Nothing Special   »   [go: up one dir, main page]

JP5585822B2 - Method for producing optically active nipecotic acid derivative - Google Patents

Method for producing optically active nipecotic acid derivative Download PDF

Info

Publication number
JP5585822B2
JP5585822B2 JP2010109000A JP2010109000A JP5585822B2 JP 5585822 B2 JP5585822 B2 JP 5585822B2 JP 2010109000 A JP2010109000 A JP 2010109000A JP 2010109000 A JP2010109000 A JP 2010109000A JP 5585822 B2 JP5585822 B2 JP 5585822B2
Authority
JP
Japan
Prior art keywords
optically active
tert
acid
aminopiperidine
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010109000A
Other languages
Japanese (ja)
Other versions
JP2011236157A (en
Inventor
悠文 平賀
正雄 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Fine Chemicals Co Ltd
Original Assignee
Toray Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Fine Chemicals Co Ltd filed Critical Toray Fine Chemicals Co Ltd
Priority to JP2010109000A priority Critical patent/JP5585822B2/en
Publication of JP2011236157A publication Critical patent/JP2011236157A/en
Application granted granted Critical
Publication of JP5585822B2 publication Critical patent/JP5585822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hydrogenated Pyridines (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、医薬原料として重要な光学活性ニペコチン酸誘導体の製造方法に関するものである。さらに、本発明は、光学活性ニペコチン酸誘導体を使用した光学活性ニペコタミド誘導体の製造方法に関する。   The present invention relates to a method for producing an optically active nipecotic acid derivative that is important as a pharmaceutical raw material. Furthermore, the present invention relates to a method for producing an optically active nipecotamide derivative using an optically active nipecotic acid derivative.

光学活性ニペコチン酸や光学活性3−アミノピペリジンのようなピペリジン骨格を有する化合物は、医薬等産業上有用な化合物として知られている。光学活性ニペコチン酸あるいは光学活性ニペコチン酸誘導体を製造する方法としては、例えば、
(1)ニペコチン酸を(S)−カンファースルホン酸を用いて光学分割して(S)−ニペコチン酸を得た後、二炭酸ジtert−ブチルを作用させて(S)−1−tert−ブトキシカルボニルニペコチン酸を製造する方法(特許文献1参照)、
(2)ニペコチン酸エチルをL−酒石酸で光学分割した後、N位にベンジルオキシカルボニル基を導入する。次いでアルカリ加水分解して(R)−1−ベンジルオキシカルボニルニペコチン酸を製造する方法(特許文献2参照)、
(3)N−ベンジルニペコチン酸エチルを不斉的に加水分解する酵素を用いて光学活性N−ベンジルニペコチン酸を製造する方法(特許文献3参照)などが知られている。
Compounds having a piperidine skeleton such as optically active nipecotic acid and optically active 3-aminopiperidine are known as industrially useful compounds such as pharmaceuticals. As a method for producing optically active nipecotic acid or an optically active nipecotic acid derivative, for example,
(1) After optically resolving nipecotic acid with (S) -camphorsulfonic acid to obtain (S) -nipecotic acid, ditert-butyl dicarbonate was allowed to act on (S) -1-tert-butoxy A method for producing carbonyl nipecotic acid (see Patent Document 1),
(2) After optical resolution of ethyl nipecotate with L-tartaric acid, a benzyloxycarbonyl group is introduced at the N-position. Next, a method for producing (R) -1-benzyloxycarbonylnipecotic acid by alkaline hydrolysis (see Patent Document 2),
(3) A method for producing optically active N-benzylnipecotic acid using an enzyme that hydrolyzes ethyl N-benzylnipecotic acid asymmetrically (see Patent Document 3) is known.

しかしながら、上記(1)の方法は、光学分割工程の収率が非常に低い点、また上記(2)の方法は、出発原料が高価な点、また上記(3)の方法は、基質特異的な酵素を使用する点、その酵素の産生能を有する微生物を培養するための専用設備が必要となる点、とそれぞれ問題を有している。   However, the method (1) has a very low yield of the optical resolution step, the method (2) has a high starting material, and the method (3) has a substrate-specific method. There are problems in that a special enzyme is used and a dedicated facility for culturing microorganisms capable of producing the enzyme is required.

また、光学活性3−アミノピペリジンあるいは光学活性3−アミノピペリジン誘導体を製造する方法としては、例えば、
(4)ニペコタミドを酵素分割し、1位に保護基を導入後、続いてホフマン転位をおこなう。次いで3位に保護基を導入してから、または保護基を導入せずにそのまま脱保護することにより、(R)−3−アミノピペリジンを製造する方法(特許文献4参照)、
(5)L−オルニチン塩酸塩をメチルエステル化し、これを環化させて(S)−3−アミノピペリドンを得、次いで水素化リチウムアルミニウムで還元することにより、(S)−3−アミノピペリジンを製造する方法(非特許文献1参照)、
(6)3−アミノピリジンをロジウム触媒の存在下、水素と接触させることにより、3−アミノピペリジンを得、次いでジベンゾイル−D−酒石酸を用いて光学分割することで(R)−3−アミノピペリジンを製造する方法(特許文献5参照)、
(7)上記(2)の方法で得た(R)−1−ベンジルオキシカルボニルニペコチン酸にジフェニルリン酸アジドを用いてクルチウス転位をおこない、次いで1及び3位をそれぞれ脱保護することにより、(R)−3−アミノピペリジンを製造する方法(特許文献2参照)、
(8)1−ベンジル−3−アセトアミドピペリジンを微生物処理により不斉的に加水分解することで(S)−1−ベンジル−3−アミノピペリジンを製造する方法(特許文献6参照)、
(9)1−ベンジル−3−アミノピペリジンをジベンゾイル−L−酒石酸を用いて光学分割することで(S)−1−ベンジル−3−アミノピペリジンを製造する方法(特許文献7参照)
などが知られている。
In addition, as a method for producing an optically active 3-aminopiperidine or an optically active 3-aminopiperidine derivative, for example,
(4) Enzymatic cleavage of nipecotamide, introduction of a protecting group at position 1, followed by Hofmann rearrangement. Next, a method for producing (R) -3-aminopiperidine by introducing a protective group at the 3-position or by directly deprotecting without introducing a protective group (see Patent Document 4),
(5) L-ornithine hydrochloride is methylesterified and cyclized to obtain (S) -3-aminopiperidone, and then reduced with lithium aluminum hydride to produce (S) -3-aminopiperidine (See Non-Patent Document 1)
(6) 3-aminopiperidine is obtained by contacting 3-aminopyridine with hydrogen in the presence of a rhodium catalyst, and then optically resolved with dibenzoyl-D-tartaric acid to give (R) -3-aminopiperidine. (Refer to Patent Document 5),
(7) By performing Curtius rearrangement on (R) -1-benzyloxycarbonylnipecotic acid obtained by the method of (2) above using diphenylphosphoric acid azide, and then deprotecting positions 1 and 3 respectively. , (R) -3-Aminopiperidine production method (see Patent Document 2),
(8) A method for producing (S) -1-benzyl-3-aminopiperidine by asymmetric hydrolysis of 1-benzyl-3-acetamidopiperidine by microbial treatment (see Patent Document 6),
(9) A method for producing (S) -1-benzyl-3-aminopiperidine by optical resolution of 1-benzyl-3-aminopiperidine with dibenzoyl-L-tartaric acid (see Patent Document 7)
Etc. are known.

しかしながら、上記(4)の方法は、基質特異的な酵素を使用する点、出発原料のラセミ体が高価である点に工業的な問題を抱えている。また、上記(5)の方法は、高価な出発原料を用いている点と、安全上取り扱いの困難な水素化リチウムアルミニウムを使用する点に問題を有する。また、上記(6)の方法は、高価なロジウム触媒を使用している点と、高い水素圧に耐えうる専用設備が必要な点で、製造コストが高く、工業的に問題がある方法である。また、上記(7)の方法は、爆発性を有するアジド中間体を経由するクルチウス転位反応をおこなっているため、安全上の大きな問題を有している。また、上記(8)の方法は、微生物によって基質が限定される点、且つ管理・維持して使用するための専用設備が必要となる点、出発原料のラセミ体が工業的に入手容易でない点に問題を有する。また、上記(9)の方法は、高価な出発原料、分割剤であるジベンゾイル−L−酒石酸を用いており、製造コストが高く、工業的に問題がある。   However, the method (4) has an industrial problem in that a substrate-specific enzyme is used and the racemate of the starting material is expensive. The method (5) has a problem in that an expensive starting material is used and lithium aluminum hydride that is difficult to handle for safety is used. The method (6) is a method that is expensive and has industrial problems because it uses an expensive rhodium catalyst and requires dedicated equipment that can withstand high hydrogen pressure. . In addition, the method (7) has a large safety problem because the Curtius rearrangement reaction is performed via an explosive azide intermediate. In the method (8), the substrate is limited by microorganisms, a dedicated facility for management and maintenance is required, and the starting racemate is not easily available industrially. Have problems. Further, the method (9) uses an expensive starting material and dibenzoyl-L-tartaric acid, which is a resolving agent, and has a high production cost and is industrially problematic.

国際公開第2003/024477号International Publication No. 2003/024477 国際公開第2003/004496号International Publication No. 2003/004496 特開2007−117034号公報JP 2007-117034 A 国際公開第2008/102720号International Publication No. 2008/102720 国際公開第2007/075630号International Publication No. 2007/075630 特開2007−252238号公報JP 2007-252238 A 特開平7−330732号公報JP-A-7-330732

バイオオーガニック&メディシナル・ケミストリー(2006),14,2131−2150Bioorganic & Medicinal Chemistry (2006), 14, 2131-2150

本発明の目的は、医薬原料として重要な光学活性ニペコチン酸誘導体を、安価で入手容易な原料を使用して工業的に適した製造方法を提供すること、およびその製造方法を用いて光学活性3−アミノピペリジン誘導体を製造する方法を提供することを課題とする。   An object of the present invention is to provide an industrially suitable production method of an optically active nipecotic acid derivative that is important as a pharmaceutical raw material, using an inexpensive and readily available raw material, and an optically active 3 using the production method. An object is to provide a method for producing an aminopiperidine derivative.

本発明は、光学活性1−フェニルエチルアミンを光学分割剤として用い、水中で、(R)−および(S)−1−tert−ブトキシカルボニルニペコチン酸に対して、光学分割剤使用量と合わせて、0.5〜1.5モル倍の塩基性添加剤を加えて、 The present invention, an optically active 1-phenylethylamine as the optical resolution agent, in water, (R) - and (S) against -1-tert-butoxycarbonyl-D Pekoe Chin acid, combined with an optical resolution agent amount Adding 0.5 to 1.5 moles of basic additive,

Figure 0005585822
Figure 0005585822

表される(R)−および(S)−1−tert−ブトキシカルボニルニペコチン酸のラセミ混合物を光学分割して In represented by (R) - and (S) the -1-tert-butoxy racemic mixture of carbonyl nipecotate by optical resolution,

Figure 0005585822
Figure 0005585822

(*は当該炭素原子が光学活性中心であることを示す)で表される光学活性1−tert−ブトキシカルボニルニペコチン酸を製造する光学活性ニペコチン酸誘導体の製造方法である。 (* Indicates that the carbon atom is an optically active center). This is a method for producing an optically active nipecotic acid derivative for producing optically active 1-tert-butoxycarbonylnipecotic acid.

本発明は、上記の方法により製造された光学活性1−tert−ブトキシカルボニルニペコチン酸を非プロトン性溶媒中でアンモニア水を使用してアミド化して In the present invention, an optically active 1-tert-butoxycarbonylnipecotic acid produced by the above method is amidated using aqueous ammonia in an aprotic solvent ,

Figure 0005585822
Figure 0005585822

(*は当該炭素原子が光学活性中心であることを示す)で表される光学活性1−tert−ブトキシカルボニルニペコタミドを製造するニペコタミド誘導体の製造方法である。 (* Is the carbon atom to indicate that an optically active center) is a manufacturing method of nipecotamide derivative for producing an optically active 1-tert-butoxycarbonyl Nipekotami de represented by.

本発明により、医薬原料として重要な光学活性ニペコチン酸誘導体を安価で入手容易な原料から、工業的に適した方法で製造することが可能である。   According to the present invention, an optically active nipecotic acid derivative important as a pharmaceutical raw material can be produced from an inexpensive and easily available raw material by an industrially suitable method.

本発明の光学活性ニペコチン酸誘導体の製造方法で製造された光学活性ニペコチン酸誘導体は、好ましくは、光学活性ニペコチン酸、および/または、光学活性ニペコチン酸エステルの製造に使用することができる。   The optically active nipecotic acid derivative produced by the method for producing an optically active nipecotic acid derivative of the present invention can be preferably used for producing an optically active nipecotic acid and / or an optically active nipecotic acid ester.

また、本発明の光学活性ニペコチン酸誘導体の製造方法で製造された光学活性ニペコチン酸誘導体は、光学活性ニペコタミド誘導体の製造に使用することができる。光学活性ニペコタミド誘導体から、医薬原料として重要な光学活性3−アミノピペリジン誘導体、光学活性3−アミノピペリジンを製造することができる。   The optically active nipecotic acid derivative produced by the method for producing an optically active nipecotic acid derivative of the present invention can be used for producing an optically active nipecotamide derivative. From the optically active nipecotamide derivative, an optically active 3-aminopiperidine derivative and optically active 3-aminopiperidine which are important as a pharmaceutical raw material can be produced.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、光学活性1−フェニルエチルアミンを光学分割剤として用い、水中 The present invention, an optically active 1-phenylethylamine as the optical resolution agent, in water,

Figure 0005585822
Figure 0005585822

表される(R)−および(S)−1−tert−ブトキシカルボニルニペコチン酸のラセミ体混合物を光学分割して In represented by (R) - and (S) the -1-tert-butoxy racemic mixtures of carbonyl nipecotate by optical resolution,

Figure 0005585822
Figure 0005585822

(*は当該炭素原子が光学活性中心であることを示す)で表される光学活性1−tert−ブトキシカルボニルニペコチン酸を製造する光学活性ニペコチン酸誘導体の製造方法である (* Indicates that the carbon atom is an optically active center) . This is a method for producing an optically active nipecotic acid derivative for producing optically active 1-tert-butoxycarbonylnipecotic acid .

まず、光学分割について説明する。   First, optical division will be described.

本発明で用いる光学分割剤は、光学活性1−フェニルエチルアミンである。光学活性1−フェニルエチルアミンは、好ましくは、(R)−(+)−1−フェニルエチルアミン、(S)−(−)−1−フェニルエチルアミンが挙げられる。(R)−(+)−1−フェニルエチルアミンを用いて光学活性ニペコチン酸誘導体・(R)−(+)−1−フェニルエチルアミン塩を形成させた場合、難溶性塩から(R)−ニペコチン酸誘導体を得ることができる。一方、(S)−(−)−1−フェニルエチルアミンを用いた場合は、同様にして(S)−ニペコチン酸誘導体を得ることができる。   The optical resolution agent used in the present invention is optically active 1-phenylethylamine. The optically active 1-phenylethylamine is preferably (R)-(+)-1-phenylethylamine and (S)-(−)-1-phenylethylamine. When (R)-(+)-1-phenylethylamine is used to form an optically active nipecotic acid derivative / (R)-(+)-1-phenylethylamine salt, (R) -nipecotic acid is formed from a hardly soluble salt. Derivatives can be obtained. On the other hand, when (S)-(−)-1-phenylethylamine is used, the (S) -nipecotic acid derivative can be obtained in the same manner.

光学分割剤の使用量は、ニペコチン酸誘導体に対して、好ましくは0.5〜1.5モル倍、さらに好ましくは0.6〜1.2モル倍である。   The amount of the optical resolution agent used is preferably 0.5 to 1.5 moles, more preferably 0.6 to 1.2 moles, relative to the nipecotic acid derivative.

溶媒は、水みである The solvent is a body of water.

本発明では In the present invention ,

Figure 0005585822
Figure 0005585822

表される(R)−および(S)−1−tert−ブトキシカルボニルニペコチン酸のラセミ体混合物を光学分割する。ここで、ラセミ体混合物とは、一般的には(R)体と(S)体が等量存在する混合物を指すが、一方が50%以上存在する場合、例えば、(R)/(S)=55/45,あるいは90/10のような場合も含む。 In represented (R) - and (S) racemic mixtures -1-tert-butoxycarbonyl nipecotate optical resolution. Here, the racemic mixture generally refers to a mixture in which (R) isomer and (S) isomer are present in an equal amount. When one of them is present in an amount of 50% or more, for example, (R) / (S) = 55/45 or 90/10.

ペコチン酸誘導体は、1−tert−ブトキシカルボニルニペコチン酸である。 Two Pekochin acid derivative is a 1-tert-butoxycarbonyl two Peko Chin acid.

本発明により得られ That obtained by the present invention

Figure 0005585822
Figure 0005585822

(*は当該炭素原子が光学活性中心であることを示す)で表される光学活性ニペコチン酸誘導体は、(R)−1−tert−ブトキシカルボニルニペコチン酸、(S)−1−tert−ブトキシカルボニルニペコチン酸である。 The optically active nipecotic acid derivative represented by (* indicates that the carbon atom is an optically active center) is ( R) -1-tert-butoxycarbonylnipecotic acid, (S) -1-tert- Butoxycarbonyl nipecotic acid .

本発明の光学活性ニペコチン酸誘導体の製造方法では、塩基性添加剤を加えて、ニペコチン酸誘導体のラセミ体混合物を光学分割する。塩基性添加剤を使用することにより、光学分割剤の使用量を削減することができる。本発明では、塩基性添加剤を用いた場合は、塩基性添加剤を用いない場合と比較して、ニペコチン酸誘導体の濃度を高めたまま光学純度の高いジアステレオマー塩を得ることができる。塩基性添加剤を用いた場合は、ニペコチン酸誘導体の濃度を高めることができる。このことは、1缶当たりの仕込量並びに生産量を向上させる点、また、廃液を削減できる点で工業的に有利である。 The process for producing an optically active nipecotic acid derivatives of the present invention, by adding a basic additive, you optical resolution of racemic mixtures of nipecotic acid derivatives. By using the basic additive, the amount of the optical resolution agent used can be reduced. In the present invention, when a basic additive is used, a diastereomeric salt with high optical purity can be obtained while increasing the concentration of the nipecotic acid derivative as compared with the case where no basic additive is used. When a basic additive is used, the concentration of the nipecotic acid derivative can be increased. This is industrially advantageous in that the amount charged per can and the production amount can be improved, and the amount of waste liquid can be reduced.

塩基性添加剤としては、例えば、水酸化ナトリウム、水酸化カリウム等の金属水酸化物;炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩;炭酸ナトリウム、炭酸カリウム等の金属炭酸塩;トリエチルアミン、ピリジン、N−メチルピペリジン、N,N−ジメチルアミノピリジン等の有機塩基等が挙げられるが、好ましくは、水酸化ナトリウム、トリエチルアミン、さらに好ましくは水酸化ナトリウムである。これら塩基性添加剤は単独で用いてもよいし、2種以上を混合して用いてもよい。   Examples of the basic additive include metal hydroxides such as sodium hydroxide and potassium hydroxide; metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate; metal carbonates such as sodium carbonate and potassium carbonate; triethylamine, Examples thereof include organic bases such as pyridine, N-methylpiperidine, N, N-dimethylaminopyridine, etc., preferably sodium hydroxide, triethylamine, and more preferably sodium hydroxide. These basic additives may be used alone or in admixture of two or more.

塩基性添加剤の使用量は、ニペコチン酸誘導体に対して、光学分割剤使用量と合わせて0.5〜1.5モル倍、好ましくは0.8〜1.2モル倍である。 The amount of the basic additive used is 0. 0 in combination with the amount of the optical resolving agent used with respect to the nipecotic acid derivative. 5 to 1.5 mol times, the good Mashiku from 0.8 to 1.2 mol per mol.

塩基性添加剤の使用割合によって適切な溶媒使用量は異なる。   The appropriate amount of the solvent used varies depending on the proportion of the basic additive used.

塩基性添加剤は、例えば、光学分割剤/塩基性添加剤=0.8/(0.15〜0.25)(重量比)のとき、溶媒使用量は、ニペコチン酸誘導体に対して、好ましくは5〜9重量倍であり、より好ましくは5〜6重量倍である。光学分割剤/塩基性添加剤=0.6/(0.35〜0.45)(重量比)のとき、溶媒使用量は、ニペコチン酸誘導体に対して、好ましくは2〜9重量倍であり、より好ましくは2〜3重量倍である。 When the basic additive is , for example, optical resolution agent / basic additive = 0.8 / (0.15 to 0.25) (weight ratio), the amount of solvent used is preferably relative to the nipecotic acid derivative. Is 5 to 9 times by weight, more preferably 5 to 6 times by weight. When optical resolution agent / basic additive = 0.6 / (0.35 to 0.45) (weight ratio), the amount of solvent used is preferably 2 to 9 times by weight with respect to the nipecotic acid derivative. More preferably, it is 2 to 3 times by weight.

本発明における混合順序は、ニペコチン酸誘導体、光学分割剤、塩基性添加剤を同時に仕込んでもよく、また順番に仕込んでもよい。操作性の点から有利な方法を採用することができる。   In the mixing order in the present invention, the nipecotic acid derivative, the optical resolving agent and the basic additive may be charged simultaneously or in order. A method advantageous from the viewpoint of operability can be adopted.

本発明の昇温熟成の温度は、好ましくは40〜100℃であり、さらに好ましくは70〜80℃である。反応系は、均一溶液、スラリーのいずれであってもよい。本発明は、均一溶液で実施することが好ましい。均一溶液の場合、降温して種晶を添加し十分に熟成してから、さらに降温する。その温度は、好ましくは0〜40℃であり、さらに好ましくは5〜30℃である。スラリーの場合、溶媒還流温度まで昇温し、その温度での熟成時間を十分に取る必要がある。熟成時間は、好ましくは30分〜12時間、さらに好ましくは、1〜12時間である。   The temperature for the temperature aging of the present invention is preferably 40 to 100 ° C, more preferably 70 to 80 ° C. The reaction system may be a homogeneous solution or a slurry. The present invention is preferably carried out with a homogeneous solution. In the case of a homogeneous solution, the temperature is lowered, seed crystals are added, and the mixture is sufficiently matured, and then the temperature is further lowered. The temperature is preferably 0 to 40 ° C, more preferably 5 to 30 ° C. In the case of a slurry, it is necessary to raise the temperature to the solvent reflux temperature and allow sufficient aging time at that temperature. The aging time is preferably 30 minutes to 12 hours, and more preferably 1 to 12 hours.

このようにして得られた光学活性ニペコチン酸誘導体・光学分割剤の塩は、再結晶をおこなうと、99.0%d.e.以上の高い光学純度の塩を得ることができる。また、リサイクル操作を考慮すると、2回の光学分割に使用する溶媒は同一組成にすることが好ましい。そうすれば、リサイクル使用時に溶媒組成の調整が不要となり、簡便且つ迅速に操作がおこなえ、工業プロセスにおいては極めて有意義である。   The thus-obtained salt of the optically active nipecotic acid derivative / optical resolving agent was 99.0% d. e. The salt with the above high optical purity can be obtained. In consideration of the recycling operation, it is preferable that the solvents used for the two optical resolutions have the same composition. If it does so, adjustment of a solvent composition becomes unnecessary at the time of recycling, it can operate simply and rapidly, and it is very significant in an industrial process.

析出したジアステレオマー塩は、ろ過操作により、母液中のジアステレオマー塩と分離することができる。本工程で得られたジアステレオマー塩はそのまま次工程に用いてもよいが、必要に応じて解塩をおこなってもよい。一般的に、結晶として単離したジアステレオマー塩は、水中で塩基によってアルカリ性にした後、トルエン、酢酸エチル、ヘキサン等の一般的な有機溶媒での洗浄により光学分割剤を除去し、次いで残った水層に酸を加えて酸析した後、最後に固液分離することにより光学活性ニペコチン酸誘導体を取得することができる。   The precipitated diastereomeric salt can be separated from the diastereomeric salt in the mother liquor by filtration. The diastereomeric salt obtained in this step may be used as it is in the next step, but may be subjected to salt decomposition as necessary. In general, diastereomeric salts isolated as crystals are made alkaline with a base in water, and then the optical resolution agent is removed by washing with a common organic solvent such as toluene, ethyl acetate, hexane, and the like. The acid active nipecotic acid derivative can be obtained by adding an acid to the aqueous layer and conducting acid precipitation, and finally solid-liquid separation.

本発明の光学活性ニペコチン酸誘導体の製造方法では、好ましくは、光学活性1−フェニルエチルアミンと、1−tert−ブトキシカルボニルニペコチン酸は、下記構造式の   In the method for producing an optically active nipecotic acid derivative of the present invention, preferably, the optically active 1-phenylethylamine and 1-tert-butoxycarbonylnipecotic acid have the following structural formulas.

Figure 0005585822
Figure 0005585822

で表される(R)−1−tert−ブトキシカルボニルニペコチン酸と(R)−(+)−1−フェニルエチルアミンとのジアステレオマー塩、および/または、 A diastereomeric salt of (R) -1-tert-butoxycarbonylnipecotic acid and (R)-(+)-1-phenylethylamine, and / or

Figure 0005585822
Figure 0005585822

で表される(S)−1−tert−ブトキシカルボニルニペコチン酸と(S)−(−)−1−フェニルエチルアミンとのジアステレオマー塩となる。 A diastereomeric salt of (S) -1-tert-butoxycarbonylnipecotic acid represented by the formula (S)-(-)-1-phenylethylamine is obtained.

本発明の光学活性ニペコチン酸誘導体の製造方法で製造された光学活性ニペコチン酸誘導体は、好ましくは、光学活性ニペコチン酸、および/または、光学活性ニペコチン酸エステルの製造に使用することができる。また、本発明の光学活性ニペコチン酸誘導体の製造方法で製造された光学活性ニペコチン酸誘導体は、下記に示す光学活性ニペコタミド誘導体の製造に使用することができる。   The optically active nipecotic acid derivative produced by the method for producing an optically active nipecotic acid derivative of the present invention can be preferably used for producing an optically active nipecotic acid and / or an optically active nipecotic acid ester. Moreover, the optically active nipecotic acid derivative produced by the method for producing an optically active nipecotic acid derivative of the present invention can be used for the production of the optically active nipecotamide derivative shown below.

本発明では In the present invention ,

Figure 0005585822
Figure 0005585822

表される(R)−および(S)−1−tert−ブトキシカルボニルニペコチン酸のラセミ混合物は、好ましくは、ラセミ体混合物のニペコチン酸をカルバメート化することにより、製造する。ラセミ体混合物のニペコチン酸の製造方法は、例えば、J.Org.Chem.(1963),28(4),1135記載の方法により、ニコチン酸を核還元したり、米国特許出願公開第4910312号記載の方法によりニペコチン酸エチルをアルカリ加水分解して製造したものを用いてもよい。 In represented by (R) - and (S) -1-tert- butoxy racemic mixture of carbonyl nipecotic acid, preferably by carbamate the nipecotate racemic mixtures, to produce. A method for producing a racemic mixture of nipecotic acid is described, for example, in J. Org. Org. Chem. (1963), 28 (4), 1135 may be used in which nicotinic acid is subjected to nuclear reduction or produced by alkaline hydrolysis of ethyl nipecotate by a method described in US Pat. No. 4,910,312. Good.

カルバメート化は、例えば、クロロ炭酸エステル等のハロ炭酸エステルを用いておこなわれる。ここでハロ炭酸エステルにおけるエステル部分は、好ましくは、一般式   The carbamation is performed using, for example, a halocarbonate such as chlorocarbonate. Here, the ester moiety in the halocarbonate preferably has the general formula

Figure 0005585822
Figure 0005585822

のニペコチン酸誘導体におけるRに対応する。例えば、Rがエチル基の場合、ハロ炭酸エステルとしてハロ炭酸エチルを用いればよい。また、Rがtert−ブチル基の場合は、二炭酸ジtert−ブチルを用いてカルバメート化してもよい。 Corresponds to R in the nipecotic acid derivative. For example, when R is an ethyl group, ethyl halocarbonate may be used as the halocarbonate. When R is a tert-butyl group, it may be carbamated using ditert-butyl dicarbonate.

カルバメート化剤の使用量としては、ラセミ体混合物のニペコチン酸に対して、好ましくは0.5〜5モル倍であり、さらに好ましくは1〜2モル倍である。   The amount of the carbamate agent used is preferably 0.5 to 5 moles, more preferably 1 to 2 moles, relative to the nipecotic acid in the racemic mixture.

反応溶媒は、例えば、水;メタノール、エタノール、イソプロパノール、1−ブタノール等のアルコール溶媒;テトラヒドロフラン、メチルtert−ブチルエーテル等のエーテル溶媒;アセトニトリル等のニトリル溶媒;酢酸メチル、酢酸エチル等のエステル溶媒;トルエン、キシレン等の芳香族溶媒等が挙げられるが、好ましくは水、メタノール、エタノール、テトラヒドロフラン、アセトニトリルである。これら溶媒は単独で用いてもよいし、2種以上を混合して用いてもよい。溶媒の使用量は、ラセミ体混合物のニペコチン酸に対して、好ましくは50重量倍以下、さらに好ましくは20重量倍以下である。   Examples of the reaction solvent include water; alcohol solvents such as methanol, ethanol, isopropanol, and 1-butanol; ether solvents such as tetrahydrofuran and methyl tert-butyl ether; nitrile solvents such as acetonitrile; ester solvents such as methyl acetate and ethyl acetate; And aromatic solvents such as xylene, and the like, preferably water, methanol, ethanol, tetrahydrofuran, and acetonitrile. These solvents may be used alone or in combination of two or more. The amount of the solvent to be used is preferably 50 times by weight or less, more preferably 20 times by weight or less based on the nipecotic acid in the racemic mixture.

カルバメート化反応は塩基の存在下で実施してもよい。塩基としては、例えば、水酸化ナトリウム、水酸化カリウム等の金属水酸化物;炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩;炭酸ナトリウム、炭酸カリウム等の金属炭酸塩;トリエチルアミン、ピリジン、N−メチルピペリジン、N,N−ジメチルアミノピリジン等の有機塩基等が挙げられるが、好ましくは水酸化ナトリウム、トリエチルアミンである。これら塩基は単独で用いてもよいし、2種以上を混合して用いてもよい。塩基の使用量は、ラセミ体混合物のニペコチン酸に対して、好ましくは0.1〜10モル倍、さらに好ましくは0.1〜2モル倍である。   The carbamate reaction may be carried out in the presence of a base. Examples of the base include metal hydroxides such as sodium hydroxide and potassium hydroxide; metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate; metal carbonates such as sodium carbonate and potassium carbonate; triethylamine, pyridine, N Examples thereof include organic bases such as methylpiperidine and N, N-dimethylaminopyridine, and sodium hydroxide and triethylamine are preferred. These bases may be used alone or in combination of two or more. The amount of the base used is preferably 0.1 to 10 mol times, more preferably 0.1 to 2 mol times with respect to nipecotic acid in the racemic mixture.

カルバメート化反応の反応温度は、好ましくは−20〜80℃であり、さらに好ましくは0〜50℃である。カルバメート化反応の反応時間は、好ましくは30分〜12時間、さらに好ましくは、3〜10時間である。   The reaction temperature of the carbamate reaction is preferably -20 to 80 ° C, more preferably 0 to 50 ° C. The reaction time of the carbamate reaction is preferably 30 minutes to 12 hours, more preferably 3 to 10 hours.

カルバメート化反応における混合順序は、ラセミ体混合物のニペコチン酸に塩基とカルバメート化剤を同時添加する方法や、ラセミ体混合物のニペコチン酸と塩基との混合物中にカルバメート化剤を添加する方法が好ましい。   The order of mixing in the carbamate reaction is preferably a method in which a base and a carbamate agent are added simultaneously to nipecotic acid in the racemic mixture, or a method in which the carbamate agent is added to the mixture of nipecotic acid and base in the racemic mixture.

カルバメート化反応で得られた反応液はそのまま次の反応に用いてもよいが、必要に応じて後処理をおこなってもよい。後処理としては、反応液から生成物を取得するための抽出、濃縮、ろ過、水洗等の一般的な単離処理をおこなえばよい。このようにして得られた目的物は、次工程に使用できる十分な純度を有している。   The reaction solution obtained by the carbamate reaction may be used for the next reaction as it is, but may be post-treated as necessary. As the post-treatment, a general isolation treatment such as extraction, concentration, filtration, and water washing for obtaining the product from the reaction solution may be performed. The target product thus obtained has sufficient purity that can be used in the next step.

本発明のニペコタミド誘導体の製造方法では In the method for producing a nipecotamide derivative of the present invention ,

Figure 0005585822
Figure 0005585822

(*は当該炭素原子が光学活性中心であることを示す)で表される光学活性1−tert−ブトキシカルボニルニペコチン酸をテトラヒドロフラン中でアンモニア水を使用してアミド化して An amidated optically active 1-tert-butoxycarbonylnipecotic acid represented by (* indicates that the carbon atom is an optically active center) using aqueous ammonia in tetrahydrofuran ;

Figure 0005585822
Figure 0005585822

(*は当該炭素原子が光学活性中心であることを示す)で表される光学活性1−tert−ブトキシカルボニルニペコタミドを製造する。 (* Is the carbon atom to indicate that an optically active center) to produce an optically active 1-tert-butoxycarbonyl Nipekotami de represented by.

本発明のニペコタミド誘導体の製造方法では、光学活性ニペコタミド誘導体は、(R)−1−tert−ブトキシカルボニルニペコタミド、(S)−1−tert−ブトキシカルボニルニペコタミドである。 In the manufacturing method of nipecotamide derivatives of the present invention, optically active nipecotamide derivative, (R) -1-tert- butoxycarbonyl Nipe Kota bromide is (S) -1-tert- butoxycarbonyl-D Peko Tami de.

本発明のニペコタミド誘導体の製造方法では、アミン源としてはアンモニア水を使用することにより、滴下によって系内に導入することが可能であり、重量ベースで仕込み量を管理できるので作業し易い。また、反応溶媒としては、ハロゲン溶媒を避けてテトラヒドロフランを使用しているので、生産上有利である。 In the method for producing a nipecotamide derivative of the present invention, by using ammonia water as an amine source, it can be introduced into the system by dropping, and the amount charged can be controlled on a weight basis, so that the operation is easy. As the reaction solvent, tetrahydrofuran is used avoiding the halogen solvent, which is advantageous in production.

本発明のニペコタミド誘導体の製造方法で用いる溶媒は、テトラヒドロフランである。 The solvent Ru used in the production method of nipecotamide derivatives of the present invention is a tape tetrahydrofuran.

テトラヒドロフランの使用量は、光学活性ニペコチン酸誘導体に対して、好ましくは30重量倍以下、さらに好ましくは10重量倍以下である。 The amount of tetrahydrofuran used is preferably 30 times by weight or less, more preferably 10 times by weight or less, with respect to the optically active nipecotic acid derivative.

本発明のニペコタミド誘導体の製造方法では、ハロ炭酸エステルを使用する。ハロ炭酸エステルとしては、例えば、クロロ炭酸メチル、クロロ炭酸エチル、クロロ炭酸イソプロピル、クロロ炭酸フェニル、クロロ炭酸ベンジル等が挙げられ、好ましくはクロロ炭酸メチル、クロロ炭酸エチル、さらに好ましくはクロロ炭酸エチルである。   In the method for producing a nipecotamide derivative of the present invention, a halocarbonate is used. Examples of the halocarbonate include methyl chlorocarbonate, ethyl chlorocarbonate, isopropyl chlorocarbonate, phenyl chlorocarbonate, benzyl chlorocarbonate, and the like, preferably methyl chlorocarbonate, ethyl chlorocarbonate, and more preferably ethyl chlorocarbonate. .

ハロ炭酸エステルの使用量としては、光学活性ニペコチン酸誘導体に対して、好ましくは0.5〜1.5モル倍、さらに好ましくは0.6〜1.2モル倍である。   The amount of halocarbonate used is preferably 0.5 to 1.5 moles, more preferably 0.6 to 1.2 moles, with respect to the optically active nipecotic acid derivative.

本発明のニペコタミド誘導体の製造方法では、好ましくは、塩基を使用する。塩基としては、例えば、水酸化ナトリウム、水酸化カリウム等の金属水酸化物;炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩;炭酸ナトリウム、炭酸カリウム等の金属炭酸塩;トリエチルアミン、ピリジン、N−メチルピペリジン、N,N−ジメチルアミノピリジン等の有機塩基等が挙げられるが、溶媒に対して溶解していることが望ましく、好ましくは有機塩基、さらに好ましくはトリエチルアミンである。   In the method for producing a nipecotamide derivative of the present invention, a base is preferably used. Examples of the base include metal hydroxides such as sodium hydroxide and potassium hydroxide; metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate; metal carbonates such as sodium carbonate and potassium carbonate; triethylamine, pyridine, N Examples thereof include organic bases such as methylpiperidine and N, N-dimethylaminopyridine, but it is desirable that they are dissolved in a solvent, preferably an organic base, more preferably triethylamine.

塩基の使用量としては、光学活性ニペコチン酸誘導体に対して、好ましくは0.5〜5モル倍、さらに好ましくは1〜2モル倍である。   The amount of the base used is preferably 0.5 to 5 mol times, more preferably 1 to 2 mol times with respect to the optically active nipecotic acid derivative.

アンモニア水としては、工業的に入手可能なアンモニア濃度のものを使用することができ、好ましくは10〜35重量%、さらに好ましくは20〜30重量%である。   As the aqueous ammonia, an industrially available ammonia concentration can be used, preferably 10 to 35% by weight, more preferably 20 to 30% by weight.

本工程の反応温度は、好ましくは−20〜40℃であり、さらに好ましくは−10〜30℃である。本工程の反応時間は特に制限されないが、好ましくは30分〜5時間、さらに好ましくは、30分〜3時間である。   The reaction temperature in this step is preferably -20 to 40 ° C, more preferably -10 to 30 ° C. The reaction time in this step is not particularly limited, but is preferably 30 minutes to 5 hours, and more preferably 30 minutes to 3 hours.

本発明のニペコタミド誘導体の製造方法では、好ましくは、収率向上の目的でハロ炭酸エステルを添加することができる。本発明のニペコタミド誘導体の製造方法では、好ましくは、ハロ炭酸エステルは、光学活性ニペコチン酸誘導体に作用して、活性な中間体になる。添加するハロ炭酸エステルの使用量としては、光学活性ニペコチン酸誘導体に対して、好ましくは0.1〜1.5モル倍、さらに好ましくは0.3〜0.8モル倍である。   In the method for producing a nipecotamide derivative of the present invention, a halocarbonate can be preferably added for the purpose of improving the yield. In the method for producing a nipecotamide derivative of the present invention, preferably, the halocarbonate acts on an optically active nipecotic acid derivative to become an active intermediate. The amount of the halocarbonate to be added is preferably 0.1 to 1.5 mol times, more preferably 0.3 to 0.8 mol times with respect to the optically active nipecotic acid derivative.

本発明のニペコタミド誘導体の製造方法における混合順序は、好ましくは、光学活性ニペコチン酸誘導体と塩基との混合物中にハロ炭酸エステルを添加して混合酸無水物を形成し、次いでアンモニア水を添加することで目的物を含む反応液を得る。   The mixing order in the method for producing a nipecotamide derivative of the present invention is preferably such that a halocarbonate is added to a mixture of an optically active nipecotic acid derivative and a base to form a mixed acid anhydride, and then aqueous ammonia is added. To obtain a reaction solution containing the target product.

本発明のニペコタミド誘導体の製造方法で得られた反応液はそのまま次工程に用いてもよいが、必要に応じて後処理をおこなってもよい。後処理としては、反応液から生成物を取得するための抽出、濃縮、ろ過、水洗等の一般的な単離処理をおこなえばよい。このようにして得られた目的物は、次工程に使用できる十分な純度を有しているが、次工程の収率、あるいは次工程で得られる化合物の純度をさらに高める目的で、再結晶;抽出精製;蒸留;活性炭等の吸着処理;カラムクロマトグラフィー等の一般的な精製方法により純度を高めてもよい。   Although the reaction liquid obtained by the manufacturing method of the nipecotamide derivative of this invention may be used for the next process as it is, you may post-process as needed. As the post-treatment, a general isolation treatment such as extraction, concentration, filtration, and water washing for obtaining the product from the reaction solution may be performed. The target product thus obtained has sufficient purity that can be used in the next step, but is recrystallized for the purpose of further increasing the yield of the next step or the purity of the compound obtained in the next step; Extraction purification; distillation; adsorption treatment of activated carbon and the like; purity may be increased by a general purification method such as column chromatography.

本発明の光学活性ニペコタミド誘導体の製造方法で製造された光学活性ニペコタミド誘導体は、好ましくは、下記に示す光学活性3−アミノピペリジン誘導体の製造に使用することできる。   The optically active nipecotamide derivative produced by the method for producing an optically active nipecotamide derivative of the present invention can be preferably used for the production of the optically active 3-aminopiperidine derivative shown below.

光学活性ニペコタミド誘導体は、好ましくは、水中でホフマン転位して、一般式   The optically active nipecotamide derivative preferably undergoes Hoffman rearrangement in water to give a general formula

Figure 0005585822
Figure 0005585822

(Rは、炭素数1〜4のアルキル基もしくはアラルキル基を示し、*は当該炭素原子が光学活性中心であることを示す)光学活性3−アミノピペリジン誘導体とすることができる。 (R represents an alkyl group having 1 to 4 carbon atoms or an aralkyl group, and * represents that the carbon atom is an optically active center) and can be an optically active 3-aminopiperidine derivative.

光学活性3−アミノピペリジン誘導体としては、例えば、(R)−1−メトキシカルボニル−3−アミノピペリジン、(R)−1−エトキシカルボニル−3−アミノピペリジン、(R)−1−プロポキシカルボニル−3−アミノピペリジン、(R)−1−イソプロポキシカルボニル−3−アミノピペリジン、(R)−1−ブトキシカルボニル−3−アミノピペリジン、(R)−1−イソブトキシカルボニル−3−アミノピペリジン、(R)−1−sec−ブトキシカルボニル−3−アミノピペリジン、(R)−1−tert−ブトキシカルボニル−3−アミノピペリジン、(S)−1−メトキシカルボニル−3−アミノピペリジン、(S)−1−エトキシカルボニル−3−アミノピペリジン、(S)−1−プロポキシカルボニル−3−アミノピペリジン、(S)−1−イソプロポキシカルボニル−3−アミノピペリジン、(S)−1−ブトキシカルボニル−3−アミノピペリジン、(S)−1−イソブトキシカルボニル−3−アミノピペリジン、(S)−1−sec−ブトキシカルボニル−3−アミノピペリジン、(S)−1−tert−ブトキシカルボニル−3−アミノピペリジン、(R)−1−ベンジルオキシカルボニル−3−アミノピペリジン、(R)−1−p−クロロフェニルメトキシカルボニル−3−アミノピペリジン、(S)−1−ベンジルオキシカルボニル−3−アミノピペリジン、(S)−1−p−クロロフェニルメトキシカルボニル−3−アミノピペリジン、(R)−1−メトキシカルボニル−3−アミノピペリジン塩酸塩、(R)−1−エトキシカルボニル−3−アミノピペリジン塩酸塩、(R)−1−イソプロポキシカルボニル−3−アミノピペリジン塩酸塩、(R)−1−tert−ブトキシカルボニル−3−アミノピペリジン塩酸塩、(S)−1−メトキシカルボニル−3−アミノピペリジン塩酸塩、(S)−1−エトキシカルボニル−3−アミノピペリジン塩酸塩、(S)−1−イソプロポキシカルボニル−3−アミノピペリジン塩酸塩、(S)−1−tert−ブトキシカルボニル−3−アミノピペリジン塩酸塩、(R)−1−ベンジルオキシカルボニル−3−アミノピペリジン塩酸塩、(S)−1−ベンジルオキシカルボニル−3−アミノピペリジン塩酸塩などが挙げられる。光学活性3−アミノピペリジン誘導体は、好ましくは(R)−1−tert−ブトキシカルボニル−3−アミノピペリジン、(S)−1−tert−ブトキシカルボニル−3−アミノピペリジン、(R)−1−ベンジルオキシカルボニル−3−アミノピペリジン、(S)−1−ベンジルオキシカルボニル−3−アミノピペリジンである。   Examples of the optically active 3-aminopiperidine derivative include (R) -1-methoxycarbonyl-3-aminopiperidine, (R) -1-ethoxycarbonyl-3-aminopiperidine, and (R) -1-propoxycarbonyl-3. -Aminopiperidine, (R) -1-isopropoxycarbonyl-3-aminopiperidine, (R) -1-butoxycarbonyl-3-aminopiperidine, (R) -1-isobutoxycarbonyl-3-aminopiperidine, (R ) -1-sec-butoxycarbonyl-3-aminopiperidine, (R) -1-tert-butoxycarbonyl-3-aminopiperidine, (S) -1-methoxycarbonyl-3-aminopiperidine, (S) -1- Ethoxycarbonyl-3-aminopiperidine, (S) -1-propoxycarbonyl-3-amino Peridine, (S) -1-isopropoxycarbonyl-3-aminopiperidine, (S) -1-butoxycarbonyl-3-aminopiperidine, (S) -1-isobutoxycarbonyl-3-aminopiperidine, (S)- 1-sec-butoxycarbonyl-3-aminopiperidine, (S) -1-tert-butoxycarbonyl-3-aminopiperidine, (R) -1-benzyloxycarbonyl-3-aminopiperidine, (R) -1-p -Chlorophenylmethoxycarbonyl-3-aminopiperidine, (S) -1-benzyloxycarbonyl-3-aminopiperidine, (S) -1-p-chlorophenylmethoxycarbonyl-3-aminopiperidine, (R) -1-methoxycarbonyl -3-aminopiperidine hydrochloride, (R) -1-ethoxycarbonyl- -Aminopiperidine hydrochloride, (R) -1-isopropoxycarbonyl-3-aminopiperidine hydrochloride, (R) -1-tert-butoxycarbonyl-3-aminopiperidine hydrochloride, (S) -1-methoxycarbonyl- 3-aminopiperidine hydrochloride, (S) -1-ethoxycarbonyl-3-aminopiperidine hydrochloride, (S) -1-isopropoxycarbonyl-3-aminopiperidine hydrochloride, (S) -1-tert-butoxycarbonyl -3-aminopiperidine hydrochloride, (R) -1-benzyloxycarbonyl-3-aminopiperidine hydrochloride, (S) -1-benzyloxycarbonyl-3-aminopiperidine hydrochloride, and the like. The optically active 3-aminopiperidine derivative is preferably (R) -1-tert-butoxycarbonyl-3-aminopiperidine, (S) -1-tert-butoxycarbonyl-3-aminopiperidine, (R) -1-benzyl. Oxycarbonyl-3-aminopiperidine, (S) -1-benzyloxycarbonyl-3-aminopiperidine.

ホフマン転位は、好ましくは、酸化剤と塩基を用いておこなわれる。   The Hoffman rearrangement is preferably performed using an oxidizing agent and a base.

酸化剤としては、例えば、次亜塩素酸ナトリウム、次亜臭素酸ナトリウム、塩素、臭素等が挙げられ、好ましくは、次亜塩素酸ナトリウムである。次亜塩素酸ナトリウムを用いる場合は、工業的に利用可能な水溶液を用いるとよい。その水溶液の濃度としては、好ましくは5〜20重量%である。酸化剤の使用量は、光学活性ニペコタミド誘導体に対して、好ましくは1〜10モル倍、さらに好ましくは1〜3モル倍である。   Examples of the oxidizing agent include sodium hypochlorite, sodium hypobromite, chlorine, bromine and the like, preferably sodium hypochlorite. When using sodium hypochlorite, an industrially available aqueous solution may be used. The concentration of the aqueous solution is preferably 5 to 20% by weight. The amount of the oxidizing agent to be used is preferably 1 to 10 mol times, more preferably 1 to 3 mol times based on the optically active nipecotamide derivative.

塩基としては、例えば、水酸化ナトリウム、水酸化カリウム等の金属水酸化物;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert−ブトキシド、カリウムメトキシド、 カリウムエトキシド、カリウムtert−ブトキシド等の金属アルコキシド等が挙げられるが、好ましくは水酸化ナトリウムである。塩基の使用量は、光学活性ニペコタミド誘導体に対して、好ましくは0.5〜10モル倍、さらに好ましくは1〜5モル倍である。   Examples of the base include metal hydroxides such as sodium hydroxide and potassium hydroxide; metal alkoxides such as sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium methoxide, potassium ethoxide and potassium tert-butoxide. Of these, sodium hydroxide is preferred. The amount of the base used is preferably 0.5 to 10 mol times, more preferably 1 to 5 mol times based on the optically active nipecotamide derivative.

ホフマン転位の反応溶媒としては、水が好ましい。溶媒の使用量としては、光学活性ニペコタミド誘導体に対して、好ましくは50重量倍以下、さらに好ましくは20重量倍以下である。   The reaction solvent for the Hoffman rearrangement is preferably water. The amount of the solvent used is preferably 50 times or less, more preferably 20 times or less, with respect to the optically active nipecotamide derivative.

ホフマン転位の反応温度は、好ましくは−20〜80℃であり、さらに好ましくは−10〜50℃である。本工程の反応時間は特に制限されないが、好ましくは30分〜48時間、さらに好ましくは、1〜24時間である。   The reaction temperature of the Hoffman rearrangement is preferably -20 to 80 ° C, more preferably -10 to 50 ° C. The reaction time in this step is not particularly limited, but is preferably 30 minutes to 48 hours, and more preferably 1 to 24 hours.

ホフマン転位における混合順序は、光学活性ニペコタミド誘導体、塩基の混合物中に酸化剤を添加する方法が好ましい。   The mixing order in the Hoffman rearrangement is preferably a method in which an oxidizing agent is added to a mixture of an optically active nipecotamide derivative and a base.

本反応で得られた反応液はそのまま次反応に用いてもよいが、必要に応じて後処理をおこなってもよい。後処理としては、反応液から生成物を取得するための抽出、濃縮、ろ過、水洗等の一般的な単離処理をおこなえばよい。例えば、反応終了後の反応液にトルエン、酢酸エチル、ヘキサン等の一般的な抽出溶媒を加えて抽出操作をおこない、得られた抽出液を減圧濃縮して、反応溶媒及び抽出溶媒を留去することで目的物が得られる。このようにして得られた目的物は、次工程に使用できる十分な純度を有しているが、次工程の収率、あるいは次工程で得られる化合物の純度をさらに高める目的で、再結晶;抽出精製;蒸留;活性炭等の吸着処理;カラムクロマトグラフィー等の一般的な精製方法により純度を高めてもよい。   The reaction solution obtained in this reaction may be used in the next reaction as it is, but may be post-treated as necessary. As the post-treatment, a general isolation treatment such as extraction, concentration, filtration, and water washing for obtaining the product from the reaction solution may be performed. For example, a general extraction solvent such as toluene, ethyl acetate, hexane or the like is added to the reaction solution after completion of the reaction to perform the extraction operation, and the resulting extract is concentrated under reduced pressure to distill off the reaction solvent and the extraction solvent. The target product is obtained. The target product thus obtained has sufficient purity that can be used in the next step, but is recrystallized for the purpose of further increasing the yield of the next step or the purity of the compound obtained in the next step; Extraction purification; distillation; adsorption treatment of activated carbon and the like; purity may be increased by a general purification method such as column chromatography.

光学活性3−アミノピペリジン誘導体は、好ましくは、酸で処理することにより、
一般式
The optically active 3-aminopiperidine derivative is preferably treated with an acid,
General formula

Figure 0005585822
Figure 0005585822

(*は当該炭素原子が光学活性中心であることを示す)で表される光学活性3−アミノピペリジンを製造することができる。 An optically active 3-aminopiperidine represented by (* indicates that the carbon atom is an optically active center) can be produced.

光学活性3−アミノピペリジンとしては、例えば、(R)−3−アミノピペリジン、(S)−3−アミノピペリジンのフリー体;(R)−3−アミノピペリジン一塩酸塩、(S)−3−アミノピペリジン一塩酸塩、(R)−3−アミノピペリジン二塩酸塩、(S)−3−アミノピペリジン二塩酸塩、(R)−3−アミノピペリジン二臭酸塩、(S)−3−アミノピペリジン二臭酸塩、(R)−3−アミノピペリジン硫酸塩、(S)−3−アミノピペリジン硫酸塩、(R)−3−アミノピペリジン二硝酸塩、(S)−3−アミノピペリジン二硝酸塩等の鉱酸塩;(R)−3−アミノピペリジン二トリフルオロ酢酸塩、(S)−3−アミノピペリジン二トリフルオロ酢酸塩、(R)−3−アミノピペリジンシュウ酸塩、(S)−3−アミノピペリジンシュウ酸塩、(R)−3−アミノピペリジンコハク酸塩、(S)−3−アミノピペリジンコハク酸塩等のカルボン酸塩等が挙げられる。   Examples of the optically active 3-aminopiperidine include (R) -3-aminopiperidine, a free form of (S) -3-aminopiperidine; (R) -3-aminopiperidine monohydrochloride, (S) -3- Aminopiperidine monohydrochloride, (R) -3-aminopiperidine dihydrochloride, (S) -3-aminopiperidine dihydrochloride, (R) -3-aminopiperidine dihydrochloride, (S) -3-amino Piperidine dihydrochloride, (R) -3-aminopiperidine sulfate, (S) -3-aminopiperidine sulfate, (R) -3-aminopiperidine dinitrate, (S) -3-aminopiperidine dinitrate, etc. (R) -3-aminopiperidine ditrifluoroacetate, (S) -3-aminopiperidine ditrifluoroacetate, (R) -3-aminopiperidine oxalate, (S) -3 -Aminopiperi Nshuu salt, (R)-3-aminopiperidine succinate, and a carboxylate salt such as (S)-3-aminopiperidine succinate.

酸としては、例えば、塩化水素、臭化水素、硫酸、硝酸等の鉱酸;トリフルオロ酢酸、シュウ酸、コハク酸等が挙げられ、好ましくは、塩化水素である。塩化水素を用いる場合は、工業的に利用可能な水溶液を用いるとよい。その水溶液の濃度としては、好ましくは1〜50重量%である。   Examples of the acid include mineral acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, and nitric acid; trifluoroacetic acid, oxalic acid, succinic acid, and the like, and hydrogen chloride is preferable. When using hydrogen chloride, an industrially available aqueous solution may be used. The concentration of the aqueous solution is preferably 1 to 50% by weight.

酸の使用量としては、光学活性3−アミノピペリジン誘導体に対して、好ましくは1〜20モル倍、さらに好ましくは2〜10モル倍である。   The amount of the acid used is preferably 1 to 20 times by mole, more preferably 2 to 10 times by mole with respect to the optically active 3-aminopiperidine derivative.

反応溶媒としては、水;メタノール、エタノール、イソプロパノール等のアルコール溶媒;テトラヒドロフラン、メチルtert−ブチルエーテル等のエーテル溶媒が挙げられる。これら溶媒は単独で用いてもよいし、2種以上を混合して用いてもよい。溶媒の使用量は、光学活性3−アミノピペリジン誘導体に対して、好ましくは50重量倍以下、さらに好ましくは20重量倍以下である。   Examples of the reaction solvent include water; alcohol solvents such as methanol, ethanol and isopropanol; ether solvents such as tetrahydrofuran and methyl tert-butyl ether. These solvents may be used alone or in combination of two or more. The amount of the solvent used is preferably 50 times or less, more preferably 20 times or less, with respect to the optically active 3-aminopiperidine derivative.

本反応の反応温度は、好ましくは10〜100℃であり、さらに好ましくは20〜80℃である。本工程の反応時間は特に制限されないが、好ましくは1〜20時間、さらに好ましくは、2〜10時間である。   The reaction temperature of this reaction is preferably 10 to 100 ° C, more preferably 20 to 80 ° C. The reaction time in this step is not particularly limited, but is preferably 1 to 20 hours, and more preferably 2 to 10 hours.

反応後の処理としては、反応液から目的物を取得するための抽出、濃縮、ろ過、有機溶媒洗等の一般的な単離処理をおこなえばよい。例えば、酸として塩化水素を用いた場合、反応液を減圧濃縮して、反応溶媒を留去した後、残渣に有機溶媒を加えて晶析することで塩酸塩として目的物が得られる。   As the treatment after the reaction, a general isolation treatment such as extraction, concentration, filtration, washing with an organic solvent and the like for obtaining the target product from the reaction solution may be performed. For example, when hydrogen chloride is used as the acid, the reaction solution is concentrated under reduced pressure, the reaction solvent is distilled off, and an organic solvent is added to the residue for crystallization, whereby the desired product is obtained as the hydrochloride.

晶析溶媒としては、メタノール、エタノール、イソプロパノール、1−ブタノール等のアルコール溶媒;テトラヒドロフラン、メチルtert−ブチルエーテル等のエーテル溶媒;アセトニトリル等のニトリル溶媒;酢酸メチル、酢酸エチル等のエステル溶媒;トルエン、キシレン等の芳香族溶媒;塩化メチレン、クロロホルム、クロロベンゼン等のハロゲン溶媒等が挙げられる。これら溶媒は単独で用いてもよいし、2種以上を混合してもよい。   As a crystallization solvent, alcohol solvents such as methanol, ethanol, isopropanol and 1-butanol; ether solvents such as tetrahydrofuran and methyl tert-butyl ether; nitrile solvents such as acetonitrile; ester solvents such as methyl acetate and ethyl acetate; toluene and xylene And aromatic solvents such as methylene chloride, chloroform, chlorobenzene and the like. These solvents may be used alone or in combination of two or more.

このようにして得られた目的物は、さらに純度を高める目的で、再結晶;抽出精製;蒸留;活性炭等の吸着処理;カラムクロマトグラフィー等の一般的な精製方法により純度を高めてもよい。   In order to further increase the purity of the target product thus obtained, the purity may be increased by a general purification method such as recrystallization; extraction purification; distillation; adsorption treatment of activated carbon or the like; column chromatography.

以下実施例により本発明を説明する。   The following examples illustrate the invention.

実施例中の化学純度、光学純度は以下に示す方法で測定した。   The chemical purity and optical purity in the examples were measured by the following methods.

<1−tert−ブトキシカルボニルニペコチン酸、1−tert−ブトキシカルボニルニペコタミドの化学純度分析法>
サンプル調製
25mLメスフラスコに各試料約20mgを精秤し、50%アセトニトリル水溶液で標線まで希釈して溶解する。
<Chemical purity analysis method for 1-tert-butoxycarbonylnipecotic acid and 1-tert-butoxycarbonylnipecotamide>
Sample preparation Approximately 20 mg of each sample is precisely weighed into a 25 mL volumetric flask, diluted to the mark with 50% aqueous acetonitrile solution, and dissolved.

高速液体クロマトグラフィー(HPLC)分析条件
カラム:YMC−Pack ODS−A 4.6mmφ×250mm,5μm(YMC)
移動相:A:20mMリン酸二水素ナトリウム水溶液(リン酸でpH2.8に調製)
B:アセトニトリル
組成プログラム:A/B=90/10(0〜5分)→A/B=30/70(20分)→A/B=30/70(30分)
流速:1.0mL/分
カラム温度:40℃
測定波長:210nm
サンプル量:10μL
保持時間:18.1分(1−tert−ブトキシカルボニルニペコチン酸)
16.0分(1−tert−ブトキシカルボニルニペコタミド)。
High performance liquid chromatography (HPLC) analysis conditions Column: YMC-Pack ODS-A 4.6 mmφ × 250 mm, 5 μm (YMC)
Mobile phase: A: 20 mM sodium dihydrogen phosphate aqueous solution (prepared to pH 2.8 with phosphoric acid)
B: Acetonitrile Composition program: A / B = 90/10 (0-5 minutes) → A / B = 30/70 (20 minutes) → A / B = 30/70 (30 minutes)
Flow rate: 1.0 mL / min Column temperature: 40 ° C
Measurement wavelength: 210 nm
Sample volume: 10 μL
Retention time: 18.1 minutes (1-tert-butoxycarbonylnipecotic acid)
16.0 min (1-tert-butoxycarbonyl nipecotamide).

<1−tert−ブトキシカルボニルニペコチン酸の光学純度分析法>
サンプル調製
25mLメスフラスコに試料誘導体約20mgを精秤し、50%アセトニトリル水溶液で標線まで希釈して溶解する。
<Optical purity analysis method of 1-tert-butoxycarbonylnipecotic acid>
Sample preparation Approximately 20 mg of the sample derivative is precisely weighed into a 25 mL volumetric flask, and diluted to the mark with a 50% aqueous acetonitrile solution and dissolved.

高速液体クロマトグラフィー(HPLC)分析条件
カラム:CHIRALCELL OD−RH 4.6mmφ×250mm(ダイセル化学)
移動相:20mMリン酸二水素ナトリウム水溶液(リン酸でpH2.8に調製)/アセトニトリル=80/20(v/v)
流速:0.5mL/分
カラム温度:40℃
測定波長:210nm
サンプル量:10μL
保持時間:32.1分((S)−1−tert−ブトキシカルボニルニペコチン酸)
34.0分((R)−1−tert−ブトキシカルボニルニペコチン酸)。
High performance liquid chromatography (HPLC) analysis conditions Column: CHIRALCELL OD-RH 4.6 mmφ × 250 mm (Daicel Chemical)
Mobile phase: 20 mM aqueous sodium dihydrogen phosphate solution (adjusted to pH 2.8 with phosphoric acid) / acetonitrile = 80/20 (v / v)
Flow rate: 0.5 mL / min Column temperature: 40 ° C
Measurement wavelength: 210 nm
Sample volume: 10 μL
Retention time: 32.1 minutes ((S) -1-tert-butoxycarbonylnipecotic acid)
34.0 min ((R) -1-tert-butoxycarbonylnipecotic acid).

<1−tert−ブトキシカルボニルニペコタミドの光学純度分析法>
サンプル調製
25mLメスフラスコに試料約20mgを精秤し、50%アセトニトリル水溶液で標線まで希釈して溶解する。
<Optical purity analysis method of 1-tert-butoxycarbonyl nipecotamide>
Sample preparation Approximately 20 mg of a sample is precisely weighed in a 25 mL volumetric flask, and diluted to the marked line with 50% acetonitrile aqueous solution and dissolved.

HPLC分析条件
カラム:CHIRALCELL OD−RH 4.6mmφ×250mm(ダイセル化学)
移動相:20mMリン酸二水素ナトリウム水溶液(リン酸でpH2.8に調製)/アセトニトリル=85/15(v/v)
流速:0.5mL/分
カラム温度:40℃
測定波長:210nm
サンプル量:10μL
保持時間:26.6分((S)−1−tert−ブトキシカルボニルニペコタミド)
28.4分((R)−1−tert−ブトキシカルボニルニペコタミド)。
HPLC analysis conditions Column: CHIRALCELL OD-RH 4.6 mmφ × 250 mm (Daicel Chemical)
Mobile phase: 20 mM aqueous sodium dihydrogen phosphate solution (adjusted to pH 2.8 with phosphoric acid) / acetonitrile = 85/15 (v / v)
Flow rate: 0.5 mL / min Column temperature: 40 ° C
Measurement wavelength: 210 nm
Sample volume: 10 μL
Retention time: 26.6 minutes ((S) -1-tert-butoxycarbonyl nipecotamide)
28.4 min ((R) -1-tert-butoxycarbonyl nipecotamide).

<1−tert−ブトキシカルボニル−3−アミノピペリジンの化学純度分析法>
サンプル調製
10mLサンプル瓶に試料約100mgを精秤し、900mgのアセトニトリルを加えて溶解する。
<Chemical purity analysis method of 1-tert-butoxycarbonyl-3-aminopiperidine>
Sample preparation Approximately 100 mg of sample is precisely weighed into a 10 mL sample bottle, and 900 mg of acetonitrile is added and dissolved.

GC分析条件
カラム:Inert Cap1 0.25mmφ×60m,0.40μm(GL Sciences)
温度:カラム:60℃、注入口:200℃、検出器:270℃
昇温プログラム:60℃(10分)→5℃/分→260℃(10分)
検出器:FID
カラム流量:2.2mL/分
スプリット比:20.9
保持時間:32.8分(1−tert−ブトキシカルボニル−3−アミノピペリジン)
16.5分(3−アミノピペリジン)
<3−アミノピペリジン二塩酸塩の化学純度分析法>
サンプル調製
10mLサンプル瓶に試料約100mgを精秤し、1N水酸化ナトリウム水溶液3mLを加えて溶解する。そこにクロロホルム3mLを加えて抽出し、下層を分析に用いる。
GC analysis conditions Column: Inert Cap1 0.25 mmφ × 60 m, 0.40 μm (GL Sciences)
Temperature: Column: 60 ° C, inlet: 200 ° C, detector: 270 ° C
Temperature rising program: 60 ° C. (10 minutes) → 5 ° C./minute→260° C. (10 minutes)
Detector: FID
Column flow rate: 2.2 mL / min Split ratio: 20.9
Retention time: 32.8 minutes (1-tert-butoxycarbonyl-3-aminopiperidine)
16.5 minutes (3-aminopiperidine)
<Chemical purity analysis method of 3-aminopiperidine dihydrochloride>
Sample preparation Approximately 100 mg of sample is precisely weighed in a 10 mL sample bottle, and 3 mL of 1N aqueous sodium hydroxide solution is added and dissolved. Chloroform 3mL is added and extracted there, and a lower layer is used for an analysis.

GC分析条件
カラム:Inert Cap1 0.25mmφ×60m,0.40μm(GL Sciences)
温度:カラム:60℃、注入口:200℃、検出器:270℃
昇温プログラム:60℃(10分)→5℃/分→260℃(10分)
検出器:FID
カラム流量:2.2mL/分
スプリット比:20.9
保持時間:32.8分(1−tert−ブトキシカルボニル−3−アミノピペリジン)
16.5分(3−アミノピペリジン)
<1−tert−ブトキシカルボニル−3−アミノピペリジンの光学純度分析法>
サンプル調製
10mLメスフラスコに試料約20mgを精秤し、1N塩酸水溶液1.5mLと回転子を加えて50℃で1時間加熱しながら撹拌する。その後、室温まで冷却し、1N水酸化ナトリウム水溶液1.5mLを加えてからアセトニトリルで標線まで希釈する。2mLサンプル瓶に上記の試料0.1mLと0.8%O,O’−p−ジトルオイル−L−酒石酸無水物のアセトニトリル溶液0.5mLを加えてよく振り混ぜてから室温で15分間静置する。最後に2%リン酸水溶液0.1mLを加えてよく振り混ぜ、これをサンプルとする。
GC analysis conditions Column: Inert Cap1 0.25 mmφ × 60 m, 0.40 μm (GL Sciences)
Temperature: Column: 60 ° C, inlet: 200 ° C, detector: 270 ° C
Temperature rising program: 60 ° C. (10 minutes) → 5 ° C./minute→260° C. (10 minutes)
Detector: FID
Column flow rate: 2.2 mL / min Split ratio: 20.9
Retention time: 32.8 minutes (1-tert-butoxycarbonyl-3-aminopiperidine)
16.5 minutes (3-aminopiperidine)
<Optical purity analysis method of 1-tert-butoxycarbonyl-3-aminopiperidine>
Sample preparation Approximately 20 mg of a sample is precisely weighed into a 10 mL volumetric flask, 1.5 mL of a 1N hydrochloric acid aqueous solution and a rotor are added, and the mixture is stirred while heating at 50 ° C. for 1 hour. Then, it cools to room temperature, and 1.5 mL of 1N sodium hydroxide aqueous solution is added, Then, it dilutes to a mark with acetonitrile. Add 0.1 mL of the above sample and 0.5 mL of 0.8% O, O′-p-ditoluoyl-L-tartaric anhydride acetonitrile solution to a 2 mL sample bottle, shake well, and let stand at room temperature for 15 minutes. . Finally, 0.1 mL of 2% phosphoric acid aqueous solution is added and shaken well, and this is used as a sample.

HPLC分析条件
カラム:CAPCELLPAK SG−120 4.6mmφ×250mm(資生堂)
移動相:0.03%アンモニア水溶液(酢酸でpH4.5に調製)/メタノール=50/50(v/v)
流速:1.2mL/分
カラム温度:40℃
測定波長:243nm
サンプル量:2μL
保持時間:53.6分((R)−3−アミノピペリジンの誘導化物)
57.3分((S)−3−アミノピペリジンの誘導化物)。
HPLC analysis conditions Column: CAPCELLPAK SG-120 4.6 mmφ × 250 mm (Shiseido)
Mobile phase: 0.03% aqueous ammonia solution (adjusted to pH 4.5 with acetic acid) / methanol = 50/50 (v / v)
Flow rate: 1.2 mL / min Column temperature: 40 ° C
Measurement wavelength: 243 nm
Sample volume: 2 μL
Retention time: 53.6 minutes (derivatized product of (R) -3-aminopiperidine)
57.3 minutes (derivatized product of (S) -3-aminopiperidine).

<3−アミノピペリジン二塩酸塩の光学純度分析法>
サンプル調製
10mLメスフラスコに試料約17mgを精秤し、1N水酸化ナトリウム水溶液1,2滴を加えてからアセトニトリルで標線まで希釈する。2mLサンプル瓶に上記の試料0.1mLと0.8%O,O’−p−ジトルオイル−L−酒石酸無水物のアセトニトリル溶液0.5mLを加えてよく振り混ぜてから室温で15分間静置する。最後に2%リン酸水溶液0.1mLを加えてよく振り混ぜ、これをサンプルとする。
<Optical purity analysis method of 3-aminopiperidine dihydrochloride>
Sample Preparation About 17 mg of sample is precisely weighed into a 10 mL volumetric flask, and 1 drop of 1N aqueous sodium hydroxide solution is added, and then diluted to the mark with acetonitrile. Add 0.1 mL of the above sample and 0.5 mL of 0.8% O, O′-p-ditoloyl-L-tartaric anhydride acetonitrile solution to a 2 mL sample bottle, shake well, and let stand at room temperature for 15 minutes. . Finally, 0.1 mL of 2% phosphoric acid aqueous solution is added and shaken well, and this is used as a sample.

HPLC分析条件
カラム:CAPCELLPAK SG−120 4.6mmφ×250mm(資生堂)
移動相:0.03%アンモニア水溶液(酢酸でpH4.5に調製)/メタノール=50/50(v/v)
流速:1.2mL/分
カラム温度:40℃
測定波長:243nm
サンプル量:2μL
保持時間:53.6分((R)−3−アミノピペリジンの誘導化物)
57.3分((S)−3−アミノピペリジンの誘導化物)。
HPLC analysis conditions Column: CAPCELLPAK SG-120 4.6 mmφ × 250 mm (Shiseido)
Mobile phase: 0.03% aqueous ammonia solution (adjusted to pH 4.5 with acetic acid) / methanol = 50/50 (v / v)
Flow rate: 1.2 mL / min Column temperature: 40 ° C
Measurement wavelength: 243 nm
Sample volume: 2 μL
Retention time: 53.6 minutes (derivatized product of (R) -3-aminopiperidine)
57.3 minutes (derivatized product of (S) -3-aminopiperidine).

参考例1 1−tert−ブトキシカルボニルニペコチン酸の製造
温度計、コンデンサー及び撹拌機の付いた3L四つ口フラスコに、ニペコチン酸300g(2.323モル)、水900g、テトラヒドロフラン900g、水酸化ナトリウム32.5g加え完全溶解させた。次に、二炭酸ジtert−ブチル532.3g(2.439モル)とテトラヒドロフラン59.1gの混合物を20〜25℃で滴下し、40℃付近まで昇温してから5時間熟成させた。その後、アスピレータで80mmHg、内温45℃に到達するまで減圧濃縮し、反応溶媒を1188g留去させた。濃縮終了後、20%クエン酸586gを20〜25℃で滴下し(pH6.5→4.0)、同温度で1時間熟成してから遠心分離機で固液分離し、水300gで洗浄、真空乾燥して白色結晶の目的物495.0g(収率:92.9%)を得た。
H−NMR(DMSO−d,400MHz)δppm:12.36(brs,1H),3.89(m,1H),3.68(m,1H),3.03(m,1H),2.82(m,1H),2.30(m,1H),1.89(m,1H),1.61(m,1H),1.51−1.31(m,11H)
13C−NMR(DMSO−d,400MHz)δppm:174.4,153.8,78.7,40.5,28.0,26.6,23.8
m.p.:159−160℃。
Reference Example 1 Production of 1-tert-butoxycarbonyl nipecotic acid In a 3 L four-necked flask equipped with a thermometer, a condenser and a stirrer, 300 g (2.323 mol) of nipecotic acid, 900 g of water, 900 g of tetrahydrofuran, hydroxylated 32.5 g of sodium was added and completely dissolved. Next, a mixture of 532.3 g (2.439 mol) of ditert-butyl dicarbonate and 59.1 g of tetrahydrofuran was added dropwise at 20 to 25 ° C., the temperature was raised to around 40 ° C., and the mixture was aged for 5 hours. Then, it concentrated under reduced pressure until it reached 80 mmHg and internal temperature 45 degreeC with the aspirator, and 1188g of reaction solvents were distilled off. After the completion of concentration, 586 g of 20% citric acid was added dropwise at 20 to 25 ° C. (pH 6.5 → 4.0), aged at the same temperature for 1 hour, solid-liquid separated with a centrifuge, washed with 300 g of water, Vacuum drying gave 495.0 g (yield: 92.9%) of the desired product as white crystals.
1 H-NMR (DMSO-d 6 , 400 MHz) δ ppm: 12.36 (brs, 1H), 3.89 (m, 1H), 3.68 (m, 1H), 3.03 (m, 1H), 2.82 (m, 1H), 2.30 (m, 1H), 1.89 (m, 1H), 1.61 (m, 1H), 1.51-1.31 (m, 11H)
13 C-NMR (DMSO-d 6 , 400 MHz) δ ppm: 174.4, 153.8, 78.7, 40.5, 28.0, 26.6, 23.8
m. p. : 159-160 ° C.

実施例1
(1−tert−ブトキシカルボニルニペコチン酸の光学分割)
温度計、コンデンサー及び撹拌機の付いた2L四つ口フラスコに、参考例1で製造した1−tert−ブトキシカルボニルニペコチン酸250g(1.090モル)を加え、さらに水643.9g、R−(+)−1−フェニルエチルアミン79.3g(0.654モル)、水酸化ナトリウム17.4g(0.436モル)を加え(光学分割剤/塩基性添加剤=0.6/0.4)、80℃まで昇温した。完溶後、68℃まで降温してから種晶を添加し、同温度付近で1時間熟成した。その後、25℃まで緩やかに冷却し、同温度付近で18時間熟成してから析出結晶をろ過し、次いで200gの水で洗浄、真空乾燥して白色結晶のジアステレオマー塩147.4gを得た。その塩の光学純度は、86.7%d.e.(R)であり、仕込み1−tert−ブトキシカルボニルニペコチン酸のR体に対する取得塩中のR体収率は、72.0%であった。
Example 1
(Optical resolution of 1-tert-butoxycarbonylnipecotic acid)
To a 2 L four-necked flask equipped with a thermometer, a condenser, and a stirrer, 250 g (1.090 mol) of 1-tert-butoxycarbonylnipecotic acid prepared in Reference Example 1 was added, and 643.9 g of water, R -(+)-1-phenylethylamine 79.3 g (0.654 mol) and sodium hydroxide 17.4 g (0.436 mol) were added (optical resolution agent / basic additive = 0.6 / 0.4). ), And the temperature was raised to 80 ° C. After complete dissolution, the temperature was lowered to 68 ° C., seed crystals were added, and the mixture was aged at the same temperature for 1 hour. Thereafter, the mixture was slowly cooled to 25 ° C., and matured at the same temperature for 18 hours. The precipitated crystals were filtered, then washed with 200 g of water and vacuum dried to obtain 147.4 g of a diastereomeric salt of white crystals. . The optical purity of the salt is 86.7% d. e. The R-isomer yield in the obtained salt relative to the R-isomer of the charged 1-tert-butoxycarbonylnipecotic acid was 72.0%.

(ジアステレオマー塩の再結晶)
温度計、コンデンサー及び撹拌機の付いた500mL四つ口フラスコに、上記と同様の方法で得た光学純度88.3%d.e.(R)のジアステレオマー塩44.3g(0.126モル)、水85.6gを加え、99℃まで昇温した。完溶後、種晶を添加し、95℃付近で1時間熟成した。その後、25℃まで緩やかに冷却し、同温度付近で析出結晶をろ過し、次いで45.3gの水で洗浄、真空乾燥して白色結晶のジアステレオマー塩35.6gを得た。その塩の光学純度は、99.0%d.e.(R)であり、仕込みジアステレオマー塩のR体に対する取得塩中のR体収率は、85.4%であった。
H−NMR(DMSO−d,400MHz)δppm:7.41(d,J=7.8Hz,2H),7.33(t,J=7.3Hz,2H),7.25(t,J=7.1Hz,2H),5.70(brs,3H),4.13(q,J=6.7Hz,1H),3.96(m,1H),3.78(m,1H),2.82−2.68(m,2H),2.09(m,1H),1.90(m,1H),1.59(m,1H),1.39−1.26(m,14H)
13C−NMR(DMSO−d,400MHz)δppm:175.5,153.9,144.9,128.3,127.0,126.2,78.4,50.2,42.4,28.1,27.5,23.9
m.p.:173−174℃。
(Recrystallization of diastereomeric salts)
In a 500 mL four-necked flask equipped with a thermometer, a condenser and a stirrer, an optical purity of 88.3% d. e. 44.3 g (0.126 mol) of diastereomeric salt of (R) and 85.6 g of water were added, and the temperature was raised to 99 ° C. After complete dissolution, seed crystals were added and aged at around 95 ° C. for 1 hour. Thereafter, the mixture was slowly cooled to 25 ° C., and the precipitated crystals were filtered at around the same temperature, then washed with 45.3 g of water and vacuum dried to obtain 35.6 g of diastereomeric salt of white crystals. The optical purity of the salt is 99.0% d. e. The R-isomer yield in the obtained salt relative to the R-isomer of the charged diastereomeric salt was 85.4%.
1 H-NMR (DMSO-d 6 , 400 MHz) δ ppm: 7.41 (d, J = 7.8 Hz, 2H), 7.33 (t, J = 7.3 Hz, 2H), 7.25 (t, J = 7.1 Hz, 2H), 5.70 (brs, 3H), 4.13 (q, J = 6.7 Hz, 1H), 3.96 (m, 1H), 3.78 (m, 1H) , 2.82-2.68 (m, 2H), 2.09 (m, 1H), 1.90 (m, 1H), 1.59 (m, 1H), 1.39-1.26 (m , 14H)
13 C-NMR (DMSO-d 6 , 400 MHz) δ ppm: 175.5, 153.9, 144.9, 128.3, 127.0, 126.2, 78.4, 50.2, 42.4 28.1, 27.5, 23.9
m. p. : 173-174 ° C.

(ジアステレオマー塩の解塩)
温度計、コンデンサー及び撹拌機の付いた1L四つ口フラスコに、上記と同様の方法で得た光学純度99.9%d.e.の(R)のジアステレオマー塩70.0g(0.200モル)、水350g、水酸化ナトリウム9.6g(0.240モル)を加え、20〜30℃で完溶させた。次いで、トルエン329.2gを加えて、(R)−(+)−1−フェニルエチルアミンを抽出し、静置後、トルエン層を分液除去した。得られた水層に、さらにトルエン201.0gを加えて二次抽出し、静置後、トルエン層を分液除去した。その後、得られた水層に20%クエン酸182.7gを20〜25℃で滴下し(pHを13.1から4.0にした)、同温度で1時間熟成してから遠心分離機で固液分離し、水64.7gで洗浄、真空乾燥して白色結晶の(R)−1−tert−ブトキシカルボニルニペコチン酸43.6g(収率:95.1%)を得た。その光学純度は99.9%e.e.(R)のままであった。
(Salts of diastereomeric salts)
In a 1 L four-necked flask equipped with a thermometer, a condenser and a stirrer, an optical purity of 99.9% d. e. 70.0 g (0.200 mol) of diastereomeric salt of (R), 350 g of water, and 9.6 g (0.240 mol) of sodium hydroxide were added and completely dissolved at 20 to 30 ° C. Subsequently, 329.2 g of toluene was added to extract (R)-(+)-1-phenylethylamine, and after standing, the toluene layer was separated and removed. To the obtained aqueous layer, 201.0 g of toluene was further added for secondary extraction, and after standing, the toluene layer was separated and removed. Thereafter, 182.7 g of 20% citric acid was dropped into the obtained aqueous layer at 20 to 25 ° C. (pH was changed from 13.1 to 4.0), and the mixture was aged at the same temperature for 1 hour and then centrifuged. Solid-liquid separation, washing with 64.7 g of water, and vacuum drying gave 43.6 g (yield: 95.1%) of (R) -1-tert-butoxycarbonylnipecotic acid as white crystals. Its optical purity is 99.9% e.e. e. (R) remained.

(酸アミド化反応)
温度計、コンデンサー及び撹拌機の付いた1L四つ口フラスコに、光学純度99.9%e.e.の(R)−1−tert−ブトキシカルボニルニペコチン酸43.6g(0.190モル)、テトラヒドロフラン305.1g、トリエチルアミン19.2g(0.190モル)を加え、4℃まで冷却した。次いでクロロ炭酸エチル21.7g(0.200モル)を0〜10℃で滴下し、30分熟成した。その後、28%アンモニア水23.1g(0.380モル)を0〜10℃で滴下し、20℃まで昇温後1.5時間熟成した。熟成後、再び5℃以下まで冷却し、クロロ炭酸エチル12.4g(0.114モル)を0〜10℃で滴下し、20℃まで昇温後1時間熟成した。その後、5%重曹水70.2gを加えて撹拌抽出し、静置後、水層を分液除去した。得られたテトラフドロフラン層に水251.8gを加えてから、アスピレータで200mmHg、内温45℃に到達するまで減圧濃縮し、反応溶媒を295.9g留去させた。濃縮終了後、20℃まで冷却してから析出結晶をろ過し、40.6gの水で洗浄、真空乾燥して微赤色結晶の(R)−1−tert−ブトキシカルボニルニペコタミド37.2g(収率:85.8%)を得た。その光学純度は99.9%e.e.のままであった。
H−NMR(DMSO−d,400MHz)δppm:7.34(s,1H),6.83(s,1H),3.87(m,2H),2.67(m,2H),2.17(m,1H),1.73(dd,J=82.4,12.2Hz,2H),1.48−1.29(m,11H)
13C−NMR(DMSO−d,400MHz)δppm:174.8,153.8,78.6,41.8,28.0,27.5
m.p.:168−169℃。
(Acid amidation reaction)
In a 1 L four-necked flask equipped with a thermometer, condenser and stirrer, an optical purity of 99.9% e.e. e. (R) -1-tert-butoxycarbonylnipecotic acid (43.6 g, 0.190 mol), tetrahydrofuran 305.1 g, and triethylamine 19.2 g (0.190 mol) were added and cooled to 4 ° C. Subsequently, 21.7 g (0.200 mol) of ethyl chlorocarbonate was added dropwise at 0 to 10 ° C. and aged for 30 minutes. Thereafter, 23.1 g (0.380 mol) of 28% aqueous ammonia was added dropwise at 0 to 10 ° C., the temperature was raised to 20 ° C., and the mixture was aged for 1.5 hours. After aging, the mixture was cooled again to 5 ° C. or lower, 12.4 g (0.114 mol) of ethyl chlorocarbonate was added dropwise at 0 to 10 ° C., the temperature was raised to 20 ° C., and aging was performed for 1 hour. Thereafter, 70.2 g of 5% sodium bicarbonate water was added and extracted by stirring. After standing, the aqueous layer was separated and removed. After adding 251.8 g of water to the obtained tetrahydrofuran layer, it was concentrated under reduced pressure by an aspirator until it reached 200 mmHg and an internal temperature of 45 ° C., and 295.9 g of the reaction solvent was distilled off. After completion of the concentration, the mixture was cooled to 20 ° C., and then the precipitated crystals were filtered, washed with 40.6 g of water, dried in vacuo, and 37.2 g of (R) -1-tert-butoxycarbonylnipecotamide as slightly red crystals ( Yield: 85.8%). Its optical purity is 99.9% e.e. e. It remained.
1 H-NMR (DMSO-d 6 , 400 MHz) δ ppm: 7.34 (s, 1H), 6.83 (s, 1H), 3.87 (m, 2H), 2.67 (m, 2H), 2.17 (m, 1H), 1.73 (dd, J = 82.4, 12.2 Hz, 2H), 1.48-1.29 (m, 11H)
13 C-NMR (DMSO-d 6 , 400 MHz) δ ppm: 174.8, 153.8, 78.6, 41.8, 28.0, 27.5
m. p. : 168-169 ° C.

参考例2
(ホフマン転位反応)
温度計、コンデンサー及び撹拌機の付いた1L四つ口フラスコに、光学純度99.9%e.e.の(R)−1−tert−ブトキシカルボニルニペコタミド37.2g(0.163モル)、水372.0g、水酸化ナトリウム13.0g(0.326モル)を加えた。次いで、次亜塩素酸ナトリウム水溶液246.5g(7.4重量%,0.244モル)を20〜30℃で滴下し、同温度範囲で19時間熟成した。熟成後、反応液にテトラヒドロフラン223.2g、食塩66.7gを加えて撹拌し、静置後、分液してテトラヒドロフラン層に目的物を抽出した。さらに、水層にテトラヒドロフラン223.2gを加えて二次抽出し、水層を分液除去した。これらのテトラヒドロフラン層を合わせて減圧濃縮し、微黄色油状物の(R)−1−tert−ブトキシカルボニル−3−アミノピペリジン28.9g(収率:88.5%)を得た。その光学純度は99.9%e.e.のままであった。
H−NMR(DMSO−d,400MHz)δppm:3.80−3.71(m,2H),2.65−2.38(m,3H),1.77(d,J=12.7Hz,1H)1.60(m,1H),1.46−1.23(m,12H),1.08(m,1H)
13C−NMR(DMSO−d,400MHz)δppm:153.9,78.4,47.7,33.7,28.1。
Reference example 2
(Hoffman rearrangement reaction)
In a 1 L four-necked flask equipped with a thermometer, condenser and stirrer, an optical purity of 99.9% e.e. e. (R) -1-tert-butoxycarbonyl nipecotamide 37.2 g (0.163 mol), water 372.0 g, and sodium hydroxide 13.0 g (0.326 mol) were added. Next, 246.5 g (7.4% by weight, 0.244 mol) of an aqueous sodium hypochlorite solution was added dropwise at 20 to 30 ° C., and the mixture was aged for 19 hours in the same temperature range. After aging, 223.2 g of tetrahydrofuran and 66.7 g of sodium chloride were added to the reaction solution and stirred. After allowing to stand, the mixture was separated and the target product was extracted into the tetrahydrofuran layer. Further, 223.2 g of tetrahydrofuran was added to the aqueous layer, followed by secondary extraction, and the aqueous layer was separated and removed. These tetrahydrofuran layers were combined and concentrated under reduced pressure to obtain 28.9 g (yield: 88.5%) of (R) -1-tert-butoxycarbonyl-3-aminopiperidine as a slightly yellow oily substance. Its optical purity is 99.9% e.e. e. It remained.
1 H-NMR (DMSO-d 6 , 400 MHz) δ ppm: 3.80-3.71 (m, 2H), 2.65-2.38 (m, 3H), 1.77 (d, J = 12. 7Hz, 1H) 1.60 (m, 1H), 1.46-1.23 (m, 12H), 1.08 (m, 1H)
13 C-NMR (DMSO-d 6 , 400 MHz) δ ppm: 153.9, 78.4, 47.7, 33.7, 28.1.

(脱保護反応)
温度計、コンデンサー及び撹拌機の付いた1L四つ口フラスコに、光学純度99.9%e.e.の(R)−1−tert−ブトキシカルボニル−3−アミノピペリジン16.4g(0.082モル)、水178.6g、35%塩酸水溶液37.4gを加え、20〜30℃で6時間熟成した。熟成後、アスピレータで20mmHg、内温50℃に到達するまで減圧濃縮し、残渣にイソプロパノール50gを加えてから、さらに20mmHg、内温50℃に到達するまで減圧濃縮した。その後、残渣にメタノール42.6gを加え、50℃まで昇温して溶解させた後、内温20℃付近まで緩やかに冷却してから、酢酸エチル45.1gを滴下した。滴下後、10℃付近まで冷却してから1時間熟成した後、析出結晶をろ過し、真空乾燥して微黄色結晶の(R)−3−アミノピペリジン二塩酸塩12.8g(収率:90.0%)を得た。その光学純度は99.9%e.e.のままであった。
1H−NMR(DO,400MHz)δppm:3.73−3.61(m,2H),3.48(d,J=13.2Hz,1H),3.12−2.98(m,2H),2.28(d,J=13.2Hz,1H),2.13(m,1H),1.90−1.69(m,2H)
13C−NMR(DO,400MHz)δppm:45.6,45.3,44.0,26.9,20.8
m.p.:184−186℃
実施例2
(1−tert−ブトキシカルボニルニペコチン酸の光学分割)
温度計、コンデンサー及び撹拌機の付いた100mL四つ口フラスコに、参考例1と同様の方法で製造した1−tert−ブトキシカルボニルニペコチン酸11.5g(0.050モル)を加え、さらに水28.6g、(S)−(−)−1−フェニルエチルアミン3.6g(0.030モル)48%水酸化ナトリウム水溶液1.7g(0.020モル)を加え(光学分割剤/塩基性添加剤=0.6/0.4)、加えてから73℃まで昇温した(塩濃度:35重量%)。完溶後、65℃まで降温してから種晶を添加し、同温度付近で1時間熟成した。その後、25℃まで緩やかに冷却し、同温度付近で6時間熟成してから析出結晶をろ過し、次いで9.2gの水で洗浄、真空乾燥して白色結晶のジアステレオマー塩6.5gを得た。その塩の光学純度は、87.6%d.e.(R)であり、仕込み1−tert−ブトキシカルボニルニペコチン酸のS体に対する取得塩中のS体収率は、69.2%であった。結果を表1に示す。
(Deprotection reaction)
In a 1 L four-necked flask equipped with a thermometer, condenser and stirrer, an optical purity of 99.9% e.e. e. (R) -1-tert-butoxycarbonyl-3-aminopiperidine (16.4 g, 0.082 mol), water (178.6 g) and 35% aqueous hydrochloric acid (37.4 g) were added, and the mixture was aged at 20 to 30 ° C. for 6 hours. . After aging, the mixture was concentrated under reduced pressure with an aspirator until it reached 20 mmHg and an internal temperature of 50 ° C., and 50 g of isopropanol was added to the residue. Thereafter, 42.6 g of methanol was added to the residue, and the mixture was heated to 50 ° C. and dissolved, and then slowly cooled to about 20 ° C., and then 45.1 g of ethyl acetate was added dropwise. After the dropwise addition, the mixture was cooled to around 10 ° C. and aged for 1 hour, and then the precipitated crystals were filtered and dried in vacuo to give 12.8 g of (R) -3-aminopiperidine dihydrochloride as a slightly yellow crystal (yield: 90 0.0%). Its optical purity is 99.9% e.e. e. It remained.
1H-NMR (D 2 O, 400 MHz) δ ppm: 3.73-3.61 (m, 2H), 3.48 (d, J = 13.2 Hz, 1H), 3.12-2.98 (m, 2H), 2.28 (d, J = 13.2 Hz, 1H), 2.13 (m, 1H), 1.90-1.69 (m, 2H)
13C-NMR (D 2 O, 400 MHz) δ ppm: 45.6, 45.3, 44.0, 26.9, 20.8
m. p. 184-186 ° C
Example 2
(Optical resolution of 1-tert-butoxycarbonylnipecotic acid)
To a 100 mL four-necked flask equipped with a thermometer, a condenser and a stirrer was added 11.5 g (0.050 mol) of 1-tert-butoxycarbonylnipecotic acid produced in the same manner as in Reference Example 1, 28.6 g of water, 3.6 g (0.030 mol) of (S)-(−)-1-phenylethylamine, and 1.7 g (0.020 mol) of 48% aqueous sodium hydroxide solution were added (optical resolution agent / basic). Additive = 0.6 / 0.4), and then the temperature was raised to 73 ° C. (salt concentration: 35% by weight). After complete dissolution, the temperature was lowered to 65 ° C., seed crystals were added, and the mixture was aged at the same temperature for 1 hour. Thereafter, the mixture is slowly cooled to 25 ° C. and aged for 6 hours at the same temperature. The precipitated crystals are filtered, then washed with 9.2 g of water and vacuum dried to obtain 6.5 g of diastereomeric salt of white crystals. Obtained. The optical purity of the salt is 87.6% d. e. (S), and the yield of S form in the obtained salt relative to the S form of the charged 1-tert-butoxycarbonylnipecotic acid was 69.2%. The results are shown in Table 1.

(ジアステレオマー塩の再結晶)
温度計、コンデンサー及び撹拌機の付いた100mL四つ口フラスコに、上記のジアステレオマー塩6.5g(0.018モル)、水15.0gを加え、99℃まで昇温した。完溶後、種晶を添加し、95℃付近で1時間熟成した。その後、25℃まで緩やかに冷却し、同温度付近で析出結晶をろ過し、湿体のジアステレオマー塩5.2gを得た。同様の操作を再度おこない、真空乾燥して白色結晶のジアステレオマー塩3.8gを得た。その塩の光学純度は、99.9%d.e.(S)であり、仕込み1−tert−ブトキシカルボニルニペコチン酸のS体に対する取得塩中のS体収率は、63.2%であった。
H−NMR(DMSO−d,400MHz)δppm:7.41(d,J=7.8Hz,2H),7.33(t,J=7.3Hz,2H),7.25(t,J=7.1Hz,2H),5.70(brs,3H),4.13(q,J=6.7Hz,1H),3.96(m,1H),3.78(m,1H),2.82−2.68(m,2H),2.09(m,1H),1.90(m,1H),1.59(m,1H),1.39−1.26(m,14H)
13C−NMR(DMSO−d,400MHz)δppm:175.5,153.9,144.9,128.3,127.0,126.2,78.4,50.2,42.4,28.1,27.5,23.9
m.p.:173−174℃。
(Recrystallization of diastereomeric salts)
6.5 g (0.018 mol) of the diastereomeric salt and 15.0 g of water were added to a 100 mL four-necked flask equipped with a thermometer, a condenser and a stirrer, and the temperature was raised to 99 ° C. After complete dissolution, seed crystals were added and aged at around 95 ° C. for 1 hour. Thereafter, the mixture was slowly cooled to 25 ° C., and the precipitated crystals were filtered at around the same temperature to obtain 5.2 g of a wet diastereomeric salt. The same operation was performed again, followed by vacuum drying to obtain 3.8 g of a white crystal diastereomer salt. The optical purity of the salt is 99.9% d. e. (S), and the yield of S form in the obtained salt relative to the S form of the charged 1-tert-butoxycarbonylnipecotic acid was 63.2%.
1 H-NMR (DMSO-d 6 , 400 MHz) δ ppm: 7.41 (d, J = 7.8 Hz, 2H), 7.33 (t, J = 7.3 Hz, 2H), 7.25 (t, J = 7.1 Hz, 2H), 5.70 (brs, 3H), 4.13 (q, J = 6.7 Hz, 1H), 3.96 (m, 1H), 3.78 (m, 1H) , 2.82-2.68 (m, 2H), 2.09 (m, 1H), 1.90 (m, 1H), 1.59 (m, 1H), 1.39-1.26 (m , 14H)
13 C-NMR (DMSO-d 6 , 400 MHz) δ ppm: 175.5, 153.9, 144.9, 128.3, 127.0, 126.2, 78.4, 50.2, 42.4 28.1, 27.5, 23.9
m. p. : 173-174 ° C.

(ジアステレオマー塩の解塩)
温度計、コンデンサー及び撹拌機の付いた100mL四つ口フラスコに、上記のジアステレオマー塩3.8g(0.011モル)、水19.0g、48%水酸化ナトリウム水溶液1.1g(0.013モル)を加え、20〜30℃で完溶させた。次いで、トルエン17.9gを加えて、(S)−(−)−1−フェニルエチルアミンを抽出し、静置後、トルエン層を分液除去した。得られた水層に、さらにトルエン10.7gを加えて二次抽出し、静置後、トルエン層を分液除去した。その後、得られた水層に20%クエン酸9.9gを20〜25℃で滴下し(pHを13.1から4.0にした)、同温度で1時間熟成してから遠心分離機で固液分離し、水3.8gで洗浄、真空乾燥して白色結晶の(S)−1−tert−ブトキシカルボニルニペコチン酸2.3g(収率:92.0%)を得た。その光学純度は99.9%e.e.(S)のままであった。
(Salts of diastereomeric salts)
In a 100 mL four-necked flask equipped with a thermometer, a condenser and a stirrer, 3.8 g (0.011 mol) of the above diastereomeric salt, 19.0 g of water, 1.1 g of 48% aqueous sodium hydroxide solution (0. 013 mol) was added and completely dissolved at 20-30 ° C. Subsequently, 17.9 g of toluene was added to extract (S)-(−)-1-phenylethylamine, and after standing, the toluene layer was separated and removed. To the obtained aqueous layer, 10.7 g of toluene was further added for secondary extraction, and after standing, the toluene layer was separated and removed. Thereafter, 9.9 g of 20% citric acid was added dropwise to the obtained aqueous layer at 20 to 25 ° C. (pH was changed from 13.1 to 4.0), and the mixture was aged at the same temperature for 1 hour and then centrifuged. Solid-liquid separation was performed, followed by washing with 3.8 g of water and vacuum drying to obtain 2.3 g (yield: 92.0%) of (S) -1-tert-butoxycarbonylnipecotic acid as white crystals. Its optical purity is 99.9% e.e. e. (S) remained.

実施例3
温度計、コンデンサー及び撹拌機の付いた100mL四つ口フラスコに、参考例1と同様の方法で製造した1−tert−ブトキシカルボニルニペコチン酸11.5g(0.050モル)を加え、さらに水31.8g、(R)−(+)−1−フェニルエチルアミン3.6g(0.030モル)、トリエチルアミン2.0g(0.020モル)を加え(光学分割剤/塩基性添加剤=0.6/0.4)74℃まで昇温した。完溶後、66℃まで降温してから種晶を添加し、同温度付近で1時間熟成した。その後、25℃まで緩やかに冷却し、同温度付近で6時間熟成してから析出結晶をろ過し、次いで8.6gの水で洗浄、真空乾燥して白色結晶のジアステレオマー塩6.3gを得た。その塩の光学純度は、87.7%d.e.(R)であり、仕込み1−tert−ブトキシカルボニルニペコチン酸のR体に対する取得塩中のR体収率は、72.2%であった。結果を表1に示す。
Example 3
To a 100 mL four-necked flask equipped with a thermometer, a condenser and a stirrer was added 11.5 g (0.050 mol) of 1-tert-butoxycarbonylnipecotic acid produced in the same manner as in Reference Example 1, 31.8 g of water, 3.6 g (0.030 mol) of (R)-(+)-1-phenylethylamine, and 2.0 g (0.020 mol) of triethylamine were added (optical resolution agent / basic additive = 0). .6 / 0.4) The temperature was raised to 74 ° C. After complete dissolution, the temperature was lowered to 66 ° C., seed crystals were added, and aging was carried out at the same temperature for 1 hour. Thereafter, the mixture is slowly cooled to 25 ° C. and aged for 6 hours at the same temperature. The precipitated crystals are filtered, then washed with 8.6 g of water and vacuum dried to obtain 6.3 g of diastereomeric salt of white crystals. Obtained. The optical purity of the salt is 87.7% d. e. The R-isomer yield in the obtained salt relative to the R-isomer of the charged 1-tert-butoxycarbonylnipecotic acid was 72.2%. The results are shown in Table 1.

実施例4
実施例3において、水使用量を1−tert−ブトキシカルボニルニペコチン酸に対して、8.4重量倍に変えた以外は実施例2と同様に操作をおこなった。結果を表1に示す。
Example 4
In Example 3, operation was performed in the same manner as in Example 2 except that the amount of water used was changed to 8.4 times by weight with respect to 1-tert-butoxycarbonylnipecotic acid. The results are shown in Table 1.

実施例5
実施例3において、塩基性添加剤としてトリエチルアミンを光学分割剤/塩基性添加剤=0.8/0.2(モル/モル)となるように加え、水使用量を1−tert−ブトキシカルボニルニペコチン酸に対して、6.0重量倍に変えた以外は実施例3と同様に操作をおこなった。結果を表1に示す。
Example 5
In Example 3, triethylamine was added as a basic additive so that the optical resolution agent / basic additive = 0.8 / 0.2 (mol / mol), and the amount of water used was changed to 1-tert-butoxycarbonylni. The operation was performed in the same manner as in Example 3 except that the weight was changed to 6.0 times by weight with respect to pecotic acid. The results are shown in Table 1.

実施例6
実施例3において、塩基性添加剤を使用せず、水使用量を1−tert−ブトキシカルボニルニペコチン酸に対して、8.6重量倍に変えた以外は実施例3と同様に操作をおこなった。結果を表1に示す。
Example 6
In Example 3, the basic operation was not used, and the operation was performed in the same manner as in Example 3 except that the amount of water used was changed to 8.6 times the weight of 1-tert-butoxycarbonylnipecotic acid. I did it. The results are shown in Table 1.

比較例1
実施例3において、溶媒をエタノールに、塩基性添加剤を使用せず、溶媒使用量を1−tert−ブトキシカルボニルニペコチン酸に対して、2.3重量倍に変えた以外は実施例3と同様に操作をおこなった。結果を表1に示す。
Comparative Example 1
In Example 3, the solvent was changed to ethanol, the basic additive was not used, and the amount of the solvent used was changed to 2.3 times by weight with respect to 1-tert-butoxycarbonylnipecotic acid. The same operation was performed. The results are shown in Table 1.

比較例2
実施例3において、溶媒をイソプロパノールに、塩基性添加剤を使用せず、溶媒使用量を1−tert−ブトキシカルボニルニペコチン酸に対して、3.6重量倍に変えた以外は実施例3と同様に操作をおこなった。
Comparative Example 2
In Example 3, the solvent was changed to isopropanol, no basic additive was used, and the amount of the solvent used was changed to 3.6 times by weight with respect to 1-tert-butoxycarbonylnipecotic acid. The same operation was performed.

Figure 0005585822
Figure 0005585822

Claims (2)

光学活性1−フェニルエチルアミンを光学分割剤として用い、水中で、(R)−および(S)−1−tert−ブトキシカルボニルニペコチン酸に対して、光学分割剤使用量と合わせて、0.5〜1.5モル倍の塩基性添加剤を加えて、
Figure 0005585822
表される(R)−および(S)−1−tert−ブトキシカルボニルニペコチン酸のラセミ混合物を光学分割して
Figure 0005585822
(*は当該炭素原子が光学活性中心であることを示す)で表される光学活性1−tert−ブトキシカルボニルニペコチン酸を製造する光学活性ニペコチン酸誘導体の製造方法。
Using an optically active 1-phenylethylamine as the optical resolution agent, in water, (R) - and against (S) -1-tert- butoxycarbonyl-D Pekoe Chin acid, together with an optical resolution agent amount, 0. Add 5 to 1.5 moles of basic additive,
Figure 0005585822
In represented by (R) - and (S) the -1-tert-butoxy racemic mixture of carbonyl nipecotate by optical resolution,
Figure 0005585822
(* Shows that the said carbon atom is an optically active center) The manufacturing method of the optically active nipecotic acid derivative which manufactures the optically active 1-tert-butoxycarbonyl nipecotic acid represented.
光学活性1−フェニルエチルアミンを光学分割剤として用い、水中で、(R)−および(S)−1−tert−ブトキシカルボニルニペコチン酸に対して、光学分割剤使用量と合わせて、0.5〜1.5モル倍の塩基性添加剤を加えて、
Figure 0005585822
で表される(R)−および(S)−1−tert−ブトキシカルボニルニペコチン酸のラセミ混合物を光学分割して、
Figure 0005585822
(*は当該炭素原子が光学活性中心であることを示す)で表される光学活性1−tert−ブトキシカルボニルニペコチン酸を製造し、
次いで、製造された光学活性1−tert−ブトキシカルボニルニペコチン酸をテトラヒドロフラン中でアンモニア水を使用してアミド化して
Figure 0005585822
(*は当該炭素原子が光学活性中心であることを示す)で表される光学活性1−tert−ブトキシカルボニルニペコタミドを製造するニペコタミド誘導体の製造方法。
Optically active 1-phenylethylamine was used as an optical resolution agent, and was combined with the amount of optical resolution agent used in water with respect to (R)-and (S) -1-tert-butoxycarbonylnipecotic acid in an amount of 0. Add 5 to 1.5 moles of basic additive,
Figure 0005585822
(R)-and (S) -1-tert-butoxycarbonylnipecotic acid racemic mixture represented by
Figure 0005585822
(* Indicates that the carbon atom is an optically active center), an optically active 1-tert-butoxycarbonylnipecotic acid represented by
Then, the manufacturing has been optically active 1-tert-butoxycarbonyl nipecotate by amidation using ammonia in tetrahydrofuran,
Figure 0005585822
(* Is the carbon atom to indicate that an optically active center) manufacturing method of nipecotamide derivative for producing an optically active 1-tert-butoxycarbonyl Nipekotami de represented by.
JP2010109000A 2010-05-11 2010-05-11 Method for producing optically active nipecotic acid derivative Active JP5585822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109000A JP5585822B2 (en) 2010-05-11 2010-05-11 Method for producing optically active nipecotic acid derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109000A JP5585822B2 (en) 2010-05-11 2010-05-11 Method for producing optically active nipecotic acid derivative

Publications (2)

Publication Number Publication Date
JP2011236157A JP2011236157A (en) 2011-11-24
JP5585822B2 true JP5585822B2 (en) 2014-09-10

Family

ID=45324549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109000A Active JP5585822B2 (en) 2010-05-11 2010-05-11 Method for producing optically active nipecotic acid derivative

Country Status (1)

Country Link
JP (1) JP5585822B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6496549B2 (en) * 2011-11-30 2019-04-03 サレプタ セラピューティクス, インコーポレイテッド Induced exon inclusion in spinal muscular atrophy
ES2832531T3 (en) 2011-11-30 2021-06-10 Sarepta Therapeutics Inc Oligonucleotides for the treatment of repeat expansion diseases
PL2958894T3 (en) 2013-02-20 2020-06-29 Reuter Chemische Apparatebau E.K. Process for the preparation of enantiomerically enriched 3-aminopiperidine
US10905709B2 (en) 2015-08-28 2021-02-02 Sarepta Therapeutics, Inc. Modified antisense oligomers for exon inclusion in spinal muscular atrophy
CN105237463B (en) * 2015-10-09 2017-10-10 刘卫国 Preparation methods of one kind (3R, 4R) (base of 1 benzyl, 4 methyl piperidine 3) methylamine L bis- to toluoyltartrates

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL107836A (en) * 1992-12-11 1998-01-04 Merck & Co Inc Spiro piperidines and homologs, their preparation and pharmaceutical compositions containing them
JPH0967344A (en) * 1995-09-05 1997-03-11 Koei Chem Co Ltd Production of optically active n-benzyloxycarbonylpipecolic acid
UA76977C2 (en) * 2001-03-02 2006-10-16 Icos Corp Aryl- and heteroaryl substituted chk1 inhibitors and their use as radiosensitizers and chemosensitizers
US6914048B2 (en) * 2001-09-18 2005-07-05 Wisconsin Alumni Research Foundation Method for delivery of molecules to intracellular targets
GB0510139D0 (en) * 2005-05-18 2005-06-22 Addex Pharmaceuticals Sa Novel compounds B1
ATE502951T1 (en) * 2006-05-23 2011-04-15 Irm Llc COMPOUNDS AND COMPOSITIONS AS CHANNEL-ACTIVATE PROTEASE INHIBITORS
GB0622202D0 (en) * 2006-11-07 2006-12-20 Addex Pharmaceuticals Sa Novel compounds
JP5265513B2 (en) * 2007-02-19 2013-08-14 株式会社カネカ Process for producing optically active 3-aminopiperidine or a salt thereof
JP5122871B2 (en) * 2007-06-01 2013-01-16 大東化学株式会社 Process for producing optically active N-benzyloxycarbonylamino acid and diastereomeric salt

Also Published As

Publication number Publication date
JP2011236157A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
US7923558B2 (en) Method for obtaining pure tetrahydrocannabinol
JP2002525264A (en) Novel methods and intermediates for the preparation of donepezil and related compounds
JP5585822B2 (en) Method for producing optically active nipecotic acid derivative
US11897843B2 (en) Process for the preparation of enantiomerically enriched 3-aminopiperidine
EP2914574B1 (en) New process
US5965734A (en) Processes and intermediates for preparing 2-substituted piperidine stereoisomers
EP3057966B1 (en) Process for the industrial synthesis of lurasidone
KR20140013232A (en) Process for the preparation of n-(2-hydroxyethyl)nicotinamide and nicorandil
JP2010111684A (en) Stereoselective alkylation of chiral 2-methyl-4-protected piperazine
EP1399422A2 (en) Novel crystalline forms of 4-[4-[4-(hydroxydiphenylmethyl)-1-piperidinyl] -1-hydroxybutyl] -a,a-dimethylbenzene acetic acid and its hydrochloride
JP5463051B2 (en) Method for producing 1,4-dihydropyridine derivative
EP3794001B1 (en) Intermediates and processes for the preparation of linagliptin and its salts
JP3819532B2 (en) Piperidine derivatives and method for producing the same
WO2021020998A1 (en) Method for producing roxadustat
EP1341762A1 (en) Process for resolving racemic mixtures of piperidine derivatives
JP2002371060A (en) Method for producing optically active aminopiperidine derivative
EP3199523B1 (en) The new process for producing n-phenyl-n-(4-piperidinyl) amide derivatives such as remifentanil and carfentanil
KR100896087B1 (en) Synthetic method of optically pure 2-methylpyrrolidine and the salt thereof
JP2016511761A (en) Method for synthesizing 4-piperidin-4-yl-benzene-1,3-diol and salts thereof, and novel compound tert-butyl 4- (2,4-dihydroxy-phenyl) -4-hydroxy-piperidine-1-carboxylate
WO2011117885A1 (en) Process for preparation of enantiomers of licarbazepine
JP2003160560A (en) Method for producing trans-4-substituted piperidine-2- carboxylate
KR20060125218A (en) The optical resolution method of benzoxazine derivative
US20100305330A1 (en) Process for preparing 2-alkyl-3-halo-6-nitrilpyridine and its carboxylic acid and ester derivatives
JP2014185091A (en) Method of manufacturing 3-amine-4-piperidone derivative
JP2003342267A (en) Method for producing epoxybutanoic acid ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140709

R150 Certificate of patent or registration of utility model

Ref document number: 5585822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250