JP5592581B1 - Pre-coated aluminum plate and heat sink for in-vehicle LED lighting - Google Patents
Pre-coated aluminum plate and heat sink for in-vehicle LED lighting Download PDFInfo
- Publication number
- JP5592581B1 JP5592581B1 JP2014050805A JP2014050805A JP5592581B1 JP 5592581 B1 JP5592581 B1 JP 5592581B1 JP 2014050805 A JP2014050805 A JP 2014050805A JP 2014050805 A JP2014050805 A JP 2014050805A JP 5592581 B1 JP5592581 B1 JP 5592581B1
- Authority
- JP
- Japan
- Prior art keywords
- resin
- heat sink
- film
- based film
- aluminum plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Laminated Bodies (AREA)
Abstract
【課題】放熱性に優れると共に、ヒートシンクとLED素子との接着部位の接着疲労を抑制することができるプレコートアルミニウム板材および車載LED照明用ヒートシンクを提供する。
【解決手段】
ヒートシンク1に用いるプレコートアルミニウム板材10であって、アルミニウム板材20の熱伝導率は、150W/m・K以上であり、樹脂系皮膜3は、熱硬化性樹脂を含み、樹脂系皮膜3の膜厚は、15〜200μmであり、樹脂系皮膜3は、波長が3〜30μmの赤外線領域における積分放射率が25℃において0.80以上であり、樹脂系皮膜3のガラス転移温度は、ヒートシンク1の使用時において樹脂系皮膜3が最も低くなる温度をT1℃とした場合に、T1+20℃以下であることを特徴とする。
【選択図】図1Provided are a precoated aluminum plate material and a heat sink for in-vehicle LED illumination that are excellent in heat dissipation and can suppress adhesion fatigue at a bonding portion between a heat sink and an LED element.
[Solution]
It is the precoat aluminum board | plate material 10 used for the heat sink 1, Comprising: The thermal conductivity of the aluminum board | plate material 20 is 150 W / m * K or more, The resin film 3 contains a thermosetting resin, The film thickness of the resin film 3 Is 15 to 200 μm, the resin-based film 3 has an integrated emissivity of 0.80 or more at 25 ° C. in the infrared region having a wavelength of 3 to 30 μm, and the glass transition temperature of the resin-based film 3 is that of the heat sink 1. When the temperature at which the resin-based coating 3 becomes lowest during use is T1 ° C., the temperature is T1 + 20 ° C. or less.
[Selection] Figure 1
Description
本発明は、発光ダイオード(LED)素子を搭載するための車載LED照明用ヒートシンクおよび車載LED照明用ヒートシンク用のプレコートアルミニウム板材に関する。 The present invention relates to a heat sink for in-vehicle LED illumination for mounting a light emitting diode (LED) element and a pre-coated aluminum plate material for a heat sink for in-vehicle LED illumination.
発光ダイオード(LED)素子を発光源とする照明は、低消費電力であり且つ長寿命であることから徐々に市場に浸透し始めている。その中でも、近年特に注目を集めているのが、自動車のヘッドライトなどの車載LED照明である。 Lighting that uses a light emitting diode (LED) element as a light source is gradually penetrating the market due to its low power consumption and long life. Among them, in-vehicle LED lighting such as automobile headlights has attracted particular attention in recent years.
しかしながら、このLED照明の発光源であるLED素子は熱に非常に弱く、許容温度を超えると発光効率が低下し、更には、その寿命にも影響を及ぼしてしまうという問題がある。この問題を解決するためには、LED素子の発光時の熱を周囲の空間に放熱する必要があるため、LED照明には大型のヒートシンクが備えられている。 However, the LED element which is a light emitting source of this LED illumination is very weak to heat, and there is a problem that when the temperature exceeds the allowable temperature, the light emission efficiency is lowered, and further, the life is affected. In order to solve this problem, since it is necessary to dissipate heat at the time of light emission of the LED element to the surrounding space, the LED lighting is provided with a large heat sink.
このLED照明用ヒートシンクには、アルミニウム(アルミニウム合金を含む)を材料としたアルミダイキャスト製のものが多く採用されており、特許文献1〜4には、それらヒートシンクのうち代表的な構成のヒートシンクが開示されている。
Many LED die heat sinks made of aluminum (including an aluminum alloy) are used, and
しかしながら、従来の車載LED照明用ヒートシンクには以下の問題がある。
LED照明は、その使用において点灯と消灯を繰り返すため、ヒートシンクとLED素子との熱膨張差が繰り返し生じることとなる。そして、この熱膨張差が繰り返し生じることにより、ヒートシンクとLED素子との接着部位に接着疲労が生じ、ヒートシンクとLED素子との間に隙間ができたり、ヒートシンクにおけるLED素子の接着部位にひび割れが生じたりする場合がある。これにより、LED照明の耐久性が低下するという問題がある。
また、車載LED照明用ヒートシンクは、放熱性が必要とされるため、放熱性のさらなる向上が求められている。
さらに、従来のアルミダイキャスト製の車載LED照明用ヒートシンクは、生産性が低くコストが高くなるという問題も抱えており、板材による連続プレス化が求められている。ダイキャスト用のアルミニウム合金は通常、展伸用のアルミニウム合金に比べて熱伝導率が低い点で放熱性には不利であるし、軽量化に有効となる薄肉成形にも限界があるため、これらの点からも板化されることが期待されている。
However, the conventional heat sink for in-vehicle LED lighting has the following problems.
Since LED lighting is repeatedly turned on and off during use, a difference in thermal expansion between the heat sink and the LED element occurs repeatedly. This repeated thermal expansion difference causes adhesion fatigue at the bonding portion between the heat sink and the LED element, creating a gap between the heat sink and the LED element, and cracking at the bonding portion of the LED element on the heat sink. Sometimes. Thereby, there exists a problem that durability of LED lighting falls.
Moreover, since the heat sink for vehicle-mounted LED illumination needs heat dissipation, the further improvement of heat dissipation is calculated | required.
Furthermore, conventional heat sinks for in-vehicle LED lighting made of aluminum die cast have a problem of low productivity and high cost, and continuous pressing with a plate material is required. Die-cast aluminum alloys are generally disadvantageous for heat dissipation because they have lower thermal conductivity than aluminum alloys for extension, and there is a limit to thin-wall molding that is effective for weight reduction. From this point, it is expected to be made into a plate.
本発明は、前記課題を解決するものであり、放熱性に優れると共に、ヒートシンクとLED素子との接着部位の接着疲労を抑制することができるプレコートアルミニウム板材および車載LED照明用ヒートシンクを提供することを課題とする。 This invention solves the said subject, and while providing heat dissipation, while providing the precoat aluminum plate material which can suppress the adhesion fatigue of the adhesion | attachment site | part of a heat sink and an LED element, and the heat sink for vehicle-mounted LED illumination is provided. Let it be an issue.
前記課題を解決するため、本発明に係るプレコートアルミニウム板材は、アルミニウム板材と、前記アルミニウム板材の表面に形成される樹脂系皮膜(以下、適宜、皮膜という)と、を備えるとともに、車載LED照明用ヒートシンク(以下、適宜、ヒートシンクという)に用いるプレコートアルミニウム板材であって、前記アルミニウム板材の熱伝導率は、150W/m・K以上であり、前記樹脂系皮膜は、熱硬化性樹脂を含み、前記樹脂系皮膜の膜厚は、15〜200μmであり、前記樹脂系皮膜は、波長が3〜30μmの赤外線領域における積分放射率が25℃において0.80以上であり、前記樹脂系皮膜のガラス転移温度は、前記車載LED照明用ヒートシンクの使用時において前記樹脂系皮膜が最も低くなる温度をT1℃とした場合に、T1+20℃以下であることを特徴とする。 In order to solve the above-mentioned problems, a pre-coated aluminum sheet material according to the present invention includes an aluminum sheet material and a resin-based film (hereinafter referred to as a film as appropriate) formed on the surface of the aluminum sheet material. A pre-coated aluminum plate material used for a heat sink (hereinafter, appropriately referred to as a heat sink), wherein the aluminum plate material has a thermal conductivity of 150 W / m · K or more, and the resin film includes a thermosetting resin, The resin-based film has a film thickness of 15 to 200 μm, and the resin-based film has an integrated emissivity of 0.80 or more in an infrared region having a wavelength of 3 to 30 μm at 25 ° C., and the glass transition of the resin-based film. When using the heat sink for in-vehicle LED lighting, the temperature at which the resin-based film is lowest is T1 ° C. In other words, T1 + 20 ° C. or lower.
このような構成によれば、アルミニウム板材の熱伝導率が150W/m・K以上であることで、このプレコートアルミニウム板材を用いたヒートシンクの放熱性が確保される。また、皮膜の樹脂種、膜厚、ガラス転移温度を所定の範囲に規定することで、クッション性を有する皮膜が形成されるため、ヒートシンクとLED素子との接着部の接着疲労耐久性が確保される。また、皮膜の積分放射率を規定することで、ヒートシンクの放熱性が向上する。 According to such a structure, the heat conductivity of the heat sink using this precoat aluminum plate material is ensured because the thermal conductivity of the aluminum plate material is 150 W / m · K or more. In addition, by defining the resin type, film thickness, and glass transition temperature of the film within a predetermined range, a film having cushioning properties is formed, so that the adhesion fatigue durability of the bonded portion between the heat sink and the LED element is ensured. The Further, by defining the integral emissivity of the film, the heat dissipation of the heat sink is improved.
本発明に係るプレコートアルミニウム板材は、前記樹脂系皮膜のガラス転移温度が10℃以下であることが好ましい。
このような構成によれば、極端に厳しい環境を除き、ほとんどの使用環境において皮膜がゴム状となる。
In the precoated aluminum sheet according to the present invention, the resin-based film preferably has a glass transition temperature of 10 ° C. or lower.
According to such a configuration, the film becomes rubbery in most use environments except for extremely severe environments.
本発明に係るプレコートアルミニウム板材は、前記樹脂系皮膜が黒色顔料成分をさらに含むことが好ましい。
このような構成によれば、皮膜の色調が黒色となり、ヒートシンクの放熱性がより向上する。
In the precoated aluminum sheet according to the present invention, it is preferable that the resin-based film further includes a black pigment component.
According to such a configuration, the color tone of the film becomes black, and the heat dissipation of the heat sink is further improved.
本発明に係るプレコートアルミニウム板材は、前記樹脂系皮膜の膜厚が15〜50μmであることが好ましい。
このような構成によれば、ヒートシンクとLED素子との接着部の接着疲労耐久性およびヒートシンクの放熱性を維持したまま経済性がより向上する。
In the precoated aluminum sheet according to the present invention, the resin-based film preferably has a film thickness of 15 to 50 μm.
According to such a configuration, the economic efficiency is further improved while maintaining the adhesion fatigue durability of the bonded portion between the heat sink and the LED element and the heat dissipation of the heat sink.
本発明に係るプレコートアルミニウム板材は、前記アルミニウム板材の結晶組織がファイバー状であることが好ましい。
このような構成によれば、曲げ加工時の肌あれが小さくなり、プレコートアルミニウム板材の曲げ加工時に塗膜に亀裂が生じにくい。
In the precoated aluminum sheet material according to the present invention, the crystal structure of the aluminum sheet material is preferably fiber-like.
According to such a structure, the roughness at the time of a bending process becomes small, and it is hard to produce a crack in a coating film at the time of the bending process of a precoat aluminum plate material.
本発明に係る車載LED照明用ヒートシンクは、アルミニウム展伸材(以下、適宜、アルミニウム板材という)が成形されてなるヒートシンク成形体と、前記ヒートシンク成形体の表面に形成される樹脂系皮膜と、を備える車載LED照明用ヒートシンクであって、前記アルミニウム展伸材の熱伝導率は、150W/m・K以上であり、前記樹脂系皮膜は、熱硬化性樹脂を含み、前記樹脂系皮膜の膜厚は、15〜200μmであり、前記樹脂系皮膜は、波長が3〜30μmの赤外線領域における積分放射率が25℃において0.80以上であり、前記樹脂系皮膜のガラス転移温度は、前記車載LED照明用ヒートシンクの使用時において前記樹脂系皮膜が最も低くなる温度をT1℃とした場合に、T1+20℃以下であることを特徴とする。 The heat sink for in-vehicle LED lighting according to the present invention includes a heat sink molded body formed by molding an aluminum wrought material (hereinafter, appropriately referred to as an aluminum plate material), and a resin-based film formed on the surface of the heat sink molded body. A heat sink for in-vehicle LED lighting, wherein the aluminum wrought material has a thermal conductivity of 150 W / m · K or more, the resin-based film includes a thermosetting resin, and the film thickness of the resin-based film Is 15 to 200 μm, and the resin-based film has an integrated emissivity of 0.80 or more at 25 ° C. in the infrared region having a wavelength of 3 to 30 μm, and the glass transition temperature of the resin-based film is the vehicle-mounted LED. When the temperature at which the resin-based film is lowest when the lighting heat sink is used is T1 ° C., it is T1 + 20 ° C. or less.
このような構成によれば、アルミニウム展伸材の熱伝導率が150W/m・K以上であることで、ヒートシンクの放熱性が確保される。また、皮膜の樹脂種、膜厚、ガラス転移温度を所定の範囲に規定することで、クッション性を有する皮膜が形成されるため、ヒートシンクとLED素子との接着部の接着疲労耐久性が確保される。また、皮膜の積分放射率を規定することで、ヒートシンクの放熱性が向上する。 According to such a structure, the heat dissipation of a heat sink is ensured because the heat conductivity of an aluminum extending material is 150 W / m * K or more. In addition, by defining the resin type, film thickness, and glass transition temperature of the film within a predetermined range, a film having cushioning properties is formed, so that the adhesion fatigue durability of the bonded portion between the heat sink and the LED element is ensured. The Further, by defining the integral emissivity of the film, the heat dissipation of the heat sink is improved.
本発明に係る車載LED照明用ヒートシンクは、前記樹脂系皮膜のガラス転移温度が10℃以下であることが好ましい。
このような構成によれば、極端に厳しい環境を除き、ほとんどの使用環境において皮膜がゴム状となる。
The heat sink for in-vehicle LED lighting according to the present invention preferably has a glass transition temperature of the resin-based film of 10 ° C. or lower.
According to such a configuration, the film becomes rubbery in most use environments except for extremely severe environments.
本発明に係る車載LED照明用ヒートシンクは、前記樹脂系皮膜が黒色顔料成分をさらに含むことが好ましい。
このような構成によれば、皮膜の色調が黒色となり、ヒートシンクの放熱性がより向上する。
In the heat sink for in-vehicle LED lighting according to the present invention, it is preferable that the resin-based film further includes a black pigment component.
According to such a configuration, the color tone of the film becomes black, and the heat dissipation of the heat sink is further improved.
本発明に係る車載LED照明用ヒートシンクは、前記樹脂系皮膜の膜厚が15〜50μmであることが好ましい。
このような構成によれば、ヒートシンクとLED素子との接着部の接着疲労耐久性およびヒートシンクの放熱性を維持したまま経済性がより向上する。
In the vehicle-mounted LED heat sink according to the present invention, the resin-based film preferably has a film thickness of 15 to 50 μm.
According to such a configuration, the economic efficiency is further improved while maintaining the adhesion fatigue durability of the bonded portion between the heat sink and the LED element and the heat dissipation of the heat sink.
本発明のプレコートアルミニウム板材は、放熱性に優れる。また、ヒートシンクとして用いた際に、ヒートシンクとLED素子の接着部位の接着疲労を抑制することができるため、LED照明の耐久性を向上させることができる。
本発明の車載LED照明用ヒートシンクは、放熱性に優れる。また、ヒートシンクとLED素子との接着部位の接着疲労を抑制することができるため、LED照明の耐久性が向上する。
The precoated aluminum sheet material of the present invention is excellent in heat dissipation. Moreover, since it can suppress the adhesion fatigue | exhaustion of the adhesion | attachment site | part of a heat sink and an LED element when it uses as a heat sink, durability of LED lighting can be improved.
The heat sink for in-vehicle LED illumination of the present invention is excellent in heat dissipation. Moreover, since the adhesion fatigue | exhaustion of the adhesion | attachment site | part of a heat sink and an LED element can be suppressed, durability of LED lighting improves.
以下、本発明の実施形態について図面を参照して説明する。
≪ヒートシンク≫
図1(a)に示すように、本発明に係るヒートシンク1は、車載LED照明100に用いられるものであり、アルミニウム展伸材が成形されてなるヒートシンク成形体2と、ヒートシンク成形体2の表面に形成される樹脂系皮膜3とを備える。そして、ヒートシンク1は、アルミニウム展伸材の熱伝導率と、樹脂系皮膜3の成分、膜厚、積分放射率、ガラス転移温度を規定したものである。
以下、各構成について説明する。
Embodiments of the present invention will be described below with reference to the drawings.
≪Heat sink≫
As shown to Fig.1 (a), the
Each configuration will be described below.
<ヒートシンク成形体>
ヒートシンク成形体2は、アルミニウム展伸材が成形されてなるアルミニウム製のものである。「アルミニウム展伸材」としたのは、展伸材に限定することで、現行のアルミダイキャストや樹脂製、鉄その他の金属製のものと差別化する趣旨であり、アルミニウム展伸材のなかでも、生産性やプレコート処理性等に優れたアルミニウム板材が好ましい。以下、アルミニウム板材について説明する。
本発明でいうアルミニウム板材は、アルミニウムまたはアルミニウム合金からなるものであり、本発明で用いられるアルミニウム板材(アルミニウム板材またはアルミニウム合金板材)としては、特に制限されるものではなく、製品形状や成形方法、使用時に求められる強度等に基づいて選択することができる。一般的には、プレス成形用のアルミニウム板材としては、非熱処理型のアルミニウム板、すなわち、1000系の工業用純アルミニウム板、3000系のAl−Mn系合金板、5000系のAl−Mg系合金板、もしくは熱処理型のアルミニウム板である、一部の6000系のAl−Mg−Si系合金板が使用される。しかしながら、ヒートシンク成形体2は、後記するように熱伝導率を150W/m・K以上とするため、アルミニウム板材は、1000系、一部の3000系、一部の6000系にほぼ限定される。
<Heat sink molding>
The heat sink molded
The aluminum plate material referred to in the present invention is made of aluminum or an aluminum alloy, and the aluminum plate material (aluminum plate material or aluminum alloy plate material) used in the present invention is not particularly limited, and may be a product shape or a molding method, It can be selected based on the strength required at the time of use. Generally, as the aluminum plate material for press forming, a non-heat treatment type aluminum plate, that is, a 1000 series industrial pure aluminum plate, a 3000 series Al-Mn alloy plate, a 5000 series Al-Mg series alloy. Some 6000 series Al—Mg—Si alloy plates, which are plates or heat treated aluminum plates, are used. However, since the heat sink molded
アルミニウム板材は、好ましくは1000系であり、特に好ましい組成は以下である。
[Si含有量の好ましい範囲0.03〜1.00質量%]
Siは,母相内に固溶して、アルミニウム合金板の強度を高める効果があり、Si含有量増加に伴いその効果が向上する。Si含有量が0.03質量%以上であればその効果がより十分となり、1.00質量%以下であれば熱伝導性が向上してヒートシンク材としての性能が向上する。
The aluminum plate material is preferably 1000 series, and the particularly preferred composition is as follows.
[Preferable range of Si content: 0.03 to 1.00% by mass]
Si has the effect of being dissolved in the matrix and increasing the strength of the aluminum alloy plate, and the effect is improved as the Si content is increased. If the Si content is 0.03% by mass or more, the effect is more sufficient, and if it is 1.00% by mass or less, the thermal conductivity is improved and the performance as a heat sink material is improved.
[Fe含有量の好ましい範囲0.10〜0.80質量%]
Feは、母相内に固溶してアルミニウム合金板の強度を高める効果があり、Fe含有量増加に伴いその効果が向上する。Fe含有量が0.10質量%以上であればその効果がより十分となり、0.80質量%以下であれば熱伝導性が向上してヒートシンク材としての性能が向上する。
[Preferable range of Fe content: 0.10 to 0.80 mass%]
Fe has the effect of increasing the strength of the aluminum alloy plate by dissolving in the matrix, and the effect is improved as the Fe content increases. If the Fe content is 0.10% by mass or more, the effect is more sufficient, and if it is 0.80% by mass or less, the thermal conductivity is improved and the performance as a heat sink material is improved.
[Cu含有量の好ましい範囲0.30質量%以下]
Cuは、母相内に固溶して、アルミニウム合金板の強度を高める効果があり、Cu含有量増加に伴いその効果が向上する。Cu含有量が0.30質量%以下であれば熱伝導性が向上してヒートシンク材としての性能が向上する。
[Preferable range of Cu content 0.30% by mass or less]
Cu has the effect of increasing the strength of the aluminum alloy plate by dissolving in the matrix, and the effect is improved as the Cu content is increased. If Cu content is 0.30 mass% or less, thermal conductivity will improve and the performance as a heat sink material will improve.
[Mn含有量の好ましい範囲0.20質量%以下]
Mnは、母相内に固溶して、アルミニウム合金板の強度を高める効果があり、Mn含有量増加に伴いその効果が向上する。Mn含有量が0.20質量%以下であれば熱伝導性が向上してヒートシンク材としての性能が向上する。
[Preferable range of Mn content: 0.20% by mass or less]
Mn has the effect of increasing the strength of the aluminum alloy plate by dissolving in the matrix, and the effect is improved as the Mn content increases. If Mn content is 0.20 mass% or less, thermal conductivity will improve and the performance as a heat sink material will improve.
[Mg含有量の好ましい範囲0.20質量%以下]
Mgは、母相内に固溶して、アルミニウム合金板の強度を高める効果があり、Mg含有量増加に伴いその効果が向上する。Mg含有量が0.20質量%以下であれば、熱伝導性が向上してヒートシンク材としての性能が向上する。
[Preferable range of Mg content: 0.20% by mass or less]
Mg has the effect of increasing the strength of the aluminum alloy plate by dissolving in the matrix, and the effect is improved as the Mg content increases. If Mg content is 0.20 mass% or less, thermal conductivity will improve and the performance as a heat sink material will improve.
[Cr含有量の好ましい範囲0.10質量%以下]
Crは、母相内に固溶して、アルミニウム合金板の強度を高める効果があり、Cr含有量増加に伴いその効果が向上する。Cr含有量0.10質量%以下であれば、熱伝導性が向上してヒートシンク材としての性能が向上する。
[Preferable range of Cr content: 0.10% by mass or less]
Cr has the effect of increasing the strength of the aluminum alloy plate by dissolving in the matrix, and the effect is improved as the Cr content increases. If the Cr content is 0.10% by mass or less, the thermal conductivity is improved and the performance as a heat sink material is improved.
[Zn含有量の好ましい範囲0.20質量%以下]
Znは、母相内に固溶して、アルミニウム合金板の強度を高める効果があり、Zn含有量増加に伴いその効果が向上する。Zn含有量が0.20質量%以下であれば、熱伝導性が向上してヒートシンク材としての性能が向上する。
[Preferable range of Zn content: 0.20 mass% or less]
Zn has the effect of increasing the strength of the aluminum alloy plate by dissolving in the matrix, and the effect is improved as the Zn content increases. If Zn content is 0.20 mass% or less, thermal conductivity will improve and the performance as a heat sink material will improve.
[Ti含有量の好ましい範囲0.10質量%以下]
Tiは、アルミニウム合金鋳造組織を微細化、均質化(安定化)する効果があり、圧延用スラブの造塊時の鋳造割れを防止する効果を有する。Ti含有量が0.10質量%を超えるとその効果が飽和する。また、0.10質量%以下であれば、熱伝導性が向上する。そのため、0.10質量%を超える含有は不要である。
[Preferable range of Ti content is 0.10% by mass or less]
Ti has the effect of refining and homogenizing (stabilizing) the aluminum alloy cast structure, and has the effect of preventing casting cracks during ingot formation of the slab for rolling. If the Ti content exceeds 0.10% by mass, the effect is saturated. Moreover, if it is 0.10 mass% or less, thermal conductivity will improve. Therefore, the content exceeding 0.10% by mass is unnecessary.
ヒートシンク成形体2は、アルミニウム板材の熱伝導率を150W/m・K以上とする。ヒートシンク成形体2は、その用途がヒートシンク1であるため、放熱性が要求される。本発明における所望の放熱性を確保するためには、ヒートシンク成形体2、すなわち、ヒートシンク成形体2を構成するアルミニウム板材の熱伝導率を150W/m・K以上とする必要がある。よって、アルミニウム板材の熱伝導率は150W/m・K以上とする。好ましくは200W/m・K以上である。なお、上限値については特に規定されるものではないが、経済的な観点からは好ましくは240W/m・K以下である。このような特性を有したアルミニウム合金としては、前記したような特定の品番や組成の合金を挙げることができる。
熱伝導率は、たとえばレーザーフラッシュ法によって測定することができる。
なお、ヒートシンク成形体2に用いるアルミニウム板材は、プレコート材でもよいしアフターコート材でもよいが、経済的な観点からはプレコート材が望ましい。
In the heat sink molded
The thermal conductivity can be measured by, for example, a laser flash method.
The aluminum plate material used for the heat sink molded
<樹脂系皮膜>
樹脂系皮膜3は、ヒートシンク成形体2の表面に形成されるものであり、ヒートシンク成形体2の放熱性やLED素子接着部の接着疲労耐久性を向上させる。ここで、表面とは、ヒートシンク成形体2にLED素子を接着する面を意味し、裏面についてはヒートシンクの構造に応じて皮膜の形成は任意に実施してよい。
樹脂系皮膜3は、熱硬化性樹脂を含む。熱硬化性樹脂としては、例えば、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、アクリル樹脂から選ばれる2種類以上を含み、双方の樹脂が有する水酸基、カルボキシル基、グリシジル基、アミノ基、イソシアネート基などが互いに化学結合する組み合わせとすることで得ることができる。このような組み合わせの樹脂同士を2種類以上含む場合、一方の樹脂と他方の樹脂が互いに主剤と硬化剤として熱硬化反応するため、熱硬化性樹脂となる。組み合わせによって熱硬化反応が十分進まない場合には、別にイソシアネート化合物などの硬化剤と組み合わせても良い。
これらの樹脂を単独でしか含まない場合(例えばポリエステル樹脂単独の場合)は、ヒートシンク1の使用において、皮膜3が溶融してしまう場合があり、この場合にはヒートシンク1とLED素子4との接着力が低下してしまうため、ヒートシンク1の耐久性が低下する。ただし単独の場合でも別にイソシアネート化合物などの硬化剤と組み合わせれば、熱硬化性樹脂となる。
<Resin film>
The
The
When these resins are included alone (for example, when the polyester resin is used alone), the
2種類以上の樹脂成分を組み合わせた皮膜の組み合わせの中でも、たとえばアミノ硬化ポリエステル系樹脂、イソシアネート硬化ポリエステル系樹脂、メラミン硬化ポリエステル系樹脂、フェノール硬化エポキシ系樹脂、ユリア(尿素)硬化エポキシ系樹脂等を利用すると、耐熱性と密着性が向上するのでさらに好ましい。またアクリル変性エポキシ樹脂やウレタン変性ポリエステル樹脂等の変性樹脂も好適に使用できる。 Among film combinations that combine two or more types of resin components, for example, amino-cured polyester resins, isocyanate-cured polyester resins, melamine-cured polyester resins, phenol-cured epoxy resins, urea (urea) -cured epoxy resins, etc. When used, heat resistance and adhesion are further improved, which is more preferable. In addition, modified resins such as acrylic-modified epoxy resins and urethane-modified polyester resins can also be suitably used.
[膜厚]
樹脂系皮膜3の膜厚は、15〜200μmとする。膜厚が15μm未満では、皮膜3のクッション性が低下するため、熱サイクルを繰り返した場合にヒートシンク1とLED素子4の接着部が熱疲労を受けやすくなり、ヒートシンク1の耐久性が低下する。一方、膜厚が200μmを超えると、塗膜の熱抵抗が大きくなりすぎるため、ヒートシンク1の放熱性が低下する。ただし、膜厚が50μmを超えて200μm以下の範囲では、クッション性や積分放射率の向上効果が飽和しているため、経済的な観点からは膜厚は、15〜50μmであることが好ましい。
[Film thickness]
The film thickness of the
樹脂系皮膜3の膜厚の測定方法としては、例えば、渦電流膜厚計イソスコープ(ISOSCOPE:登録商標)によって測定することができる。
As a measuring method of the film thickness of the
[積分放射率]
本発明において、樹脂系皮膜3は、波長が3〜30μmの赤外線領域における積分放射率が25℃において0.80以上であるものとする。放射率は、物体表面からの赤外線放射能を黒体表面からの赤外線放射能で割った比例係数であり、特定の温度における特定波長の光に対して定義される。取り得る数値は0(白体)から1(黒体)の範囲であり、数字が大きいほど赤外線放射能が大きい。これをある範囲の波長領域で積分したのが積分放射率である。プランクの放射式によれば、本発明の実施温度領域である室温付近、より具体的には0〜100℃の実用温度領域で発生し得る赤外線の波長は、波長領域が3〜30μmの範囲に集中している。言い換えると、この波長領域の範囲から外れる波長領域の赤外線は無視してよい。この様な理由により、本発明においては、25℃における3〜30μmの波長領域の赤外線に限定している。
[Integrated emissivity]
In the present invention, the resin-based
樹脂系皮膜3に対する、波長が3〜30μmにおける赤外線の積分放射率が25℃において0.80未満であると、樹脂系皮膜3の表面から赤外線として熱を放出する能力が低下し、製品を冷却する能力が不足する。よって、ヒートシンク1の放熱性が低下する。なお、前記した赤外線の積分放射率は0.85以上であることが好ましく、0.90以上であることがさらに好ましい。また、上限値については特に規定されるものではないが、経済的な観点から好ましくは0.99以下である。波長が3〜30μmにおける赤外線の積分放射率は、皮膜の色、膜厚、皮膜の種類等を組み合わせることによって制御することができる。
If the integral emissivity of infrared rays at a wavelength of 3 to 30 μm with respect to the resin-based
樹脂系皮膜3に対する、波長が3〜30μmにおける赤外線の積分放射率は、市販されている簡易放射率計を使用して測定することができるほか、フーリエ変換赤外分光光度計(FTIR)などを用いて測定することが出来る。より具体的には、京都電子工業社製放射率系D&S AERD装置を用いて測定した値とすることができる。
The integral infrared emissivity of the resin-based
[樹脂系皮膜のガラス転移温度]
樹脂系皮膜3のガラス転移温度は、ヒートシンク1の使用時において樹脂系皮膜3が最も低くなる温度をT1℃とした場合に、T1+20℃以下であるものとする。
ガラス転移温度は樹脂の転移温度の一つであり、一般に、ガラス転移温度以上の温度での樹脂は柔らかいゴム状、ガラス転移温度未満の温度での樹脂は硬いガラス状とされる。なお、ここでいうガラス転移温度とは、示差走査熱量分析法(DSC法)によって測定されたものをいう。
[Glass transition temperature of resin film]
The glass transition temperature of the resin-based
The glass transition temperature is one of the transition temperatures of the resin. Generally, a resin at a temperature higher than the glass transition temperature is a soft rubber, and a resin at a temperature lower than the glass transition temperature is a hard glass. In addition, the glass transition temperature here means what was measured by the differential scanning calorimetry (DSC method).
ここで、「ヒートシンク1の使用時において樹脂系皮膜3が最も低くなる温度であるT1℃」とは、ヒートシンク1を用いた車載LED照明100を実際に使用する環境において、冬場の夜間や朝方など使用環境自体の温度が低く、しかもLED素子4からの発熱が無い、一番温度の低い状態のことを意味する。すなわちこれ以上ヒートシンク1が低温にさらされない温度使用環境におけるヒートシンクの最低到達温度のことである。
本発明ではヒートシンク1におけるLED素子4とヒートシンク1とが接する部位における樹脂系皮膜3のクッション性を取り扱っているが、樹脂系皮膜3のガラス転移温度が、ヒートシンク1がこれ以上低温にさらされることの無い温度以下の温度となれば、樹脂系皮膜3は、あらゆる使用環境にて常にガラス転位温度以上の高温の状態、すなわちゴム状となる。これにより、樹脂系皮膜3は常に軟らかくクッション性に富む状態となる。クッション性に富む状態であれば、熱サイクルを繰り返した場合にヒートシンク1とLED素子4の接着部が熱疲労を受けにくくなり、ヒートシンク1の耐久性が向上する。ただし、実際には、高分子物質は、分子量に幅があり、分子内に枝分かれ構造が生じる等、一次構造は均一ではなく、分子同士の配列等、高次構造もミクロに見ると均一とはいえない。ガラス転移温度はあくまで代表値であり、ある程度幅をもった温度範囲で徐々に転移が生じる。また、実際の自動車は「寒冷地仕様」などある程度使用環境に応じた設計をされるため、ガラス転移温度がT1を超える場合でも、環境によっては良好な耐久性を確保できる場合がある。そこで、このような実情を考慮し、樹脂系皮膜3のガラス転移温度は、ヒートシンク1の使用時において樹脂系皮膜3が最も低くなる温度であるT1℃にある程度の幅をもたせたT1+20℃以下であるものとする。樹脂系皮膜3のガラス転移温度の好ましい範囲はT1℃以下であり、さらに好ましい範囲はT1−10℃以下である。
Here, “T1 ° C., which is the temperature at which the resin-based
In the present invention, the cushioning property of the resin-based
この様な温度T1は本発明の車載LEDが使用される国や地域によってまったく異なるため、場所によって最適なものを選べばよいということになる。より具体的には、熱帯地方を想定するのであれば、樹脂系皮膜3のガラス転移温度は、T1=35℃とした場合のT1+20=55℃以下であればよいと考えられる。しかし出来るだけ多くの車を対象にできるのが好ましいと思われることから、より好ましくは10℃以下である。樹脂系皮膜3のガラス転移温度が10℃以下であれば、極端に厳しい環境を除き、ほとんどの使用環境において樹脂系皮膜3がゴム状となる。なお、下限値については特に規定されるものではないが、好ましくは−40℃以上である。ガラス転移温度の望ましい範囲は5℃以下、−20℃以上、より望ましくは0℃以下、−10℃以上である。ここでいうガラス転移温度とは、樹脂系皮膜3を形成する樹脂の種類とその組み合わせ、樹脂の分子構造を変化させることで調整することができる。
Since such temperature T1 is completely different depending on the country or region where the vehicle-mounted LED of the present invention is used, an optimal temperature may be selected depending on the location. More specifically, if the tropical region is assumed, it is considered that the glass transition temperature of the resin-based
樹脂系皮膜3は、黒色顔料成分をさらに含むことが好ましい。樹脂系皮膜3が黒色顔料成分を含むことで、樹脂系皮膜3の色調が黒色となる。黒色は放熱性が高いため、ヒートシンク1の放熱性がより向上する。
黒色顔料成分の具体例としては、カーボンブラックやグラファイトなどの炭素系のもののほか、銅・マンガン・鉄などの金属酸化物系などを挙げることができる。黒色顔料成分は、樹脂系皮膜3を形成する樹脂材料に対して3〜50質量%添加されることが好ましい。
It is preferable that the
Specific examples of the black pigment component include carbon-based materials such as carbon black and graphite, and metal oxide-based materials such as copper, manganese, and iron. The black pigment component is preferably added in an amount of 3 to 50% by mass with respect to the resin material forming the
[その他]
樹脂系皮膜3には、本発明の所望する効果を奏する範囲で、少量の着色剤や、様々な機能を付与する添加剤を含有させることができる。例えば、成形性を更に向上させるため、例えば、ポリエチレンワックス、カルナウバワックス、マイクロクリスタリンワックス、ラノリン、テフロン(登録商標)ワックス、シリコーン系ワックス、グラファイト系潤滑剤、モリブデン系潤滑剤等の潤滑剤を、1種または2種以上含有させることができる。また、電子機器等で要求されるアース確保を目的とした導電性を付与するための導電性微粒子として、例えば、ニッケル微粒子をはじめとする金属微粒子、金属酸化物微粒子、導電性カーボン、グラファイト等を、1種または2種以上含有させることができる。さらには、防汚性が要求される場合には、フッ素系化合物やシリコーン系化合物を含有させてもよい。それ以外に抗菌剤、防カビ剤、脱臭剤、酸化防止剤、紫外線吸収剤、防錆顔料、体質顔料などを、本発明の所望する効果を奏する限り、含有させることができる。
[Others]
The resin-based
≪プレコートアルミニウム板材≫
図1(b)に示すように、本発明に係るプレコートアルミニウム板材10は、アルミニウム板材20と、アルミニウム板材20の表面に形成される樹脂系皮膜3と、を備えるとともに、ヒートシンク1に用いるものである。そして、アルミニウム板材20の熱伝導率と、樹脂系皮膜3の成分、膜厚、積分放射率、ガラス転移温度を規定したものである。
以下、各構成について説明する。なお、前記した本発明のヒートシンク1と共通する部分については、適宜説明を省略する。
≪Pre-coated aluminum sheet≫
As shown in FIG. 1 (b), a
Each configuration will be described below. In addition, about the part which is common in the
<アルミニウム板材>
アルミニウム板材20は、熱伝導率が150W/m・K以上である。アルミニウム板材20としては、ヒートシンク成形体2におけるアルミニウム板材と同様に、1000系、一部の3000系、一部の6000系にほぼ限定される。
<Aluminum plate>
The
アルミニウム板材20は、結晶組織がファイバー状であることが好ましい。「ファイバー状」とは、結晶組織の長軸方向と短軸方向のアスペクト比が10倍以上の伸長組織を有する状態をいう。
アルミニウム板材20の結晶組織がファイバー状であれば、曲げ加工時の肌あれが小さくなる。ここで、アフターコート材の場合は、肌荒れしても板材の上から塗膜を覆いかぶせる様に塗装すればよいため、この様な限定は不要であるが、プレコート材の場合は、曲げ加工部の素材の肌荒れが大きいと塗膜に亀裂が入ってしまう場合がある。よって、アルミニウム板材20は、結晶組織がファイバー状であることが好ましい。
なお、アルミニウム板材の結晶組織の判別は、顕微鏡によって行うことができる。顕微鏡で結晶組織を判別する場合、圧延によってアルミニウムが延ばされる方向(圧延方向)に平行となるアルミニウムの断面を観察する。
The
If the crystal structure of the
The crystal structure of the aluminum plate can be determined with a microscope. When discriminating the crystal structure with a microscope, a cross section of aluminum parallel to the direction in which the aluminum is extended by rolling (rolling direction) is observed.
次に、ファイバー状の組織を実現するための好ましい焼鈍条件について説明する。
ファイバー状の組織を実現し、良好な曲げ加工性を備えるための焼鈍条件は、130〜280℃、1〜10時間であることが好ましい。焼鈍温度が130℃未満では焼鈍するアルミコイル内で特性がばらつく。一方、280℃を超えると回復・再結晶が進行し、耐力が下がり、かつ結晶粒が粗大化する。また、焼鈍時間が1時間未満では温度が低い場合と同様にアルミコイル内の特性がばらつく。一方、10時間を超えると工場生産性が低下する。
Next, preferable annealing conditions for realizing a fiber-like structure will be described.
The annealing conditions for realizing a fiber-like structure and providing good bending workability are preferably 130 to 280 ° C. and 1 to 10 hours. When the annealing temperature is less than 130 ° C., the characteristics vary in the annealed aluminum coil. On the other hand, when it exceeds 280 ° C., recovery and recrystallization proceed, yield strength decreases, and crystal grains become coarse. Also, when the annealing time is less than 1 hour, the characteristics in the aluminum coil vary as in the case where the temperature is low. On the other hand, if it exceeds 10 hours, factory productivity will fall.
<樹脂系皮膜>
樹脂系皮膜3は、アルミニウム板材20の表面に形成されるものであり、ヒートシンク成形体2の放熱性やLED素子接着部の接着疲労耐久性を向上させる。ここで、表面とは、ヒートシンク成形体2にLED素子を接着する面を意味し、裏面についてはヒートシンクの構造に応じて皮膜の形成は任意に実施してよい。
樹脂系皮膜3は、熱硬化性樹脂を含む。熱硬化性樹脂としては、例えば、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、アクリル樹脂から選ばれる2種類以上を含み、双方の樹脂が有する水酸基、カルボキシル基、グリシジル基、アミノ基、イソシアネート基などが互いに化学結合する組み合わせとすることで得ることができる。そして、皮膜3は、膜厚が15〜200μmであり、波長が3〜30μmの赤外線領域における積分放射率が25℃において0.80以上である。さらに樹脂系皮膜3のガラス転移温度は、ヒートシンク1の使用時において樹脂系皮膜3が最も低くなる温度をT1℃とした場合に、T1+20℃以下であるものである。
樹脂系皮膜3については、ヒートシンク1における樹脂系皮膜3と同様であるため、ここでは説明を省略する。
<Resin film>
The resin-based
The
Since the resin-based
以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で変更することができる。
例えば、アルミニウム板材20の表面に、下地処理により、下地処理皮膜(図示省略)を設けてもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, It can change in the range which does not deviate from the scope of the present invention.
For example, a surface treatment film (not shown) may be provided on the surface of the
<下地処理>
アルミニウム板材20の表面は、樹脂系皮膜3との密着性を高めるため、下地処理を施すことが好ましい。好ましい下地処理としては、Cr、ZrまたはTiを含有する従来公知の反応型下地処理皮膜および塗布型下地処理皮膜を利用することができる。即ち、リン酸クロメート皮膜、クロム酸クロメート皮膜、リン酸ジルコニウム皮膜、酸化ジルコニウム皮膜、リン酸チタン皮膜、塗布型クロメート皮膜、塗布型ジルコニウム皮膜等を適宜使用することができる。これらの皮膜に有機成分を組み合わせた有機無機ハイブリッド型の下地処理皮膜でもよい。なお、近年、環境対応の流れから六価クロムを嫌う傾向があり、六価クロムを含まないリン酸クロメート皮膜や、リン酸ジルコニウム皮膜、酸化ジルコニウム皮膜、リン酸チタン皮膜、塗布型ジルコニウム皮膜等を使用するのが好ましい。
<Pretreatment>
The surface of the
なお、本発明では下地処理皮膜の膜厚として、下地処理皮膜成分中に含まれるCr、ZrまたはTiのアルミニウム板材20への付着量(金属Cr、金属Zrまたは金属Ti換算値)を、例えば、従来公知の蛍光X線法を用いて、比較的、簡便かつ定量的に測定することができる。そのため、生産性を阻害することなくプレコートアルミニウム板材10の品質管理を行うことできる。なお、下地処理皮膜の付着量としては、金属Cr、金属Zrまたは金属Ti換算値で10〜50mg/m2であることが好ましい。付着量が10mg/m2以上であれば、アルミニウム板材20の全面を均一に被覆することができ、耐食性が向上する。また、50mg/m2以下であれば、プレコートアルミニウム板材10を成形した際に、下地処理の皮膜自体に割れが生じにくくなる。
In the present invention, as the film thickness of the base treatment film, the amount of Cr, Zr or Ti contained in the base treatment film component to the aluminum plate 20 (metal Cr, metal Zr or metal Ti equivalent value) is, for example, Using a conventionally known fluorescent X-ray method, it can be measured relatively easily and quantitatively. Therefore, quality control of the
また、生産性を考慮しない場合には、アルミニウム板材20の表面に陽極酸化処理や電解エッチング処理等の従来公知の処理を行うこともできる。これらの処理を行うと、アルミニウム板材20の表面に微細な凹凸が形成されるため、樹脂系皮膜3の密着性が大きく向上する。
In addition, when productivity is not taken into consideration, a conventionally known process such as an anodizing process or an electrolytic etching process can be performed on the surface of the
さらに、耐食性をそれほど求めず簡易な方法で済ませたい場合には、アルミニウム板材20の表面を脱脂処理のみする手法でもかまわない。脱脂の手法としては、有機系薬剤による脱脂、界面活性剤系薬剤による脱脂、アルカリ系薬剤での脱脂、酸系薬剤による脱脂等、従来公知の方法を用いることができる。ただし、有機系薬剤や界面活性剤系薬剤の場合には、脱脂能力がやや劣るため、アルカリ系薬剤や酸系薬剤による脱脂の方が生産性はよくなる。アルカリ系薬剤の脱脂能力は、使用するアルカリの主成分、濃度、処理温度によってコントロールできるが、脱脂能力を強くした場合には、多くのスマットが発生するため、その後の水洗を十分に行わないと、かえって樹脂系皮膜3の密着性が低下する場合もある。また、アルミニウム板材20に、添加元素としてマグネシウムを多く含む品種を使用する場合には、アルカリ系薬剤では、マグネシウムが表面に残って樹脂系皮膜3の密着性が低下する場合がある。そのため、この場合には、酸系薬剤を使用または併用することが好ましい。
Furthermore, when the corrosion resistance is not required so much and a simple method is desired, a method of only degreasing the surface of the
≪プレコートアルミニウム板材の製造方法≫
次に、プレコートアルミニウム板材の製造方法の一例について、適宜、図1を参照して説明する。
プレコートアルミニウム板材10の製造方法については、特に制限されるものではなく、ベース樹脂の元となる樹脂および硬化剤を含む塗料を、従来公知の方法にてアルミニウム板の上に塗布した後、加熱により架橋反応させることによって得ることができる。なお、塗料を焼き付ける際の焼付温度は、150〜285℃程度とするのが好ましい。
≪Pre-coated aluminum sheet manufacturing method≫
Next, an example of a method for producing a precoated aluminum sheet will be described with reference to FIG. 1 as appropriate.
About the manufacturing method of the precoat aluminum board |
ここで塗料の塗布は、はけ、ロールコータ、カーテンフローコータ、ローラーカーテンコータ、静電塗装機、ブレードコータ、ダイコータ等、いずれの手段で行ってもよいが、特に、塗布量が均一となると共に、作業が簡便なロールコータを使用するのが好ましい。ロールコータで塗布する場合、樹脂系皮膜3の膜厚の制御は、アルミニウム板材20の搬送速度、ロールの回転方向と回転速度、ロール間の押し付け圧(ニップ圧)等を適宜調整することによって行うが、通常の場合、1回の塗布作業によって塗布できる樹脂系皮膜3の厚さは、1〜20μmとなるのが一般的である。本発明においては、樹脂系皮膜3の厚さを15〜200μmに調整する。
Here, the coating may be applied by any means such as a brush, a roll coater, a curtain flow coater, a roller curtain coater, an electrostatic coating machine, a blade coater, or a die coater. At the same time, it is preferable to use a roll coater that is easy to work. When coating with a roll coater, the film thickness of the resin-based
そして、プレコートアルミニウム板材10を用いてヒートシンク1を製造する場合は、プレコートアルミニウム板材10を従来公知の方法により折り曲げ加工して成形し、ヒートシンク1の形状とすればよい。
And when manufacturing the
次に、本発明について、本発明の要件を満たす実施例と、本発明の要件を満たさない比較例と、を対比させて具体的に説明する。
本実施例では、熱伝導率と板厚の異なるアルミニウム合金板を折り曲げ加工して作成した模擬車載LED照明用ヒートシンクを製作し、放熱性能を確認するための「連続点灯試験」と、点灯消灯を繰り返した際の熱膨張熱収縮による接着疲労耐久性を想定した「熱サイクル試験」を行った。
Next, the present invention will be specifically described by comparing an example that satisfies the requirements of the present invention with a comparative example that does not satisfy the requirements of the present invention.
In this example, a heat sink for simulated in-vehicle LED lighting created by bending aluminum alloy plates with different thermal conductivities and plate thicknesses was manufactured, and a “continuous lighting test” for confirming the heat dissipation performance, and lighting on / off were performed. A “thermal cycle test” was conducted assuming durability of adhesion fatigue due to thermal expansion and heat shrinkage when repeated.
表1に示す組成のアルミニウム合金を、溶解、鋳造して鋳塊とし、この鋳塊に面削を施した後に、480℃で均質化熱処理を施した。この均質化した鋳塊に、熱間圧延、さらに冷間圧延、焼鈍処理を施して、板厚1.0mmの圧延板とした。冷間圧延での圧延率は75%、焼鈍処理は240℃、4時間とした。以下に説明するように、この圧延板の表面に塗膜を形成し、供試材とした。具体的には以下のとおりである。 An aluminum alloy having the composition shown in Table 1 was melted and cast into an ingot, and the ingot was chamfered and then subjected to a homogenization heat treatment at 480 ° C. The homogenized ingot was subjected to hot rolling, further cold rolling, and annealing treatment to obtain a rolled plate having a thickness of 1.0 mm. The rolling rate in cold rolling was 75%, and the annealing treatment was 240 ° C. for 4 hours. As will be described below, a coating film was formed on the surface of this rolled plate to obtain a test material. Specifically, it is as follows.
まず、市販されている10WのLED照明ユニットを購入して解体し、ダイキャスト製ヒートシンクを取り出して、ベンチマーク用ヒートシンクとした。次に、このベンチマーク用ヒートシンクの形状を模擬し、アルミニウム合金板から製作した実施例および比較例となるヒートシンクを製作した。形状を模擬するに当たり、特に注意したのはLED素子取り付け部と、LED照明ユニットに組み立てなおす際に必要となる接合部の形状だけは忠実に再現することである。その理由は、解体する前の照明ユニットに組み込めない形状では実用性に欠けるためである。また生産性を考慮し、一枚の板から製作できる形状とした。 First, a commercially available 10 W LED lighting unit was purchased and dismantled, and a die-cast heat sink was taken out and used as a benchmark heat sink. Next, the shape of this benchmark heat sink was simulated, and heat sinks as examples and comparative examples manufactured from aluminum alloy plates were manufactured. In simulating the shape, particular attention was paid to faithfully reproducing only the shape of the LED element mounting portion and the joint portion required when reassembling the LED lighting unit. The reason is that a shape that cannot be incorporated into the lighting unit before disassembly is not practical. In consideration of productivity, the shape can be made from a single plate.
実施例となるヒートシンクは、以下のようにして作成した。まず、各種板厚および熱伝導率を有するアルミニウム合金からなる圧延板の表面を、弱アルカリ脱脂後にリン酸クロメート処理を施した。次に、まず片側の面に、加熱後に実施例の表に記載された成分となる塗料を、狙いの厚みとなるバーコーターで塗布した。その後、架橋反応が促進しない程度の100℃で60秒間仮乾燥を行い、次に反対面に最初の面と同一成分の塗料を同一のバーコーターで塗布した。その後、焼付温度を素材到達温度230℃、炉中保持時間60秒にて加熱することによってプレコートアルミニウム板を作製した。そして、このプレコートアルミニウム板は寸法30cm×30cmとし、これを折り曲げ加工にてダイキャスト製のヒートシンクとほぼ同等の形状になるようにしたものを試験材のヒートシンクとして用いた。LED素子の基板とヒートシンクとの取り付けに際しては、M3のボルト、ナットを用いて結合した。また、LED素子の基板とヒートシンクの接合面には、接触度合を高めるため、市販のシリコングリースを塗布した。 The heat sink as an example was prepared as follows. First, the surface of a rolled plate made of an aluminum alloy having various plate thicknesses and thermal conductivities was subjected to phosphoric acid chromate treatment after weak alkali degreasing. Next, the coating material which becomes the component described in the table | surface of the Example after a heating was apply | coated to the surface of one side first with the bar coater used as target thickness. Then, temporary drying was performed at 100 ° C. for 60 seconds so that the crosslinking reaction was not promoted, and the same component paint as the first surface was then applied to the opposite surface with the same bar coater. Then, the precoat aluminum plate was produced by heating the baking temperature at a material arrival temperature of 230 ° C. and a holding time in the furnace of 60 seconds. The pre-coated aluminum plate had a size of 30 cm × 30 cm, and was formed into a shape substantially equivalent to a die-cast heat sink by bending, and used as a heat sink for the test material. When the LED element substrate and the heat sink were attached, they were joined using M3 bolts and nuts. Commercially available silicon grease was applied to the bonding surface between the LED element substrate and the heat sink in order to increase the degree of contact.
比較例のヒートシンクについても、樹脂皮膜を用いたものは、実施例と同様な方法により作成した。しかし、陽極酸化処理したものについては、何も表面処理していないアルミニウム板をまず所定の形状に折り曲げ加工した後、硫酸陽極酸化処理を施した。硫酸陽極酸化処理条件として、硫酸は15%とし、電圧と電流密度、通電時間は所定の皮膜厚さが得られる条件に適宜設定した。特に黒色陽極酸化については黒色染料にて染色した後、封孔処理を行なっている。その他は実施例と同様である。
これらの試験材について、以下の測定・評価を行った。
Regarding the heat sink of the comparative example, the heat sink using the resin film was prepared by the same method as in the example. However, for the anodized one, an aluminum plate not subjected to any surface treatment was first bent into a predetermined shape and then subjected to sulfuric acid anodization. As sulfuric acid anodizing treatment conditions, sulfuric acid was set to 15%, and voltage, current density, and energization time were appropriately set to conditions for obtaining a predetermined film thickness. In particular, for black anodization, sealing is performed after dyeing with a black dye. Others are the same as the embodiment.
These test materials were measured and evaluated as follows.
[熱伝導率]
熱伝導率は、レーザーフラッシュ法によって測定した。
[Thermal conductivity]
The thermal conductivity was measured by a laser flash method.
[積分放射率]
積分放射率は、京都電子工業社製放射率系D&S AERD装置を用いて測定した。
[Integrated emissivity]
The integral emissivity was measured using an emissivity D & S AERD apparatus manufactured by Kyoto Electronics Industry Co., Ltd.
[皮膜の膜厚]
皮膜の膜厚は、渦電流膜厚計イソスコープ(ISOSCOPE:登録商標)を用いて測定した。
[Film thickness]
The film thickness of the film was measured using an eddy current film thickness isoscope (ISOSCOPE: registered trademark).
[放熱性:連続点灯試験]
車載LED照明は世界中の多様な環境での使用が想定されるが、実際に照明が用いられるのは夜間に限られる。この様な条件では熱帯地域での夜間が一番過酷な放熱性を求められると考えられる。そこでこの様な環境を想定し、35℃環境下にて連続点灯試験を行なった。
ベンチマーク、実施例および比較例の各ヒートシンクに、10WのLED素子を取り付けて発光させ、温度が定常状態に到達した際のLED素子直下のヒートシンク温度を測定した。この際ベンチマークと同等以下の温度であった場合を放熱性が良好(○)、ベンチマークより高温に到達した場合を放熱性が不良(×)とした。
[Heat dissipation: Continuous lighting test]
In-vehicle LED lighting is assumed to be used in various environments around the world, but lighting is actually used only at night. Under such conditions, it is considered that the most severe heat dissipation is required at night in the tropical region. Therefore, assuming such an environment, a continuous lighting test was performed in a 35 ° C. environment.
A 10 W LED element was attached to each of the heat sinks of the benchmark, the example, and the comparative example to emit light, and the heat sink temperature immediately below the LED element when the temperature reached a steady state was measured. In this case, heat dissipation was good (◯) when the temperature was equal to or lower than the benchmark, and heat dissipation was poor (x) when the temperature reached higher than the benchmark.
[接着疲労耐久性:熱サイクル試験]
車載LED照明が使用される環境のうち、最低到達温度T1℃は冬場の夜間や朝方の消灯時と考えられる。消灯時のためT1℃は環境温度とほぼ同じと考えられる。極地では気温がマイナス40℃程度となるが、逆に熱帯地域では35℃程度となり使用環境が大きく異なる。自動車の代表的な使用環境は、世界の人口が多く集中する地域の環境と考えて良いと思われるので、温帯地方を想定したT1=10℃を代表値とした。またここでは、接着疲労耐久性は、樹脂系皮膜のより好ましいガラス転移温度である10℃以下を基準に評価することとした。
[Adhesion fatigue durability: Thermal cycle test]
Among the environments where in-vehicle LED lighting is used, the minimum temperature T1 ° C. is considered to be at night in winter or when it is turned off in the morning. T1 ° C. is considered to be almost the same as the environmental temperature because it is turned off. In polar regions, the temperature is about minus 40 ° C, but conversely in tropical regions it is about 35 ° C, and the usage environment is greatly different. The typical usage environment of automobiles is considered to be an environment in which the world's population is concentrated, so T1 = 10 ° C. was assumed as a representative value assuming a temperate region. Here, the adhesion fatigue durability was evaluated based on 10 ° C. or less, which is a more preferable glass transition temperature of the resin-based film.
ベンチマークのヒートシンクで確認した結果、この環境では消灯時のヒートシンクはT1と同じ10℃であるが、点灯時には60℃に到達した。そこで点灯と消灯の繰り返しを模擬し、10℃と60℃での熱衝撃試験を行なった。熱サイクル条件は、10℃での1時間放置と60℃での1時間放置との繰り返しを1サイクルとし、これを3000サイクル繰り返した。 As a result of checking with a benchmark heat sink, in this environment, the heat sink when turned off was 10 ° C., which was the same as T1, but reached 60 ° C. when turned on. Therefore, a thermal shock test at 10 ° C. and 60 ° C. was performed by simulating repetition of turning on and off. The heat cycle condition was repeated for 1 hour at 10 ° C. and 1 hour at 60 ° C. for 1 cycle, and this was repeated 3000 cycles.
ベンチマーク、実施例、比較例の各ヒートシンクに、耐熱グリスを介してLED素子を貼り付けた後、熱衝撃試験を実施し、LED素子がヒートシンクから剥がれた際のサイクル回数を測定した。サイクル回数がベンチマークと同等以上の場合には接着疲労の耐久性が良好(○)、ベンチマークより少ない場合には耐久性が不良(×)とした。 After sticking the LED element to each heat sink of the benchmark, the example, and the comparative example via heat-resistant grease, a thermal shock test was performed, and the number of cycles when the LED element was peeled off from the heat sink was measured. When the number of cycles was equal to or higher than the benchmark, the durability of adhesion fatigue was good (◯), and when it was less than the benchmark, the durability was poor (x).
但し実際の自動車は「寒冷地仕様」などある程度使用環境に応じた設計をされるため、上記耐久性が(×)となったとしても、環境によっては良好な耐久性を確保できる場合がある。そこで上記条件で(×)となったものについては、追加で熱帯地域を想定したT1=35℃での熱衝撃試験を実施した。ベンチマークのヒートシンクで確認した結果、この環境では消灯時のヒートシンクは35℃であるが、点灯時のヒートシンクは75℃に到達する。そこで追加試験では、35℃と75℃での熱サイクル試験を行ない、LED素子がヒートシンクから剥がれた際のサイクル回数がベンチマークと同等以上の場合には耐久性を(×)から(△)へ変更し、ベンチマークより劣る場合には耐久性を(×)のままとした。 However, since an actual automobile is designed according to the usage environment to some extent such as “cold region specification”, even if the durability becomes (×), good durability may be ensured depending on the environment. Therefore, a thermal shock test at T1 = 35 ° C. was additionally performed for those that were (x) under the above conditions, assuming a tropical region. As a result of checking with a benchmark heat sink, in this environment, the heat sink when turned off is 35 ° C., but the heat sink when turned on reaches 75 ° C. Therefore, in the additional test, thermal cycle tests at 35 ° C and 75 ° C were conducted, and the durability was changed from (x) to (△) when the number of cycles when the LED element was peeled off the heat sink was equal to or higher than the benchmark. However, in the case of being inferior to the benchmark, the durability was left as (x).
[軽量化]
今回、ベンチマークとなるダイキャストヒートシンクを板化するにあたり、性能とは別に軽量化目標をベンチマークの50%とした。そこで試作した実施例または比較例のヒートシンクの重量がベンチマークの50%以下の場合は軽量である(○)、50%を超える場合には特に軽量というものではないが使用に際しては問題ない(△)とした。
これらの結果を表2に示す。なお、表中における下線部は、本発明の要件または効果を有さないことを示す。
[Weight saving]
This time, when making the benchmark die-casting heat sink into a plate, the weight reduction target was set to 50% of the benchmark separately from the performance. Therefore, when the weight of the heat sink of the prototype or comparative example manufactured as a prototype is 50% or less of the benchmark, it is light (◯), and when it exceeds 50%, it is not particularly lightweight, but there is no problem in use (△). It was.
These results are shown in Table 2. In addition, the underline part in a table | surface shows having no requirements or an effect of this invention.
表2に示すように、No.1〜11は、本発明の構成を満たすため、良好な結果が得られた。一方、No.12〜21は、本発明の構成を満たさないため、以下の結果となった。 As shown in Table 2, no. Since 1-11 satisfy | fill the structure of this invention, the favorable result was obtained. On the other hand, no. Since 12 to 21 did not satisfy the configuration of the present invention, the following results were obtained.
No.12は、熱伝導率が下限値未満のため、放熱性が劣った。
No.13は、熱伝導率が下限値未満のため、放熱性が劣った。
No.14は、皮膜の材質が白色陽極酸化皮膜であり、皮膜厚さおよび積分放射率が下限値未満のため、放熱性、接着疲労耐久性に劣った。
No.15は、皮膜の材質が黒色陽極酸化皮膜のため、接着疲労耐久性に劣った。
No.16は、皮膜厚さおよび積分放射率が下限値未満のため、放熱性、接着疲労耐久性に劣った。
No. No. 12 was inferior in heat dissipation because the thermal conductivity was less than the lower limit.
No. No. 13 was inferior in heat dissipation because the thermal conductivity was less than the lower limit.
No. No. 14 is a white anodic oxide film, and the film thickness and integrated emissivity are less than the lower limit values, so the heat dissipation and adhesion fatigue durability were inferior.
No. No. 15 was inferior in adhesion fatigue durability because the film material was a black anodized film.
No. No. 16 was inferior in heat dissipation and adhesion fatigue durability because the film thickness and integrated emissivity were less than the lower limit values.
No.17は、皮膜のガラス転移温度が規定を満たさないため、接着疲労耐久性に劣った。
No.18は、皮膜厚さが上限値を超えるため、放熱性に劣った。
No.19は、皮膜厚さが下限値未満のため、接着疲労耐久性に劣った。
No.20は、積分放射率が下限値未満のため、放熱性に劣った。
No.21は、皮膜の材質がポリエステル単独のため、熱サイクル試験で試験材が溶融した。
No. No. 17 was inferior in adhesion fatigue durability because the glass transition temperature of the film did not satisfy the regulation.
No. No. 18 was inferior in heat dissipation because the film thickness exceeded the upper limit.
No. No. 19 was inferior in adhesion fatigue durability because the film thickness was less than the lower limit.
No. No. 20 was inferior in heat dissipation because the integrated emissivity was less than the lower limit.
No. In No. 21, since the material of the film was polyester alone, the test material was melted in the thermal cycle test.
なお、特許文献1〜4に記載のLEDヒートシンクはいずれもフィンを有する形状が必須もしくは推奨される発明となっており、これらの形状をアルミニウムで実現させるには、ダイキャスト法で行なうしかなく、本発明でのベンチマークヒートシンクに相当する。ダイキャスト法に使用される鋳物用合金は基本的に熱伝導率が低く、軽量化も困難となるため、本発明を満足しない。またいずれのヒートシンクも表面については記載されておらず、本発明の特徴であるLED素子とヒートシンクとの接着耐久性は考慮されていない。
本実施例で示すように、この従来のアルミニウム板材は、前記の評価において一定の水準を満たさないものである。従って、本実施例によって、本発明に係るアルミニウム板材が従来のアルミニウム板材と比較して、優れていることが客観的に明らかとなった。
In addition, the LED heat sinks described in
As shown in the present embodiment, this conventional aluminum sheet does not satisfy a certain level in the above evaluation. Therefore, this example objectively revealed that the aluminum plate according to the present invention is superior to the conventional aluminum plate.
以上、本発明について実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は特許請求の範囲の記載に基づいて解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて改変・変更等することができることはいうまでもない。 Although the present invention has been described in detail with reference to the embodiments and examples, the gist of the present invention is not limited to the above-described contents, and the scope of the right is interpreted based on the description of the claims. There must be. Needless to say, the contents of the present invention can be modified and changed based on the above description.
1 車載LED照明用ヒートシンク
2 ヒートシンク成形体
3 樹脂系皮膜
4 LED素子
10 プレコートアルミニウム板材
20 アルミニウム板材
100 車載LED照明
DESCRIPTION OF
Claims (9)
前記アルミニウム板材の熱伝導率は、150W/m・K以上であり、
前記樹脂系皮膜は、熱硬化性樹脂を含み、
前記樹脂系皮膜の膜厚は、15〜200μmであり、
前記樹脂系皮膜は、波長が3〜30μmの赤外線領域における積分放射率が25℃において0.80以上であり、
前記樹脂系皮膜のガラス転移温度は、前記車載LED照明用ヒートシンクの使用時において前記樹脂系皮膜が最も低くなる温度をT1℃とした場合に、T1+20℃以下であることを特徴とするプレコートアルミニウム板材。 An aluminum plate material and a resin-based film formed on the surface of the aluminum plate material, and a pre-coated aluminum plate material used for a heat sink for in-vehicle LED lighting,
The aluminum plate has a thermal conductivity of 150 W / m · K or more,
The resin-based film includes a thermosetting resin,
The film thickness of the resin-based film is 15 to 200 μm,
The resin-based film has an integrated emissivity of 0.80 or more at 25 ° C. in an infrared region having a wavelength of 3 to 30 μm,
The glass transition temperature of the resin-based film is T1 + 20 ° C. or less, where T1 ° C. is the lowest temperature of the resin-based film when using the heat sink for in-vehicle LED lighting. .
前記アルミニウム展伸材の熱伝導率は、150W/m・K以上であり、
前記樹脂系皮膜は、熱硬化性樹脂を含み、
前記樹脂系皮膜の膜厚は、15〜200μmであり、
前記樹脂系皮膜は、波長が3〜30μmの赤外線領域における積分放射率が25℃において0.80以上であり、
前記樹脂系皮膜のガラス転移温度は、前記車載LED照明用ヒートシンクの使用時において前記樹脂系皮膜が最も低くなる温度をT1℃とした場合に、T1+20℃以下であることを特徴とする車載LED照明用ヒートシンク。 A heat sink for in-vehicle LED illumination comprising a heat sink molded body formed by molding an aluminum wrought material, and a resin-based film formed on the surface of the heat sink molded body,
The thermal conductivity of the aluminum wrought material is 150 W / m · K or more,
The resin-based film includes a thermosetting resin,
The film thickness of the resin-based film is 15 to 200 μm,
The resin-based film has an integrated emissivity of 0.80 or more at 25 ° C. in an infrared region having a wavelength of 3 to 30 μm,
The glass transition temperature of the resin-based film is T1 + 20 ° C. or less, where T1 ° C. is the lowest temperature of the resin-based film when the heat sink for vehicle-mounted LED lighting is used. Heat sink.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014050805A JP5592581B1 (en) | 2013-03-29 | 2014-03-13 | Pre-coated aluminum plate and heat sink for in-vehicle LED lighting |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013073266 | 2013-03-29 | ||
JP2013073266 | 2013-03-29 | ||
JP2014050805A JP5592581B1 (en) | 2013-03-29 | 2014-03-13 | Pre-coated aluminum plate and heat sink for in-vehicle LED lighting |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014156980A Division JP5745673B2 (en) | 2013-03-29 | 2014-07-31 | Pre-coated aluminum plate and heat sink for in-vehicle LED lighting |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5592581B1 true JP5592581B1 (en) | 2014-09-17 |
JP2014209458A JP2014209458A (en) | 2014-11-06 |
Family
ID=51702043
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014050805A Expired - Fee Related JP5592581B1 (en) | 2013-03-29 | 2014-03-13 | Pre-coated aluminum plate and heat sink for in-vehicle LED lighting |
JP2014156980A Expired - Fee Related JP5745673B2 (en) | 2013-03-29 | 2014-07-31 | Pre-coated aluminum plate and heat sink for in-vehicle LED lighting |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014156980A Expired - Fee Related JP5745673B2 (en) | 2013-03-29 | 2014-07-31 | Pre-coated aluminum plate and heat sink for in-vehicle LED lighting |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP5592581B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3217621A4 (en) * | 2014-11-04 | 2018-06-13 | LG Electronics Inc. | Broadcasting signal transmission device, broadcasting signal reception device, broadcasting signal transmission method, and broadcasting signal reception method |
CN106233693B (en) | 2014-11-13 | 2020-01-03 | Lg 电子株式会社 | Broadcast signal transmitting apparatus, broadcast signal receiving apparatus, broadcast signal transmitting method, and broadcast signal receiving method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5597099B2 (en) * | 2010-10-25 | 2014-10-01 | 株式会社神戸製鋼所 | Heat sink for in-vehicle LED lamp |
JP6022183B2 (en) * | 2011-03-31 | 2016-11-09 | 株式会社神戸製鋼所 | LED lighting heat sink |
-
2014
- 2014-03-13 JP JP2014050805A patent/JP5592581B1/en not_active Expired - Fee Related
- 2014-07-31 JP JP2014156980A patent/JP5745673B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2014209501A (en) | 2014-11-06 |
JP2014209458A (en) | 2014-11-06 |
JP5745673B2 (en) | 2015-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5592582B1 (en) | Pre-coated aluminum plate and heat sink for in-vehicle LED lighting | |
WO2014157587A1 (en) | Pre-coated aluminum plate, aluminum plate, and heat sink for onboard led lighting | |
CN100358642C (en) | Preparation of aluminium alloy part with precoating | |
CN101219457B (en) | Preparation of pre-coated aluminium alloy articles | |
CN104169674A (en) | Aluminum fin material for heat exchanger | |
BR112016012467B1 (en) | aluminum-plated steel plate used for hot pressing and method for manufacturing it | |
JP5592581B1 (en) | Pre-coated aluminum plate and heat sink for in-vehicle LED lighting | |
JP5745672B2 (en) | Pre-coated aluminum plate and heat sink for in-vehicle LED lighting | |
JP5105483B2 (en) | Resin coated aluminum plate | |
JP5085439B2 (en) | Metal (water) oxide coated metal material | |
WO2014157586A1 (en) | Pre-coated aluminum plate and heat sink for onboard led lighting | |
WO2007114618A1 (en) | Surface treating method for alloy wheel and alloy wheel thereby | |
JP2004306367A (en) | Surface-treated metal sheet excellent in heat-proof properties and housing using it | |
JP5588573B1 (en) | Pre-coated aluminum plate, aluminum plate and heat sink for in-vehicle LED lighting | |
JP2011037083A (en) | Coated metal material enclosure using coated metal material and coating material composition | |
JP2008164238A (en) | Aluminum fin material for heat exchanger, and heat exchanger using it | |
JP2014142139A (en) | Heat exchanger aluminum fin material | |
JP2005262841A (en) | Resin coated aluminum material excellent in processability and heat radiation | |
JP2011185590A (en) | Aluminum fin for heat exchanger and heat exchanger | |
JP5506566B2 (en) | Aluminum fin for heat exchanger and heat exchanger | |
JP5484834B2 (en) | Heat dissipation member and method for manufacturing the same | |
JP2008136922A (en) | Method for preparing painted article | |
Abu Hanifah | Surface modification of aluminium alloy 5052 and its corrosion characterization/Abu Hanifah Muhamad Ali | |
Ali | Surface Modification of Aluminium Alloy 5052 and Its Corrosion Characterization | |
WO2013146388A1 (en) | Aluminum fin material for heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140701 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140731 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5592581 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |