Nothing Special   »   [go: up one dir, main page]

JP5643011B2 - Biological tissue, production method thereof, and apparatus for producing the same - Google Patents

Biological tissue, production method thereof, and apparatus for producing the same Download PDF

Info

Publication number
JP5643011B2
JP5643011B2 JP2010161331A JP2010161331A JP5643011B2 JP 5643011 B2 JP5643011 B2 JP 5643011B2 JP 2010161331 A JP2010161331 A JP 2010161331A JP 2010161331 A JP2010161331 A JP 2010161331A JP 5643011 B2 JP5643011 B2 JP 5643011B2
Authority
JP
Japan
Prior art keywords
tissue
light irradiation
light
living body
biological tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010161331A
Other languages
Japanese (ja)
Other versions
JP2012020031A5 (en
JP2012020031A (en
Inventor
中山 泰秀
泰秀 中山
大家 智憲
智憲 大家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Cerebral and Cardiovascular Center
SHINKAN KOGYO KK
Original Assignee
National Cerebral and Cardiovascular Center
SHINKAN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Cerebral and Cardiovascular Center, SHINKAN KOGYO KK filed Critical National Cerebral and Cardiovascular Center
Priority to JP2010161331A priority Critical patent/JP5643011B2/en
Publication of JP2012020031A publication Critical patent/JP2012020031A/en
Publication of JP2012020031A5 publication Critical patent/JP2012020031A5/ja
Application granted granted Critical
Publication of JP5643011B2 publication Critical patent/JP5643011B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Prostheses (AREA)

Description

本発明は、欠損組織の代替となる生体由来組織、その生産方法及びこれを生産するための装置に関する。   The present invention relates to a living body tissue that substitutes for a defective tissue, a production method thereof, and an apparatus for producing the same.

病気や事故で失われた細胞、組織、器官を、人工素材や細胞により再び蘇らせる再生医療の研究が数多くなされている。通常、身体には自己防衛機能があり、体内の浅い位置にトゲ等の異物が侵入した場合には体外へ押し出そうとするが、体内の深い位置に異物が侵入した場合にはその周りに繊維芽細胞が集まってきて、主に繊維芽細胞とコラーゲンからなる結合組織体のカプセルを形成し異物を覆うことにより、体内において隔離することが知られている。このような後者の自己防衛反応を利用して、生体内において生細胞を用いた管状の生体由来組織を形成する方法が複数報告されている(特許文献1〜3参照)。   There have been many studies on regenerative medicine in which cells, tissues, and organs lost due to illness and accidents are revived by artificial materials and cells. Normally, the body has a self-defense function, and when a foreign object such as a thorn enters a shallow position inside the body, it tries to push it out of the body, but when a foreign object enters a deep position inside the body, It is known that fibroblasts gather and sequester in the body by forming a capsule of connective tissue composed mainly of fibroblasts and collagen and covering foreign matter. A plurality of methods for forming a tubular living body tissue using living cells in the living body using the latter self-defense reaction have been reported (see Patent Documents 1 to 3).

特許文献1(特開2007−312821)には、棒状構造体の表面に螺旋状溝を形成し、この棒状構造体を生体内に埋入することにより、棒状構造体の表面に膜状の結合組織体を形成し、結合組織体の機械的強度を増加させる点が開示されている。   In Patent Document 1 (Japanese Patent Application Laid-Open No. 2007-312821), a spiral groove is formed on the surface of a rod-like structure, and the rod-like structure is embedded in a living body, whereby a membrane-like bond is formed on the surface of the rod-like structure. It is disclosed that it forms a tissue and increases the mechanical strength of the connective tissue.

特許文献2(特開2008−237896)には、棒状構造部材の外周に沿って外郭部材を螺旋形に形成し、これを生体に埋入して、棒状構造部材の外縁に結合組織体を形成する点が開示されている。結合組織体が外郭部材と棒状構造部材の表面との間に侵入し、結合組織体の内面形状が棒状構造部材の表面と同様の平滑面に形成される。結合組織体が、外郭部材を包埋する厚さに形成される。   In Patent Document 2 (Japanese Patent Laid-Open No. 2008-237896), an outer shell member is formed in a spiral shape along the outer periphery of a rod-shaped structural member, and this is embedded in a living body to form a connective tissue body on the outer edge of the rod-shaped structural member. This is disclosed. The connective tissue body enters between the outer member and the surface of the rod-shaped structural member, and the inner surface shape of the connective tissue body is formed on the same smooth surface as the surface of the rod-shaped structural member. A connective tissue body is formed to a thickness that embeds the shell member.

特許文献3(特開2010−094476)には、棒状構造部材の表面に外郭部材を形成し、これを結合組織形成用基材とする点が開示されている。この基材を生体内に埋入することにより、基材表面に膜状の組織体を形成する。その際、外郭部材の材料として、生体適合性に優れるが組織体やその構成成分に侵襲されにくい材料を使用することにより、外郭部材は組織体と癒着し結合組織体の機械的強度が増加されるとともに外郭部材の内面に組織体やその構成成分が露出しない人工血管が得られる。   Patent Document 3 (Japanese Patent Application Laid-Open No. 2010-094476) discloses that an outer member is formed on the surface of a rod-like structural member, and this is used as a connective tissue forming substrate. By embedding this base material in the living body, a film-like tissue body is formed on the surface of the base material. At that time, by using a material that is excellent in biocompatibility as a material of the outer member but is not easily invaded by the tissue body or its constituent components, the outer member adheres to the tissue body and the mechanical strength of the connective tissue body is increased. In addition, an artificial blood vessel in which the tissue body and its constituent components are not exposed on the inner surface of the outer member is obtained.

特開2007−312821号公報JP 2007-312821 A 特開2008−237896号公報JP 2008-237896 A 特開2010−094476号公報JP 2010-094476 A

しかしながら、従来の生体由来組織は、コラーゲンが主な構成成分であり、2ヶ月間かけても50〜80μm程度の膜厚の薄いものしかできない。このように膜厚が薄いと、自立性が悪く、血管組織の代替材料として移植する場合、既存の血管との吻合操作が極めて困難であるとともに、移植後に血流を回復した際、内面に血栓を生じやすく血管が閉塞するおそれがあった。   However, in the conventional biological tissue, collagen is the main constituent, and only a thin film having a thickness of about 50 to 80 μm can be formed over two months. When the film thickness is thin, the independence is poor, and when transplanting as a substitute material for vascular tissue, it is extremely difficult to perform anastomosis with an existing blood vessel. There was a possibility that the blood vessel would be blocked.

また、生物本来の血管は、コラーゲン(構造タンパク質)、エラスチン(弾性タンパク質)が複数かさなった層状組織からなり、さらに酸素や栄養を与える毛細血管を有するものであるが、従来の人工血管はコラーゲンが主体であり、生物本来の血管とはほど遠いものであった。したがって、ヒトの血管と同じような構造からなる生体由来組織の出現が望まれていた。   In addition, the original blood vessels of living organisms are composed of a layered tissue consisting of multiple collagens (structural proteins) and elastins (elastic proteins), and have capillaries that provide oxygen and nutrients. It was the subject and was far from the original blood vessels. Therefore, the appearance of a living tissue having a structure similar to that of a human blood vessel has been desired.

本発明は、上記に鑑み、生物本来の構造に近い生体由来組織、その生産方法及びこれを生産するための装置を提供することを目的とする。   In view of the above, it is an object of the present invention to provide a living body-derived tissue close to the original structure of a living organism, a production method thereof, and an apparatus for producing the same.

一般に、生体を構成する皮膚に紫外線を当てるとエラスチンが分解されることや、皮膚に光照射することによりエラスチンが増殖する現象が現れシワが解消されることなど、光照射が皮膚に影響を与えることが知られている。   In general, light irradiation affects the skin, such as elastin being decomposed when ultraviolet light is applied to the skin constituting the living body, and the phenomenon that elastin proliferates by irradiating the skin with light and the wrinkles are eliminated. It is known.

そこで、本発明者は、このような現象を応用して生体内に光を照射したところ、光照射した部分およびその周辺の生体細胞から組織新生するとの知見を得、本発明を完成するに至ったものである。   Therefore, the present inventor applied such a phenomenon to irradiate the living body with light, and obtained the knowledge that the tissue was born from the irradiated portion and the surrounding living cells, and completed the present invention. It is a thing.

すなわち、本願発明は、生体組織材料の存在する環境下で光照射手段により光照射を行うことにより形成されたことを特徴とする生体由来組織である。光照射を所定時間行うことにより、光照射部分およびその周辺に複数種類の細胞が集合した組織体が形成される。この組織体はコラーゲンに加えてエラスチンを含み、これらがかさなった部分を含む組織からなるものであり、膜厚が厚く、生物本来の有する組織体に近い構成を有する。また、膜厚が厚くなった分、組織体の中には毛細血管も形成され、血管の元になる細胞が多く存在する。したがって、より生体に近い要素が入った組織体(生体由来組織)を生産することができる。   That is, the present invention is a living tissue derived from light irradiation by light irradiation means in an environment where a biological tissue material exists. By performing the light irradiation for a predetermined time, a tissue body in which a plurality of types of cells are gathered at and around the light irradiation portion is formed. This tissue body includes elastin in addition to collagen, and is composed of a tissue including a bulky portion. The tissue body is thick and has a structure close to that of an organism originally possessed. Further, as the film thickness is increased, capillaries are also formed in the tissue, and there are many cells that are the source of the blood vessels. Therefore, it is possible to produce a tissue body (biological tissue) containing elements closer to a living body.

より具体的には、生体由来組織は、光照射手段を生体組織材料の存在する環境下へ置き、そこで光照射を行うことにより、光照射手段が従来の数倍から数十倍の厚みを有する組織体に包まれることにより生産される。形成された組織体を生体組織材料の存在する環境下から取り出すことにより、生体由来組織を生産することができる。   More specifically, in the living tissue, the light irradiation means is placed in an environment where the biological tissue material exists, and the light irradiation means has a thickness several to several tens of times that of the conventional one by performing light irradiation there. Produced by being wrapped in tissue. A tissue derived from a living body can be produced by taking out the formed tissue body from the environment where the biological tissue material exists.

このとき、光照射手段の光源を透光性のある樹脂製構造体内に埋設しておき、樹脂製構造体を通して光照射を行えば、樹脂製構造体の周りに組織体が形成される。これを生体組織材料の存在する環境下から取り出して、樹脂製構造体を抜き取ることにより、管状の生体由来組織を生産することができる。管状の生体由来組織は、管状組織として利用できるし、また、管構造をそのまま押しつぶしたり、長さ方向に切り開くことにより膜状組織としても利用することができる。また、生体由来組織の形状は、樹脂製構造体の形状で決定されるので、弁様組織体など複雑な3次元構造を構築することも可能である。   At this time, if a light source of the light irradiation means is embedded in a translucent resin structure and light is irradiated through the resin structure, a tissue body is formed around the resin structure. By removing this from the environment where the biological tissue material exists and extracting the resin structure, a tubular biological tissue can be produced. The tubular biological tissue can be used as a tubular tissue, and can also be used as a membrane tissue by crushing the tube structure as it is or by opening it in the length direction. In addition, since the shape of the biological tissue is determined by the shape of the resin structure, it is possible to construct a complicated three-dimensional structure such as a valve-like tissue.

また、上記のように、形成された組織体を生体組織材料の存在する環境下から取り出して移植用組織とする方法以外に、光ファイバ等の光照射手段を生体組織材料の存在する環境下へ置き、その照射部分に新生組織を形成させた後、光照射手段を前記環境下から取り出し、形成された生組織体をそのまま前記環境下に残して再生させる方法をとってもよい。この方法を用いて、哺乳類動物、鳥類、魚類、その他の動物において、欠損、損傷部分に光ファイバ等の光照射手段を皮下侵入させることにより、欠損又は損傷部分の再生を促すことが期待できる。   Further, as described above, in addition to the method of taking out the formed tissue body from the environment where the biological tissue material is present and making it as a tissue for transplantation, the light irradiation means such as an optical fiber is brought into the environment where the biological tissue material is present. Alternatively, after forming a new tissue on the irradiated portion, the light irradiation means may be taken out from the environment, and the formed living tissue body may be left in the environment to be regenerated. Using this method, it can be expected that in mammals, birds, fish, and other animals, regeneration of the defect or damaged part is promoted by injecting light irradiation means such as an optical fiber into the defect or damaged part subcutaneously.

光照射手段の光源については限定されるものではなく、発光ダイオード(LED)、半導体レーザ、一般電球、ハロゲン電球、蛍光ランプ、HIDランプ等、さらには化学発光材料、蛍光物質等が例示され、これらを単数又は複数を組み合わせて用いてもよいが、これらの中でもLEDは熱発生量が少なく、点灯、消灯の制御が容易であるため好ましい。また、光源の数は少なくとも1つあればよいが、縦列、並列、積層等して複数設けてもよい。光源を複数設けること、あるいは反射材と組み合わせることによって、広範囲の生体組織材料に光を照射することができる。   The light source of the light irradiation means is not limited, and examples thereof include light emitting diodes (LEDs), semiconductor lasers, general light bulbs, halogen light bulbs, fluorescent lamps, HID lamps, chemiluminescent materials, fluorescent materials, and the like. These may be used singly or in combination. However, among these, the LED is preferable because it generates a small amount of heat and can be easily controlled to be turned on and off. The number of light sources may be at least one, but a plurality of light sources may be provided in columns, in parallel, or stacked. By providing a plurality of light sources or combining with a reflecting material, a wide range of biological tissue materials can be irradiated with light.

光照射手段から照射される光の波長は限定されるものではなく、可視光、赤外光、紫外光が挙げられるが、通常皮下には浸透せず、かつDNAに損傷を与えることのない可視光が好ましいと考えられる。また、青色、緑色、黄色、赤色の可視光の中でも、エネルギーの高い紫外線領域に近い青色から緑色の可視光が好ましいと考えられる。さらにまた、光照射手段から照射される光は、波長530nm以下の光を含むことが好ましい。この範囲内であれば、エラスチン及び毛細血管を含み、膜厚が厚く、生物本来により近い構成の組織体を形成することを期待できる。   The wavelength of the light irradiated from the light irradiation means is not limited, and examples thereof include visible light, infrared light, and ultraviolet light. However, visible light that does not penetrate into the skin and does not damage DNA is usually used. Light is considered preferred. Further, among blue, green, yellow, and red visible light, blue to green visible light close to the high energy ultraviolet region is considered preferable. Furthermore, it is preferable that the light irradiated from the light irradiation means includes light having a wavelength of 530 nm or less. If it is in this range, it can be expected to form a tissue structure that includes elastin and capillaries, has a thick film thickness, and is closer to the organism itself.

光照射手段の光照射パターンは、連続でもパルス状でもよいし、また、途中で光の波長、色等の種類を変更するようにしてもよい。光照射時間は、生体組織材料の存在する環境の違いによって異なるが、ビーグル犬の背部皮下へ埋入した場合、約2週間で十分な膜厚の生体由来組織を得ることができることが分かった。   The light irradiation pattern of the light irradiation means may be continuous or pulsed, or the type of light wavelength, color, etc. may be changed during the process. Although the light irradiation time varies depending on the environment in which the biological tissue material exists, it has been found that a living body-derived tissue having a sufficient film thickness can be obtained in about 2 weeks when implanted under the back of a beagle dog.

形成された生体由来組織は、膜状組織、弁状組織又は管状組織を含む結合組織となる。膜状組織としては、心膜、硬膜、角膜、皮膚、心膜等が挙げられ、表層を覆うあるいは膜状で機能する平面状の組織である。弁状組織としては、心臓弁、静脈弁等が挙げられる。管状組織としては、血管、リンパ管、気管、胆管、腸管、尿道管、尿管、卵管等が挙げられる。   The formed living body tissue becomes a connective tissue including a membranous tissue, a valve-like tissue, or a tubular tissue. Examples of the membranous tissue include pericardium, dura mater, cornea, skin, pericardium and the like, and are planar tissues that cover the surface layer or function in a membranous form. Examples of valve-like tissues include heart valves and venous valves. Examples of the tubular tissue include blood vessels, lymphatic vessels, trachea, bile ducts, intestinal tracts, urethral tubes, ureters, oviducts, and the like.

本発明において、「生体組織材料」とは、所望の生体由来組織を形成するうえで必要な物質のことであり、例えば、線維芽細胞、平滑筋細胞、内皮細胞、幹細胞、ES細胞、iPS細胞等の動物細胞、各種たんぱく質類(コラーゲン、エラスチン)、ヒアルロン酸等の糖類、その他、細胞成長因子、サイトカイン等の生体内に存在する各種の生理活性物質が挙げられる。   In the present invention, the “biological tissue material” refers to a substance necessary for forming a desired biological tissue, such as fibroblasts, smooth muscle cells, endothelial cells, stem cells, ES cells, iPS cells. Animal cells such as, various proteins (collagen, elastin), saccharides such as hyaluronic acid, and other various physiologically active substances existing in the body such as cell growth factors and cytokines.

また、本発明において、「生体組織材料」には、ヒト、イヌ、ウシ、ブタ、ヤギ、ヒツジ等の哺乳類動物、鳥類、魚類、その他の動物に由来するもの、又はこれと同等の人工材料が含まれる。また、移植対象者に対して、自家移植、同種移植、異種移植のいずれでもよいが、拒絶反応を避ける観点からなるべく自家移植か同種移植が好ましい。また、異種移植の場合には、拒絶反応を避けるため公知の脱細胞化処理などの免疫源除去処理を施すのが好ましい。   In the present invention, the “biological tissue material” is derived from mammals such as humans, dogs, cows, pigs, goats and sheep, birds, fish and other animals, or artificial materials equivalent thereto. included. In addition, autotransplantation, allotransplantation, and xenotransplantation may be performed for the transplant recipient, but autotransplantation or allotransplantation is preferable from the viewpoint of avoiding rejection. In the case of xenotransplantation, it is preferable to perform an immunogen removal process such as a known decellularization process in order to avoid rejection.

また、「生体組織材料の存在する環境下」とは、動物(ヒト、イヌ、ウシ、ブタ、ヤギ、ヒツジ等の哺乳類動物、鳥類、魚類、その他の動物)の生体内(例えば、四肢部、腰部、背部又は腹部などの皮下、もしくは腹腔内への埋入)、又は、動物の生体外において、生体組織材料を含有する人工環境内を表す。また、動物へ埋入の方法をとる場合には低侵襲な方法で行うことと、動物愛護の精神を尊重し、十分な麻酔下で最小限の切開術で行うことが好ましい。   In addition, “in the environment where biological tissue material is present” means in vivo (for example, limbs, mammals such as humans, dogs, cows, pigs, goats, sheep, birds, fish, and other animals). It represents the inside of an artificial environment containing a biological tissue material outside the living body of an animal). In addition, it is preferable to use a minimally invasive method under the sufficient anesthesia with respect to the spirit of animal welfare when taking the method of implantation into animals.

生体組織材料の存在する環境下で光照射手段により光照射を行うことにより、エラスチンが形成され、膜厚が厚く、細胞を多く有する生体由来組織を生産することができる。   By performing light irradiation with light irradiation means in an environment where a biological tissue material exists, it is possible to produce a living tissue derived from elastin, having a large film thickness, and having many cells.

本発明にかかる生体由来組織をヘマトキシリンイオシン染色により染色した断面図を示す図面に代わる写真である。It is a photograph replaced with drawing which shows sectional drawing which dye | stained the biological origin tissue concerning this invention by hematoxylin iosine dyeing | staining. 図1の内膜部の部分拡大図である。It is the elements on larger scale of the intima part of FIG. 図1の中膜部の部分拡大図である。It is the elements on larger scale of the middle film part of FIG. 本発明にかかる生体由来組織の中膜部部分をエラスチカワンギーソン染色により染色した拡大図である。It is the enlarged view which dye | stained the membranous part of the biological tissue concerning this invention by the Elastica-Wangieson dyeing | staining. 本発明にかかる生体由来組織をマッソントリクローム染色により染色した断面図を示す図面に代わる写真である。It is a photograph replaced with drawing which shows sectional drawing which dye | stained the biological origin structure | tissue concerning this invention by Masson trichrome dyeing | staining. 本発明にかかる生体由来生産装置の一例を示す図である。It is a figure which shows an example of the biological origin production apparatus concerning this invention. 比較例の生体由来組織をヘマトキシリンイオシン染色により染色した断面図を示す図面に代わる写真である。It is a photograph replaced with drawing which shows sectional drawing which dye | stained the biological tissue of the comparative example by hematoxylin iosine dyeing | staining. 図7の部分拡大図である。It is the elements on larger scale of FIG. 比較例の生体由来組織をマッソントリクローム染色により染色した断面図を示す図面に代わる写真である。It is a photograph replaced with drawing which shows sectional drawing which dye | stained the biological origin structure | tissue of the comparative example by Masson trichrome dyeing | staining.

図1〜図3は本発明の生体由来組織をヘマトキシリンイオシン染色により染色した断面図である。図4はエラスチカワンギーソン染色により染色した断面図である。本発明の生体由来組織は、コラーゲン1とエラスチン2の層状構造を有する組織からなる。膜厚が厚く、毛細血管3も形成され、生物本来の有する組織体に近いものである。   1 to 3 are cross-sectional views of the biological tissue of the present invention stained with hematoxyliniocin. FIG. 4 is a cross-sectional view dyed by Elastica One-Geeson staining. The living body tissue of the present invention comprises a tissue having a layered structure of collagen 1 and elastin 2. The film thickness is large, and the capillaries 3 are also formed, which are close to the tissue body originally possessed by the organism.

本発明の生体由来組織は、光照射手段4を生体組織材料の存在する環境下へ置いて光照射することにより、光照射手段4の周囲が従来の数倍から数十倍の厚みを有する組織体で包まれる。これを生体組織材料の存在する環境下から取り出すことにより、生体由来組織を生産することができる。   The living tissue of the present invention is a tissue in which the periphery of the light irradiating means 4 has a thickness several times to several tens times the conventional thickness by irradiating the light irradiating means 4 in an environment where the living tissue material exists. Wrapped with a body. By removing this from the environment where the biological tissue material exists, a biological tissue can be produced.

図6に示すように、生体由来組織を生産する装置として、光照射手段4と、光照射手段4に電源を供給する駆動電源5を備えた生体由来組織生産装置6を例示する。光照射手段4は、光源7と、その周囲を覆う透光性を有する棒状の樹脂製構造体8とを備え、光源7からの光を樹脂製構造体8を通して、周辺の生体組織材料へ照射する。なお、光照射手段4はこの構成に限定されるものではなく、樹脂製構造体8を設けずに、光源7から直接光を照射する構成としてもよい。   As shown in FIG. 6, as an apparatus for producing a biological tissue, a biological tissue production apparatus 6 including a light irradiation unit 4 and a driving power source 5 that supplies power to the light irradiation unit 4 is illustrated. The light irradiation means 4 includes a light source 7 and a light-transmitting rod-shaped resin structure 8 that covers the periphery of the light source 7, and irradiates light from the light source 7 to the surrounding biological tissue material through the resin structure 8. To do. In addition, the light irradiation means 4 is not limited to this structure, It is good also as a structure which irradiates light directly from the light source 7, without providing the resin-made structures 8. FIG.

駆動電源5としては、乾電池が用いられるが、血流を利用した自家発電型電源等の公知の他の電源を利用してもよい。図6に示すように、単3の乾電池5の外面は、シュリンクパック5aにより保護されている。乾電池5と光源7とはリードフレーム9を介してリード線10で接続される。   A dry battery is used as the drive power source 5, but other known power sources such as a private power generation type power source utilizing blood flow may be used. As shown in FIG. 6, the outer surface of the AA battery 5 is protected by a shrink pack 5a. The dry battery 5 and the light source 7 are connected by a lead wire 10 through a lead frame 9.

光照射手段4の光源7としては、LEDが利用されるが、半導体レーザ等の他の光源を利用しても構わない。LEDであれば、発熱量が少ないため生体組織材料を過熱するおそれがなく、また、小電力かつ長寿命であるので好ましい。光源7は1個設けられるが、棒状の樹脂製構造体8の長手方向に沿って複数個設ける形態としてもよい。複数設ければ、光源7の影響を多領域の生体組織材料に与えることができる。光照射手段4から照射される光の波長としては、可視光が使用されるが、これに限定されるものではなく、赤外光、紫外光を用いてもよい。また、LEDの中でも青色LEDが用いられるが、これに限定されるものではなく、赤色、緑色、これらを混合した色(白色、黄色等)を用いてもよい。   An LED is used as the light source 7 of the light irradiation means 4, but other light sources such as a semiconductor laser may be used. An LED is preferable because it generates little heat and does not cause overheating of the tissue material, and has low power and a long life. One light source 7 is provided, but a plurality of light sources 7 may be provided along the longitudinal direction of the rod-shaped resin structure 8. By providing a plurality, the influence of the light source 7 can be given to a multi-region biological tissue material. Visible light is used as the wavelength of light emitted from the light irradiation means 4, but is not limited to this, and infrared light and ultraviolet light may be used. Moreover, although blue LED is used among LED, it is not limited to this, You may use red, green, and the color (white, yellow, etc.) which mixed these.

なお、本実施形態において、青色LEDを使用する理由について説明すると、青色の波長域は皮膚を通して内部まで浸透しにくいため、生体の外部から照射する場合と生体の内部に埋設して照射する場合とで、効果を比較しやすいと考えた。また、皮下内部の組織は普段青い光には接することが少ないため、青色の光を感じる必要は無いため大きな生体反応は起こりにくいとも当初考えられた。しかし、実際に行ってみると予想に反して膜厚の厚い生体組織を形成し、コラーゲンとエラスチン、さらに新生血管を含むことが分かった。この生体反応は青色に近い緑色においても同様な効果があることを認めている。   In the present embodiment, the reason for using the blue LED will be described. Since the blue wavelength region is difficult to penetrate into the inside through the skin, the case of irradiating from the outside of the living body and the case of irradiating it embedded in the living body I thought it was easy to compare the effects. In addition, it was initially thought that a large biological reaction is unlikely to occur because the tissue inside the skin usually does not come into contact with blue light, so there is no need to feel blue light. However, when actually performed, it was found that a thick biological tissue was formed contrary to expectation, and that collagen, elastin and neovascularization were included. It is recognized that this biological reaction has a similar effect even in green near blue.

樹脂製構造体8は、生体由来組織の型となるものであり、透光性のある樹脂からなり、光源7の周囲を隙間なく封止することにより光源7を埋設する。樹脂の素材としては、透光性及び耐熱性のあり、生体に埋入した際に大きく変形することが無い強度(硬度)を有し、化学的安定性があり、滅菌などの負荷に耐性があり、生体を刺激する溶出物が無いまたは少ない樹脂が好ましい。そこで、本実施形態においてはシリコン樹脂が用いられるが、その他の天然樹脂、合成樹脂を用いてもよい。また、生体由来組織の型となる透明構造体を別途用意し、樹脂製構造体8を透明構造体の内部に嵌合させる構造にすることができる。つまり、光照射手段4と生体由来組織の型となる構造体を分離して構成することができる。したがって、透明構造体を多数種類用意すれば、一つの光照射手段4を使用して多種類の生体由来組織を生産することができる。   The resin structure 8 is a living body-derived tissue mold, is made of a light-transmitting resin, and embeds the light source 7 by sealing the periphery of the light source 7 without a gap. As a resin material, it has translucency and heat resistance, has strength (hardness) that does not greatly deform when implanted in a living body, has chemical stability, and is resistant to loads such as sterilization. A resin having no or little eluate that stimulates a living body is preferable. In view of this, silicon resin is used in the present embodiment, but other natural resins and synthetic resins may be used. In addition, a transparent structure serving as a mold of a biological tissue can be prepared separately, and the resin structure 8 can be fitted into the transparent structure. That is, the light irradiation means 4 and the structure serving as the mold of the biological tissue can be separated from each other. Accordingly, if a large number of types of transparent structures are prepared, it is possible to produce many types of biological tissue using one light irradiation means 4.

本実施形態において、樹脂製構造体8は、外径5mm、長さ30mmの円柱状の棒状に形成され、その内部にLED及びこれに接続されたリード線10の一部が埋設される。棒状構造としては、円柱状に限定されるものではなく、四角柱等の多角形柱状等の他の形状としてもよいが、形成される生体由来組織を血管等の管状組織とする場合には円柱状とするのが好ましい。また、生体由来組織として人工血管を生産する場合、樹脂製構造体8の外径により血管の太さが決定されるため、目的の太さによって直径を変更すればよい。なお、樹脂製構造体8の形状は棒状に限定されるものではなく、所望の生体由来組織に従って、球状、立方体状、直方体状、平板状等の他の形としてもよい。また、樹脂製構造体8の表面に凹凸や外郭部材を設けて、生体由来組織の機械的強度をさらに向上させてもよい。   In the present embodiment, the resin structure 8 is formed in a cylindrical bar shape having an outer diameter of 5 mm and a length of 30 mm, and an LED and a part of the lead wire 10 connected to the LED are embedded therein. The rod-shaped structure is not limited to a cylindrical shape, but may be other shapes such as a polygonal column such as a quadrangular column, but if the formed biological tissue is a tubular tissue such as a blood vessel, it is a circle. A columnar shape is preferable. Further, when an artificial blood vessel is produced as a biological tissue, the thickness of the blood vessel is determined by the outer diameter of the resin structure 8, and therefore the diameter may be changed according to the target thickness. The shape of the resin structure 8 is not limited to a rod shape, and may be other shapes such as a spherical shape, a cubic shape, a rectangular parallelepiped shape, a flat plate shape and the like according to a desired biological tissue. In addition, the mechanical strength of the living tissue may be further improved by providing irregularities and outer members on the surface of the resin structure 8.

次に、上記のような生体由来組織生産装置6を用いて生体由来組織を生産する方法を説明する。まず、生体由来組織生産装置6を生体組織材料の存在する環境下へ置く。生体組織材料の存在する環境下とは、動物の生体内(例えば、皮下や腹腔内への埋入)、又は、動物の生体外において生体組織材料が浮遊する溶液中等の人工環境内が挙げられる。生体組織材料としては、ヒト、イヌ、ウシ、ブタ、ヤギ、ウサギ、ヒツジなどの他の哺乳類動物由来のものや、鳥類、魚類、その他の動物由来のもの、又は人工材料を用いることもできる。   Next, a method for producing a biological tissue using the biological tissue producing apparatus 6 as described above will be described. First, the living body-derived tissue production apparatus 6 is placed in an environment where living tissue material exists. The environment in which the biological tissue material exists includes in an animal's living body (for example, subcutaneously or intraperitoneally embedded) or in an artificial environment such as a solution in which the biological tissue material floats outside the animal's body. . As biological tissue materials, materials derived from other mammals such as humans, dogs, cows, pigs, goats, rabbits, sheep, birds, fish, other animals, or artificial materials can be used.

また、生体由来組織生産装置6は、少なくとも樹脂製構造体8部分を生体組織材料の存在する環境下へ置けばよいが、装置全体を生体組織材料の存在する環境下へ置いてもよい。生体由来組織生産装置6を動物に埋入する場合には、十分な麻酔下で最小限の切開術で行い、埋入後は傷口を縫合する。また、生体由来組織生産装置6を生体組織材料の存在する環境下へ置く場合には、種々の培養条件の整えてクリーンな環境下で公知の方法に従って細胞培養を行えばよい。   Moreover, the living body-derived tissue production apparatus 6 may place at least the resin structure 8 in an environment where the living tissue material exists, but may place the entire apparatus in an environment where the living tissue material exists. When the living body-derived tissue production apparatus 6 is implanted in an animal, it is performed with a minimum of incision under sufficient anesthesia, and the wound is sutured after implantation. In addition, when the biological tissue-producing apparatus 6 is placed in an environment where biological tissue materials are present, cell culture may be performed according to a known method in a clean environment with various culture conditions.

生体由来組織生産装置6の光照射手段4は、生体組織材料の存在する環境下において、光源7を覆う透明で棒状の樹脂製構造体8を透過して周辺組織に光を照射する。本実施形態では、光照射手段4の光源7は常時発光しているが、制御部を設けてパルス状に発光させてもよいし、リモコン操作により外部から手動により電源のON/OFFや、光の強さ、発光させるLEDの数等を操作可能としてもよい。   The light irradiation means 4 of the biological tissue producing apparatus 6 irradiates the surrounding tissue with light through the transparent rod-shaped resin structure 8 covering the light source 7 in an environment where the biological tissue material exists. In the present embodiment, the light source 7 of the light irradiation means 4 always emits light. However, a control unit may be provided to emit light in pulses, or the power supply may be turned on and off manually from the outside by remote control operation. The intensity of the LED, the number of LEDs to emit light, and the like may be operable.

所定時間の光照射を続けた後、生体由来組織生産装置6を生体組織材料の存在する環境下から取り出す。そして、樹脂製構造体8の周囲に分厚く形成された組織体を樹脂製構造体8から取り外すことにより、管状の生体由来組織を生産することができる。なお、樹脂製構造体8と組織体との剥離は、樹脂製構造体8を引き抜くだけで簡単に行うことができる。剥離された組織体の内面は、樹脂製構造体8の表面に接しているので平滑になる。   After continuing the light irradiation for a predetermined time, the living body-derived tissue production apparatus 6 is taken out from the environment where the living tissue material exists. Then, by removing the tissue body thickly formed around the resin structure 8 from the resin structure 8, a tubular living body tissue can be produced. Note that the resin structure 8 and the tissue body can be easily separated by simply pulling out the resin structure 8. Since the peeled inner surface of the tissue body is in contact with the surface of the resin structure 8, it becomes smooth.

以上のように生産された本発明の生体由来組織は、コラーゲン1とエラスチン2を含む組織からなり、膜厚が厚く、毛細血管3も形成され、生物本来の有する組織体に近いものとなる。このように、多くのコラーゲン1及びエラスチン2が形成されているため、生体由来組織の自立性が高く、管形状を維持することができる。そのため、管状の組織体を人工血管として生体と縫合する場合、吻合部位を開口した状態で吻合操作が実施できる。また、組織体中には多くの毛細血管3等の新生血管が形成されるので、移植後に早期に内皮化を含む新生内膜が形成されることが期待される。   The living body-derived tissue of the present invention produced as described above is composed of a tissue containing collagen 1 and elastin 2, has a large film thickness, has capillaries 3 formed therein, and is close to the tissue body originally possessed by the organism. Thus, since many collagen 1 and elastin 2 are formed, the self-supporting property of a biological tissue is high, and a tubular shape can be maintained. Therefore, when a tubular tissue body is sutured to a living body as an artificial blood vessel, an anastomosis operation can be performed with the anastomosis site opened. In addition, since many new blood vessels such as capillaries 3 are formed in the tissue body, it is expected that a neointimal membrane including endothelialization is formed early after transplantation.

このように、本発明によると、光照射により組織体の形成を促進させることができる。また、薬剤投与により組織体の形成を促進させる方法では、一度薬剤を投与すると全ての薬剤が吸収されるまでの間、組織体の形成が進んでしまうが、本発明では光照射を止めることにより所望の成長段階で組織体の形成促進を止めることが可能である。   Thus, according to the present invention, formation of a tissue body can be promoted by light irradiation. In addition, in the method of promoting the formation of a tissue body by drug administration, once the drug is administered, the formation of the tissue body proceeds until all the drugs are absorbed, but in the present invention, the light irradiation is stopped. It is possible to stop the formation promotion of the tissue body at a desired growth stage.

なお、本発明の生体由来組織は、人工血管のような管状組織だけでなく、弁状組織、膜状組織としても利用可能である。本生体由来組織を膜状組織として利用する場合には、管状構造をそのままつぶすようにして利用してもよいし、管の長さ方向に切り開いて利用してもよい。さらには、3次元構造を有する樹脂製構造体8を使用すれば、複雑な形状の生体由来組織を形成することも可能である。   In addition, the living body-derived tissue of the present invention can be used not only as a tubular tissue such as an artificial blood vessel but also as a valve-like tissue and a membrane-like tissue. When using this living body-derived tissue as a membranous tissue, the tubular structure may be used as it is, or may be used by cutting it in the length direction of the tube. Furthermore, if a resin structure 8 having a three-dimensional structure is used, it is possible to form a living body-derived tissue having a complicated shape.

生産された生体由来組織を異種移植する場合には、移植後の拒絶反応を防ぐため、脱細胞処理、脱水処理、固定処理などの免疫源除去処理を施すのが好ましい。脱細胞処理としては、超音波処理や界面活性剤処理、コラゲナーゼなどの酵素処理によって細胞外マトリックスを溶出させて洗浄する等の方法があり、脱水処理の方法としては、メタノール、エタノール、イソプロピルアルコール等の水溶性有機溶媒で洗浄する方法があり、固定処理する方法としては、グルタアルデヒドやホルムアルデヒドなどのアルデヒド化合物で処理する方法がある。   In the case of xenotransplantation of the produced biological tissue, it is preferable to perform immunogen removal treatment such as decellularization treatment, dehydration treatment, and fixation treatment in order to prevent rejection after transplantation. Examples of decellularization include ultrasonic treatment, surfactant treatment, and enzyme treatment such as collagenase to elute and wash the extracellular matrix. Dehydration methods include methanol, ethanol, isopropyl alcohol, etc. There is a method of washing with a water-soluble organic solvent, and as a method of fixing, there is a method of treating with an aldehyde compound such as glutaraldehyde or formaldehyde.

なお、本発明は上記実施形態に限定されるものではなく、本発明の範囲内で上記実施形態に多くの修正及び変更を加え得ることは勿論である。例えば、上記実施形態では、光照射手段4を生体に埋め込み、その周囲に形成された組織体を生体から取り出して移植用組織としたが、組織体を取り出さない構成としてもよい。すなわち、光照射手段4を生体組織材料の存在する環境下へ置き、その照射部分に新生血管を含む新生組織を形成させた後、前記環境下から光照射手段4のみを取り出し、形成された組織体をそのままその環境下に残して再生させるようにしてもよい。この方法によると、動物において、欠損、損傷部分に光ファイバ等の光照射手段4を皮下侵入し埋入させることにより、欠損又は損傷部分の再生を促すことが期待できる。   In addition, this invention is not limited to the said embodiment, Of course, many corrections and changes can be added to the said embodiment within the scope of the present invention. For example, in the above-described embodiment, the light irradiation means 4 is embedded in a living body, and a tissue body formed around the light irradiation means 4 is taken out from the living body and used as a transplanting tissue. That is, after the light irradiation means 4 is placed in an environment where a biological tissue material exists and a new tissue including new blood vessels is formed in the irradiated portion, only the light irradiation means 4 is taken out from the environment, and the formed tissue The body may be left in the environment and reproduced. According to this method, in the animal, it can be expected to promote the regeneration of the defect or damaged part by injecting and embedding the light irradiation means 4 such as an optical fiber in the defect or damaged part.

光源7として青色LEDを使用し、ビーグル犬を用いて生体由来組織を生産する方法を示す。まず、十分な麻酔下で最小限の切開術で生体由来組織生産装置6の全体をビーグル犬の背部皮下に埋入した後、傷口を縫合する。   A method for producing a living tissue using a beagle dog using a blue LED as the light source 7 will be described. First, the whole body-derived tissue production device 6 is implanted under the back of a beagle dog under a sufficient anesthesia with a minimum incision, and then the wound is sutured.

光照射手段4のLED光源7からは、470nmの波長の青色光を常時発光しており、LEDを覆う透明のシリコン樹脂からなる樹脂製構造体8を透過して周辺組織に光を照射する。   The LED light source 7 of the light irradiating means 4 always emits blue light having a wavelength of 470 nm and passes through the resin structure 8 made of a transparent silicon resin covering the LED to irradiate the surrounding tissue with light.

皮下でのLED照射を2週間続けた後、生体由来組織生産装置6をビーグル犬の生体から麻酔して取り出した。生体由来組織生産装置6の周りは全体的に組織体で包まれており、特に、LEDが埋め込まれた樹脂製構造体8の周囲に分厚く組織体が形成されていた。この組織体を必要に応じて一部切断しながら樹脂製構造体8から取り外すことにより、管状の生体由来組織を生産した。   Subcutaneous LED irradiation was continued for 2 weeks, and then the biological tissue producing apparatus 6 was anesthetized and taken out from the living body of the beagle dog. The periphery of the living body-derived tissue production apparatus 6 is entirely wrapped with a tissue body, and in particular, the tissue body is thickly formed around the resin structure 8 in which the LED is embedded. A tubular living body tissue was produced by removing the tissue body from the resin structure 8 while partially cutting it as necessary.

樹脂製構造体8の周囲に形成された部分の組織体を、ヘマトキシリンイオシン染色により染色を施し顕微鏡で観察した拡大写真を図1〜図3に、エラスチカワンギーソン染色により染色を施し顕微鏡で観察した拡大写真を図4に示し、マッソントリクローム染色により染色を施し顕微鏡で観察した拡大写真を図5に示す。また、比較例として、LED非照射の場合に形成された組織体について、ヘマトキシリンイオシン染色により染色を施して観察したものを図7及び図8に示し、マッソントリクローム染色により染色を施して観察したものを図9に示す。なお、比較例は、LED非照射である以外は上記実施形態と同様にして行った。なお、図中において、Aは管状の生体由来組織の円周方向、11は管状の生体由来組織の内腔面、12は生体由来組織の内膜部、13は生体由来組織の中膜部、14は生体由来組織の外膜部、15は赤血球、16は炎症細胞、17は繊維芽細胞を示す。また、エラスチカワンギーソン染色は、エラスチン2を青色に染色する染色法である。マッソントリクローム染色は、コラーゲン1を青色に染色する染色法である。   An enlarged photograph of the tissue structure of the portion formed around the resin structure 8 stained with hematoxylin-iocin and observed with a microscope is shown in FIGS. FIG. 4 shows an enlarged photograph observed in FIG. 4, and FIG. 5 shows an enlarged photograph observed with a microscope after staining with Masson trichrome. As a comparative example, the tissue formed in the case of non-irradiation with LED was observed by staining with hematoxyliniocin staining and is shown in FIGS. 7 and 8, and stained with Masson trichrome staining and observed. The result is shown in FIG. In addition, the comparative example was performed like the said embodiment except LED non-irradiation. In the figure, A is the circumferential direction of the tubular biological tissue, 11 is the lumen surface of the tubular biological tissue, 12 is the inner membrane part of the biological tissue, 13 is the medial part of the biological tissue, Reference numeral 14 denotes an outer membrane portion of a tissue derived from a living body, 15 denotes erythrocytes, 16 denotes inflammatory cells, and 17 denotes fibroblasts. Elastica Wangyson staining is a staining method for staining elastin 2 in blue. Masson trichrome staining is a staining method for staining collagen 1 in blue.

図3及び図4に示すように、本実施形態の組織体には炎症細胞16が含まれるものの、特に中膜部13内には多数のエラスチン2が形成されていることが分かる(紐又はミミズ状の線で表れているものがエラスチン2である)。また、図1に示すように、本実施形態の組織体の膜厚は約700μmであり、図7の比較例の組織体の膜厚約80μmと比べると、8〜9倍近く分厚く形成されている。このように分厚くなった分、図2及び図3に示すように、本実施形態の組織体、特に内膜部12及び中膜部13中には赤血球15や毛細血管3も形成され、血管の元となる細胞が多く形成される。したがって、より生体に近い要素が入った生体由来組織を生産することができる。また、図1に示すように、生体由来組織の外膜部4には粘膜状の組織が形成されていることが分かる。また、図5に示すように、本実施形態の組織体内には多くのコラーゲン1が形成されていることが分かる。   As shown in FIG. 3 and FIG. 4, the tissue body of this embodiment includes inflammatory cells 16, but it can be seen that a large number of elastin 2 is formed particularly in the medial part 13 (strings or earthworms). Elastin 2 is what appears in the shape line). Further, as shown in FIG. 1, the thickness of the tissue body of this embodiment is about 700 μm, which is about 8 to 9 times thicker than the thickness of the tissue body of the comparative example of FIG. Yes. As shown in FIGS. 2 and 3, the red blood cells 15 and the capillaries 3 are also formed in the tissue body of this embodiment, particularly the intima 12 and the media 13, as shown in FIGS. Many original cells are formed. Therefore, it is possible to produce a living body-derived tissue containing elements closer to a living body. Moreover, as shown in FIG. 1, it turns out that the mucosa-like structure | tissue is formed in the outer membrane part 4 of a biological tissue. Moreover, as shown in FIG. 5, it turns out that many collagen 1 is formed in the tissue body of this embodiment.

これに対し、図7及び図8に示すように、比較例の組織体は、約78μmと膜厚が薄く、組織体中に繊維芽細胞17が見られるもののその量は少なく、エラスチン2もほとんど見られない。また、図9に示すように、比較例の組織体中にはコラーゲン1の量も少ないことが分かる。   On the other hand, as shown in FIG. 7 and FIG. 8, the tissue body of the comparative example has a thin film thickness of about 78 μm, and although fibroblasts 17 are seen in the tissue body, the amount thereof is small, and elastin 2 is almost all. can not see. Moreover, as shown in FIG. 9, it turns out that the quantity of collagen 1 is also small in the structure | tissue of a comparative example.

以上の結果から分かるように、青色LEDを埋設した透光性のシリコン樹脂からなる樹脂製構造体8を生体内に埋め込み、発光させて新生細胞を増殖させたところ、樹脂製構造体8の周りには、従来の数倍もの厚みを有すると共に、多くのコラーゲン1、エラスチン2及び新生血管の形成された生体由来組織を生産することができることが分かった。   As can be seen from the above results, when a resin structure 8 made of translucent silicon resin in which a blue LED is embedded is embedded in a living body and light is emitted to propagate new cells, the surroundings of the resin structure 8 are obtained. It has been found that a biological tissue having a thickness several times that of the prior art and a large amount of collagen 1, elastin 2 and new blood vessels can be produced.

1 コラーゲン
2 エラスチン
3 毛細血管
4 光照射手段
5 駆動電源
6 生体由来組織製造装置
7 光源
8 樹脂製構造体
9 リードフレーム
10 リード線
11 内腔面
12 内膜部
13 中膜部
14 外膜部
15 赤血球
16 炎症細胞
17 繊維芽細胞
DESCRIPTION OF SYMBOLS 1 Collagen 2 Elastin 3 Capillary blood vessel 4 Light irradiation means 5 Drive power supply 6 Living body tissue production apparatus 7 Light source 8 Resin structure 9 Lead frame 10 Lead wire 11 Lumen surface 12 Inner membrane part 13 Middle membrane part 14 Outer membrane part 15 Red blood cells 16 Inflammatory cells 17 Fibroblasts

Claims (8)

生体組織材料の存在する環境下で光照射手段により光照射を行うことにより、前記光照射手段の周囲に新たに形成され、かつ、人体の一部を構成している組織を除く生体由来組織であって、毛細血管あるいはエラスチンが形成されたことを特徴とする生体由来組織。 In a tissue derived from a living body excluding a tissue newly formed around the light irradiation means and constituting a part of the human body by performing light irradiation with the light irradiation means in an environment where a biological tissue material exists A living tissue derived from the formation of capillaries or elastin. 生体組織材料の存在する環境下で光照射手段により光照射を行うことにより、前記光照射手段の周囲に新たに形成され、かつ、人体の一部を構成している組織を除く生体由来組織であって、毛細血管およびエラスチンが形成されたことを特徴とする生体由来組織。 In a tissue derived from a living body excluding a tissue newly formed around the light irradiation means and constituting a part of the human body by performing light irradiation with the light irradiation means in an environment where a biological tissue material exists A biological tissue characterized by the formation of capillaries and elastin. 前記光照射手段は、波長530nm以下の光を含んでいる光源であることを特徴とする請求項1又は2に記載の生体由来組織。 The biological tissue according to claim 1 or 2, wherein the light irradiation means is a light source containing light having a wavelength of 530 nm or less. 前記生体由来組織は、膜状組織、弁状組織、管状組織のいずれかである請求項1〜3のいずれかに記載の生体由来組織。 The living body tissue according to any one of claims 1 to 3, wherein the living body tissue is any of a membranous tissue, a valve-like tissue, and a tubular tissue. 人体を除く生体組織材料の存在する環境下で光照射手段により光照射を行うことにより、前記光照射手段の周囲に毛細血管あるいはエラスチンを含んだ新たな組織体を形成することを特徴とする生体由来組織の生産方法。 A living body characterized by forming a new tissue body containing capillaries or elastin around the light irradiating means by irradiating light with the light irradiating means in an environment where living tissue material excluding a human body exists The production method of the origin tissue. 透光性を有する樹脂製構造体に前記光照射手段を埋設し、該樹脂製構造体を通して光照射を行うことにより、樹脂製構造体の周囲に前記組織体を形成することを特徴とする請求項5に記載の生体由来組織の生産方法。 The structure is formed around the resin structure by embedding the light irradiation means in a resin structure having translucency and performing light irradiation through the resin structure. Item 6. A method for producing a biological tissue according to Item 5. 生体組織材料の存在する環境下で照射を行う光照射手段を備え、該光照射手段の周囲に新たな組織体を形成することを特徴とする生体由来組織生産装置。 A living body-derived tissue production apparatus comprising a light irradiation unit that performs irradiation in an environment where a biological tissue material is present, and forming a new tissue body around the light irradiation unit. 前記光照射手段の光源は、透光性を有する樹脂製構造体内に埋設されていることを特徴とする請求項7に記載の生体由来組織生産装置。 The living body-derived tissue production apparatus according to claim 7, wherein the light source of the light irradiation means is embedded in a translucent resin structure.
JP2010161331A 2010-07-16 2010-07-16 Biological tissue, production method thereof, and apparatus for producing the same Expired - Fee Related JP5643011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010161331A JP5643011B2 (en) 2010-07-16 2010-07-16 Biological tissue, production method thereof, and apparatus for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010161331A JP5643011B2 (en) 2010-07-16 2010-07-16 Biological tissue, production method thereof, and apparatus for producing the same

Publications (3)

Publication Number Publication Date
JP2012020031A JP2012020031A (en) 2012-02-02
JP2012020031A5 JP2012020031A5 (en) 2013-08-29
JP5643011B2 true JP5643011B2 (en) 2014-12-17

Family

ID=45774816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010161331A Expired - Fee Related JP5643011B2 (en) 2010-07-16 2010-07-16 Biological tissue, production method thereof, and apparatus for producing the same

Country Status (1)

Country Link
JP (1) JP5643011B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014030598A (en) * 2012-08-03 2014-02-20 Shinkan Kogyo Kk Base material for formation of film connective tissue and production method of film connective tissue

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837379A (en) * 1988-06-02 1989-06-06 Organogenesis Inc. Fibrin-collagen tissue equivalents and methods for preparation thereof
US6663659B2 (en) * 2000-01-13 2003-12-16 Mcdaniel David H. Method and apparatus for the photomodulation of living cells
JP4949831B2 (en) * 2004-06-01 2012-06-13 大日本印刷株式会社 Artificial blood vessel and manufacturing method thereof
JP2007068878A (en) * 2005-09-09 2007-03-22 National Cardiovascular Center Production method of tissue body and biological implant

Also Published As

Publication number Publication date
JP2012020031A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
McInnes et al. Preparation and use of decellularized extracellular matrix for tissue engineering
Wainwright et al. Preparation of cardiac extracellular matrix from an intact porcine heart
Wang et al. Development of small-diameter vascular grafts
ES2685638T3 (en) Artificially produced edible meat
CN1289259A (en) Prostheses with associated growth factors
CN1684589A (en) Vascularization enhanced graft constructs
CN1713861A (en) Vascularization enhanced graft constructs
US20120015331A1 (en) Scaffold
CN1512856A (en) Microfabricated tissue as substrate for pigment epithelium transplantation
KR20100046037A (en) Prosthesis for promoting the in vivo reconstruction of a hollow organ or a portion of a hollow organ
CN100531806C (en) Amnion stroma tectorial blood vessel internal stent and preparing method thereof
Casarin et al. Tissue engineering and regenerative medicine in pediatric urology: urethral and urinary bladder reconstruction
Vaghela et al. Microvascular development in the rat arteriovenous loop model in vivo—A step by step intravital microscopy analysis
JP2019529015A (en) Dermal layer for transplantation with increased survival rate and method for producing the same
JP5643011B2 (en) Biological tissue, production method thereof, and apparatus for producing the same
JP2012135406A (en) Tissue-forming base material derived from living body, method for producing tissue derived from living body using the same and tissue derived from living body
JPWO2018211877A1 (en) Yarn and method for producing the same
Liu et al. Evaluation of the effect of 3D‐bioprinted gingival fibroblast‐encapsulated ADM scaffolds on keratinized gingival augmentation
Hiles et al. Tissue engineering a clinically useful extracellular matrix biomaterial
JP2011025002A (en) Artificial blood vessel with valve, pillar-shaped core base material for artificial blood vessel with valve, and method for manufacturing artificial blood vessel with valve
CN208611011U (en) A kind of light-emitting oral implant
JP2016136984A (en) Tubular tissue body forming substrate
JP5658008B2 (en) Artificial blood vessel forming substrate with valve, production method of artificial blood vessel with valve using the same, and artificial blood vessel with valve
KR102073353B1 (en) Method for accelerating fish skin wound healing using light emitting diode(LED)
Oie et al. In-body optical stimulation formed connective tissue vascular grafts,“biotubes,” with many capillaries and elastic fibers

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141030

R150 Certificate of patent or registration of utility model

Ref document number: 5643011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees