover, the peak top temperature obtained by measuring using DSC was employ | adopted for melting | fusing point (Tm). In addition, although melting | fusing point of a polyalkylene glycol part is also confirmed by measurement conditions, here, unless there is particular notice, it refers to melting | fusing point of a polyolefin part. 1 H-NMR was measured at 120 ° C. after completely dissolving the polymer in deuterated 1,1,2,2-tetrachloroethane serving as a lock solvent and a solvent in a measurement sample tube. . The chemical shift was determined by setting the peak of deuterated 1,1,2,2-tetrachloroethane to 5.92 ppm and determining the chemical shift value of other peaks. As for the particle diameter of the particles in the dispersion, a 50% volume average particle diameter was measured with Microtrac UPA (manufactured by HONEYWELL). The shape of the particles in the dispersion was observed by diluting the sample 200 to 500 times, negatively staining with phosphotungstic acid, and then using a transmission electron microscope (TEM / H-7650 manufactured by Hitachi, Ltd.) at 100 kV. I did it.
[Synthesis Example 1]

(ポリオレフィン系末端分岐型共重合体(T)の合成)
以下の手順(例えば、特開2006−131870号公報の合成例2参照)に従って、末端エポキシ基含有エチレン重合体を合成した。
(Synthesis of polyolefin end-branched copolymer (T))
A terminal epoxy group-containing ethylene polymer was synthesized according to the following procedure (for example, see Synthesis Example 2 of JP-A-2006-131870).

充分に窒素置換した内容積2000mlのステンレス製オートクレーブに、室温でヘプタン1000mlを装入し、150℃に昇温した。続いてオートクレーブ内をエチレンで30kg/cmG加圧し、温度を維持した。MMAO(東ソーファインケム社製)のヘキサン溶液(アルミニウム原子換算1.00mmol/ml)0.5ml(0.5mmol)を圧入し、次いで下記式の化合物のトルエン溶液(0.0002mmol/ml)0.5ml(0.0001mmol)を圧入し、重合を開始した。エチレンガス雰囲気下、150℃で30分間重合を行った後、少量のメタノールを圧入することにより重合を停止した。得られたポリマー溶液を、少量の塩酸を含む3リットルのメタノール中に加えてポリマーを析出させた。メタノールで洗浄後、80℃にて10時間減圧乾燥し、片末端二重結合含有エチレン系重合体を得た。 A stainless steel autoclave with an internal volume of 2000 ml sufficiently purged with nitrogen was charged with 1000 ml of heptane at room temperature, and the temperature was raised to 150 ° C. Subsequently, 30 kg / cm 2 G was pressurized with ethylene in the autoclave to maintain the temperature. A hexane solution (1.00 mmol / ml of aluminum atom equivalent) of MMAO (manufactured by Tosoh Finechem) was injected with 0.5 ml (0.5 mmol), and then a toluene solution (0.0002 mmol / ml) of a compound of the following formula: 0.5 ml (0.0001 mmol) was injected to initiate the polymerization. After carrying out the polymerization at 150 ° C. for 30 minutes in an ethylene gas atmosphere, the polymerization was stopped by press-fitting a small amount of methanol. The obtained polymer solution was added to 3 liters of methanol containing a small amount of hydrochloric acid to precipitate a polymer. After washing with methanol, it was dried under reduced pressure at 80 ° C. for 10 hours to obtain a single-end double bond-containing ethylene polymer.

500mlセパラブルフラスコに上記片末端二重結合含有エチレン系重合体(P−1)100g(Mn850として,ビニル基108mmol)、トルエン300g、NaWO0.85g(2.6mmol)、CH(nC17NHSO0.60g(1.3mmol)、およびリン酸0.11g(1.3mmol)を仕込み、撹拌しながら30分間加熱還流し、重合物を完全に溶融させた。内温を90℃にした後、30%過酸化水素水37g(326mmol)を3時間かけて滴下した後、内温90〜92℃で3時間撹拌した。その後、90℃に保ったまま25%チオ硫酸ナトリウム水溶液34.4g(54.4mmol)を添加して30分撹拌し、過酸化物試験紙で反応系内の過酸化物が完全に分解されたことを確認した。次いで、内温90℃でジオキサン200gを加え、生成物を晶析させ、固体をろ取しジオキサンで洗浄した。得られた固体を室温下、50%メタノール水溶液中で撹拌、固体をろ取しメタノールで洗浄した。更に当該固体をメタノール400g中で撹拌して、ろ取しメタノールで洗浄した。室温、1〜2hPaの減圧下乾燥させることにより、末端エポキシ基含有エチレン重合体の白色固体96.3gを得た(収率99%,オレフィン転化率100%)。 In a 500 ml separable flask, 100 g of the ethylene polymer (P-1) containing one terminal double bond (Mn850, vinyl group 108 mmol), toluene 300 g, Na 2 WO 4 0.85 g (2.6 mmol), CH 3 ( nC 8 H 17 ) 3 NHSO 4 0.60 g (1.3 mmol) and phosphoric acid 0.11 g (1.3 mmol) were charged, and the mixture was heated to reflux with stirring for 30 minutes to completely melt the polymer. After the internal temperature was set to 90 ° C., 37 g (326 mmol) of 30% hydrogen peroxide solution was added dropwise over 3 hours, and the mixture was stirred at an internal temperature of 90 to 92 ° C. for 3 hours. Thereafter, 34.4 g (54.4 mmol) of a 25% aqueous sodium thiosulfate solution was added while maintaining the temperature at 90 ° C., and the mixture was stirred for 30 minutes. The peroxide in the reaction system was completely decomposed with the peroxide test paper. It was confirmed. Subsequently, 200 g of dioxane was added at an internal temperature of 90 ° C. to crystallize the product, and the solid was collected by filtration and washed with dioxane. The obtained solid was stirred in a 50% aqueous methanol solution at room temperature, and the solid was collected by filtration and washed with methanol. Further, the solid was stirred in 400 g of methanol, collected by filtration and washed with methanol. By drying under reduced pressure of 1 to 2 hPa at room temperature, 96.3 g of a white solid of a terminal epoxy group-containing ethylene polymer was obtained (yield 99%, olefin conversion rate 100%).

得られた末端エポキシ基含有エチレン重合体は、Mw=2058、Mn=1118、Mw/Mn=1.84(GPC)であった。(末端エポキシ基含有率:90mol%)
1H-NMR : δ(C2D2Cl4) 0.88(t, 3H, J = 6.92 Hz), 1.18 - 1.66 (m), 2.38 (dd,1H, J = 2.64, 5.28 Hz), 2.66 (dd, 1H, J = 4.29, 5.28 Hz), 2.80-2.87 (m, 1H)
融点(Tm) 121℃
Mw=2058、Mn=1118、Mw/Mn=1.84(GPC)
The obtained terminal epoxy group-containing ethylene polymer had Mw = 2058, Mn = 1118, and Mw / Mn = 1.84 (GPC). (Terminal epoxy group content: 90 mol%)
1 H-NMR: δ (C2D2Cl4) 0.88 (t, 3H, J = 6.92 Hz), 1.18-1.66 (m), 2.38 (dd, 1H, J = 2.64, 5.28 Hz), 2.66 (dd, 1H, J = 4.29, 5.28 Hz), 2.80-2.87 (m, 1H)
Melting point (Tm) 121 ℃
Mw = 2058, Mn = 1118, Mw / Mn = 1.84 (GPC)

1000mLフラスコに、末端エポキシ基含有エチレン重合体84重量部、ジエタノールアミン39.4重量部、トルエン150重量部 を仕込み、150℃にて4時間撹拌した。その後、冷却しながらアセトンを加え、反応生成物を析出させ、固体を濾取した。得られた固体をアセトン水溶液で1回、更にアセトンで3回撹拌洗浄した後、固体を濾取した。その後、室温にて減圧下乾燥させることにより、重合体(Mn=1223、一般式(9)においてA:エチレンの重合により形成される基(Mn=1075)、R=R=水素原子、Y、Yの一方が水酸基、他方がビス(2-ヒドロキシエチル)アミノ基)を得た。
1H-NMR : δ(C2D2Cl4) 0.88 (t, 3H, J = 6.6 Hz), 0.95-1.92 (m), 2.38-2.85 (m, 6H), 3.54-3.71 (m, 5H)
融点 (Tm) 121℃
A 1000 mL flask was charged with 84 parts by weight of a terminal epoxy group-containing ethylene polymer, 39.4 parts by weight of diethanolamine, and 150 parts by weight of toluene, and stirred at 150 ° C. for 4 hours. Thereafter, acetone was added while cooling to precipitate the reaction product, and the solid was collected by filtration. The obtained solid was stirred and washed once with an aqueous acetone solution and further three times with acetone, and then the solid was collected by filtration. Thereafter, by drying under reduced pressure at room temperature, a polymer (Mn = 1223, A: a group formed by polymerization of ethylene (Mn = 1075) in the general formula (9) (Mn = 1075), R 1 = R 2 = hydrogen atom, One of Y 1 and Y 2 was a hydroxyl group, and the other was a bis (2-hydroxyethyl) amino group.
1 H-NMR: δ (C2D2Cl4) 0.88 (t, 3H, J = 6.6 Hz), 0.95-1.92 (m), 2.38-2.85 (m, 6H), 3.54-3.71 (m, 5H)
Melting point (Tm) 121 ℃

窒素導入管、温度計、冷却管、撹拌装置を備えた500mLフラスコに、重合体20.0重量部、トルエン100重量部を仕込み、撹拌しながら125℃のオイルバスで加熱し、固体を完全に溶解した。90℃まで冷却後、予め5.0重量部の水に溶解した0.323重量部の85%KOHをフラスコに加え、還流条件で2時間混合した。その後、フラスコ内温度を120℃まで徐々に上げながら、水及びトルエンを留去した。さらに、フラスコ内にわずかな窒素を供給しながらフラスコ内を減圧とし、さらに内温を150℃まで昇温後、4時間保ち、フラスコ内の水及びトルエンをさらに留去した。室温まで冷却後、フラスコ内で凝固した固体を砕き、取り出した。   A 500 mL flask equipped with a nitrogen inlet tube, thermometer, condenser, and stirrer is charged with 20.0 parts by weight of polymer and 100 parts by weight of toluene and heated in an oil bath at 125 ° C. while stirring to completely remove the solid. Dissolved. After cooling to 90 ° C., 0.323 parts by weight of 85% KOH previously dissolved in 5.0 parts by weight of water was added to the flask and mixed for 2 hours under reflux conditions. Thereafter, water and toluene were distilled off while gradually raising the temperature in the flask to 120 ° C. Further, while supplying a slight amount of nitrogen to the flask, the pressure in the flask was reduced, and the internal temperature was raised to 150 ° C. and maintained for 4 hours to further distill off water and toluene in the flask. After cooling to room temperature, the solidified solid in the flask was crushed and taken out.

加熱装置、撹拌装置、温度計、圧力計、安全弁を備えたステンレス製1.5L加圧反応器に、得られた固体のうち18.0重量部及び脱水トルエン200重量部を仕込み、気相を窒素に置換した後、撹拌しながら130℃まで昇温した。30分後、エチレンオキシド9.0重量部を加え、さらに5時間、130℃で保った後、室温まで冷却し、反応物を得た。得られた反応物より溶媒を乾燥して除き、末端分岐型共重合体(T)(Mn=1835、一般式(1)においてA:エチレンの重合により形成される基(Mn=1075)、R=R=水素原子、X、Xの一方が一般式(6)で示される基(X11=ポリエチレングリコール基)、他方が一般式(5)で示される基(Q=Q=エチレン基、X=X10=ポリエチレングリコール基))を得た。
H-NMR : δ(C2D2Cl4) 0.88(3H, t, J= 6.8 Hz), 1.06 - 1.50 (m), 2.80 - 3.20 (m), 3.33 - 3.72 (m)
融点(Tm) −16℃(ポリエチレングリコール)、116℃
A stainless steel 1.5 L pressure reactor equipped with a heating device, a stirring device, a thermometer, a pressure gauge, and a safety valve was charged with 18.0 parts by weight of the obtained solid and 200 parts by weight of dehydrated toluene. After substituting with nitrogen, the temperature was raised to 130 ° C. with stirring. After 30 minutes, 9.0 parts by weight of ethylene oxide was added, and the mixture was further maintained at 130 ° C. for 5 hours, and then cooled to room temperature to obtain a reaction product. The solvent is removed from the obtained reaction product by drying, and a terminal branched copolymer (T) (Mn = 1835, A: a group formed by polymerization of ethylene in the general formula (1) (Mn = 1975), R 1 = R 2 = hydrogen atom, one of X 1 and X 2 is a group represented by the general formula (6) (X 11 = polyethylene glycol group), and the other is a group represented by the general formula (5) (Q 1 = Q 2 = ethylene group, X 9 = X 10 = polyethylene glycol group)).
1 H-NMR: δ (C2D2Cl4) 0.88 (3H, t, J = 6.8 Hz), 1.06-1.50 (m), 2.80-3.20 (m), 3.33-3.72 (m)
Melting point (Tm) -16 ° C (polyethylene glycol), 116 ° C

<末端分岐型共重合体水性分散体の調製例>
[調製例1]
(10重量%ポリオレフィン系末端分岐型共重合体(T)水性分散液の調製)
(A)重合粒子を構成する合成例1のポリオレフィン系末端分岐型共重合体(T)10重量部と溶媒(C)の蒸留水40重量部を100mlのオートクレーブに装入し、140℃、800rpmの速度で30分間加熱撹拌したの後、撹拌を保ったまま室温まで冷却した。得られた分散系の体積50%平均粒子径は0.018μm(体積10%平均粒子径0.014μm、体積90%平均粒子径0.022μm)であった。得られた分散系の透過型電子顕微鏡により測定した粒子径は0.015−0.030μmであった。更に、このT−1水性分散液(固形分20重量%)75重量部に対して蒸留水75重量部を加えることで10重量%水性分散液を得た。
<Preparation Example of Terminal Branched Copolymer Aqueous Dispersion>
[Preparation Example 1]
(Preparation of 10% by weight polyolefin end-branched copolymer (T) aqueous dispersion)
(A) 10 parts by weight of the polyolefin-based terminally branched copolymer (T) of Synthesis Example 1 constituting polymer particles and 40 parts by weight of distilled water of the solvent (C) were charged into a 100 ml autoclave, and 140 ° C., 800 rpm The mixture was heated and stirred at a speed of 30 minutes, and then cooled to room temperature while maintaining stirring. The obtained dispersion had a volume 50% average particle size of 0.018 μm (volume 10% average particle size 0.014 μm, volume 90% average particle size 0.022 μm). The particle diameter measured by a transmission electron microscope of the obtained dispersion was 0.015-0.030 μm. Further, 75 parts by weight of distilled water was added to 75 parts by weight of this T-1 aqueous dispersion (solid content 20% by weight) to obtain a 10% by weight aqueous dispersion.

(ポリオレフィン系末端分岐型共重合体/TMOS脱水縮合物溶液の調製)
テトラメトキシシラン(TMOS)10重量部に溶媒のメタノール15重量部を添加し、室温で攪拌した。さらに触媒の1M―シュウ酸水溶液2重量部を滴下した後(ポリオレフィン系末端分岐型共重合体添加後のpHを3付近にするため)、室温で攪拌し、TMOSの脱水縮合物を得た。
(Preparation of polyolefin end-branched copolymer / TMOS dehydrated condensate solution)
15 parts by weight of methanol as a solvent was added to 10 parts by weight of tetramethoxysilane (TMOS) and stirred at room temperature. Further, 2 parts by weight of a 1M oxalic acid aqueous solution of the catalyst was dropped (to make the pH after adding the polyolefin end-branched copolymer close to 3), followed by stirring at room temperature to obtain a dehydrated condensate of TMOS.

得られたTMOSの脱水縮合物に、ポリオレフィン系末端分岐型共重合体(T−1)の水性分散体(固形分10重量%)を73重量部滴下し、室温で攪拌し、ポリオレフィン系末端分岐型共重合体/TMOS脱水縮合物溶液を調製した。(ポリオレフィン系末端分岐型共重合体/シリカ:SiO換算の重量比が65/35)
シリカ含有量は、複合粒子中に占めるシリカの含有の割合を示し、以下の方法で算出した。シリカ含有率は、TMOSが100重量%反応し、SiOになったと仮定して算出した。すなわち
TMOS:Mw=152
SiO:Mw=60 より、
SiO/TMOS=60/152=0.395である。つまり、TMOSの添加量に0.395を掛けた値が、粒子中のSiO含量となる。
To the resulting dehydrated condensate of TMOS, 73 parts by weight of an aqueous dispersion (solid content 10% by weight) of a polyolefin end-branched copolymer (T-1) was dropped, stirred at room temperature, and polyolefin end-branched Type copolymer / TMOS dehydrated condensate solution was prepared. (Polyolefin end-branched copolymer / silica: SiO 2 weight ratio is 65/35)
The silica content indicates the proportion of silica contained in the composite particles, and was calculated by the following method. The silica content was calculated on the assumption that 100% by weight of TMOS reacted to become SiO 2 . That is, TMOS: Mw = 152
SiO 2 : From Mw = 60,
SiO 2 /TMOS=60/152=0.395. That is, the value obtained by multiplying the amount of TMOS added by 0.395 is the SiO 2 content in the particles.

(ポリオレフィン系末端分岐型共重合体/シリカ複合粒子の形成)
この組成物をスプレードライヤー装置(ヤマト科学社製スプレードライヤーADL311S)に流し込み、ノズル出口温度190℃で加圧(0.2MPa)し、噴霧することで、ポリオレフィン系末端分岐型共重合体/シリカの複合微粒子を得た。
(実施例1)
(Formation of polyolefin end-branched copolymer / silica composite particles)
This composition was poured into a spray dryer apparatus (spray dryer ADL311S manufactured by Yamato Scientific Co., Ltd.), pressurized (0.2 MPa) at a nozzle outlet temperature of 190 ° C., and sprayed to obtain a polyolefin end-branched copolymer / silica. Composite fine particles were obtained.
Example 1

工程1:多孔質二酸化珪素粒子の形成
得られたポリオレフィン系末端分岐型共重合体/シリカ複合粒子を、電気炉を用いて、室温から600℃まで毎分5℃の速度で昇温し、さらに600℃で2時間焼成することによってポリオレフィン系末端分岐型共重合体を除去してキュービック細孔配列を有するシリカ多孔粒子を得た。
Step 1: Formation of porous silicon dioxide particles The obtained polyolefin end-branched copolymer / silica composite particles are heated from room temperature to 600 ° C at a rate of 5 ° C per minute using an electric furnace, By firing at 600 ° C. for 2 hours, the polyolefin end-branched copolymer was removed to obtain porous silica particles having cubic pore arrays.

「キュービック細孔配列を有する多孔質二酸化珪素 1000℃焼成」
工程2:独立細孔を有する多孔質二酸化珪素粒子の形成
得られた多孔質二酸化珪素粒子を、電気炉を用いて、室温から1000℃まで毎分10℃の速度で昇温し、さらに1000℃で1時間熱処理することによって、キュービック型細孔配列を有する多孔粒子の1000℃熱処理品を得た。
(比較例1)
“Porous silicon dioxide having cubic pore arrangement, calcined at 1000 ° C.”
Step 2: Formation of porous silicon dioxide particles having independent pores The obtained porous silicon dioxide particles were heated from room temperature to 1000 ° C at a rate of 10 ° C per minute using an electric furnace, and further 1000 ° C Was heat-treated for 1 hour to obtain a 1000 ° C. heat-treated product of porous particles having cubic type pore arrays.
(Comparative Example 1)

「キュービック細孔配列を有する多孔質二酸化珪素 600℃焼成」
実施例1の『工程1:多孔質二酸化珪素粒子の形成』と全く同様の方法で、キュービック細孔配列を有する多孔質二酸化珪素粒子を得た。工程2は行わなかった。
(比較例2)
“Porous silicon dioxide having cubic pore arrangement, 600 ° C. firing”
Porous silicon dioxide particles having a cubic pore array were obtained in the same manner as in “Step 1: Formation of porous silicon dioxide particles” in Example 1. Step 2 was not performed.
(Comparative Example 2)

「キュービック細孔配列を有する多孔質二酸化珪素 1100℃焼成」
実施例1の『工程2:独立細孔を有する多孔質二酸化珪素粒子の形成』の熱処理温度を1000℃から1100℃に変えたこと以外は、実施例1と同様の方法で、キュービック型細孔配列を有する多孔粒子の1100℃熱処理品を得た。
(比較例3)
“Porous silicon dioxide having cubic pore arrangement, calcined at 1100 ° C.”
Cubic pores were produced in the same manner as in Example 1 except that the heat treatment temperature of “Step 2: Formation of porous silicon dioxide particles having independent pores” in Example 1 was changed from 1000 ° C. to 1100 ° C. A 1100 ° C. heat-treated product of porous particles having an array was obtained.
(Comparative Example 3)

「ヘキサゴナル相多孔質二酸化珪素」
比較例3としてヘキサゴナル細孔構造を有する多孔質二酸化珪素粒子(アドマポーラスPC700G:アドマテックス社製)を用いた。
(比較例4)
"Hexagonal porous silicon dioxide"
As Comparative Example 3, porous silicon dioxide particles having a hexagonal pore structure (Admaporous PC700G: manufactured by Admatechs) were used.
(Comparative Example 4)

「ヘキサゴナル相多孔質二酸化珪素 1000℃焼成」
比較例3のアドマポーラスPC700Gを電気炉を用いて、室温から1000℃まで毎分10℃の速度で昇温し、さらに1000℃で1時間熱処理することによって、ヘキサゴナル型細孔配列を有する多孔質二酸化珪素粒子の1,000℃熱処理品を得た。
(比較例5)
"Hexagonal porous silicon dioxide 1000 ° C firing"
Porous dioxide dioxide having a hexagonal type pore arrangement was obtained by heating the Admaporous PC700G of Comparative Example 3 from room temperature to 1000 ° C. at a rate of 10 ° C. per minute using an electric furnace and further heat treating at 1000 ° C. for 1 hour. A 1000 ° C. heat-treated product of silicon particles was obtained.
(Comparative Example 5)

比較例1と同様の製法で600℃にて焼成したキュービック細孔配列を有する多孔質二酸化珪素粒子を得た。さらにこの多孔質二酸化珪素粒子の疎水化処理を行った。 Porous silicon dioxide particles having cubic pore arrays fired at 600 ° C. by the same production method as in Comparative Example 1 were obtained. Further, the porous silicon dioxide particles were hydrophobized.

疎水化処理はヘキサメチルジシラザン(HMDS)を用い、化学気相吸着(CVA)法により実施した。CVAは300mlPTFE製耐圧容器中に、0.3gのHMDSと多孔質二酸化珪素粒子1〜2gを入れ、50℃にて2hr反応させた。 The hydrophobization treatment was performed by chemical vapor deposition (CVA) method using hexamethyldisilazane (HMDS). CVA was charged with 0.3 g of HMDS and 1-2 g of porous silicon dioxide particles in a 300 ml PTFE pressure vessel and reacted at 50 ° C. for 2 hours.

以上により得られた実施例1のキュービック型細孔配列を有する多孔粒子の1000℃熱処理品、比較例1のキュービック細孔配列を有する多孔質二酸化珪素粒子、比較例2のキュービック型細孔配列を有する多孔質二酸化珪素粒子の1100℃熱処理品、比較例3のヘキサゴナル細孔配列を有する多孔質二酸化珪素粒子、比較例4のヘキサゴナル細孔配列を有する多孔質二酸化珪素粒子の1000℃熱処理品および比較例5のキュービック細孔配列を有する多孔質二酸化珪素粒子の疎水処理品について、以下の評価を行った。   1000 ° C. heat treated product of the porous particles having the cubic type pore arrangement of Example 1 obtained as described above, the porous silicon dioxide particles having the cubic pore arrangement of Comparative Example 1, and the cubic type pore arrangement of Comparative Example 2 1100 ° C. heat treated product of porous silicon dioxide particles having, 1000 ° C. heat treated product of porous silicon dioxide particles having hexagonal pore arrangement of Comparative Example 4, and porous silicon dioxide particles having hexagonal pore arrangement of Comparative Example 4 and comparison The following evaluation was performed on the hydrophobic treated product of porous silicon dioxide particles having the cubic pore arrangement of Example 5.

(窒素吸着による比表面積・細孔径の評価)
実施例1、比較例1〜4の粒子の比表面積を以下の方法で観察した。粉体の比表面積は、窒素吸着によって求めることができる。粒子の窒素吸脱着測定を、オートソーブ3(カンタクローム社製)を用いて測定し、比表面積をBET(Brunauer-Emmett-Teller)法で、細孔径をBJH(Barrett-Joyner-Halenda)法により算出した。
(Evaluation of specific surface area and pore diameter by nitrogen adsorption)
The specific surface areas of the particles of Example 1 and Comparative Examples 1 to 4 were observed by the following method. The specific surface area of the powder can be determined by nitrogen adsorption. Measurement of nitrogen adsorption / desorption of particles using Autosorb 3 (manufactured by Cantachrome), specific surface area calculated by BET (Brunauer-Emmett-Teller) method, and pore diameter calculated by BJH (Barrett-Joyner-Halenda) method did.

キュービック型細孔を有する比較例1の粒子に1000℃または1100℃の熱処理を加えた実施例1、比較例2の粒子の比表面積は、1/10以下に低下した。一方、ヘキサゴナル型細孔を有する比較例3の粒子に1000℃の熱処理を加えた比較例4の粒子の比表面積の低下率は、1/5程度にとどまり、ほとんどの細孔が閉塞化していないことがわかる。 The specific surface area of the particles of Example 1 and Comparative Example 2 in which heat treatment at 1000 ° C. or 1100 ° C. was added to the particles of Comparative Example 1 having cubic type pores was reduced to 1/10 or less. On the other hand, the reduction rate of the specific surface area of the particles of Comparative Example 4 in which heat treatment at 1000 ° C. was added to the particles of Comparative Example 3 having hexagonal type pores was only about 1/5, and most of the pores were not blocked. I understand that.

(断面TEM観察による細孔構造の有無確認)
実施例1、比較例1〜4の粒子を樹脂で固定し、収束イオンビーム(FIB)加工によって切片を切り出した。続いて、この断面を、透過型電子顕微鏡(TEM/日立製作所製H−7650)を用い200kVの条件にて観察した。断面像を図7〜図11に示す。
(Confirmation of pore structure by cross-sectional TEM observation)
The particles of Example 1 and Comparative Examples 1 to 4 were fixed with resin, and sections were cut out by focused ion beam (FIB) processing. Subsequently, this cross section was observed under a condition of 200 kV using a transmission electron microscope (TEM / H-7650 manufactured by Hitachi, Ltd.). Cross-sectional images are shown in FIGS.

キュービック型細孔を有する比較例1の粒子に1000℃の熱処理を加えた実施例1の粒子は、キュービック型細孔が保持されていることを図7より確認した。1100℃の熱処理を加えた比較例2の粒子は、図9のように細孔が確認できなかった。高温処理により、細孔が消失したものと推定される。比較例3および比較例4の粒子はヘキサゴナル型の細孔が確認できた。    It was confirmed from FIG. 7 that the particles of Example 1 obtained by applying heat treatment at 1000 ° C. to the particles of Comparative Example 1 having cubic pores retain the cubic pores. In the particles of Comparative Example 2 subjected to heat treatment at 1100 ° C., pores could not be confirmed as shown in FIG. It is presumed that the pores disappeared by the high temperature treatment. The particles of Comparative Example 3 and Comparative Example 4 were confirmed to have hexagonal type pores.

(小角X線散乱測定による細孔構造の確認)
実施例1および比較例1の粒子の、小角X線散乱測定を行った。得られた回折像は両者ともに、複数の円環状のパターンを有し、キュービック相構造を有することが分かり、1000℃の熱処理後も細孔構造が保持されていることが確認された。
(Confirmation of pore structure by small angle X-ray scattering measurement)
Small-angle X-ray scattering measurement was performed on the particles of Example 1 and Comparative Example 1. Both of the obtained diffraction images had a plurality of annular patterns and were found to have a cubic phase structure, and it was confirmed that the pore structure was retained even after heat treatment at 1000 ° C.

(誘電率の測定)
実施例1および比較例5の粒子について、誘電特性を測定した。
誘電特性測定は自動平衡ブリッジ法による4端子法により行った。テフロン(登録商標)リング電極(主電極径=37mm、ガード電極/内径=39mmφ、外径=55mmφ)内にサンプルを充填し、ばね式電極にセットし4〜2000kgfの荷重を加えてサンプルの嵩密度を変化させ、各々の嵩密度において、試験機(PRECISION LCRmeter HP4282A)により、1kHz及び1MHzにおける誘電率及び誘電正接の値を測定した。測定は、試験雰囲気23℃、湿度50%RHの条件下で行った。
周波数1 kHzでの誘電率を図1、誘電正接を図2、誘電率の平方根と誘電正接の積を図3に、周波数1 MHzでの誘電率を図4、誘電正接を図5に、誘電率の平方根と誘電正接の積を図6に示す。一般的に低誘電率材料の伝送損失は、誘電率の平方根と誘電正接の積で評価され、その値が小さいほど低誘電率材料として優れているとされている。
(Measurement of dielectric constant)
Dielectric properties of the particles of Example 1 and Comparative Example 5 were measured.
Dielectric characteristics were measured by the 4-terminal method using the automatic balanced bridge method. Fill the sample in a Teflon ring electrode (main electrode diameter = 37 mm, guard electrode / inner diameter = 39 mmφ, outer diameter = 55 mmφ), set it on a spring-type electrode, and apply a load of 4 to 2000 kgf to increase the volume of the sample. The density was changed, and at each bulk density, values of dielectric constant and dielectric loss tangent at 1 kHz and 1 MHz were measured by a testing machine (PRECISION LCRmeter HP4282A). The measurement was performed under conditions of a test atmosphere of 23 ° C. and a humidity of 50% RH.
Fig. 1 shows the dielectric constant at 1 kHz, Fig. 2 shows the dielectric tangent, Fig. 3 shows the product of the square root of the dielectric constant and the dielectric tangent, Fig. 4 shows the dielectric constant at 1 MHz, and Fig. 5 shows the dielectric tangent. The product of the square root of the rate and the dielectric loss tangent is shown in FIG. Generally, the transmission loss of a low dielectric constant material is evaluated by the product of the square root of the dielectric constant and the dielectric loss tangent, and the smaller the value, the better the low dielectric constant material.

図3、図6から明らかなように、実施例1の独立細孔を有する多孔質粒子は非常に低い伝送損失を示している。これは、1000℃で熱処理することにより、表面の残存シラノール(Si−OH)量が低減されたことと、細孔が閉塞化されたことにより、伝送損失を悪化させる要因である水やその他の不純物の吸着が著しく抑制されたためであると考えられる。   As apparent from FIGS. 3 and 6, the porous particles having the independent pores of Example 1 exhibit very low transmission loss. This is because heat treatment at 1000 ° C. reduces the amount of residual silanol (Si—OH) on the surface and clogs the pores, which causes deterioration in transmission loss. This is probably because the adsorption of impurities was remarkably suppressed.

本発明において得られる無機酸化物多孔質体は比誘電率、誘電正接が低く、伝送損失が著しく低いため、回路基板を構成する基板または層間絶縁膜に充填して用いられる充填材として非常に有用である。さらに、本発明の無機酸化物多孔質体は、閉塞構造を取ることから粒子内部に空気が閉じ込められた状態にあり、熱の伝導率が低いことが容易に予測できる。そのため断熱材料としても有用である。   Since the inorganic oxide porous material obtained in the present invention has a low relative dielectric constant and dielectric loss tangent and has a very low transmission loss, it is very useful as a filler used to fill a substrate constituting a circuit board or an interlayer insulating film. It is. Furthermore, since the inorganic oxide porous body of the present invention has a closed structure, it can be easily predicted that air is confined inside the particles and the thermal conductivity is low. Therefore, it is also useful as a heat insulating material.

多孔質体の1 kHzでの誘電率を示すグラフであるIt is a graph which shows the dielectric constant at 1 kHz of a porous body 多孔質体の1 kHzでの誘電正接を示すグラフであるIt is a graph which shows the dielectric loss tangent at 1 kHz of a porous body. 多孔質体の1 kHzでの伝送損失を示すグラフであるIt is a graph which shows the transmission loss at 1 kHz of a porous body. 多孔質体の1 MHzでの誘電率を示すグラフであるIt is a graph which shows the dielectric constant in 1 MHz of a porous body. 多孔質体の1 MHzでの誘電正接を示すグラフであるIt is a graph which shows the dielectric loss tangent at 1 MHz of a porous body 多孔質体の1 MHzでの伝送損失を示すグラフであるIt is a graph which shows the transmission loss in 1 MHz of a porous body. 実施例1の多孔質体の断面TEM像である2 is a cross-sectional TEM image of the porous body of Example 1. FIG. 比較例1の多孔質体の断面TEM像であるIt is a cross-sectional TEM image of the porous body of the comparative example 1. 比較例2の多孔質体の断面TEM像であるIt is a cross-sectional TEM image of the porous body of the comparative example 2. 比較例3の多孔質体の断面TEM像であるIt is a cross-sectional TEM image of the porous body of the comparative example 3. 比較例4の多孔質体の断面TEM像であるIt is a cross-sectional TEM image of the porous body of the comparative example 4.

Claims (9)

キュービック型細孔構造を有し、かつ窒素吸着により求められる比表面積が10m/g以下である多孔質無機酸化物。 A porous inorganic oxide having a cubic type pore structure and a specific surface area determined by nitrogen adsorption of 10 m 2 / g or less. 無機酸化物が二酸化珪素である請求項1に記載の多孔質無機酸化物。 The porous inorganic oxide according to claim 1, wherein the inorganic oxide is silicon dioxide. キュービック型細孔構造を有する多孔質無機酸化物を、さらに800℃〜1000℃で焼成して得られる多孔質無機酸化物。 A porous inorganic oxide obtained by further firing a porous inorganic oxide having a cubic type pore structure at 800 ° C to 1000 ° C. 無機酸化物が二酸化珪素である請求項3に記載の多孔質無機酸化物。 The porous inorganic oxide according to claim 3, wherein the inorganic oxide is silicon dioxide. キュービック型細孔構造を有する多孔質無機酸化物を、さらに800℃〜1000℃で焼成して比表面積の減少した多孔質無機酸化物を得る方法。 A method of obtaining a porous inorganic oxide having a reduced specific surface area by further firing a porous inorganic oxide having a cubic type pore structure at 800 ° C. to 1000 ° C. 無機酸化物が二酸化珪素である請求項5に記載の方法。 The method according to claim 5, wherein the inorganic oxide is silicon dioxide. 請求項5に記載の方法で得られる多孔質無機酸化物。 A porous inorganic oxide obtained by the method according to claim 5. 請求項1乃至4のいずれかに記載の多孔質無機酸化物からなる低誘電損失材料。 A low dielectric loss material comprising the porous inorganic oxide according to claim 1. 請求項1乃至4のいずれかに記載の多孔質無機酸化物からなる断熱材料。 A heat insulating material comprising the porous inorganic oxide according to any one of claims 1 to 4.
JP2010143303A 2010-06-24 2010-06-24 Porous inorganic oxide and process for producing the same Active JP5646224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010143303A JP5646224B2 (en) 2010-06-24 2010-06-24 Porous inorganic oxide and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010143303A JP5646224B2 (en) 2010-06-24 2010-06-24 Porous inorganic oxide and process for producing the same

Publications (2)

Publication Number Publication Date
JP2012006783A JP2012006783A (en) 2012-01-12
JP5646224B2 true JP5646224B2 (en) 2014-12-24

Family

ID=45537785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010143303A Active JP5646224B2 (en) 2010-06-24 2010-06-24 Porous inorganic oxide and process for producing the same

Country Status (1)

Country Link
JP (1) JP5646224B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2829873B1 (en) 2012-08-27 2017-11-22 Shinwa Chemical Industries, Ltd. Porous silica powder
JP7478031B2 (en) 2020-06-02 2024-05-02 信越化学工業株式会社 Manufacturing method of low dielectric silica powder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268356A (en) * 2002-03-19 2003-09-25 Mitsui Chemicals Inc Method for manufacturing water-repellent porous silica film, water-repellent porous silica film obtained by the same and its use
JP4636869B2 (en) * 2004-12-21 2011-02-23 日揮触媒化成株式会社 Method for producing porous silica-based particles and porous silica-based particles obtained from the method
JP4883967B2 (en) * 2005-09-26 2012-02-22 日揮触媒化成株式会社 Method for producing porous silica-based particles and porous silica-based particles obtained from the method
US7651762B2 (en) * 2007-03-13 2010-01-26 Varian, Inc. Methods and devices using a shrinkable support for porous monolithic materials

Also Published As

Publication number Publication date
JP2012006783A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5555225B2 (en) Method for producing metal oxide porous body
CN115210179B (en) Hollow silica particles and method for producing hollow silica particles
US6680013B1 (en) Synthesis of macroporous structures
JP6451340B2 (en) Composite and production method thereof
EP3235788B1 (en) Blanket comprising silica aerogel and manufacturing method therefor
US20130164444A1 (en) Manufacturing method for surface-modified titanium particles, dispersion of titanium particles, and resin having titanium particles dispersed therein
JP6339889B2 (en) Method for producing metal oxide hollow particles
KR101141956B1 (en) Magnesium fluoride doped hollow silica composites with low dielectric constant, process of the composites, forming solution containing the composites and low dielectric constant substrate manufactured by the solution
WO2019069495A1 (en) Coating solution, method for producing coating film, and coating film
JP5490748B2 (en) Method for producing porous perovskite oxide
Prabunathan et al. Achieving low dielectric, surface free energy and UV shielding green nanocomposites via reinforcing bio-silica aerogel with polybenzoxazine
WO2019069494A1 (en) Coating liquid, method for manufacturing coating film, and coating film
CN111148807A (en) Coating liquid, method for producing coating film, and coating film
JP2012224509A (en) Method for producing porous body of metal oxide
JP5646224B2 (en) Porous inorganic oxide and process for producing the same
JP6102393B2 (en) Method for producing hollow silica nanoparticles
JP2019116396A (en) Silica-based particle dispersion and production method thereof
Suchomski et al. Sustainable and surfactant-free high-throughput synthesis of highly dispersible zirconia nanocrystals
JP5974683B2 (en) Particle having void inside particle and method for producing the same
JP5600718B2 (en) Method for producing hollow silica nanoparticles
JP2009149454A (en) Silicone-coated metal oxide ultrafine particle
JP2011129380A (en) Lamella porous electrolyte
JP5343669B2 (en) Mesoporous electrolyte
WO2023175994A1 (en) Hollow inorganic particle material, method for producing same, inorganic filler, slurry composition and resin composition
WO2019069493A1 (en) Coating solution, method for producing coating film, and coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141105

R150 Certificate of patent or registration of utility model

Ref document number: 5646224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250