JP5641741B2 - High strength Zn-Al-Mg plated steel sheet with excellent bendability and molten metal embrittlement resistance - Google Patents
High strength Zn-Al-Mg plated steel sheet with excellent bendability and molten metal embrittlement resistance Download PDFInfo
- Publication number
- JP5641741B2 JP5641741B2 JP2010016317A JP2010016317A JP5641741B2 JP 5641741 B2 JP5641741 B2 JP 5641741B2 JP 2010016317 A JP2010016317 A JP 2010016317A JP 2010016317 A JP2010016317 A JP 2010016317A JP 5641741 B2 JP5641741 B2 JP 5641741B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- martensite
- steel sheet
- molten metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車,建築,電気機器等の部材として有用な、耐食性、曲げ性および耐溶融金属脆化特性に優れる高強度Zn−Al−Mg系めっき鋼板に関する The present invention relates to a high-strength Zn-Al-Mg-based plated steel sheet having excellent corrosion resistance, bendability and molten metal embrittlement characteristics, which is useful as a member for automobiles, buildings, electrical equipment, and the like.
Zn−Al−Mg系めっき鋼板は優れた耐食性を有するため、自動車,建築,電気機器を始めとする分野において使用量が増加している。このような用途では、必要形状に成形加工して使用されることから,耐食性に加えて加工性に優れていることも重要である。
特に、自動車用の分野では、衝突安全性の向上や軽量化による燃費向上の観点から高強度化が求められており、780MPa以上の高強度鋼板のニーズも高まっている。
鋼板においては、一般的に、高強度化するにつれて加工性が低下する傾向にある。このため、高強度鋼板の適用範囲を拡大するにあたっては、加工性が良好な高強度鋼板を製造することが必要である。
Since Zn-Al-Mg-based plated steel sheets have excellent corrosion resistance, the amount of use is increasing in fields such as automobiles, buildings, and electrical equipment. In such applications, it is important to have excellent workability in addition to corrosion resistance because it is molded into the required shape.
In particular, in the field of automobiles, high strength is required from the viewpoint of improving collision safety and improving fuel efficiency by reducing weight, and the need for a high strength steel plate of 780 MPa or more is also increasing.
In steel plates, generally, workability tends to decrease as the strength increases. For this reason, when expanding the application range of a high strength steel plate, it is necessary to manufacture a high strength steel plate with good workability.
さらに、自動車部材や建材をはじめとする構造部材は、めっき鋼板を溶接して組み立てられる場合が多い。この場合、溶接時にめっき層が鋼素地の一部とともに溶融する。一般的な亜鉛めっき鋼板に比べ、Zn−Al−Mg系めっき鋼板を使用した場合、溶接熱影響部に粒界割れを生じる場合がある。この粒界割れは溶接時の加熱・冷却に伴う鋼の膨張・収縮によって生じる引張応力に起因するもので、溶融金属脆化割れと呼ばれる現象であり、Zn−Al−Mg系めっきの成分が、一般のZnめっきの場合よりも溶融金属脆化割れの感受性を増大させているものと考えられる。 Furthermore, structural members such as automobile members and building materials are often assembled by welding plated steel sheets. In this case, the plating layer melts together with a part of the steel base during welding. When a Zn—Al—Mg based plated steel sheet is used as compared with a general galvanized steel sheet, intergranular cracking may occur in the weld heat affected zone. This intergranular crack is caused by the tensile stress generated by the expansion and contraction of steel accompanying heating and cooling during welding, and is a phenomenon called molten metal embrittlement cracking, and the component of the Zn-Al-Mg plating is It is considered that the sensitivity of molten metal embrittlement cracking is increased compared to the case of general Zn plating.
例えば、特許文献1の、Zn−Al−Mg系めっき鋼板の製造では、合金化溶融亜鉛めっき鋼板の製造に比べ、めっき浴温が低くかつ合金化処理が不要なため、単純なC−Si−Mn系の鋼成分であってもフェライト+マルテンサイトを主組織とする高強度鋼板が得られるとしているが、フェライトとマルテンサイトの強度差が大きすぎるため、曲げ性に劣る問題があった。また、同時に耐溶融金属脆化割れを抑制する方法に関しては、何の知見も開示されていない。
特許文献2、3では、主に溶融めっきによる耐食性の改善と、Ti,B,CrおよびNb等による溶接時の溶融金属脆化割れの抑制を目的としたZn−Al−Mg系溶融めっき鋼板が提案されている。
For example, in the manufacture of a Zn—Al—Mg-based plated steel sheet of Patent Document 1, the plating bath temperature is lower and the alloying treatment is unnecessary compared to the manufacture of an alloyed hot-dip galvanized steel sheet. Although it is said that a high-strength steel sheet mainly composed of ferrite and martensite can be obtained even with a Mn-based steel component, there is a problem that the bendability is inferior because the difference in strength between ferrite and martensite is too large. At the same time, no knowledge is disclosed regarding a method for suppressing resistance to embrittlement of molten metal.
In
前記各特許文献では、個別に耐溶融金属脆化特性の改善方策や、フェライト+マルテンサイトを主組織とする高強度鋼板の製造方法に関する知見は得られるものの、780MPa以上の高強度を有し、曲げ性および耐溶融金属脆化特性のいずれにも優れたZn−Al−Mg系めっき鋼板に関する知見は得られていない。
本発明は、このような問題を解消すべく案出されたものであり、780MPa以上の引張強さを呈するZn−Al−Mg系めっき鋼板であっても、鋼成分と組織を細かく調整することにより曲げ性および耐溶融金属脆化特性のいずれにも優れたZn−Al−Mg系めっき鋼板を提供することを目的とする。
In each of the above-mentioned patent documents, although it is possible to individually obtain a measure for improving the resistance to melting metal embrittlement and a method for producing a high-strength steel sheet having a main structure of ferrite + martensite, it has a high strength of 780 MPa or more, The knowledge regarding the Zn-Al-Mg system plated steel plate excellent in both bendability and a molten metal embrittlement characteristic is not acquired.
The present invention has been devised to solve such problems, and finely adjusts the steel components and the structure even in the case of a Zn-Al-Mg based steel sheet exhibiting a tensile strength of 780 MPa or more. An object of the present invention is to provide a Zn—Al—Mg-based plated steel sheet excellent in both bendability and molten metal embrittlement resistance.
本発明の曲げ性および耐溶融金属脆化特性に優れた高強度Zn−Al−Mg系めっき鋼板は、その目的を達成するため、C:0.05〜0.18質量%、Si:0.1〜0.8質量%、Mn:1.5〜2.3質量%、P:0.05質量%以下、S:0.01質量%以下、B:0.0005〜0.005質量%、Ti:0.01〜0.10質量%を含み、残部がFeおよび不可避的不純物からなる成分組成と、主相としてのフェライトと第二相としてマルテンサイトまたはマルテンサイトと3%以下のベイナイトからなり、しかも、前記フェライトが8.0μm以下の平均粒径を、前記マルテンサイトが5.0μm以下の平均粒径と0.7以上の平均アスペクト比、マルテンサイトまたはマルテンサイトとベイナイトの面積率が15%以上45%未満の金属組織を備え、圧延方向板厚断面の、板厚1/4線上の硬さの最大値と最小値の差を硬さ変動としたとき、40HV以下のビッカース硬さの変動、および780MPa以上の引張強さを呈する鋼を下地鋼板としていることを特徴とする。 The high-strength Zn—Al—Mg-based plated steel sheet excellent in bendability and resistance to molten metal embrittlement according to the present invention achieves the object, C: 0.05 to 0.18 mass%, Si: 0.00. 1 to 0.8 mass%, Mn: 1.5 to 2.3 mass%, P: 0.05 mass% or less, S: 0.01 mass% or less, B: 0.0005 to 0.005 mass%, Ti: Containing 0.01 to 0.10% by mass, the balance being composed of Fe and unavoidable impurities, ferrite as the main phase and martensite or martensite as the second phase and 3% or less of bainite In addition, the ferrite has an average particle size of 8.0 μm or less, the martensite has an average particle size of 5.0 μm or less, an average aspect ratio of 0.7 or more, and an area ratio of martensite or martensite and bainite is 15; % With less than 45% metal structure When the difference between the maximum value and minimum value of the hardness on the sheet thickness ¼ line of the thickness direction cross section in the rolling direction is defined as the variation in hardness, the variation in the Vickers hardness is 40 HV or less, and the tensile strength is 780 MPa or more. The present steel is a base steel plate.
成分組成としては、さらに、Nb:0.01〜0.10質量%、Cr:0.01〜1.0質量%、Mo:0.01〜0.5質量%の1種または2種以上を含むものであってもよい。
前記主相としてのフェライトが60%以上75%未満、第2相としてのとしてマルテンサイトまたはマルテンサイトと3%以下のベイナイトが25%以上40%未満の割合で占めているものが好ましい。
As a component composition, Nb: 0.01-0.10 mass%, Cr: 0.01-1.0 mass%, Mo: 0.01-0.5 mass% 1 type (s) or 2 or more types It may be included.
It is preferable that ferrite as the main phase is 60% or more and less than 75%, and martensite or martensite and 3% or less of bainite account for 25% or more and less than 40% as the second phase.
本発明によれば、成分組成および金属組織を細かく設定したことにより、780MPa以上の引張強さを呈する高強度Zn−Al−Mg系めっき鋼板であっても、ビッカース硬さの変動を小さくすることができて曲げ性を優れたものとするとともに耐溶融金属脆化特性をも優れた鋼板となっている。
したがって、本発明により、ピラー、ロッカー、メンバー等、特性の優れた自動車用部品が、簡便な曲げ加工を施すことにより低コストで提供できることになる。
According to the present invention, by finely setting the component composition and the metal structure, even a high-strength Zn-Al-Mg-based plated steel sheet exhibiting a tensile strength of 780 MPa or more can reduce fluctuations in Vickers hardness. Thus, the steel sheet has excellent bendability and has excellent resistance to molten metal embrittlement.
Therefore, according to the present invention, automotive parts having excellent characteristics such as pillars, lockers, members, and the like can be provided at low cost by performing simple bending.
780MPaを超えるような高強度を呈するZn−Al−Mg系めっき鋼板を得るには、下地鋼板として、主相フェライトに副相マルテンサイトを配したDual Phase組織を有する、いわゆるDP鋼板を用いることが有効である。しかしながら、DP鋼板は一般的には曲げ性が悪いために、曲げ加工が施されて用いられる部材への適用が進んでいない。また、Zn−Al−Mg系めっき鋼板は、溶接接合して用いられる場合に溶融金属脆化割れを起こすことがある。
そこで、本発明者らは、DP鋼板を下地鋼板としたZn−Al−Mg系めっき鋼板の自動車分野や建材分野への利用拡大のために、曲げ加工性と耐溶融金属脆化特性の向上策について鋭意検討を重ね、本発明に到達した。
以下に、その詳細を説明する。
In order to obtain a Zn-Al-Mg-based plated steel sheet exhibiting high strength exceeding 780 MPa, a so-called DP steel sheet having a dual phase structure in which subphase martensite is arranged in the main phase ferrite is used as the base steel sheet. It is valid. However, since a DP steel sheet generally has poor bendability, application to a member used after being subjected to bending has not progressed. Further, when a Zn—Al—Mg-based plated steel sheet is used after being welded, it may cause molten metal embrittlement cracking.
Therefore, the present inventors have proposed measures for improving bending workability and resistance to embrittlement of molten metal in order to expand the use of Zn-Al-Mg-based plated steel sheets with DP steel sheets as base steel sheets in the automotive field and building materials field. As a result of extensive studies, the present invention has been achieved.
The details will be described below.
DP鋼板は、主相フェライトに副相としてマルテンサイトが分散した複合組織を有する鋼板であり、軟質なフェライトを有するが故に延性に優れている。そして、マルテンサイトが材料の強度を高めている。しかしながら、フェライトとマルテンサイトの硬度差が大きいために変形能に差異があり、一方向への変形を行おうとすると2相の境界部に亀裂が発生するため、その結果として曲げ加工性が劣ることになる。併せてZn−Al−Mg系めっきを施した鋼板にあっては溶融金属脆化が起こりやすくなっている。
そこで、本発明では、Zn−Al−Mg系めっき鋼板における曲げ加工性および耐溶融金属脆化特性の向上策として、下地鋼の成分組成、特にTi,B等の含有量を細かく調整して耐溶融金属脆化特性を高めるとともに、下地鋼の組織の均一・微細化により2相の境界部での亀裂発生を抑制するためにフェライトおよびマルテンサイト粒径を細かく、かつマルテンサイトの形状を等軸状にすることにした。具体的には、DP鋼板を構成する副相としてマルテンサイトを、5.0μm以下の平均粒径と0.7以上、好ましくは0.8〜1.0の平均アスペクト比を有するものとした。
The DP steel sheet is a steel sheet having a composite structure in which martensite is dispersed as a subphase in the main phase ferrite, and is excellent in ductility because it has soft ferrite. And martensite increases the strength of the material. However, there is a difference in deformability due to the large hardness difference between ferrite and martensite, and cracking occurs at the boundary between the two phases when deforming in one direction, resulting in poor bending workability. become. In addition, molten metal embrittlement is liable to occur in steel sheets subjected to Zn—Al—Mg plating.
Therefore, in the present invention, as a measure for improving the bending workability and the resistance to molten metal embrittlement in the Zn-Al-Mg-based plated steel sheet, the component composition of the base steel, particularly the content of Ti, B, etc., is finely adjusted to improve the resistance. The ferrite and martensite grain sizes are made fine and the shape of the martensite is equiaxed in order to improve the molten metal embrittlement characteristics and to suppress cracking at the boundary between the two phases by making the structure of the base steel uniform and refined. I decided to make it. Specifically, martensite as an auxiliary phase constituting the DP steel sheet has an average particle diameter of 5.0 μm or less and an average aspect ratio of 0.7 or more, preferably 0.8 to 1.0.
鋼板全体としては、C:0.05〜0.18質量%、Si:0.1〜0.8質量%、Mn:1.5〜2.3質量%、P:0.05質量%以下、S:0.01質量%以下、B:0.0005〜0.005質量%、Ti:0.01〜0.10質量%、さらに必要に応じてNb:0.01〜0.10質量%、Cr:0.01〜1.0質量%、Mo:0.01〜1.0質量%の1種または2種以上を含み、残部がFeおよび不可避的不純物からなる成分組成を有するDP鋼板であって、主相としてのフェライトと第二相としてマルテンサイトまたはマルテンサイトとベイナイトからなり、しかも、前記フェライトが8.0μm以下の平均粒径を、前記マルテンサイトが5.0μm以下の平均粒径と0.7以上の平均アスペクト比、マルテンサイトまたはマルテンサイトとベイナイトの面積率が15%以上45%未満の金属組織を備えたものとした。
このような、成分組成、金属組織とすることにより、ビッカースの硬さ変動が40Hv以下の均一な組織とすることができ、曲げ加工性と耐溶融金属脆化特性のいずれにも優れた高強度Zn−Al−Mg系めっき鋼板が得られる。
As a whole steel plate, C: 0.05-0.18 mass%, Si: 0.1-0.8 mass%, Mn: 1.5-2.3 mass%, P: 0.05 mass% or less, S: 0.01% by mass or less, B: 0.0005 to 0.005% by mass, Ti: 0.01 to 0.10% by mass, and Nb: 0.01 to 0.10% by mass as necessary. A DP steel sheet having a component composition containing one or more of Cr: 0.01 to 1.0% by mass, Mo: 0.01 to 1.0% by mass, and the balance of Fe and inevitable impurities. And ferrite as the main phase and martensite or martensite and bainite as the second phase, and the ferrite has an average particle size of 8.0 μm or less, and the martensite has an average particle size of 5.0 μm or less. Average aspect ratio of 0.7 or higher, martensite or martensite and bainite An area ratio of 15% or more and less than 45% was provided.
By using such a component composition and metal structure, it is possible to obtain a uniform structure with a Vickers hardness variation of 40 Hv or less, and high strength excellent in both bending workability and resistance to molten metal embrittlement. A Zn—Al—Mg plated steel sheet is obtained.
本発明鋼板を構成する各要件の限定理由について説明する。まず、成分組成から説明する。なお、以下、組成における質量%は単に%と記す。
C:0.05〜0.18%
Cは鋼板の高強度化に必要不可欠な元素である。含有量が0.05%未満では、780MPa以上の引張強度を得るのが困難である。ただし、0.18%を超える添加は、組織の不均一性が顕著となり、曲げ性が劣化する。そのため、Cは0.05〜0.18%の範囲とする。
The reason for limitation of each requirement which comprises this invention steel plate is demonstrated. First, the component composition will be described. Hereinafter, mass% in the composition is simply referred to as%.
C: 0.05-0.18%
C is an essential element for increasing the strength of steel sheets. If the content is less than 0.05%, it is difficult to obtain a tensile strength of 780 MPa or more. However, addition exceeding 0.18% makes the structure non-uniformity remarkable and the bendability deteriorates. Therefore, C is set in the range of 0.05 to 0.18%.
Si:0.1〜0.8%
Siは曲げ性をあまり劣化させることなく、強度向上に寄与する元素であり、本発明では0.1%以上のSi添加が必要となる。しかし、過剰に添加すると、めっきラインでの加熱時に酸化物を形成し、めっき性を劣化させるため、Si量は0.1〜0.8%とする。
Si: 0.1-0.8%
Si is an element that contributes to strength improvement without significantly degrading bendability. In the present invention, Si addition of 0.1% or more is required. However, if excessively added, an oxide is formed during heating in the plating line, and the plating property is deteriorated. Therefore, the Si amount is set to 0.1 to 0.8%.
Mn:1.5〜2.3%
Mnはオーステナイトを安定化させるとともに、加熱後の冷却時にパーライトが生成するのを抑制することで、マルテンサイトの生成に寄与する。含有量が1.5%未満では、780MPa以上の高強度を得るために必要なマルテンサイト量が確保できない。ただし、2.3%を超えるとバンド組織が顕著となり、不均一な組織となるため、曲げ性が劣化する。そのため、Mnは1.5〜2.3%の範囲とする。
Mn: 1.5 to 2.3%
Mn stabilizes austenite and contributes to the formation of martensite by suppressing the formation of pearlite during cooling after heating. If the content is less than 1.5%, the amount of martensite necessary to obtain a high strength of 780 MPa or more cannot be ensured. However, if it exceeds 2.3%, the band structure becomes prominent and the structure becomes non-uniform, so that the bendability deteriorates. Therefore, Mn is set to a range of 1.5 to 2.3%.
P:0.05%以下
Pは不可避的不純物元素であるが、過剰にPが含まれると溶接性等が劣化するため、0.05%以下とする。
P: 0.05% or less P is an inevitable impurity element. However, if P is excessively contained, weldability and the like deteriorate, so 0.05% or less.
S:0.01%以下
SはMnS等の硫化物として存在し、多量に存在すると曲げ性が劣化する。そのため、S量は出来るだけ低い方が望ましいが、0.01%以下であれば、曲げ性に及ぼす影響は小さい。
S: 0.01% or less S exists as a sulfide such as MnS, and if it is present in a large amount, the bendability deteriorates. For this reason, the S content is preferably as low as possible, but if it is 0.01% or less, the effect on bendability is small.
B:0.0005〜0.005%
Bは、高温加熱時のオーステナイト粒界に偏析して耐溶融金属脆化特性の改善に有効な元素である。また、オーステナイトからフェライトへの変態を遅らせ、硬質なマルテンサイト組織を得るのにも有効に作用する。0.01%以上のTi添加を前提としている本願発明では、Bによる前記の効果を得るためには少なくとも0.0005%の添加が必要である。しかし、0.005%を超えて添加してもその効果が飽和するとともに、返って製造コストの上昇を招く。したがって、本発明では、B:0.0005〜0.005%に限定する。
B: 0.0005-0.005%
B is an element that segregates at austenite grain boundaries during high-temperature heating and is effective in improving the resistance to molten metal embrittlement. It also works effectively to delay the transformation from austenite to ferrite and to obtain a hard martensite structure. In the present invention based on the premise that 0.01% or more of Ti is added, at least 0.0005% of addition is necessary in order to obtain the above-described effect by B. However, even if added over 0.005%, the effect is saturated and the manufacturing cost is increased. Therefore, in the present invention, B is limited to 0.0005 to 0.005%.
Ti:0.01〜0.10%
Tiは組織の微細化によって組織の均一性を向上させるとともに、炭化物の析出強化により、曲げ性を劣化させることなく、強度向上に寄与する元素である。組織微細化により、曲げ性を向上させるには、0.01%以上の添加が必要である。ただし、0.10%を超えて添加すると再結晶温度が著しく上昇するため、0.01〜0.10%とする。
Ti: 0.01 to 0.10%
Ti is an element that improves the uniformity of the structure by refining the structure and contributes to the improvement of strength without deteriorating the bendability by precipitation strengthening of carbides. In order to improve bendability by refining the structure, addition of 0.01% or more is necessary. However, if added over 0.10%, the recrystallization temperature rises remarkably, so 0.01 to 0.10%.
Nb:0.01〜0.10%、Cr:0.01〜1.0%、Mo:0.01〜0.5%、
Nb,CrおよびMoもBと同様に高温加熱時のオーステナイト粒界に偏析して耐溶融金属脆化特性の改善に有効な元素である。この効果を得るためには、単独添加では、Nb:0.01%以上、Cr:0.01%以上、Mo:0.01%以上が必要である。しかし、Nb:0.10%、Cr:1.0%およびMo:0.5%を超えて添加してもその改善効果が飽和するとともに返って製造コストの上昇を招く。なお、2種以上を複合添加してもその効果は妨げられることなく、同様な効果が得られるが、2種以上を複合添加する場合は、製造コストの観点から、合計で0.5%以下とすることが望ましい。したがって、本発明では、Nb:0.01〜0.10%、Cr:0.01〜1.0%、Mo:0.01〜0.5%の1種または2種以上を添加する。なお、CrおよびMoは、オーステナイトからフェライトへの変態を抑制する作用も有するため、マルテンサイト組織を安定して得るのにも有効である。しかし、製造コストの上昇を招くので、本発明では前記の耐溶融金属脆化特性を考慮し、必要に応じて選択的に添加されるものである。
Nb: 0.01-0.10%, Cr: 0.01-1.0%, Mo: 0.01-0.5%,
Similarly to B, Nb, Cr and Mo are elements that segregate at austenite grain boundaries during high-temperature heating and are effective in improving the resistance to embrittlement of molten metal. In order to obtain this effect, Nb: 0.01% or more, Cr: 0.01% or more, and Mo: 0.01% or more are required when added alone. However, even if Nb: 0.10%, Cr: 1.0%, and Mo: 0.5% are added, the improvement effect is saturated and the manufacturing cost is increased. Even if two or more types are added in combination, the same effect can be obtained without impeding the effect. However, when two or more types are added in combination, the total is 0.5% or less from the viewpoint of manufacturing cost. Is desirable. Therefore, in the present invention, one or more of Nb: 0.01 to 0.10%, Cr: 0.01 to 1.0%, and Mo: 0.01 to 0.5% are added. In addition, since Cr and Mo also have an effect | action which suppresses the transformation from austenite to a ferrite, it is effective also in obtaining a martensitic structure stably. However, since the manufacturing cost is increased, the present invention is selectively added as necessary in consideration of the above-described resistance to molten metal embrittlement.
続いて金属組織について説明する。
本発明の高強度溶融Zn−Al−Mg系めっき鋼板は、主相フェライトに第二相としてマルテンサイトまたはマルテンサイトとベイナイトが分散した複合組織を持つDP鋼板を下地とするものである。
下地鋼板の主相フェライトに分散する第二相としてのマルテンサイトまたはマルテンサイトとベイナイトは、合計で15%以上45%未満とする。15%に満たないと780MPa以上の引張強さは得られない。逆に45%以上になると硬くなりすぎて加工し難くなる。好ましくは25〜40%の範囲である。
なお、第二相としてはマルテンサイトのみが好ましいが、部分的にベイナイトが分散していても良い。
Next, the metal structure will be described.
The high-strength molten Zn—Al—Mg-based plated steel sheet of the present invention is based on a DP steel sheet having a composite structure in which martensite or martensite and bainite are dispersed as the second phase in the main phase ferrite.
Martensite or martensite and bainite as the second phase dispersed in the main phase ferrite of the base steel sheet is made 15% to less than 45% in total. If it is less than 15%, a tensile strength of 780 MPa or more cannot be obtained. On the other hand, if it is 45% or more, it becomes too hard and difficult to process. Preferably it is 25 to 40% of range.
As the second phase, only martensite is preferable, but bainite may be partially dispersed.
フェライトの平均粒径:8μm以下、マルテンサイトの平均粒径:5μm以下
本発明では、組織を微細にすることにより曲げ性を向上させている。フェライトおよびマルテンサイトの平均粒径が、それぞれ8μmおよび5μmを超える程に大きくなると、不均一組織となりやすく、曲げ性が劣化する。
Average particle diameter of ferrite: 8 μm or less, average particle diameter of martensite: 5 μm or less In the present invention, the bendability is improved by making the structure fine. If the average particle sizes of ferrite and martensite become larger than 8 μm and 5 μm, respectively, a non-uniform structure tends to be formed and the bendability deteriorates.
マルテンサイトの平均アスペクト比:0.7以上
本発明では、組織を微細にすることの他に、マルテンサイトを丸くしている。マルテンサイトのアスペクト比(短軸/長軸)は曲げ性と関係があり、アスペクト比が小さいマルテンサイトが増えると、組織の不均一性が増し、曲げ性は劣化する。そのため、0.7以上とする。
Average aspect ratio of martensite: 0.7 or more In the present invention, in addition to making the structure fine, the martensite is rounded. The aspect ratio (short axis / major axis) of martensite is related to bendability. When martensite with a small aspect ratio increases, the non-uniformity of the structure increases and the bendability deteriorates. Therefore, it is set to 0.7 or more.
以上のような成分組成を具備し、またその金属組織を、残留オーステナイトのない主相としてのフェライトと第二相としてのマルテンサイト、またはマルテンサイトとベイナイトからなるものとすることにより、780MPa以上の引張強さとビッカース硬さの変動を40HV以下に抑えることができる。
なお、ビッカース硬さの変動を40HV以下に抑えることにより、軟質部への変形の集中が抑制されて曲げ性が向上する。
By having the component composition as described above and having the metal structure composed of ferrite as the main phase without residual austenite and martensite as the second phase, or martensite and bainite, Variations in tensile strength and Vickers hardness can be suppressed to 40 HV or less.
In addition, by suppressing the fluctuation | variation of Vickers hardness to 40 HV or less, the concentration of a deformation | transformation to a soft part is suppressed and bendability improves.
最後に、本発明に係る高強度溶融Zn−Al−Mg系めっき鋼板の製造方法について簡単に説明する。
上記の本発明成分からなる鋼を、転炉、電気炉等の通常の方法によって溶製し、成分調整を行った後、通常の鋳造工程、必要に応じて分塊圧延工程を経た後、熱延と酸洗、その後の冷延と焼鈍を行い、その後に溶融Zn−Al−Mg系のめっき処理を施せば足りる。
Finally, the manufacturing method of the high-strength molten Zn—Al—Mg based steel sheet according to the present invention will be briefly described.
After the steel comprising the above-described components of the present invention is melted by a usual method such as a converter or an electric furnace and the components are adjusted, a normal casting process is performed, and a bulk rolling process is performed as necessary. It is sufficient to perform rolling and pickling, followed by cold rolling and annealing, and then performing a molten Zn—Al—Mg based plating treatment.
冷延板焼鈍は溶融めっきラインで行い、所定の温度に所定時間加熱して所定の冷却速度で冷却した後、連続して溶融Zn−Al−Mg系めっき浴に浸漬して溶融めっきを施す。
熱延およびその後の酸洗工程までには格段の注意点はない。従前どおり、熱延前の加熱は、炭化物がマトリックス中に十分に固溶されるような温度とするべきである。
Cold-rolled sheet annealing is performed in a hot dipping line, heated to a predetermined temperature for a predetermined time, cooled at a predetermined cooling rate, and then continuously immersed in a molten Zn-Al-Mg plating bath to perform hot dipping.
There are no special precautions until hot rolling and the subsequent pickling process. As before, the heating prior to hot rolling should be at a temperature such that the carbides are sufficiently dissolved in the matrix.
めっきラインでの加熱温度:730〜780℃
加熱温度が730℃に満たないと、再結晶が完了せず未再結晶組織が残存するため、良好な曲げ性が得られない。780℃を超えると組織が粗大化し、曲げ性が劣化するので、730〜780℃が好ましい。
Heating temperature in the plating line: 730-780 ° C
If the heating temperature is less than 730 ° C., recrystallization is not completed and an unrecrystallized structure remains, and thus good bendability cannot be obtained. If it exceeds 780 ° C., the structure becomes coarse and the bendability deteriorates, so 730 to 780 ° C. is preferable.
加熱後の冷却速度:5℃/s以上
加熱後の冷却速度が5℃/s未満では、一部パーライトが生成し、780MPa以上の高強度を得ることが困難となる。また、フェライト粒径の微細化の点からも、冷却速度は5℃/s以上が好ましい。本発明では、所定のTiや必要に応じてNbを含有していることにより、加熱後の冷却速度をこのように選定することでフェライトの平均粒径が8μm以下となる。
その後、従前どおり、溶融Zn−Al−Mg系めっき浴に浸漬して溶融Zn−Al−Mg系めっきを施す。
Cooling rate after heating: 5 ° C./s or more If the cooling rate after heating is less than 5 ° C./s, some pearlite is generated, and it becomes difficult to obtain high strength of 780 MPa or more. In addition, the cooling rate is preferably 5 ° C./s or more from the viewpoint of reducing the ferrite grain size. In the present invention, by containing predetermined Ti and, if necessary, Nb, the average particle size of ferrite becomes 8 μm or less by selecting the cooling rate after heating in this way.
After that, as before, it is immersed in a molten Zn—Al—Mg based plating bath to perform molten Zn—Al—Mg based plating.
表1に示す化学組成を有するスラブを加熱温度:1250℃、仕上げ圧延温度:880℃にて熱間圧延を行った後、550℃にて巻取り、板厚3.5mmの熱延鋼板を得た。
熱延鋼板を酸洗後、板厚1.4mm(圧下率:60%)まで冷間圧延し、冷延鋼板を得た後、連続溶融Zn−Al−Mg系めっきラインにて、ラインスピード:110m/min、加熱温度:730〜780℃、保持時間:35秒で焼鈍、冷却速度:10℃/sで冷却した後、浴温410℃のZn−Al−Mg系合金めっき浴に浸漬し、Zn−Al−Mg系めっき鋼板を得た。めっき付着量は、片面あたり90g/m2とした。
めっき層の組成は、次の通りである。Al:6%、Mg:3%、Ti:0.002%、B:0.0005%、Si:0.01%、Fe:0.1%、Zn:残部
A slab having the chemical composition shown in Table 1 was hot-rolled at a heating temperature of 1250 ° C. and a finish rolling temperature of 880 ° C., and then wound at 550 ° C. to obtain a hot-rolled steel plate having a thickness of 3.5 mm. It was.
After pickling the hot-rolled steel sheet, it is cold-rolled to a sheet thickness of 1.4 mm (reduction rate: 60%) to obtain a cold-rolled steel sheet, and then the line speed in a continuous molten Zn—Al—Mg-based plating line: 110 m / min, heating temperature: 730-780 ° C., holding time: annealing in 35 seconds, cooling rate: after cooling at 10 ° C./s, immersed in a Zn—Al—Mg-based alloy plating bath with a bath temperature of 410 ° C., A Zn—Al—Mg plated steel sheet was obtained. The plating adhesion amount was 90 g / m 2 per side.
The composition of the plating layer is as follows. Al: 6%, Mg: 3%, Ti: 0.002%, B: 0.0005%, Si: 0.01%, Fe: 0.1%, Zn: balance
得られた高強度溶融Zn−Al−Mg系めっき鋼板について、組織観察、硬さ試験、引張試験、曲げ試験、溶融金属脆化特性を調査した。
金属組織は、圧延方向の板厚断面を走査型電子顕微鏡にて観察し、JIS
G 0552に準拠してフェライトおよびマルテンサイトの平均粒径を求めた。
また、各めっき鋼板の下地鋼板の金属組織を走査電子顕微鏡にて観察し、1000倍で10視野の画像解析を行い、マルテンサイトおよびマルテンサイト+ベイナイト量、マルテンサイトの平均アスペクト比(短軸/長軸)を求めた。
それらの測定結果を表2に示す。なお、表2には示していないが、No.2のめっき鋼板ではベイナイトが観察され、その面積率は3%であった
また、マトリクス中に析出物として存在するTiやNb量の合計は0.04質量%以下であった。析出物中のTiやNb量は、マトリクスを溶解させて得た残渣中のTi、Nbを分析することによって求めた。
The obtained high-strength molten Zn—Al—Mg-based plated steel sheet was examined for structure observation, hardness test, tensile test, bending test, and molten metal embrittlement characteristics.
The metal structure was observed by a scanning electron microscope in the thickness direction in the rolling direction.
The average particle diameters of ferrite and martensite were determined according to G 0552.
In addition, the metallographic structure of the base steel sheet of each plated steel sheet is observed with a scanning electron microscope, image analysis is performed for 10 fields of view at 1000 times, and the martensite and martensite + bainite amount, the average aspect ratio of martensite (short axis / Long axis).
The measurement results are shown in Table 2. Although not shown in Table 2, bainite was observed in the No. 2 plated steel sheet, and the area ratio was 3%. The total amount of Ti and Nb present as precipitates in the matrix was 0. It was 0.04 mass% or less. The amount of Ti and Nb in the precipitate was determined by analyzing Ti and Nb in the residue obtained by dissolving the matrix.
硬さ試験は、荷重を100gfとしたマイクロビッカース硬さ試験機で、圧延方向の板厚断面において、板厚1/4線上を150μmの間隔で30点測定を行い、硬度の分布を測定した。
得られた硬さの最大値と最小値の差を硬さ変動とした。硬さ変動が40HV以下を合格とした。
The hardness test was a micro Vickers hardness tester with a load of 100 gf, and 30 points were measured at intervals of 150 μm on the sheet thickness ¼ line in the sheet thickness section in the rolling direction to measure the hardness distribution.
The difference between the maximum value and the minimum value of the obtained hardness was defined as hardness variation. A hardness variation of 40 HV or less was accepted.
引張試験は、製造しためっき鋼板から圧延方向と平行にJIS5号試験片を切り出し、JIS
Z 2241に準拠して、常温での引張試験に供した。
曲げ試験は、圧延方向と直角方向を長手方向とする曲げ試験片を採取し、90°のVブロック曲げ試験を実施した。試験後に、曲げ部を曲げの外側から目視にて観察し、割れが認められない最小の先端Rを限界曲げRとして算出した。限界曲げRが1.0mm以下を合格とした。
In the tensile test, a JIS No. 5 test piece was cut out from the manufactured plated steel plate in parallel with the rolling direction, and JIS
In accordance with Z2241, it was subjected to a tensile test at room temperature.
In the bending test, a bending test piece having a longitudinal direction perpendicular to the rolling direction was taken, and a 90 ° V-block bending test was performed. After the test, the bent portion was visually observed from the outside of the bend, and the minimum tip R where no crack was observed was calculated as the limit bend R. A critical bending R of 1.0 mm or less was accepted.
溶融金属脆化特性は、次の手順により溶接試験を行って評価した。
得られためっき鋼板から100mm×75mmのサンプルを切り出し、これを溶融金属脆化に起因する最大割れ深さを評価するための試験片とした。溶接試験は、図1に示す外観のボス溶接材を作成する「ボス溶接」を行い、その溶接部断面を観察して割れの発生状況を調べた。
すなわち、試験片3の板面中央部に直径20mm×長さ25mmの棒鋼からなるボス(突起)1を垂直に立て、このボス1を試験片3にアーク溶接にて接合した。溶接ワイヤーは、YGW12を用い、溶接開始点からボスの周囲を1周させ、溶接始点を過ぎた後もさらに少し溶接を進めて溶接ビード6溶接開始点を過ぎて溶接ビードの重なり部分8ができたところで溶接を終了とした。溶接条件は、110A,21V,溶接速度0.4m/分、シールドガス:CO2、シールドガス流量:20L/分とした。
これが、図1に示したボス溶接材を作成するための試験手順である。
The molten metal embrittlement characteristics were evaluated by conducting a welding test according to the following procedure.
A sample of 100 mm × 75 mm was cut out from the obtained plated steel sheet, and this was used as a test piece for evaluating the maximum crack depth resulting from molten metal embrittlement. In the welding test, “boss welding” was performed to create a boss weld material having the appearance shown in FIG. 1, and the cross section of the weld was observed to examine the occurrence of cracks.
That is, a boss (projection) 1 made of a steel bar having a diameter of 20 mm and a length of 25 mm was set up vertically at the center of the plate surface of the
This is the test procedure for creating the boss weld shown in FIG.
なお、溶接に際しては、予め試験片3を拘束板4と接合しておいたものを用いた。接合体は、まず120mm×95mm×板厚4mmの拘束板4(JISに規定されるSS400材)を用意し、この板面中央部に試験片3を置き、その後、試験片3の全周を拘束板4に溶接したものである。
上記のボス溶接材の作製は、図2に示すように、この接合体(試験片3と拘束板4)を水平な実験台5の上にクランプ2にて固定し、この状態でボス溶接を行ったものである。
ボス溶接後、ボス1の中心軸を通り、かつ前記のビードの重なり合う部分8を通る切断面9で、ボス1/試験片3/拘束板4の接合体を切断し、その切断面9について顕微鏡観察を行い、試験片3に観察された割れの最大深さを測定した。最大割れ深さが0.2mm以下を合格、0.2mmを超えるものを不合格として評価した。
こうして得られた、硬さ試験結果、曲げ試験結果、引張試験結果および溶融金属脆化特性の調査結果を表3にまとめて示す。また、本発明例のNo.1と比較例のNo.19の30点の測定位置でのビッカースの硬さ変動状況を図3に示す。
In the welding, a
As shown in FIG. 2, the boss weld material is prepared by fixing the joined body (the
After the boss welding, the boss 1 /
Table 3 summarizes the results of the hardness test, the bending test, the tensile test and the molten metal embrittlement characteristics obtained in this way. Further, FIG. 3 shows the Vickers hardness fluctuation state at 30 measurement positions of No. 1 of the present invention and No. 19 of the comparative example.
本発明例のNo.1と比較例のNo.19のビッカースの硬さ変動を示した図3からも分かるように、発明例のNo.1は硬さ変動が30HV程度と小さいのに対し、比較例のNo.19は硬さ変動が60HV以上と大きく、不均一な組織となっている。
表2および表3からわかるように、本発明範囲に従う化学組成や金属組織に従うZn−Al−Mg系めっき鋼板No.1〜No.16においては、フェライトの平均粒径が8μm以下、マルテンサイトの平均粒径が5μm以下でかつマルテンサイトの平均アスペクト比が0.7以上、ビッカースの硬さ変動が40HV以下と均一微細な組織となっている。そのため、90°Vブロック曲げにおける限界曲げRも1.0mm以下と優れた曲げ性を有している。更には、ボス溶接時の最大割れ深さはいずれも0.2mm以下の良好な値を有している。
これに対して、比較例であるNo.17〜22は鋼成分が本発明範囲から外れているため、No.17、No.18は曲げ性が悪く、No.19は曲げ性および耐溶融金属脆化特性が悪く、No.20、No.21は780MPa以上の強度を得ることができず、No.22は耐溶融金属脆化特性が悪い。
As can be seen from FIG. 3 showing the Vickers hardness fluctuation of No. 1 of the present invention example and No. 19 of the comparative example, No. 1 of the invention example has a hardness fluctuation as small as about 30 HV, No. 19 of the comparative example has a large hardness variation of 60 HV or more and has a non-uniform structure.
As can be seen from Tables 2 and 3, in the Zn-Al-Mg-based plated steel sheets No. 1 to No. 16 according to the chemical composition and metal structure according to the scope of the present invention, the average grain size of ferrite is 8 μm or less, The average particle size is 5 μm or less, the average aspect ratio of martensite is 0.7 or more, and the hardness variation of Vickers is 40 HV or less, resulting in a uniform fine structure. Therefore, the limit bending R in the 90 ° V block bending is 1.0 mm or less and has excellent bendability. Further, the maximum crack depth during boss welding has a good value of 0.2 mm or less.
On the other hand, since No.17-22 which is a comparative example has the steel component remove | deviated from the scope of the present invention, No.17 and No.18 have poor bendability, and No.19 has bendability and molten metal resistance. The embrittlement characteristics are poor, and No. 20 and No. 21 cannot obtain a strength of 780 MPa or more, and No. 22 has poor melt metal embrittlement resistance.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010016317A JP5641741B2 (en) | 2010-01-28 | 2010-01-28 | High strength Zn-Al-Mg plated steel sheet with excellent bendability and molten metal embrittlement resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010016317A JP5641741B2 (en) | 2010-01-28 | 2010-01-28 | High strength Zn-Al-Mg plated steel sheet with excellent bendability and molten metal embrittlement resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011153361A JP2011153361A (en) | 2011-08-11 |
JP5641741B2 true JP5641741B2 (en) | 2014-12-17 |
Family
ID=44543918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010016317A Active JP5641741B2 (en) | 2010-01-28 | 2010-01-28 | High strength Zn-Al-Mg plated steel sheet with excellent bendability and molten metal embrittlement resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5641741B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6049516B2 (en) * | 2013-03-26 | 2016-12-21 | 日新製鋼株式会社 | High-strength plated steel sheet for welded structural members and its manufacturing method |
US10266910B2 (en) * | 2013-12-19 | 2019-04-23 | Nisshin Steel Co., Ltd. | Steel sheet hot-dip-coated with Zn—Al—Mg-based system having excellent workability and method for manufacturing same |
WO2016129214A1 (en) * | 2015-02-13 | 2016-08-18 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet and manufacturing method therefor |
CN107208237B (en) * | 2015-02-13 | 2019-03-05 | 杰富意钢铁株式会社 | High strength hot dip galvanized steel sheet and its manufacturing method |
JP2017115205A (en) * | 2015-12-24 | 2017-06-29 | 日新製鋼株式会社 | MANUFACTURING METHOD OF HOT DIP Zn-Al-Mg ALLOY PLATED STEEL PLATE HAVING EXCELLENT PLATING ADHESION |
JP6308333B2 (en) * | 2016-03-31 | 2018-04-11 | Jfeスチール株式会社 | Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method |
MX2021009099A (en) * | 2019-01-29 | 2021-09-08 | Jfe Steel Corp | High-strength steel sheet and method for producing same. |
JP7288184B2 (en) * | 2019-03-22 | 2023-06-07 | 日本製鉄株式会社 | Method for producing hot-dip Zn-Al-Mg plated steel sheet |
KR20230069426A (en) * | 2021-11-12 | 2023-05-19 | 주식회사 포스코 | High strength steel sheet having excellent bendablilty and stretch-flangeability and manufacturing method of the same |
CN118703903A (en) * | 2023-03-27 | 2024-09-27 | 宝山钢铁股份有限公司 | Super-high-strength steel with plating layer and excellent spot welding performance and manufacturing method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004315847A (en) * | 2003-02-27 | 2004-11-11 | Nisshin Steel Co Ltd | Zn-Al-Mg HOT-DIPPED STEEL PLATE WITH NO WELDING CRACK CAUSED BY EMBRITTLEMENT OF MOLTEN METAL |
JP2005230896A (en) * | 2004-02-23 | 2005-09-02 | Nakayama Steel Works Ltd | High strength thin steel sheet and its manufacturing method |
JP5264235B2 (en) * | 2008-03-24 | 2013-08-14 | 日新製鋼株式会社 | High yield ratio type Zn-Al-Mg plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same |
JP5264234B2 (en) * | 2008-03-24 | 2013-08-14 | 日新製鋼株式会社 | Zn-Al-Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same |
JP5483916B2 (en) * | 2009-03-27 | 2014-05-07 | 日新製鋼株式会社 | High-strength galvannealed steel sheet with excellent bendability |
-
2010
- 2010-01-28 JP JP2010016317A patent/JP5641741B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011153361A (en) | 2011-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5641741B2 (en) | High strength Zn-Al-Mg plated steel sheet with excellent bendability and molten metal embrittlement resistance | |
JP6631760B1 (en) | High strength galvanized steel sheet and high strength members | |
JP6777173B2 (en) | High-strength galvanized steel sheet for spot welding | |
JP6049516B2 (en) | High-strength plated steel sheet for welded structural members and its manufacturing method | |
JP5858032B2 (en) | High strength steel plate and manufacturing method thereof | |
JP5858199B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
JP4791992B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet for spot welding | |
JP5704721B2 (en) | High strength steel plate with excellent seam weldability | |
JPWO2019106895A1 (en) | High strength galvanized steel sheet and manufacturing method thereof | |
WO2012118073A1 (en) | STEEL SHEET HOT-DIP-COATED WITH Zn-Al-Mg-BASED SYSTEM, AND PROCESS OF MANUFACTURING SAME | |
WO2013047760A1 (en) | High-strength hot-dip galvanized steel sheet having excellent delayed fracture resistance, and method for producing same | |
EP2527484B1 (en) | Method for manufacturing a high-strength galvanized steel sheet having excellent formability and spot weldability | |
JP5264234B2 (en) | Zn-Al-Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same | |
JP5483916B2 (en) | High-strength galvannealed steel sheet with excellent bendability | |
JP2010235989A (en) | High strength zn-al-mg based plated steel sheet excellent in liquid metal embrittlement resistant characteristics and production method therefor | |
JP5283402B2 (en) | Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking | |
JP4173990B2 (en) | Zinc-based alloy-plated steel for welding and its ERW steel pipe | |
JP4495064B2 (en) | Steel sheet for hot press | |
JP2019504203A (en) | High-strength cold-rolled steel sheet, hot-dip galvanized steel sheet excellent in ductility, hole workability, and surface treatment characteristics, and methods for producing them | |
JP5860500B2 (en) | High-strength Zn-Al-Mg-based plated steel sheet with excellent resistance to molten metal embrittlement and method for producing the same | |
JP7311808B2 (en) | Steel plate and its manufacturing method | |
JP5053652B2 (en) | Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking | |
KR102727026B1 (en) | Hot rolled steel sheet for welded pipes and its manufacturing method, welded pipes and its manufacturing method, line pipes, building structures | |
JPH07113122A (en) | Production of electric resistance welded tube to be hot-dip galvanized | |
JP2017155330A (en) | Steel sheet for copper-brazed member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141028 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141028 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5641741 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |