JP5513507B2 - 量子プロセッサ素子の能動的補償のためのシステム、方法および装置 - Google Patents
量子プロセッサ素子の能動的補償のためのシステム、方法および装置 Download PDFInfo
- Publication number
- JP5513507B2 JP5513507B2 JP2011526207A JP2011526207A JP5513507B2 JP 5513507 B2 JP5513507 B2 JP 5513507B2 JP 2011526207 A JP2011526207 A JP 2011526207A JP 2011526207 A JP2011526207 A JP 2011526207A JP 5513507 B2 JP5513507 B2 JP 5513507B2
- Authority
- JP
- Japan
- Prior art keywords
- josephson junction
- qubit
- junction structure
- current paths
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title description 23
- 239000002096 quantum dot Substances 0.000 claims description 178
- 239000002131 composite material Substances 0.000 claims description 70
- 239000000463 material Substances 0.000 claims description 18
- 230000004907 flux Effects 0.000 claims description 17
- 230000007246 mechanism Effects 0.000 claims description 10
- 230000000903 blocking effect Effects 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 11
- 230000008878 coupling Effects 0.000 description 9
- 238000010168 coupling process Methods 0.000 description 9
- 238000005859 coupling reaction Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 239000002887 superconductor Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/10—Junction-based devices
- H10N60/12—Josephson-effect devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
- G06N10/40—Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
- G06N10/70—Quantum error correction, detection or prevention, e.g. surface codes or magic state distillation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/195—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/195—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices
- H03K19/1954—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices with injection of the control current
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N69/00—Integrated devices, or assemblies of multiple devices, comprising at least one superconducting element covered by group H10N60/00
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Crystallography & Structural Chemistry (AREA)
- Computer Hardware Design (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Logic Circuits (AREA)
Description
量子コンピュータでの使用について検討中の多様なハードウェアとソフトウェア手法が存在する。1つのハードウェア手法は、超伝導量子ビットを規定するためにアルミおよび/またはニオブなどの超伝導材料で形成された集積回路を採用する。情報を符号化するのに使用される物理的性質に応じ超伝導量子ビットをいくつかの範疇に分けることができる。例えば、超伝導量子ビットを電荷装置(charge device)、磁束装置(flux device)および位相装置(phase device)に分けることができる。電荷装置は装置の電荷状態に情報を格納し操作し、磁束装置は装置の一部を通過する磁束と関係する変数に情報を格納し操作し、位相装置は装置の2領域間の超伝導位相の差に関係する変数に情報を格納し操作する。
コンピュータプロセッサは、アナログプロセッサ例えば超伝導量子プロセッサなどの量子プロセッサの形式をとることができる。超伝導量子プロセッサは多数の量子ビット(例えば、2以上の超伝導量子ビット)および関連する局所バイアス装置を含むことができる。本システム、方法および装置に関連して使用することができる例示的な量子プロセッサのさらなる詳細と実施形態については、米国特許第7,533,068号、米国特許出願公開第2008−0176750号、米国特許出願公開第2009−0121215号および国際出願PCT/US/2009/037984号に記載されている。
Claims (16)
- ジョセフソン接合非対称を能動的に補償する機構を有する回路であって、
臨界温度より低い温度で超伝導となる材料でそれぞれが形成された2つの並列電流経路を含む主複合ジョセフソン接合構造を含み、
前記主複合ジョセフソン接合構造の前記2つの並列電流経路のそれぞれはそれぞれのジョセフソン接合構造を備え、
前記ジョセフソン接合非対称を能動的に補償する機構として、
前記主複合ジョセフソン接合構造の前記2つの並列電流経路の第1の経路内の前記ジョセフソン接合構造は、臨界温度より低い温度で超伝導となる材料でそれぞれが形成された2つの並列電流経路を含む第1の副複合ジョセフソン接合構造と、それぞれが前記第1の副複合ジョセフソン接合構造の前記2つの並列電流経路のそれぞれの1つを遮断する少なくとも2つのジョセフソン接合と、を備える、回路。 - 前記主複合ジョセフソン接合構造に制御信号を結合するように構成されたプログラミングインターフェースを更に含む、請求項1に記載の回路。
- 前記第1の副複合ジョセフソン接合構造に制御信号を結合するように構成されたプログラミングインターフェースを更に含む、請求項1に記載の回路。
- 前記主複合ジョセフソン接合構造の前記2つの並列電流経路の第2の経路内の前記ジョセフソン接合構造は、前記主複合ジョセフソン接合構造の前記2つの並列電流経路の前記第2の経路を遮断する単独のジョセフソン接合を備える、請求項1に記載の回路。
- 前記主複合ジョセフソン接合構造の前記2つの並列電流経路の第2の経路内の前記ジョセフソン接合構造は、臨界温度より低い温度で超伝導となる材料でそれぞれが形成された2つの並列電流経路を含む第2の副複合ジョセフソン接合構造と、それぞれが前記第2の副複合ジョセフソン接合構造の前記2つの並列電流経路のそれぞれの1つを遮断する少なくとも2つのジョセフソン接合と、を備える、請求項1に記載の回路。
- 前記第2の副複合ジョセフソン接合構造に制御信号を結合するように構成されたプログラミングインターフェースを更に含む、請求項5に記載の回路。
- ジョセフソン接合非対称を能動的に補償する機構を有する超伝導量子ビットであって、
臨界温度以下で超伝導となる第1の電流経路により形成された量子ビットループと、
前記量子ビットループを遮断する主複合ジョセフソン接合構造であって、臨界温度より低い温度で超伝導となる材料でそれぞれが形成された2つの並列電流経路を含む前記主複合ジョセフソン接合構造と、を含み、
前記主複合ジョセフソン接合構造の前記2つの並列電流経路のそれぞれはそれぞれのジョセフソン接合構造を備え、
前記ジョセフソン接合非対称を能動的に補償する機構として、
前記主複合ジョセフソン接合構造の前記2つの並列電流経路の第1の経路内の前記ジョセフソン接合構造は、臨界温度より低い温度で超伝導となる材料でそれぞれが形成された2つの並列電流経路を含む第1の副複合ジョセフソン接合構造と、それぞれが前記第1の副複合ジョセフソン接合構造の前記2つの並列電流経路のそれぞれの1つを遮断する少なくとも2つのジョセフソン接合と、を備える、超伝導量子ビット。 - 前記超伝導量子ビットは超伝導磁束量子ビットである、請求項7に記載の超伝導量子ビット。
- 前記量子ビットループに制御信号を結合するように構成されたプログラミングインターフェースを更に含む、請求項7に記載の超伝導量子ビット。
- 前記主複合ジョセフソン接合構造に制御信号を結合するように構成されたプログラミングインターフェースを更に含む、請求項7に記載の超伝導量子ビット。
- 前記第1の副複合ジョセフソン接合構造に制御信号を結合するように構成されたプログラミングインターフェースを更に含む、請求項7に記載の超伝導量子ビット。
- 前記主複合ジョセフソン接合構造の前記2つの並列電流経路の第2の経路内の前記ジョセフソン接合構造は前記主複合ジョセフソン接合構造の前記2つの並列電流経路の前記第2の経路を遮断する単独のジョセフソン接合を備える、請求項7に記載の超伝導量子ビット。
- 前記主複合ジョセフソン接合構造の前記2つの並列電流経路の第2の経路内の前記ジョセフソン接合構造は、臨界温度より低い温度で超伝導となる材料でそれぞれが形成された2つの並列電流経路を含む第2の副複合ジョセフソン接合構造と、それぞれが前記第2の副複合ジョセフソン接合構造の前記2つの並列電流経路のそれぞれの1つを遮断する少なくとも2つのジョセフソン接合と、を備える、請求項7に記載の超伝導量子ビット。
- 前記第2の副複合ジョセフソン接合構造に制御信号を結合するように構成されたプログラミングインターフェースを更に含む、請求項13に記載の超伝導量子ビット。
- 前記第1の副複合ジョセフソン接合構造は、前記主複合ジョセフソン接合構造内でネスト化されている、請求項1記載の回路。
- 前記第1の副複合ジョセフソン接合構造は、前記主複合ジョセフソン接合構造内でネスト化されている、請求項7に記載の超伝導量子ビット。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9400208P | 2008-09-03 | 2008-09-03 | |
US61/094,002 | 2008-09-03 | ||
PCT/US2009/055939 WO2010028183A2 (en) | 2008-09-03 | 2009-09-03 | Systems, methods and apparatus for active compensation of quantum processor elements |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012502563A JP2012502563A (ja) | 2012-01-26 |
JP5513507B2 true JP5513507B2 (ja) | 2014-06-04 |
Family
ID=41797864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011526207A Active JP5513507B2 (ja) | 2008-09-03 | 2009-09-03 | 量子プロセッサ素子の能動的補償のためのシステム、方法および装置 |
Country Status (6)
Country | Link |
---|---|
US (6) | US8536566B2 (ja) |
EP (1) | EP2340572B1 (ja) |
JP (1) | JP5513507B2 (ja) |
CN (1) | CN102187489B (ja) |
CA (4) | CA3077980C (ja) |
WO (1) | WO2010028183A2 (ja) |
Families Citing this family (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7533068B2 (en) | 2004-12-23 | 2009-05-12 | D-Wave Systems, Inc. | Analog processor comprising quantum devices |
US7615385B2 (en) | 2006-09-20 | 2009-11-10 | Hypres, Inc | Double-masking technique for increasing fabrication yield in superconducting electronics |
US8234103B2 (en) | 2007-04-05 | 2012-07-31 | D-Wave Systems Inc. | Physical realizations of a universal adiabatic quantum computer |
CA3077980C (en) | 2008-09-03 | 2023-06-13 | D-Wave Systems Inc. | Systems, methods and apparatus for active compensation of quantum processor elements |
US8111083B1 (en) | 2010-12-01 | 2012-02-07 | Northrop Grumman Systems Corporation | Quantum processor |
US8631367B2 (en) | 2010-12-16 | 2014-01-14 | Northrop Grumman Systems Corporation | Methods of increasing fidelity of quantum operations |
US9768371B2 (en) | 2012-03-08 | 2017-09-19 | D-Wave Systems Inc. | Systems and methods for fabrication of superconducting integrated circuits |
US8975912B2 (en) | 2012-07-30 | 2015-03-10 | International Business Machines Corporation | Multi-tunable superconducting circuits |
US9041427B2 (en) | 2012-12-13 | 2015-05-26 | International Business Machines Corporation | Quantum circuit within waveguide-beyond-cutoff |
EP3025278B1 (en) | 2013-07-23 | 2018-09-05 | D-Wave Systems Inc. | Systems and methods for achieving orthogonal control of non-orthogonal qubit parameters |
US9495644B2 (en) | 2013-07-24 | 2016-11-15 | D-Wave Systems Inc. | Systems and methods for improving the performance of a quantum processor by reducing errors |
US9129224B2 (en) | 2013-07-24 | 2015-09-08 | D-Wave Systems Inc. | Systems and methods for increasing the energy scale of a quantum processor |
US9741918B2 (en) | 2013-10-07 | 2017-08-22 | Hypres, Inc. | Method for increasing the integration level of superconducting electronics circuits, and a resulting circuit |
EP3111380B1 (en) | 2014-02-28 | 2019-09-04 | Rigetti & Co., Inc. | Processing signals in a quantum computing system |
US10002107B2 (en) | 2014-03-12 | 2018-06-19 | D-Wave Systems Inc. | Systems and methods for removing unwanted interactions in quantum devices |
US9369133B2 (en) * | 2014-05-29 | 2016-06-14 | Northrop Grumman Systems Corporation | Hybrid quantum circuit assembly |
US10769545B2 (en) | 2014-06-17 | 2020-09-08 | D-Wave Systems Inc. | Systems and methods employing new evolution schedules in an analog computer with applications to determining isomorphic graphs and post-processing solutions |
US9344092B2 (en) | 2014-08-07 | 2016-05-17 | International Business Machines Corporation | Tunable superconducting notch filter |
US9685935B2 (en) * | 2014-09-12 | 2017-06-20 | Northrop Grumman Systems Corporation | Tunable transmon circuit assembly |
US9501748B2 (en) * | 2014-11-04 | 2016-11-22 | Northrop Grumman Systems Corporation | Mixed coupling between a qubit and resonator |
EP3266063B1 (en) | 2015-05-14 | 2020-03-18 | D-Wave Systems Inc. | Frequency multiplexed resonator input and/or output for a superconducting device |
CN108140145B (zh) | 2015-08-13 | 2022-09-06 | D-波系统公司 | 用于创建和使用量子器件之间的较高程度相互作用的系统和方法 |
JP6873120B2 (ja) * | 2015-10-27 | 2021-05-19 | ディー−ウェイブ システムズ インコーポレイテッド | 量子プロセッサにおける縮退軽減のためのシステムと方法 |
US10122350B2 (en) | 2015-11-17 | 2018-11-06 | Northrop Grumman Systems Corporation | Josephson transmission line (JTL) system |
US10042805B2 (en) * | 2016-01-21 | 2018-08-07 | Northrop Grumman Systems Corporation | Tunable bus-mediated coupling between remote qubits |
US10789540B2 (en) | 2016-04-18 | 2020-09-29 | D-Wave Systems Inc. | Systems and methods for embedding problems into an analog processor |
JP6945553B2 (ja) | 2016-05-03 | 2021-10-06 | ディー−ウェイブ システムズ インコーポレイテッド | 超伝導回路及びスケーラブルな計算において使用される超伝導デバイスのためのシステム及び方法 |
JP7002477B2 (ja) | 2016-06-07 | 2022-01-20 | ディー-ウェイブ システムズ インコーポレイテッド | 量子プロセッサトポロジ用のシステム及び方法 |
WO2018004636A1 (en) | 2016-07-01 | 2018-01-04 | Intel Corporation | Interconnects below qubit plane by substrate bonding |
WO2018004634A1 (en) | 2016-07-01 | 2018-01-04 | Intel Corporation | Flux bias lines below qubit plane |
US10748960B2 (en) | 2016-07-01 | 2020-08-18 | Intel Corporation | Interconnects below qubit plane by substrate doping |
WO2018063168A1 (en) * | 2016-09-28 | 2018-04-05 | Intel Corporation | On-chip frequency tuning of resonator structures in quantum circuits |
NL2018253B1 (en) * | 2017-01-27 | 2018-08-07 | Univ Delft Tech | A qubit apparatus and a qubit system |
US11038095B2 (en) | 2017-02-01 | 2021-06-15 | D-Wave Systems Inc. | Systems and methods for fabrication of superconducting integrated circuits |
US10255557B2 (en) | 2017-02-15 | 2019-04-09 | Northrop Grumman Systems Corporation | XX Coupler for flux qubits |
US11211722B2 (en) | 2017-03-09 | 2021-12-28 | Microsoft Technology Licensing, Llc | Superconductor interconnect system |
US10608157B2 (en) | 2017-05-18 | 2020-03-31 | International Business Machines Corporation | Qubit network non-volatile identification |
US10826713B2 (en) | 2017-05-18 | 2020-11-03 | International Business Machines Corporation | Qubit network secure identification |
US10122351B1 (en) | 2017-07-25 | 2018-11-06 | Northrop Grumman Systems Corporation | Superconducting bi-directional current driver |
CN107704649A (zh) * | 2017-08-23 | 2018-02-16 | 中国科学院上海微系统与信息技术研究所 | 约瑟夫森结电路模型和超导集成电路结构及建立方法 |
US10491178B2 (en) | 2017-10-31 | 2019-11-26 | Northrop Grumman Systems Corporation | Parametric amplifier system |
US10599805B2 (en) | 2017-12-01 | 2020-03-24 | International Business Machines Corporation | Superconducting quantum circuits layout design verification |
US10592814B2 (en) | 2017-12-01 | 2020-03-17 | International Business Machines Corporation | Automatic design flow from schematic to layout for superconducting multi-qubit systems |
CN108038549B (zh) * | 2017-12-05 | 2021-11-02 | 姜年权 | 一种通用量子计算机中央处理器及其操纵方法 |
WO2019126396A1 (en) * | 2017-12-20 | 2019-06-27 | D-Wave Systems Inc. | Systems and methods for coupling qubits in a quantum processor |
US10158343B1 (en) * | 2018-01-11 | 2018-12-18 | Northrop Grumman Systems Corporation | Push-pull tunable coupling |
US11108380B2 (en) | 2018-01-11 | 2021-08-31 | Northrop Grumman Systems Corporation | Capacitively-driven tunable coupling |
CN111989686B (zh) | 2018-01-22 | 2023-12-29 | D-波系统公司 | 用于提高模拟处理器的性能的系统和方法 |
US10749096B2 (en) | 2018-02-01 | 2020-08-18 | Northrop Grumman Systems Corporation | Controlling a state of a qubit assembly via tunable coupling |
US10847705B2 (en) | 2018-02-15 | 2020-11-24 | Intel Corporation | Reducing crosstalk from flux bias lines in qubit devices |
US11424521B2 (en) | 2018-02-27 | 2022-08-23 | D-Wave Systems Inc. | Systems and methods for coupling a superconducting transmission line to an array of resonators |
US11100418B2 (en) | 2018-02-28 | 2021-08-24 | D-Wave Systems Inc. | Error reduction and, or, correction in analog computing including quantum processor-based computing |
US10122352B1 (en) | 2018-05-07 | 2018-11-06 | Northrop Grumman Systems Corporation | Current driver system |
EP3815007A4 (en) * | 2018-05-11 | 2022-03-23 | D-Wave Systems Inc. | SINGLE-FLOW QUANTUM SOURCE FOR PROJECTIVE MEASUREMENTS |
US11105866B2 (en) | 2018-06-05 | 2021-08-31 | D-Wave Systems Inc. | Dynamical isolation of a cryogenic processor |
WO2019222514A1 (en) * | 2018-05-16 | 2019-11-21 | D-Wave Systems Inc. | Systems and methods for addressing devices in a superconducting circuit |
US10852366B2 (en) * | 2018-06-26 | 2020-12-01 | Northrop Grumman Systems Corporation | Magnetic flux source system |
US11050009B2 (en) | 2018-08-28 | 2021-06-29 | International Business Machines Corporation | Methods for annealing qubits with an antenna chip |
US10510943B1 (en) | 2018-08-28 | 2019-12-17 | International Business Machines Corporation | Structure for an antenna chip for qubit annealing |
US10475983B1 (en) | 2018-08-28 | 2019-11-12 | International Business Machines Corporation | Antenna-based qubit annealing method |
US11847534B2 (en) | 2018-08-31 | 2023-12-19 | D-Wave Systems Inc. | Systems and methods for operation of a frequency multiplexed resonator input and/or output for a superconducting device |
US10700257B2 (en) * | 2018-10-15 | 2020-06-30 | International Business Machines Corporation | Flux-biasing superconducting quantum processors |
US20200152851A1 (en) | 2018-11-13 | 2020-05-14 | D-Wave Systems Inc. | Systems and methods for fabricating superconducting integrated circuits |
CN109784493B (zh) * | 2018-11-19 | 2022-10-28 | 中国科学技术大学 | 相邻比特耦合强度可调的超导量子比特结构 |
US10886049B2 (en) | 2018-11-30 | 2021-01-05 | Northrop Grumman Systems Corporation | Coiled coupled-line hybrid coupler |
WO2020168097A1 (en) | 2019-02-15 | 2020-08-20 | D-Wave Systems Inc. | Kinetic inductance for couplers and compact qubits |
WO2020210536A1 (en) | 2019-04-10 | 2020-10-15 | D-Wave Systems Inc. | Systems and methods for improving the performance of non-stoquastic quantum devices |
US11288073B2 (en) | 2019-05-03 | 2022-03-29 | D-Wave Systems Inc. | Systems and methods for calibrating devices using directed acyclic graphs |
US11422958B2 (en) | 2019-05-22 | 2022-08-23 | D-Wave Systems Inc. | Systems and methods for efficient input and output to quantum processors |
US12039465B2 (en) | 2019-05-31 | 2024-07-16 | D-Wave Systems Inc. | Systems and methods for modeling noise sequences and calibrating quantum processors |
US12033033B2 (en) | 2019-06-11 | 2024-07-09 | D-Wave Systems Inc. | Input/output systems and methods for superconducting devices |
US11581472B2 (en) | 2019-08-07 | 2023-02-14 | International Business Machines Corporation | Superconductor-semiconductor Josephson junction |
US11839164B2 (en) | 2019-08-19 | 2023-12-05 | D-Wave Systems Inc. | Systems and methods for addressing devices in a superconducting circuit |
US11790259B2 (en) | 2019-09-06 | 2023-10-17 | D-Wave Systems Inc. | Systems and methods for tuning capacitance in quantum devices |
US11514223B2 (en) | 2019-11-04 | 2022-11-29 | D-Wave Systems Inc. | Systems and methods to extract qubit parameters |
US20230027682A1 (en) * | 2019-12-20 | 2023-01-26 | D-Wave Systems Inc. | Systems and methods for tuning capacitance of qubits |
US11937516B2 (en) * | 2020-03-04 | 2024-03-19 | International Business Machines Corporation | Fabrication of a flux bias line local heating device |
US12022749B2 (en) * | 2020-03-04 | 2024-06-25 | International Business Machines Corporation | Flux bias line local heating device |
CN111626428A (zh) * | 2020-05-29 | 2020-09-04 | 合肥本源量子计算科技有限责任公司 | 一种超导量子比特的电路结构的显示方法及装置 |
US12087503B2 (en) | 2021-06-11 | 2024-09-10 | SeeQC, Inc. | System and method of flux bias for superconducting quantum circuits |
US11569821B2 (en) | 2021-06-22 | 2023-01-31 | Northrop Grumman Systems Corporation | Superconducting exclusive-OR (XOR) gate system |
US11809839B2 (en) | 2022-01-18 | 2023-11-07 | Robert Lyden | Computer language and code for application development and electronic and optical communication |
CN114429215B (zh) * | 2022-01-28 | 2024-10-22 | 中国科学技术大学 | 基于超导量子耦合器实现双比特量子门的方法 |
CN115018079B (zh) * | 2022-05-16 | 2024-10-29 | 北京百度网讯科技有限公司 | 量子电路、仿真方法、装置、设备及存储介质 |
WO2024050333A1 (en) * | 2022-09-02 | 2024-03-07 | 1372934 B.C. Ltd. | Systems and methods for active noise compensation of qubits |
Family Cites Families (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU539333A1 (ru) | 1974-12-11 | 1976-12-15 | Предприятие П/Я А-1631 | Переключательный элемент |
US4370359A (en) | 1980-08-18 | 1983-01-25 | Bell Telephone Laboratories, Incorporated | Fabrication technique for junction devices |
US4947118A (en) * | 1988-11-21 | 1990-08-07 | Fujitsu Limited | Digital squid system adaptive for integrated circuit construction and having high accuracy |
JP2593131B2 (ja) * | 1993-12-28 | 1997-03-26 | 株式会社超伝導センサ研究所 | Squid装置 |
JPH0933626A (ja) * | 1995-07-24 | 1997-02-07 | Daikin Ind Ltd | Squid素子 |
JPH0983027A (ja) * | 1995-09-19 | 1997-03-28 | Hitachi Ltd | 超電導回路 |
JPH104223A (ja) | 1996-06-18 | 1998-01-06 | Kokusai Chodendo Sangyo Gijutsu Kenkyu Center | 酸化物超電導体ジョセフソン素子 |
AUPO926897A0 (en) * | 1997-09-17 | 1997-10-09 | Unisearch Limited | Quantum computer |
US6608581B1 (en) * | 2000-06-20 | 2003-08-19 | Hypres, Inc. | Superconductor modulator with very high sampling rate for analog to digital converters |
US20040016918A1 (en) | 2001-12-18 | 2004-01-29 | Amin Mohammad H. S. | System and method for controlling superconducting qubits |
US20030121028A1 (en) * | 2001-12-22 | 2003-06-26 | Michael Coury | Quantum computing integrated development environment |
US6670630B2 (en) | 2002-03-16 | 2003-12-30 | D-Wave Systems, Inc. | Quantum phase-charge coupled device |
US7307275B2 (en) | 2002-04-04 | 2007-12-11 | D-Wave Systems Inc. | Encoding and error suppression for superconducting quantum computers |
US6900454B2 (en) * | 2002-04-20 | 2005-05-31 | D-Wave Systems, Inc. | Resonant controlled qubit system |
FR2839389B1 (fr) | 2002-05-03 | 2005-08-05 | Commissariat Energie Atomique | Dispositif de bit quantique supraconducteur a jonctions josephson |
US6943368B2 (en) | 2002-11-25 | 2005-09-13 | D-Wave Systems, Inc. | Quantum logic using three energy levels |
US7364923B2 (en) * | 2003-03-03 | 2008-04-29 | The Governing Council Of The University Of Toronto | Dressed qubits |
US6984846B2 (en) * | 2003-08-27 | 2006-01-10 | International Business Machines Corporation | Gradiometer-based flux qubit for quantum computing and method therefor |
US7129870B2 (en) * | 2003-08-29 | 2006-10-31 | Fujitsu Limited | Superconducting latch driver circuit generating sufficient output voltage and pulse-width |
US7335909B2 (en) | 2003-09-05 | 2008-02-26 | D-Wave Systems Inc. | Superconducting phase-charge qubits |
FR2862151B1 (fr) | 2003-11-07 | 2007-08-24 | Commissariat Energie Atomique | Dispositif de reinitialisation d'un dispositif de bit quantique a deux etats d'energie |
US7135701B2 (en) | 2004-03-29 | 2006-11-14 | D-Wave Systems Inc. | Adiabatic quantum computation with superconducting qubits |
US20070239366A1 (en) | 2004-06-05 | 2007-10-11 | Hilton Jeremy P | Hybrid classical-quantum computer architecture for molecular modeling |
US7268576B2 (en) * | 2004-11-08 | 2007-09-11 | D-Wave Systems Inc. | Superconducting qubit with a plurality of capacitive couplings |
US7533068B2 (en) * | 2004-12-23 | 2009-05-12 | D-Wave Systems, Inc. | Analog processor comprising quantum devices |
US7619437B2 (en) * | 2004-12-30 | 2009-11-17 | D-Wave Systems, Inc. | Coupling methods and architectures for information processing |
US7898282B2 (en) | 2005-04-26 | 2011-03-01 | D-Wave Systems Inc. | Systems, devices, and methods for controllably coupling qubits |
US20080238531A1 (en) * | 2007-01-23 | 2008-10-02 | Harris Richard G | Systems, devices, and methods for controllably coupling qubits |
US7639035B2 (en) | 2005-04-26 | 2009-12-29 | D-Wave Systems, Inc. | Qubit state copying |
JP4769938B2 (ja) * | 2005-10-04 | 2011-09-07 | 国立大学法人横浜国立大学 | 大規模単一磁束量子論理回路 |
CA2637071A1 (en) * | 2006-01-27 | 2007-08-02 | D-Wave Systems, Inc. | Methods of adiabatic quantum computation |
AU2007329156B2 (en) | 2006-12-05 | 2012-09-13 | D-Wave Systems Inc. | Systems, methods and apparatus for local programming of quantum processor elements |
US11625761B2 (en) | 2007-09-06 | 2023-04-11 | Mohammad A. Mazed | System and method for machine learning and augmented reality based user application |
WO2008083498A1 (en) | 2007-01-12 | 2008-07-17 | D-Wave Systems, Inc. | Systems, devices and methods for interconnected processor topology |
US8234103B2 (en) * | 2007-04-05 | 2012-07-31 | D-Wave Systems Inc. | Physical realizations of a universal adiabatic quantum computer |
US8073808B2 (en) * | 2007-04-19 | 2011-12-06 | D-Wave Systems Inc. | Systems, methods, and apparatus for automatic image recognition |
US7800395B2 (en) * | 2007-05-02 | 2010-09-21 | D-Wave Systems Inc. | Systems, devices, and methods for controllably coupling qubits |
US8244650B2 (en) | 2007-06-12 | 2012-08-14 | D-Wave Systems Inc. | Systems, methods, and apparatus for recursive quantum computing algorithms |
US7498832B2 (en) * | 2007-08-03 | 2009-03-03 | Northrop Grumman Systems Corporation | Arbitrary quantum operations with a common coupled resonator |
CN101868802B (zh) | 2007-09-24 | 2013-12-25 | D-波系统公司 | 用于量子位状态读出的系统、方法以及装置 |
WO2009039663A1 (en) | 2007-09-25 | 2009-04-02 | D-Wave Systems Inc. | Systems, devices, and methods for controllably coupling qubits |
US8190548B2 (en) * | 2007-11-08 | 2012-05-29 | D-Wave Systems Inc. | Systems, devices, and methods for analog processing |
WO2009114805A2 (en) | 2008-03-14 | 2009-09-17 | D-Wave Systems Inc. | System, devices and methods for coupling qubits |
CA2719343C (en) | 2008-03-24 | 2017-03-21 | Paul Bunyk | Systems, devices, and methods for analog processing |
CA2724617C (en) | 2008-05-20 | 2017-02-21 | D-Wave Systems, Inc. | Systems, methods, and apparatus for calibrating, controlling, and operating a quantum processor |
US7932514B2 (en) | 2008-05-23 | 2011-04-26 | International Business Machines Corporation | Microwave readout for flux-biased qubits |
US8063657B2 (en) | 2008-06-13 | 2011-11-22 | D-Wave Systems Inc. | Systems and devices for quantum processor architectures |
CA3077980C (en) * | 2008-09-03 | 2023-06-13 | D-Wave Systems Inc. | Systems, methods and apparatus for active compensation of quantum processor elements |
WO2010151581A2 (en) | 2009-06-26 | 2010-12-29 | D-Wave Systems Inc. | Systems and methods for quantum computation using real physical hardware |
JP2014504057A (ja) | 2010-11-11 | 2014-02-13 | ディー−ウェイブ システムズ,インコーポレイテッド | 超伝導磁束量子ビット読出しのためのシステム及び方法 |
US8111083B1 (en) | 2010-12-01 | 2012-02-07 | Northrop Grumman Systems Corporation | Quantum processor |
US20130117200A1 (en) | 2011-11-09 | 2013-05-09 | D-Wave Systems Inc. | Systems and methods for optimization of investment portfolios |
US9178154B2 (en) | 2012-10-09 | 2015-11-03 | D-Wave Systems Inc. | Quantum processor comprising a second set of inter-cell coupling devices where a respective pair of qubits in proximity adjacent unit cells crossed one another |
EP3025278B1 (en) | 2013-07-23 | 2018-09-05 | D-Wave Systems Inc. | Systems and methods for achieving orthogonal control of non-orthogonal qubit parameters |
US9129224B2 (en) | 2013-07-24 | 2015-09-08 | D-Wave Systems Inc. | Systems and methods for increasing the energy scale of a quantum processor |
US9183508B2 (en) | 2013-08-07 | 2015-11-10 | D-Wave Systems Inc. | Systems and devices for quantum processor architectures |
US10002107B2 (en) | 2014-03-12 | 2018-06-19 | D-Wave Systems Inc. | Systems and methods for removing unwanted interactions in quantum devices |
US10769545B2 (en) | 2014-06-17 | 2020-09-08 | D-Wave Systems Inc. | Systems and methods employing new evolution schedules in an analog computer with applications to determining isomorphic graphs and post-processing solutions |
WO2016029172A1 (en) | 2014-08-22 | 2016-02-25 | D-Wave Systems Inc. | Systems and methods for problem solving, useful for example in quantum computing |
US10031887B2 (en) | 2014-09-09 | 2018-07-24 | D-Wave Systems Inc. | Systems and methods for improving the performance of a quantum processor via reduced readouts |
EP3113084B1 (en) | 2015-06-29 | 2020-12-09 | Parity Quantum Computing GmbH | Quantum processing device and method |
JP6945553B2 (ja) | 2016-05-03 | 2021-10-06 | ディー−ウェイブ システムズ インコーポレイテッド | 超伝導回路及びスケーラブルな計算において使用される超伝導デバイスのためのシステム及び方法 |
JP7002477B2 (ja) | 2016-06-07 | 2022-01-20 | ディー-ウェイブ システムズ インコーポレイテッド | 量子プロセッサトポロジ用のシステム及び方法 |
US9806711B1 (en) | 2016-09-28 | 2017-10-31 | International Business Machines Corporation | Quantum limited josephson amplifier with spatial separation between spectrally degenerate signal and idler modes |
US10312142B2 (en) | 2016-11-28 | 2019-06-04 | Northrop Grumman Systems Corporation | Method of forming superconductor structures |
US11038095B2 (en) | 2017-02-01 | 2021-06-15 | D-Wave Systems Inc. | Systems and methods for fabrication of superconducting integrated circuits |
WO2019126396A1 (en) | 2017-12-20 | 2019-06-27 | D-Wave Systems Inc. | Systems and methods for coupling qubits in a quantum processor |
US11424521B2 (en) | 2018-02-27 | 2022-08-23 | D-Wave Systems Inc. | Systems and methods for coupling a superconducting transmission line to an array of resonators |
US10622536B2 (en) | 2018-03-23 | 2020-04-14 | International Business Machines Corporation | Reducing qubit frequency collisions through lattice design |
US10243132B1 (en) | 2018-03-23 | 2019-03-26 | International Business Machines Corporation | Vertical josephson junction superconducting device |
US10546621B2 (en) | 2018-06-20 | 2020-01-28 | Microsoft Technology Licensing, Llc | Magnetic josephson junction driven flux-biased superconductor memory cell and methods |
US10818346B2 (en) | 2018-09-17 | 2020-10-27 | Northrop Grumman Systems Corporation | Quantizing loop memory cell system |
WO2020168097A1 (en) | 2019-02-15 | 2020-08-20 | D-Wave Systems Inc. | Kinetic inductance for couplers and compact qubits |
US11790259B2 (en) | 2019-09-06 | 2023-10-17 | D-Wave Systems Inc. | Systems and methods for tuning capacitance in quantum devices |
WO2023004040A1 (en) | 2021-07-23 | 2023-01-26 | D-Wave Systems Inc. | Systems and methods for tuning capacitance in quantum devices |
-
2009
- 2009-09-03 CA CA3077980A patent/CA3077980C/en active Active
- 2009-09-03 JP JP2011526207A patent/JP5513507B2/ja active Active
- 2009-09-03 CA CA2736116A patent/CA2736116C/en active Active
- 2009-09-03 CN CN200980141676.XA patent/CN102187489B/zh active Active
- 2009-09-03 EP EP09812240.1A patent/EP2340572B1/en active Active
- 2009-09-03 CA CA3029949A patent/CA3029949C/en active Active
- 2009-09-03 CA CA2976901A patent/CA2976901C/en active Active
- 2009-09-03 US US12/991,891 patent/US8536566B2/en active Active
- 2009-09-03 WO PCT/US2009/055939 patent/WO2010028183A2/en active Application Filing
-
2013
- 2013-08-02 US US13/958,339 patent/US9152923B2/en active Active
-
2015
- 2015-09-04 US US14/846,334 patent/US9607270B2/en active Active
-
2017
- 2017-02-21 US US15/438,296 patent/US10290798B2/en active Active
-
2019
- 2019-04-10 US US16/380,751 patent/US11031537B2/en active Active
-
2021
- 2021-05-25 US US17/330,037 patent/US12035640B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN102187489A (zh) | 2011-09-14 |
EP2340572B1 (en) | 2017-07-26 |
CA2736116C (en) | 2017-09-26 |
US20170162778A1 (en) | 2017-06-08 |
JP2012502563A (ja) | 2012-01-26 |
US9607270B2 (en) | 2017-03-28 |
WO2010028183A2 (en) | 2010-03-11 |
US20190305206A1 (en) | 2019-10-03 |
US9152923B2 (en) | 2015-10-06 |
CA2976901C (en) | 2019-02-26 |
WO2010028183A3 (en) | 2010-07-01 |
CA3077980C (en) | 2023-06-13 |
CA3029949A1 (en) | 2010-03-11 |
CA2736116A1 (en) | 2010-03-11 |
US8536566B2 (en) | 2013-09-17 |
US20220020913A1 (en) | 2022-01-20 |
EP2340572A4 (en) | 2014-07-23 |
US10290798B2 (en) | 2019-05-14 |
CA3077980A1 (en) | 2010-03-11 |
US12035640B2 (en) | 2024-07-09 |
CA2976901A1 (en) | 2010-03-11 |
CN102187489B (zh) | 2014-02-26 |
EP2340572A2 (en) | 2011-07-06 |
US11031537B2 (en) | 2021-06-08 |
US20130313526A1 (en) | 2013-11-28 |
US20150379418A1 (en) | 2015-12-31 |
CA3029949C (en) | 2020-06-02 |
US20110057169A1 (en) | 2011-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5513507B2 (ja) | 量子プロセッサ素子の能動的補償のためのシステム、方法および装置 | |
US12086684B2 (en) | Co-planar waveguide flux qubits | |
AU2020202779C1 (en) | Programmable universal quantum annealing with co-planar waveguide flux qubits | |
CN111931940B (zh) | 高保真度超导电路结构及超导量子芯片、超导量子计算机 | |
AU2011238638B2 (en) | Phase quantum bit | |
JP5167504B2 (ja) | パラメトリック増幅器 | |
WO2021231224A1 (en) | Kinetic inductance devices, methods for fabricating kinetic inductance devices, and articles employing the same | |
US20200083424A1 (en) | Gradiometric parallel superconducting quantum interface device | |
CN115438794A (zh) | 一种量子计算电路及一种量子计算机 | |
WO2024066730A1 (zh) | 一种量子芯片、量子计算电路及量子计算机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120814 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131031 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140327 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5513507 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |