JP5515440B2 - Thick steel plate cooling equipment and cooling method thereof - Google Patents
Thick steel plate cooling equipment and cooling method thereof Download PDFInfo
- Publication number
- JP5515440B2 JP5515440B2 JP2009140130A JP2009140130A JP5515440B2 JP 5515440 B2 JP5515440 B2 JP 5515440B2 JP 2009140130 A JP2009140130 A JP 2009140130A JP 2009140130 A JP2009140130 A JP 2009140130A JP 5515440 B2 JP5515440 B2 JP 5515440B2
- Authority
- JP
- Japan
- Prior art keywords
- steel plate
- nozzle
- cooling
- thick steel
- cooling water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 149
- 239000010959 steel Substances 0.000 title claims description 149
- 238000001816 cooling Methods 0.000 title claims description 132
- 239000000498 cooling water Substances 0.000 claims description 103
- 238000011144 upstream manufacturing Methods 0.000 claims description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 38
- 238000002347 injection Methods 0.000 claims description 35
- 239000007924 injection Substances 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 18
- 238000005098 hot rolling Methods 0.000 claims description 6
- 239000011295 pitch Substances 0.000 description 22
- 230000002093 peripheral effect Effects 0.000 description 13
- 238000005096 rolling process Methods 0.000 description 13
- 239000007921 spray Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910001563 bainite Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Description
本発明は、厚鋼板の冷却設備およびその冷却方法に関するものである。 The present invention relates to a thick steel plate cooling facility and a cooling method therefor.
熱間圧延によって厚鋼板を製造するプロセスでは、例えば図5に示すような設備において、熱間粗圧延、仕上圧延を行った後、水冷または空冷を行って組織を制御している。水冷によって比較的低い温度、例えば450〜650℃程度に冷却すると、微細なフェライトやベイナイト組織が得られ、強度を確保できるので、スプレー冷却水やラミナー冷却水などによって厚鋼板を冷却する技術が一般的である。また近年では、高い冷却速度を得て組織をより微細化し、厚鋼板の強度を上げる技術の開発が盛んである。 In the process of manufacturing a thick steel plate by hot rolling, for example, in an equipment as shown in FIG. 5, after hot rough rolling and finish rolling, the structure is controlled by water cooling or air cooling. When cooled to a relatively low temperature, for example, about 450 to 650 ° C. by water cooling, a fine ferrite and bainite structure can be obtained and the strength can be secured. Therefore, a technique for cooling a thick steel plate by spray cooling water, laminar cooling water, etc. is generally used. Is. In recent years, the development of techniques for obtaining a high cooling rate, making the structure finer, and increasing the strength of the thick steel plate has been actively developed.
例えば、大量の棒状冷却水を供給して鋼板下面を冷却する技術として特許文献1の技術がある。これは、水槽中の円管内に棒状冷却水を噴射して、円管内の水を随伴させて、みかけ上の冷却水量を多くすることによって、高い冷却速度を得ることができ、材料特性に優れた製品を製造出来るとされている。 For example, there is a technique disclosed in Patent Document 1 as a technique for supplying a large amount of rod-shaped cooling water to cool the lower surface of a steel plate. It is possible to obtain a high cooling rate by injecting rod-shaped cooling water into the circular pipe in the water tank and entraining the water in the circular pipe to increase the apparent amount of cooling water, and excellent in material properties. It is said that the product can be manufactured.
また、冷却水を供給して熱鋼板を冷却する他の技術として、特許文献2の技術がある。これは、エプロンを兼ねた冷却ヘッダの上面に多数の小孔を空けて冷却水を噴射し、鋼板下面を冷却する構造であり、冷却の効率が高く、かつ均一性のよい冷却ができるとされている。 Moreover, there exists a technique of patent document 2 as another technique which cools a hot-steel plate by supplying cooling water. This is a structure in which a large number of small holes are made on the upper surface of the cooling header that also serves as an apron, and cooling water is injected to cool the lower surface of the steel plate, so that cooling efficiency is high and uniform cooling can be achieved. ing.
しかしながら、従来の技術は、冷却能力や冷却均一性の確保に問題があった。 However, the conventional technique has a problem in securing the cooling capacity and the cooling uniformity.
特許文献1の技術では、ノズルの幅方向ピッチは長手方向に並ぶノズル列で一定である実施例が示されている。 In the technique of Patent Document 1, an embodiment is shown in which the pitch in the width direction of the nozzles is constant in the nozzle rows arranged in the longitudinal direction.
しかしながら、厚鋼板下面全体を効率よく冷却するためには、以下のような理由で最適なノズル配置ではなかった。図6は従来の下面冷却水噴射ノズルの配置および下面冷却水の流れを模式的に示す上面図および側面図であるが、厚鋼板の冷却が進行するにつれて、厚鋼板下面の表面温度は徐々に低下するので、厚鋼板表面の濡れ性がよくなり、噴水状に噴射した冷却水が厚鋼板下面を伝って拡がる円形の面積(図6に示す周辺冷却部)は、厚鋼板下流側ほど広くなる。特に、厚鋼板を低速で搬送する場合は、その差が歴然とする。したがって、ノズルの幅方向ピッチが一定であると、厚鋼板下面を伝って拡がる冷却水が到達しない部分の面積が、厚鋼板下面の表面温度が低い下流側に対して温度が高い上流側で広いため、厚鋼板下面を効率よく冷却することができない。 However, in order to efficiently cool the entire bottom surface of the thick steel plate, the nozzle arrangement is not optimal for the following reasons. FIG. 6 is a top view and a side view schematically showing the arrangement of the conventional lower surface cooling water injection nozzle and the flow of the lower surface cooling water. The surface temperature of the lower surface of the thick steel plate gradually increases as the cooling of the thick steel plate proceeds. Since it decreases, the wettability of the surface of the thick steel plate is improved, and the circular area (peripheral cooling section shown in FIG. 6) in which the cooling water sprayed in the form of a fountain spreads along the bottom surface of the thick steel plate becomes wider toward the downstream side of the thick steel plate. . In particular, when transporting thick steel plates at low speed, the difference is obvious. Therefore, when the width direction pitch of the nozzle is constant, the area of the portion where the cooling water spreading along the bottom surface of the thick steel plate does not reach is wider on the upstream side where the temperature is lower than the downstream side where the surface temperature of the bottom surface of the thick steel plate is low. Therefore, the lower surface of the thick steel plate cannot be efficiently cooled.
また、冷却均一性の確保には以下のような理由で最適なノズル配置ではなかった。例えば、ノズルを千鳥配置として厚鋼板を低速(0.1m/s程度)で搬送して冷却する場合、第1列目のノズル位置を通過する際に、ノズル直上を通過する部分(図6のAの位置)の表面は高い冷却速度が得られるが、ノズル直上の中間を通る部分(図6のBの位置)についても、高い冷却速度で冷却された部分(図6のAの位置)に熱拡散することによってある程度冷やされてしまう。 Further, the nozzle arrangement was not optimal for ensuring cooling uniformity for the following reasons. For example, in the case where the nozzles are arranged in a staggered manner and the steel plate is conveyed and cooled at a low speed (about 0.1 m / s), when passing through the nozzle position in the first row, the portion that passes immediately above the nozzle (see FIG. 6). The surface at the position A) has a high cooling rate, but the portion passing through the middle immediately above the nozzle (position B in FIG. 6) is also the portion cooled at the high cooling speed (position A in FIG. 6). It is cooled to some extent by thermal diffusion.
したがって、第1列目のノズル直上の中間を通る部分(図6のBの位置が)第2列目のノズル直上を通過する際には既に温度が低下しているため、(図6のAの位置が)第1列目を通過した時のような高い冷却速度は得られない。このような場合、初期の冷却速度が変わるので、幅方向で硬度むらが発生してしまう。それゆえ、耐摩耗鋼のように厚鋼板の上下全表面で高い硬度が要求される厚鋼板を製造することが困難であった。 Accordingly, the temperature has already dropped when the portion passing through the middle immediately above the nozzles in the first row (the position of B in FIG. 6) passes immediately above the nozzles in the second row (A in FIG. 6). A high cooling rate is not obtained as when the first position passes through the first row. In such a case, since the initial cooling rate changes, hardness unevenness occurs in the width direction. Therefore, it has been difficult to produce a thick steel plate that requires high hardness on the entire upper and lower surfaces of the thick steel plate, such as wear-resistant steel.
特許文献2の技術は、エプロンを兼ねた冷却ヘッダの上面に多数の孔をあけるだけの構造であるから、鋼板下面に供給した棒状冷却水が落下すると、エプロン上で滞留水となり、後続で噴射する冷却水の障害となる。 Since the technology of Patent Document 2 has a structure in which a large number of holes are formed on the upper surface of the cooling header that also serves as an apron, when the rod-shaped cooling water supplied to the lower surface of the steel sheet falls, it becomes stagnant water on the apron and is subsequently injected. It becomes an obstacle to the cooling water to be.
本発明は、上記に鑑み、厚鋼板、特に搬送速度0.5m/s以下の低速で搬送される厚鋼板の下面に冷却水を供給する場合において、冷却水を効率よく使用して、高冷却速度で均一に厚鋼板を冷却する技術を提供することを目的とする。 In view of the above, the present invention efficiently uses cooling water when supplying cooling water to the lower surface of a thick steel plate, particularly a steel plate that is conveyed at a low conveying speed of 0.5 m / s or less. An object is to provide a technique for uniformly cooling a thick steel plate at a speed.
上記の課題を解決するために、本発明は以下の特徴を有する。 In order to solve the above problems, the present invention has the following features.
第一の発明は、厚鋼板の熱間圧延ラインに設置される厚鋼板の冷却設備であって、テーブルロール間に設置され厚鋼板の下面に冷却水を供給するヘッダと、該ヘッダから突出して設けられ厚鋼板の下面に向けて棒状冷却水を噴射する冷却水噴射ノズル群とを備え、前記冷却水噴射ノズル群は厚鋼板の搬送方向に複数のノズル列を形成するとともに、前記複数のノズル列のうち最上流の列を含む1以上のノズル列からなる上流側ノズル列群を構成する各ノズル列内の厚鋼板幅方向のノズルピッチを、その下流側の複数のノズル列からなる下流側ノズル列群を構成する各ノズル列内の幅方向のノズルピッチよりも短くすることを特徴とする厚鋼板の冷却設備である。 A first invention is a steel plate cooling facility installed in a hot rolling line for steel plates, a header installed between table rolls for supplying cooling water to the bottom surface of the steel plate, and protruding from the header A cooling water injection nozzle group that is provided and injects rod-shaped cooling water toward the lower surface of the thick steel plate, and the cooling water injection nozzle group forms a plurality of nozzle rows in the conveying direction of the thick steel plate, and the plurality of nozzles The nozzle pitch in the width direction of the thick steel plate in each nozzle row constituting the upstream nozzle row group including one or more nozzle rows including the most upstream row among the rows, the downstream side consisting of a plurality of downstream nozzle rows A thick steel plate cooling facility characterized in that it is shorter than the nozzle pitch in the width direction in each nozzle row constituting the nozzle row group.
第二の発明は、前記上流側ノズル列群に含まれる各ノズル列内の厚鋼板幅方向のノズルピッチを30〜90mmとすることを特徴とする第一の発明に記載の厚鋼板の冷却設備である。 2nd invention sets the nozzle pitch of the thick steel plate width direction in each nozzle row contained in the said upstream nozzle row group to 30-90 mm, The cooling equipment of the thick steel plate as described in 1st invention characterized by the above-mentioned It is.
第三の発明は、前記上流側ノズル列群が厚鋼板の搬送方向50mmの範囲内にある2以上のノズル列により構成され、前記上流側ノズル列群に含まれる全てのノズルが幅方向に15〜30mmの等ピッチで並んでいることを特徴とする第一または第二の発明に記載の厚鋼板の冷却設備である。 According to a third aspect of the invention, the upstream nozzle row group is composed of two or more nozzle rows in a range of 50 mm in the conveying direction of the thick steel plate, and all the nozzles included in the upstream nozzle row group are 15 in the width direction. It is the cooling equipment of the thick steel plate as described in the 1st or 2nd invention characterized by arranging in the same pitch of -30 mm.
第四の発明は、前記冷却水噴射ノズルの内径を5〜12mm、前記冷却水噴射ノズルから噴射される冷却水の流速を2〜20m/sとし、前記冷却水噴射ノズル群から噴射される冷却水の前記テーブルロール間の平均水量密度を1.5〜4.0m3/m2・minとすることを特徴とする第一乃至第三の発明のいずれかに記載の厚鋼板の冷却設備である。 According to a fourth aspect of the present invention, the cooling water spray nozzle group has an inner diameter of 5 to 12 mm, a flow rate of cooling water sprayed from the cooling water spray nozzle of 2 to 20 m / s, and cooling water sprayed from the cooling water spray nozzle group. The cooling equipment for thick steel plates according to any one of the first to third inventions, wherein an average water density between the table rolls of water is 1.5 to 4.0 m 3 / m 2 · min. is there.
第五の発明は、テーブルロール間に設置されるヘッダに設けられた冷却水噴射ノズル群から厚鋼板の下面に向けて棒状冷却水を噴射する、厚鋼板の熱間圧延ラインにおける厚鋼板の冷却方法であって、前記棒状冷却水が厚鋼板下面に衝突する着水部が厚鋼板の搬送方向に複数の着水部列を形成するとともに、前記複数の着水部列のうち最上流の列を含む1以上の着水部列からなる上流側着水部列群を構成する各着水部列内の厚鋼板幅方向の着水部間隔が、その下流側の複数の着水部列からなる下流側着水部列群を構成する各着水部列内の幅方向の着水部間隔よりも短くなるように、前記棒状冷却水を噴射することを特徴とする厚鋼板の冷却方法である。 5th invention is cooling the thick steel plate in the hot rolling line of a thick steel plate which injects rod-shaped cooling water toward the lower surface of a thick steel plate from the cooling water injection nozzle group provided in the header installed between table rolls. In this method, the landing portion where the rod-shaped cooling water collides with the lower surface of the thick steel plate forms a plurality of landing portion rows in the conveying direction of the thick steel plate, and the most upstream row among the plurality of landing portion rows The landing portion spacing in the steel plate width direction in each landing portion row constituting the upstream landing portion row group composed of one or more landing portion rows including a plurality of downstream landing portion rows. In the method for cooling a thick steel plate, the rod-shaped cooling water is injected so as to be shorter than the interval between the landing portions in the width direction in each landing portion row constituting the downstream landing portion row group. is there.
第六の発明は、前記上流側着水部列群に含まれる各着水部列内の厚鋼板幅方向の着水部間隔を30〜90mmとすることを特徴とする第五の発明に記載の厚鋼板の冷却方法である。 6th invention is set to 30-90 mm in the water landing part space | interval of the thick steel plate width direction in each water landing part row | line | column contained in the said upstream water landing part row | line group, It is described to 5th invention characterized by the above-mentioned. This is a cooling method for thick steel plates.
第七の発明は、前記上流側着水部列群が厚鋼板の搬送方向50mmの範囲内にある2以上の着水部列により構成され、前記上流側着水部列群に含まれる全ての着水部が幅方向に15〜30mmの等間隔で並んでいることを特徴とする第五または第六の発明に記載の厚鋼板の冷却方法である。 7th invention is comprised by the 2 or more landing part row | line | column which the said upstream side landing part row | line group exists in the range of the conveyance direction 50mm of a thick steel plate, and is contained in the said upstream side landing part row | line group It is the cooling method of the thick steel plate according to the fifth or sixth invention, wherein the landing portions are arranged at equal intervals of 15 to 30 mm in the width direction.
第八の発明は、前記棒状冷却水を噴射する冷却水噴射ノズルの内径を5〜12mm、前記棒状冷却水の流速を2〜20m/sとし、前記棒状冷却水の前記テーブルロール間の平均水量密度を1.5〜4.0m3/m2・minとすることを特徴とする第五乃至第七の発明のいずれかに記載の厚鋼板の冷却方法である。 8th invention sets the inside diameter of the cooling water injection nozzle which injects the said rod-shaped cooling water to 5-12 mm, the flow rate of the said rod-shaped cooling water is 2-20 m / s, and the average amount of water between the said table rolls of the said rod-shaped cooling water It is a cooling method of the thick steel plate in any one of the 5th thru | or 7th invention characterized by setting a density to 1.5-4.0m < 3 > / m < 2 > * min.
本発明の厚鋼板の冷却設備を用いることにより、冷却水を効率よく使い、高い冷却速度が得られ、厚鋼板を目標温度まで早く冷却できるので、生産性向上に寄与できる。また、厚鋼板下面の冷却を、厚鋼板幅方向に温度むらがなく、均一に行うことができるので、特に幅方向の硬度分布が均一な品質の高い厚鋼板を製造することができる。 By using the steel plate cooling equipment of the present invention, cooling water can be used efficiently, a high cooling rate can be obtained, and the steel plate can be quickly cooled to the target temperature, which can contribute to productivity improvement. In addition, since the cooling of the bottom surface of the thick steel plate can be performed uniformly without temperature unevenness in the width direction of the thick steel plate, a high quality thick steel plate having a particularly uniform hardness distribution in the width direction can be manufactured.
以下、本発明の実施の形態を図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図5は、本発明が用いられる厚板圧延ラインの一例を示す概略図である。
加熱炉から抽出されたスラブは、圧延機によって粗圧延と仕上圧延が施され、所定の仕上温度、仕上板厚とされた後、オンラインにて加速冷却設備に搬送される。冷却前にプリレベラを通して厚鋼板の形状を整えてから加速冷却を行うのが均一な材質を得るには好適である。加速冷却設備では、上面冷却設備と下面冷却設備とから噴射される冷却水によって厚鋼板は所定温度まで冷却される。
FIG. 5 is a schematic diagram showing an example of a thick plate rolling line in which the present invention is used.
The slab extracted from the heating furnace is subjected to rough rolling and finish rolling by a rolling mill to a predetermined finishing temperature and finishing plate thickness, and then conveyed to an accelerated cooling facility online. It is suitable for obtaining a uniform material to perform accelerated cooling after adjusting the shape of the thick steel plate through a pre-leveler before cooling. In the accelerated cooling facility, the thick steel plate is cooled to a predetermined temperature by the cooling water sprayed from the upper surface cooling facility and the lower surface cooling facility.
そして、図1は本発明の一実施の形態に係る上下面冷却設備の配置を示す側面図である。上面冷却設備は厚鋼板12の上面に冷却水を供給する上ヘッダ1と、該上ヘッダ1から懸垂した上冷却水噴射ノズル3とを備えており、上冷却水噴射ノズル3は棒状の冷却水を噴射する円管ノズル3からなる。上面冷却は、上部ヘッダ1に設けた円管ノズル3から厚鋼板上面に対して垂直に、高速で冷却水を供給して行う。冷却水は、滞留水膜を破って厚鋼板上面に到達し、高い冷却能力を得ることができる。
一方、下面冷却設備は、テーブルロール11間に設置され、厚鋼板12の下面に冷却水を供給する下ヘッダ2と、該下ヘッダ2から突出して設けられ、鉛直方向上向きに冷却水を噴射する下冷却水噴射ノズル4とを備えており、下冷却水噴射ノズル4は棒状冷却水を噴射する円管ノズル4からなる。そして、これらの下冷却水噴射ノズル4は厚鋼板搬送方向に複数のノズル列を形成するとともに、最上流の列を含む1以上のノズル列からなる上流側ノズル列群41と、その下流側の複数のノズル列からなる下流側ノズル列群42を構成している。下面冷却は、下面ヘッダに設けた下冷却水噴射ノズル4から厚鋼板下面に対して垂直に、冷却水を供給して行う。なお、厚鋼板下面側の冷却では、噴射された冷却水は厚鋼板に衝突した後に自然落下する。
FIG. 1 is a side view showing the arrangement of the upper and lower surface cooling facilities according to the embodiment of the present invention. The upper surface cooling equipment includes an upper header 1 for supplying cooling water to the upper surface of the thick steel plate 12, and an upper cooling water injection nozzle 3 suspended from the upper header 1. The upper cooling water injection nozzle 3 is a rod-shaped cooling water. It consists of the circular tube nozzle 3 which injects. The upper surface cooling is performed by supplying cooling water at a high speed perpendicularly to the upper surface of the thick steel plate from the circular tube nozzle 3 provided in the upper header 1. The cooling water breaks the staying water film and reaches the upper surface of the thick steel plate, so that a high cooling capacity can be obtained.
On the other hand, the lower surface cooling equipment is installed between the table rolls 11 and is provided to protrude from the lower header 2 for supplying the cooling water to the lower surface of the thick steel plate 12, and jets the cooling water upward in the vertical direction. The lower cooling water injection nozzle 4 includes a circular pipe nozzle 4 for injecting rod-shaped cooling water. The lower cooling water injection nozzles 4 form a plurality of nozzle rows in the direction of transporting the thick steel plate, and an upstream nozzle row group 41 including one or more nozzle rows including the most upstream row, and the downstream side thereof. A downstream nozzle row group 42 including a plurality of nozzle rows is configured. The lower surface cooling is performed by supplying cooling water perpendicularly to the lower surface of the thick steel plate from the lower cooling water injection nozzle 4 provided on the lower surface header. In the cooling on the lower surface side of the thick steel plate, the injected cooling water naturally falls after colliding with the thick steel plate.
ここで、本発明における棒状冷却水とは、円形状(楕円や多角の形状も含む)のノズル噴出口からある程度加圧された状態で噴射される冷却水であって、ノズル噴出口からの冷却水の噴射速度が2m/s以上であり、ノズル噴出口から噴射された水流の断面がほぼ円形に保たれた連続性と直進性のある水流の冷却水のことをいう。すなわち、円管ラミナーノズルからの自由落下流や、スプレーのような液滴状態で噴射されるものとは異なる。 Here, the rod-shaped cooling water in the present invention is cooling water injected in a state of being pressurized to some extent from a circular (including elliptical or polygonal) nozzle outlet, and is cooled from the nozzle outlet. The water jet velocity is 2 m / s or more, and it refers to cooling water of continuous and straight water flow in which the cross section of the water flow injected from the nozzle outlet is maintained in a substantially circular shape. That is, it is different from a free fall flow from a circular tube laminar nozzle or a liquid ejected in a droplet state such as a spray.
次に、厚鋼板下面側の冷却水の流れを詳細に検討する。
図2は下面冷却水6の流れを示す模式図であり、図3は下冷却水噴射ノズル4の配置および下面冷却水の流れを模式的に示す上面図および側面図である。下冷却水噴射ノズル4より棒状に噴射された冷却水は、厚鋼板12(図中、着水部21とよぶ部分)に衝突した後、厚鋼板下面に沿って水平方向に流れ、周辺冷却部22とよぶ部分を冷却し、厚鋼板下面から離脱・落下する。着水部21と周辺冷却部22は、冷却水が厚鋼板下面と直接接触する部分であり、冷却設備が高い冷却能力を持つためには、この2つの部分が占める面積をなるべく広くするようなノズルレイアウトとすることが重要である。
Next, the flow of the cooling water on the lower surface side of the thick steel plate will be examined in detail.
FIG. 2 is a schematic diagram showing the flow of the lower surface cooling water 6, and FIG. 3 is a top view and a side view schematically showing the arrangement of the lower cooling water injection nozzle 4 and the flow of the lower surface cooling water. The cooling water sprayed in a rod shape from the lower cooling water spray nozzle 4 collides with the thick steel plate 12 (the portion called the landing portion 21 in the figure) and then flows in the horizontal direction along the bottom surface of the thick steel plate, and the peripheral cooling portion The part called 22 is cooled and detached from the bottom surface of the thick steel plate and dropped. The water landing part 21 and the peripheral cooling part 22 are parts where the cooling water is in direct contact with the lower surface of the thick steel plate. In order for the cooling equipment to have a high cooling capacity, the area occupied by these two parts should be made as wide as possible. It is important to have a nozzle layout.
ところで、表面温度が低いほど厚鋼板表面での濡れ性がよくなるので、冷却水が厚鋼板下面に沿って拡がりやすくなる。したがって、図3のノズル列A1とノズル列B1(上流側ノズル列群41)での円形の冷却部分(着水部21と周辺冷却部22とを合わせた部分)よりもノズル列A2とノズル列B2(下流側ノズル列群42)での冷却部分(着水部21と周辺冷却部22とを合わせた部分)の方が広くなる。 By the way, the lower the surface temperature, the better the wettability on the surface of the thick steel plate, so that the cooling water easily spreads along the bottom surface of the thick steel plate. Therefore, the nozzle row A2 and the nozzle row are more than the circular cooling portion (the portion in which the landing portion 21 and the peripheral cooling portion 22 are combined) in the nozzle row A1 and the nozzle row B1 (upstream nozzle row group 41) in FIG. The cooling part (the part combining the landing part 21 and the peripheral cooling part 22) in B2 (downstream nozzle array group 42) becomes wider.
上述したことを具体的試験結果に基づいて説明すると、厚鋼板温度を800℃、厚鋼板搬送速度を0.2m/sとした時、内径5mmの下冷却水噴射ノズル4から冷却水を噴射すると、ノズル列A1とノズル列B1の冷却部分(着水部21と周辺冷却部22とを合わせた部分)の直径は20mm程度、ノズル列A2とノズル列B2の冷却部分(着水部21と周辺冷却部22とを合わせた部分)の直径は40mm程度であった。 Explaining the above based on the specific test results, when cooling water is injected from the lower cooling water injection nozzle 4 having an inner diameter of 5 mm when the steel plate temperature is 800 ° C. and the steel plate conveyance speed is 0.2 m / s. The diameter of the cooling portion of nozzle row A1 and nozzle row B1 (the portion where water landing portion 21 and peripheral cooling portion 22 are combined) is about 20 mm, and the cooling portion of nozzle row A2 and nozzle row B2 (water landing portion 21 and its surroundings) The diameter of the portion combined with the cooling part 22) was about 40 mm.
この時の厚鋼板12の下面側表面温度と板厚平均温度との鋼板搬送方向の温度履歴を図4に示す。図3中のAの位置の厚鋼板下面側表面温度がAs、板厚平均温度がAm、同じく、図3のBの位置の厚鋼板下面側表面温度がBs、板厚平均温度がBmである。図4に示すように、Aの位置とBの位置とでは、これらの温度履歴はほぼ等しく、厚鋼板幅方向に硬度むらは発生しない。しかし、ノズル列A1からノズル列B1までの搬送時間が長い場合、Bの位置ではノズル列A1からの熱拡散の影響によってノズル列B1の位置に達する前に厚鋼板下面側表面温度が低下し始め、図4のBs’のような温度履歴となる。この場合は、Ar3変態開始温度からの冷却速度が低くなるために、この部分で高い強度が得られなくなる。 FIG. 4 shows the temperature history in the steel plate conveyance direction of the lower surface side surface temperature and the plate thickness average temperature of the thick steel plate 12 at this time. The surface temperature on the lower surface side of the thick steel plate at the position A in FIG. 3 is As and the average thickness temperature is Am. Similarly, the surface temperature on the lower surface side of the thick steel plate at the position B in FIG. . As shown in FIG. 4, these temperature histories are almost equal at the position A and the position B, and hardness unevenness does not occur in the thick steel plate width direction. However, when the conveyance time from the nozzle row A1 to the nozzle row B1 is long, the surface temperature on the lower surface side of the thick steel plate starts to decrease before reaching the position of the nozzle row B1 at the position B due to the influence of thermal diffusion from the nozzle row A1. , A temperature history like Bs ′ in FIG. 4 is obtained. In this case, since the cooling rate from the Ar 3 transformation start temperature becomes low, high strength cannot be obtained in this portion.
このような冷却の不均一を生じさせないためには、ノズル列A1とノズル列B1の通過時間差が0.5sec以内であることが必要である。厚鋼板の搬送速度は、最も遅いもので0.1m/s程度であるから、ノズル列A1とノズル列B1の距離L1は50mm以内であることが望ましい。 In order not to cause such non-uniform cooling, the passage time difference between the nozzle row A1 and the nozzle row B1 needs to be within 0.5 sec. Since the conveying speed of the thick steel plate is the slowest and is about 0.1 m / s, the distance L1 between the nozzle row A1 and the nozzle row B1 is preferably within 50 mm.
なお、ノズル列A1とノズル列B1(上流側ノズル列群41)の冷却部分(着水部21と周辺冷却部22とを合わせた部分)の直径は、ノズルの内径や噴射速度、厚鋼板表面温度などによって変化するが、一般的な条件では15〜30mmである。したがって、例えば、冷却部分の直径が20mmである条件では、ノズル列A1とノズル列B1それぞれのノズル列内での厚鋼板幅方向のノズルピッチS1はその2倍の40mmとすればよい。また、上流側ノズル列群41として、搬送方向50mmの範囲に3つのノズル列(A1,B1,C1)を搬送方向に25mm間隔で配してもよく、その場合は、それぞれのノズル列内での厚鋼板幅方向のノズルピッチS1をその3倍の60mmとすればよい。 In addition, the diameter of the cooling portion (the portion where the landing portion 21 and the peripheral cooling portion 22 are combined) of the nozzle row A1 and the nozzle row B1 (upstream nozzle row group 41) is the nozzle inner diameter, injection speed, thick steel plate surface Although it changes with temperature etc., it is 15-30 mm in general conditions. Therefore, for example, under the condition that the diameter of the cooling portion is 20 mm, the nozzle pitch S1 in the thickness direction of the steel plate in the nozzle rows of the nozzle row A1 and the nozzle row B1 may be twice that of 40 mm. Further, as the upstream nozzle row group 41, three nozzle rows (A1, B1, C1) may be arranged at intervals of 25 mm in the conveyance direction within a range of 50 mm in the conveyance direction. The nozzle pitch S1 in the thick steel plate width direction may be set to 60 mm, which is three times that nozzle pitch S1.
すなわち、上流側ノズル列群41は、最上流のノズル列A1から搬送方向50mmの範囲内にある2以上のノズル列により構成することが好ましく、また、そのノズル列内の厚鋼板幅方向のノズルピッチS1は、冷却部分(着水部21と周辺冷却部22とを合わせた部分)の大きさや上流側ノズル列群のノズル列数などに応じて適宜設定すればよいが、30mm(冷却部分直径15mmで2列の場合)〜90mm(冷却部分直径30mmで3列の場合)の範囲が好適である。ノズルは工具で取り付けなければならないから、厚鋼板幅方向のピッチを30mm未満にすることは難しい。幅方向のピッチが90mmを超えるとノズル列を4列以上設けなければならないが、それよりも幅方向のピッチを短く、ノズル列を少なくして水冷開始の時間差を短くする方がよい。 That is, the upstream nozzle row group 41 is preferably composed of two or more nozzle rows within a range of 50 mm from the most upstream nozzle row A1, and nozzles in the thick steel plate width direction in the nozzle row. The pitch S1 may be appropriately set according to the size of the cooling portion (the portion where the landing portion 21 and the peripheral cooling portion 22 are combined), the number of nozzle rows in the upstream nozzle row group, and the like. A range of 15 mm (in the case of two rows) to 90 mm (in the case of three rows with a cooling part diameter of 30 mm) is preferred. Since the nozzle must be attached with a tool, it is difficult to make the pitch in the width direction of the thick steel plate less than 30 mm. If the pitch in the width direction exceeds 90 mm, it is necessary to provide four or more nozzle rows. However, it is better to shorten the pitch in the width direction and to reduce the time difference of the water cooling start by reducing the nozzle rows.
また、前述したように、上流側ノズル列群41の冷却部分(着水部21と周辺冷却部22とを合わせた部分)の直径は、ノズルの内径や噴射速度、厚鋼板表面温度などによって変わるが、一般的な条件では15〜30mmである。したがって、厚鋼板幅方向の全ての部分が、上流側ノズル列群41の冷却部分(着水部21と周辺冷却部22とを合わせた部分)を通過するように、上流側のノズル列群41に含まれる全てのノズルの幅方向間隔(S2)が15〜30mmの等ピッチで並んでいることが好ましい。
例えば、上流側ノズル列群41のノズル列が2列である場合には、図3に示すように、ノズル列A1とノズル列B1の幅方向ノズル位置を、幅方向ノズルピッチの1/2だけずらして設置することが好ましい。同様に、上流側ノズル列群41のノズル列が3列である場合には、ノズル列内のノズルピッチの1/3だけ、幅方向のノズル位置をノズル列間でずらして設置すればよい。
Further, as described above, the diameter of the cooling portion of the upstream nozzle row group 41 (the portion where the landing portion 21 and the peripheral cooling portion 22 are combined) varies depending on the inner diameter of the nozzle, the injection speed, the steel plate surface temperature, and the like. However, it is 15-30 mm under general conditions. Therefore, the upstream nozzle row group 41 so that all the portions in the thick steel plate width direction pass through the cooling portion of the upstream nozzle row group 41 (the portion in which the landing portion 21 and the peripheral cooling portion 22 are combined). It is preferable that the intervals in the width direction (S2) of all the nozzles included in are arranged at an equal pitch of 15 to 30 mm.
For example, when there are two nozzle rows in the upstream nozzle row group 41, as shown in FIG. 3, the nozzle positions in the width direction of the nozzle rows A1 and B1 are set to be 1/2 of the width direction nozzle pitch. It is preferable to install them by shifting. Similarly, when the number of nozzle rows in the upstream nozzle row group 41 is 3, the nozzle positions in the width direction may be shifted between the nozzle rows by 1/3 of the nozzle pitch in the nozzle row.
さらに、厚鋼板を効率よく冷却するためには、下冷却水噴射ノズル4の内径、冷却水の噴射速度やノズル距離も最適にする必要がある。 Further, in order to efficiently cool the thick steel plate, it is necessary to optimize the inner diameter of the lower cooling water injection nozzle 4, the cooling water injection speed, and the nozzle distance.
即ち、下冷却水噴射ノズル4の内径は5〜12mmが好適である。5mm未満ではノズルから噴射する水の束が細くなり、厚鋼板下面に衝突した後の冷却水の拡がりが小さいからである。一方、下冷却水噴射ノズル4のノズル径が12mmを超えると流速が遅くなり、厚鋼板下面に衝突した後の冷却水の拡がりが小さくなる。また、冷却水が厚鋼板下面に直接あたる点の数を減らすと冷却能力が低下するので、ノズル径を12mm以下としてノズルの設置密度を高くする方が、厚鋼板下面を効率よく冷却することができる。 That is, the inner diameter of the lower cooling water injection nozzle 4 is preferably 5 to 12 mm. This is because if the thickness is less than 5 mm, the bundle of water sprayed from the nozzle becomes thin and the expansion of the cooling water after colliding with the lower surface of the thick steel plate is small. On the other hand, when the nozzle diameter of the lower cooling water injection nozzle 4 exceeds 12 mm, the flow velocity becomes slow, and the expansion of the cooling water after colliding with the lower surface of the thick steel plate is reduced. In addition, if the number of points where the cooling water directly hits the bottom surface of the steel plate is reduced, the cooling capacity is lowered. Therefore, increasing the nozzle installation density by setting the nozzle diameter to 12 mm or less can efficiently cool the bottom surface of the steel plate. it can.
下冷却水噴射ノズル4の噴射速度は、2m/s以上が好ましい。2m/s未満では、噴水の高さが200mm以下となってしまい、冷却水の厚鋼板下面への当たり方にばらつきが生じ、幅方向の温度むらが発生しやすくなるからである。また、20m/s以下が好ましい。流速が速すぎると、ポンプの送水圧を上げなくては成らなくなり、設備コストが高くなる。そのうえ、必要な水量密度とするためのノズル設置密度が低くなり、厚鋼板下面を効率よく冷却できなくなる。 The injection speed of the lower cooling water injection nozzle 4 is preferably 2 m / s or more. If it is less than 2 m / s, the height of the fountain becomes 200 mm or less, and the way in which the cooling water strikes the lower surface of the thick steel plate varies, and temperature unevenness in the width direction tends to occur. Moreover, 20 m / s or less is preferable. If the flow rate is too high, the pumping water pressure must be increased, resulting in high equipment costs. In addition, the nozzle installation density for achieving the required water density becomes low, and the lower surface of the thick steel plate cannot be efficiently cooled.
テーブルロール間の平均水量密度は、1.5〜4.0m3/m2・minとするのが望ましい。1.5m3/m2・min未満だと、冷却の初期で十分な冷却速度が得られず、耐摩耗鋼のように表面が硬い厚鋼板を製造することができない。4.0m3/m2・minを超える場合でも、本発明の技術を用いることは有効であるが、設備コストが高くなって、水量を効率的に使用して冷却する観点からは好ましくない。 The average water density between the table rolls is preferably 1.5 to 4.0 m 3 / m 2 · min. If it is less than 1.5 m 3 / m 2 · min, a sufficient cooling rate cannot be obtained at the initial stage of cooling, and a thick steel plate having a hard surface such as wear-resistant steel cannot be produced. Even if it exceeds 4.0 m 3 / m 2 · min, it is effective to use the technique of the present invention, but it is not preferable from the viewpoint of cooling by efficiently using the amount of water and increasing the equipment cost.
本発明は、最初に冷却されるタイミングを幅方向の位置によって大きくずれないようにするとともに、高い冷却効率を得ようとするものである。したがって、図1では、下冷却水噴射ノズル4の向きを垂直方向としたが、ノズルの着水部21が上述のノズル配置の関係を満たしていれば、ノズルの向きは垂直でなくてもよく、例えばノズルをテーブルロールの方に傾けて噴射するなどしてもよい。 The present invention aims to obtain a high cooling efficiency while preventing the timing of the first cooling from greatly deviating depending on the position in the width direction. Therefore, in FIG. 1, the direction of the lower cooling water injection nozzle 4 is set to the vertical direction, but the nozzle direction may not be vertical as long as the nozzle landing portion 21 satisfies the above-described nozzle arrangement relationship. For example, the nozzle may be sprayed while being inclined toward the table roll.
すなわち、複数の着水部列のうち最上流の列を含む1以上の着水部列からなる上流側着水部列群を構成する各着水部列内の厚鋼板幅方向の着水部間隔が、その下流側の複数の着水部列からなる下流側着水部列群を構成する各着水部列内の幅方向の着水部間隔よりも短くなるように、棒状冷却水を噴射することにより、上述のノズル配置からなる図1に示す実施形態と同様の効果を奏することができる。 That is, the landing section in the width direction of the thick steel plate in each landing section row constituting the upstream landing section row group including one or more landing section rows including the most upstream row among the plurality of landing section rows. The rod-shaped cooling water is used so that the interval is shorter than the interval between the landing portions in the width direction in each of the landing portion rows constituting the downstream landing portion row group composed of the plurality of downstream landing portion rows. By injecting, the same effect as the embodiment shown in FIG. 1 having the above-described nozzle arrangement can be obtained.
なお、以上の説明では、主に下面冷却設備と下面冷却水の流れを詳述したが、本発明では、上面冷却については特に規定しない。すなわち、図1では、上面冷却設備についても下面冷却設備と同様の冷却設備として描かれているが、これに限定されるものではない。水冷中に厚鋼板の上下で温度差が生じると厚鋼板が反ってしまうので、本発明の下面冷却技術を用いる場合でも、上下で均等な冷却を行うことが好ましいが、上面冷却は、下面冷却とつりあう冷却能力を持たせればよく、公知の技術を用いればよい。 In the above description, the flow of the lower surface cooling equipment and the lower surface cooling water is mainly described in detail, but the upper surface cooling is not particularly defined in the present invention. That is, in FIG. 1, the upper surface cooling facility is depicted as the same cooling facility as the lower surface cooling facility, but is not limited thereto. Even if the bottom surface cooling technique of the present invention is used, it is preferable to perform uniform cooling at the top and bottom, but the top surface cooling is the bottom surface cooling. It is sufficient to have a cooling capacity that balances with the other, and a known technique may be used.
以下、本発明の一実施例として、厚板圧延のプロセスにおいて、鋼板の冷却を行う場合について、図面に基づいて説明する。 Hereinafter, as an embodiment of the present invention, a case of cooling a steel plate in a thick plate rolling process will be described with reference to the drawings.
図5に概略を示す厚板熱間圧延設備において、加熱炉から抽出されたスラブを圧延機によって、成形、幅出し圧延を行った後、粗圧延、仕上圧延を行った。仕上圧延直後に測定した厚鋼板表面温度、すなわち仕上温度は820℃であった。この後に、ホットレベラを通して、加速冷却設備において加速冷却を行った。 In the thick plate hot rolling facility schematically shown in FIG. 5, the slab extracted from the heating furnace was subjected to forming and tentering rolling by a rolling mill, followed by rough rolling and finish rolling. The steel plate surface temperature measured immediately after finish rolling, that is, the finish temperature was 820 ° C. Thereafter, accelerated cooling was performed in an accelerated cooling facility through a hot leveler.
搬送速度を0.2m/sとして、冷却開始温度800℃から冷却終了温度(加速冷却設備出側で復熱後の温度を測定した値)200℃まで冷却を行い、表層硬度(ブリネル硬度;荷重3000kgf、10mm鋼球)400HBクラス、板厚60mm、板幅3.0mの耐摩耗鋼板を製造した。 The conveyance speed is set to 0.2 m / s, and cooling is performed from a cooling start temperature of 800 ° C. to a cooling end temperature (a value obtained by measuring the temperature after reheating on the exit side of the accelerated cooling equipment) to 200 ° C., and the surface hardness (Brinell hardness; load) (3000 kgf, 10 mm steel ball) A wear-resistant steel plate having a 400 HB class, a plate thickness of 60 mm, and a plate width of 3.0 m was manufactured.
本発明例として、上述した実施形態に示した冷却設備を用いた。冷却水噴射ノズルの内径5mm、外径9mmとし、冷却水噴射速度は上面冷却を11.5m/s、下面冷却を16.8〜18.3m/sとした。上面冷却の厚鋼板幅方向のノズルピッチは、60mmとして、下面ノズルのレイアウトを変更して、冷却の効率を比較した。 As an example of the present invention, the cooling equipment shown in the above-described embodiment was used. The cooling water injection nozzle had an inner diameter of 5 mm and an outer diameter of 9 mm, and the cooling water injection speed was 11.5 m / s for the upper surface cooling and 16.8 to 18.3 m / s for the lower surface cooling. The nozzle pitch in the width direction of the thick steel plate for upper surface cooling was 60 mm, and the layout of the lower surface nozzle was changed to compare the cooling efficiency.
テーブルロール間距離0.9mのゾーン内で厚鋼板の搬送方向に並ぶノズル列は、発明例1と比較例では6列、発明例2では9列とした。 The nozzle rows arranged in the conveying direction of the thick steel plate in the zone having a distance between table rolls of 0.9 m were 6 rows in Invention Example 1 and Comparative Example, and 9 rows in Invention Example 2.
図3に示す、円形の水冷部分の直径は、最初の冷却を行う上流側ノズル列群41(ノズル列A1、ノズル列B1、ノズル列C1)では20mm程度、第2の冷却を行う下流側ノズル列群42(ノズル列A2、ノズル列B2、ノズル列C2)では40mm程度であると仮定し、以下のノズル配列を決定した。 The diameter of the circular water-cooled portion shown in FIG. 3 is about 20 mm in the upstream nozzle row group 41 (nozzle row A1, nozzle row B1, nozzle row C1) that performs the first cooling, and the downstream nozzle that performs the second cooling. In the row group 42 (nozzle row A2, nozzle row B2, nozzle row C2), it was assumed that the length was about 40 mm, and the following nozzle arrangement was determined.
発明例1では、搬送方向最上流の50mm内にノズル列A1、ノズル列B1の2列を配し、列内での厚鋼板幅方向のノズルピッチ(S1)を40mmとし、ノズル列A1とノズル列B1とで、幅方向のノズル位置のずれ(S2)が20mmとなるように設置した。ノズル列A1、ノズル列B1よりも下流にあるノズル列A2、ノズル列B2でのノズルピッチは、厚鋼板の搬送方向で80mm、列内での厚鋼板幅方向で80mmとした。冷却水が厚鋼板下面と接触する円形の冷却部分(着水部21と周辺冷却部22とを合わせた部分)が最適に分散された結果、高い冷却能力が得られた。 In Invention Example 1, two rows of nozzle row A1 and nozzle row B1 are arranged within 50 mm of the most upstream in the transport direction, and the nozzle pitch (S1) in the thick steel plate width direction in the row is 40 mm. In the row B1, the nozzle position deviation in the width direction (S2) was set to 20 mm. The nozzle pitches in the nozzle row A2 and the nozzle row B2 downstream of the nozzle row A1 and the nozzle row B1 were 80 mm in the thick steel plate conveyance direction and 80 mm in the thick steel plate width direction in the row. As a result of the optimal dispersion of the circular cooling portion (the combined portion of the landing portion 21 and the peripheral cooling portion 22) where the cooling water comes into contact with the lower surface of the thick steel plate, a high cooling capacity was obtained.
上面冷却の水量密度1.5m3/m2・minと冷却能力がつりあう下面水量密度は2.2m3/m2・minであった。冷却の厚鋼板の幅方向均一性は良好で、耐摩耗鋼板の幅方向の表層硬度はHB390〜400の範囲におさまった。 The water density on the lower surface where the water capacity density of the upper surface cooling is 1.5 m 3 / m 2 · min and the cooling capacity is balanced is 2.2 m 3 / m 2 · min. The uniformity in the width direction of the cooled thick steel plate was good, and the surface layer hardness in the width direction of the wear-resistant steel plate was within the range of HB390-400.
発明例2では、搬送方向最上流の50mm内にノズル列A1、ノズル列B1、ノズル列C1の3列を配し、列内での厚鋼板幅方向のノズルピッチ(S1)を60mmとし、ノズル列A1、ノズル列B1、ノズル列C1とで、幅方向のノズル位置のずれ(S2)がそれぞれ20mmとなるように設置した。ノズル列A1、ノズル列B1、ノズル列C1よりも下流にあるノズル列A2、ノズル列B2、ノズル列C2でのノズルピッチは、厚鋼板の搬送方向で50mm、列内での厚鋼板幅方向で120mmとした。冷却水が鋼板下面と接触する円形の冷却部分(着水部21と周辺冷却部22とを合わせた部分)が最適に分散された結果、高い冷却能力が得られた。 In Invention Example 2, three rows of nozzle row A1, nozzle row B1, and nozzle row C1 are arranged in the uppermost 50 mm in the transport direction, and the nozzle pitch (S1) in the thick steel plate width direction in the row is set to 60 mm. In the row A1, the nozzle row B1, and the nozzle row C1, the nozzle position deviation (S2) in the width direction was set to 20 mm. The nozzle pitch in nozzle row A2, nozzle row B2, and nozzle row C2 downstream from nozzle row A1, nozzle row B1, and nozzle row C1 is 50 mm in the conveying direction of the thick steel plate, and in the width direction of the thick steel plate in the row. 120 mm. As a result of the optimal dispersion of the circular cooling portion (the combined portion of the landing portion 21 and the peripheral cooling portion 22) where the cooling water comes into contact with the lower surface of the steel plate, a high cooling capacity was obtained.
上面冷却の水量密度1.5m3/m2・minと冷却能力がつりあう下面水量密度は2.2m3/m2・minであった。冷却の厚鋼板の幅方向均一性は良好で、耐摩耗鋼板の幅方向の表層硬度はHB390〜420の範囲におさまった。 The water density on the lower surface where the water capacity density of the upper surface cooling is 1.5 m 3 / m 2 · min and the cooling capacity is balanced is 2.2 m 3 / m 2 · min. The uniformity in the width direction of the cooled thick steel plate was good, and the surface layer hardness in the width direction of the wear-resistant steel plate was within the range of HB390-420.
これに対し、比較例では、冷却水噴射ノズルのピッチを厚鋼板の搬送方向で70mm、列内での厚鋼板幅方向で60mm一定とした。冷却水が厚鋼板下面と接触する円形の冷却部分の面積は、搬送方向上流で狭く、下流で広くなって偏ってしまい、同じ水量密度での冷却能力は発明例1、2に比べて若干低かった。上面冷却の水量密度1.5m3/m2・minと冷却能力がつりあう下面水量密度は2.4m3/m2・minであり、ランニングコストが余計にかかった。初期の冷却において幅方向に強弱があったので、冷却の厚鋼板の幅方向均一性は発明例1、2よりは劣り、耐摩耗鋼板の幅方向の表層硬度はHB340〜420の範囲でばらついた。 On the other hand, in the comparative example, the pitch of the cooling water injection nozzles was fixed at 70 mm in the conveying direction of the thick steel plate and 60 mm in the width direction of the thick steel plate in the row. The area of the circular cooling part where the cooling water comes into contact with the bottom surface of the thick steel plate is narrow at the upstream in the conveying direction and widened at the downstream, and the cooling capacity at the same water density is slightly lower than those of Examples 1 and 2. It was. The water density on the upper surface was 1.5 m 3 / m 2 · min, and the water density on the lower surface where the cooling capacity was balanced was 2.4 m 3 / m 2 · min, resulting in an extra running cost. Since there was strength in the width direction in the initial cooling, the uniformity in the width direction of the thick steel plate for cooling was inferior to that of Invention Examples 1 and 2, and the surface layer hardness in the width direction of the wear-resistant steel plate varied in the range of HB340 to 420. .
1 上ヘッダ
2 下ヘッダ
3 上冷却水噴射ノズル
4 下冷却水噴射ノズル
41 上流側ノズル列群
42 下流側ノズル列群
5 上面冷却水
6 下面冷却水
7 落下水
8 滞留水膜
10 水切ロール
11 テーブルロール
12 厚鋼板
21 着水部
22 周辺冷却部
23 直射領域
DESCRIPTION OF SYMBOLS 1 Upper header 2 Lower header 3 Upper cooling water injection nozzle 4 Lower cooling water injection nozzle 41 Upstream nozzle row group 42 Downstream nozzle row group 5 Upper surface cooling water 6 Lower surface cooling water 7 Falling water 8 Stagnating water film 10 Draining roll 11 Table Roll 12 Thick steel plate 21 Water landing part 22 Peripheral cooling part 23 Direct irradiation area
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009140130A JP5515440B2 (en) | 2009-06-11 | 2009-06-11 | Thick steel plate cooling equipment and cooling method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009140130A JP5515440B2 (en) | 2009-06-11 | 2009-06-11 | Thick steel plate cooling equipment and cooling method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010284680A JP2010284680A (en) | 2010-12-24 |
JP5515440B2 true JP5515440B2 (en) | 2014-06-11 |
Family
ID=43540799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009140130A Active JP5515440B2 (en) | 2009-06-11 | 2009-06-11 | Thick steel plate cooling equipment and cooling method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5515440B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103586294B (en) * | 2012-08-16 | 2016-07-27 | 攀钢集团研究院有限公司 | The section cooling method of slab, hot continuous rolling production line and laminar cooling system thereof |
CN114719171B (en) * | 2022-04-18 | 2024-05-31 | 上海华峰铝业股份有限公司 | Lubricating device and lubricating method for pinch roll and hot rolling mill |
-
2009
- 2009-06-11 JP JP2009140130A patent/JP5515440B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010284680A (en) | 2010-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100973691B1 (en) | Cooling facility and cooling method of steel plate, and hot rolling facility and hot rolling method using the same | |
JP4449991B2 (en) | Apparatus and method for cooling hot-rolled steel strip | |
JP4238260B2 (en) | Steel plate cooling method | |
JP5573837B2 (en) | Hot rolled steel sheet cooling apparatus, cooling method, manufacturing apparatus, and manufacturing method | |
WO2010114083A1 (en) | Cooling device for hot rolled steel sheet | |
KR100973692B1 (en) | Hot rolling facility of steel plate and hot rolling method | |
KR20090061073A (en) | Method of cooling hot-rolled steel strip | |
JP4779749B2 (en) | Steel plate cooling method and cooling equipment | |
JP5515483B2 (en) | Thick steel plate cooling equipment and cooling method | |
KR100935357B1 (en) | Cooling facility and production method of steel plate | |
KR101219195B1 (en) | Thick steel plate manufacturing device | |
JP4853224B2 (en) | Steel sheet cooling equipment and cooling method | |
JP5515440B2 (en) | Thick steel plate cooling equipment and cooling method thereof | |
JP4876781B2 (en) | Steel sheet cooling equipment and cooling method | |
JP4905180B2 (en) | Steel cooling device and cooling method | |
JP4214134B2 (en) | Thick steel plate cooling device | |
JP5663848B2 (en) | Hot-rolled steel sheet cooling device and operation control method thereof | |
JP4518107B2 (en) | Apparatus and method for cooling hot-rolled steel strip | |
JP5387093B2 (en) | Thermal steel sheet cooling equipment | |
JP2011011222A (en) | System for cooling hot-rolled steel plate, and apparatus and method for manufacturing the hot rolled steel plate | |
JP4398898B2 (en) | Thick steel plate cooling device and method | |
JP4720198B2 (en) | Thick steel plate cooling device and cooling method | |
JP5228720B2 (en) | Thick steel plate cooling equipment | |
JP4962349B2 (en) | Lower surface cooling method and lower surface cooling device for hot-rolled steel strip | |
JP5347781B2 (en) | Thermal steel sheet cooling equipment and cooling method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120423 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140304 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140317 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5515440 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |