Nothing Special   »   [go: up one dir, main page]

JP5580712B2 - Anthracene derivative, curable composition and cured product - Google Patents

Anthracene derivative, curable composition and cured product Download PDF

Info

Publication number
JP5580712B2
JP5580712B2 JP2010236918A JP2010236918A JP5580712B2 JP 5580712 B2 JP5580712 B2 JP 5580712B2 JP 2010236918 A JP2010236918 A JP 2010236918A JP 2010236918 A JP2010236918 A JP 2010236918A JP 5580712 B2 JP5580712 B2 JP 5580712B2
Authority
JP
Japan
Prior art keywords
group
anthracene derivative
anthracene
curable composition
cured product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010236918A
Other languages
Japanese (ja)
Other versions
JP2012087103A (en
Inventor
博之 兵藤
秀和 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP2010236918A priority Critical patent/JP5580712B2/en
Publication of JP2012087103A publication Critical patent/JP2012087103A/en
Application granted granted Critical
Publication of JP5580712B2 publication Critical patent/JP5580712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

本発明は、ベンゾオキサジン構造を有する新規なアントラセン誘導体、これを含む硬化性組成物及びこの硬化物に関する。   The present invention relates to a novel anthracene derivative having a benzoxazine structure, a curable composition containing the derivative, and the cured product.

ベンゾオキサジン構造を有する化合物は、揮発性の副生成物を発生することなく、加熱によりベンゾオキサジン環が開環重合して硬化する。この硬化物は優れた耐熱性及び難燃性等を有することから、フェノール樹脂やエポキシ樹脂等の熱硬化性樹脂に替わる樹脂として注目されている。このようなベンゾオキサジン構造を有する化合物を含む組成物は、例えば接着剤、塗料、積層板、成型材料、注型材料、電気・電子部品、自動車部品等の用途に広く使用することができる。   The compound having a benzoxazine structure is cured by ring-opening polymerization of the benzoxazine ring by heating without generating a volatile by-product. Since this hardened | cured material has the outstanding heat resistance, a flame retardance, etc., it attracts attention as resin replaced with thermosetting resins, such as a phenol resin and an epoxy resin. The composition containing such a compound having a benzoxazine structure can be widely used for applications such as adhesives, paints, laminates, molding materials, casting materials, electric / electronic parts, automobile parts and the like.

上記ベンゾオキサジン構造を有する化合物に関する技術としては、硬化時間の短縮等を目的とした上記化合物を含む熱硬化性樹脂組成物(特開2001−234029号公報参照)や、所定のベンゾオキサジン化合物を含み耐熱性等に優れる熱硬化性樹脂組成物(特開2007−8842号公報参照)等が提案されている。   Examples of the technology relating to the compound having the benzoxazine structure include a thermosetting resin composition containing the above compound for the purpose of shortening the curing time (see JP 2001-234029 A) and a predetermined benzoxazine compound. Thermosetting resin compositions excellent in heat resistance and the like (see JP 2007-8842 A) and the like have been proposed.

近年、このベンゾオキサジン構造を有する化合物に対する要求はより高まり、上述の耐熱性や難燃性の更なる向上に加えて、例えば、高屈折性や蛍光特性等の機能を有する高付加価値化された化合物等の開発が求められている。   In recent years, demands for compounds having this benzoxazine structure have increased, and in addition to the above-described further improvements in heat resistance and flame retardancy, for example, high added value having functions such as high refractive properties and fluorescent properties has been achieved. Development of compounds and the like is required.

特開2007−8842号公報JP 2007-8842 A 特開2001−234029号公報JP 2001-234029 A

本発明は、上述のような事情に基づいてなされたものであり、高い屈折率及び蛍光特性を有し、得られる硬化物が優れた耐熱性及び難燃性を発揮することができ、ベンゾオキサジン構造を備える新規な化合物としてのアントラセン誘導体、この化合物を含む硬化性組成物及びこの硬化物を提供することを目的とする。   The present invention has been made based on the above circumstances, has a high refractive index and fluorescence characteristics, and the obtained cured product can exhibit excellent heat resistance and flame retardancy. An object of the present invention is to provide an anthracene derivative as a novel compound having a structure, a curable composition containing the compound, and a cured product thereof.

上記課題を解決するためになされた発明は、
下記式(1)で表されるアントラセン誘導体である。
(式(1)中、R及びRは、それぞれ独立して、炭素数1〜4の直鎖状若しくは分岐状のアルキル基、シクロアルキル基、アリル基、アラルキル基又はアリール基である。a及びbは、それぞれ独立して、0〜3の整数である。a又はbが2以上の場合、複数のR又はRは、それぞれ独立して上記定義を満たす。R及びRは、それぞれ独立して、炭素数1〜4の直鎖状若しくは分岐状のアルキル基、シクロアルキル基、アリル基、アラルキル基又はフェニル基であり、このフェニル基の有する水素原子の一部又は全部がアルキル基で置換されていてもよい。)
The invention made to solve the above problems is
It is an anthracene derivative represented by the following formula (1).
(In the formula (1), R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 4 carbon atoms, a cycloalkyl group, an allyl group, an aralkyl group or an aryl group. a and b are each independently an integer of 0 to 3. When a or b is 2 or more, a plurality of R 1 or R 2 independently satisfy the above definition R 3 and R 4 Are each independently a linear or branched alkyl group having 1 to 4 carbon atoms, a cycloalkyl group, an allyl group, an aralkyl group or a phenyl group, and part or all of the hydrogen atoms of the phenyl group May be substituted with an alkyl group.)

本発明の新規なこのアントラセン誘導体は、ベンゾオキサジン構造とアントラセン骨格とを併せ持つことで耐熱性や難燃性により優れる熱硬化性樹脂材料として好適に用いることができる。さらに、当該アントラセン誘導体は、このようにアントラセン骨格を有するため、アントラセン特有の諸特性、例えば高光屈折率性や紫外線に対する蛍光性能等を備える。   The novel anthracene derivative of the present invention can be suitably used as a thermosetting resin material that is superior in heat resistance and flame retardancy by having both a benzoxazine structure and an anthracene skeleton. Furthermore, since the anthracene derivative has an anthracene skeleton in this way, it has various characteristics peculiar to anthracene, such as high light refractive index property and fluorescence performance against ultraviolet rays.

上記a及びbが0であり、R及びRがフェニル基であるとよい。当該アントラセン誘導体は、上記構造を有することで炭素密度が特に高く、屈折率や耐熱性等をより高めることができる。また、当該アントラセン誘導体は、この化合物自体及びこの化合物からの硬化物を効率よく製造することができる。 The a and b is 0, may R 3 and R 4 is a phenyl group. Since the anthracene derivative has the above structure, the carbon density is particularly high, and the refractive index, heat resistance, and the like can be further increased. Moreover, the said anthracene derivative can manufacture efficiently this compound itself and the hardened | cured material from this compound.

本発明の硬化性組成物は、上記アントラセン誘導体及び/又はこのアントラセン誘導体から得られる重合体を含むものである。当該硬化性組成物からは、耐熱性、難燃性等に優れ、かつ蛍光特性などのアントラセン骨格を有する化合物に特有な性質をも兼ね備えた硬化物を得ることができる。   The curable composition of this invention contains the polymer obtained from the said anthracene derivative and / or this anthracene derivative. From the said curable composition, the cured | curing material which was excellent also in the heat resistance, a flame retardance, etc., and also has the property peculiar to the compound which has anthracene structure, such as a fluorescence characteristic, can be obtained.

本発明の硬化物は、上記硬化性組成物を硬化して得られるものである。当該硬化物は、上記諸特性に優れており、多くの分野へ活用可能である。   The cured product of the present invention is obtained by curing the curable composition. The cured product is excellent in the above properties and can be used in many fields.

以上説明したように、本発明のアントラセン誘導体は高い屈折率及び蛍光特性を有し、得られる硬化物が優れた耐熱性及び難燃性を発揮することができる。従って、本発明のアントラセン誘導体又はこの重合体を含む硬化性組成物及びこの硬化物は、汎用性に優れ、さらに材料の高機能化や新たな特性の付与に極めて有用である。当該硬化性組成物及びこの硬化物は、例えば接着剤、塗料、積層板、成型材料、注型材料、半導体封止材料、光学材料、フォトレジスト材料等の多岐の分野での応用展開を図ることができる。   As described above, the anthracene derivative of the present invention has a high refractive index and fluorescence characteristics, and the resulting cured product can exhibit excellent heat resistance and flame retardancy. Therefore, the curable composition containing the anthracene derivative of the present invention or the polymer and the cured product are excellent in versatility, and are extremely useful for enhancing the functionality of the material and imparting new characteristics. The curable composition and the cured product should be applied in various fields such as adhesives, paints, laminates, molding materials, casting materials, semiconductor sealing materials, optical materials, and photoresist materials. Can do.

実施例1のアントラセン誘導体のH−NMRチャートを示す図である。1 is a diagram showing a 1 H-NMR chart of an anthracene derivative of Example 1. FIG. 実施例1のアントラセン誘導体の13C−NMRチャートを示す図である。1 is a diagram showing a 13 C-NMR chart of an anthracene derivative of Example 1. FIG. 実施例1のアントラセン誘導体の吸収スペクトルを示す図である。2 is a graph showing an absorption spectrum of an anthracene derivative of Example 1. FIG. 実施例1のアントラセン誘導体の蛍光スペクトルを示す図である。2 is a graph showing a fluorescence spectrum of an anthracene derivative of Example 1. FIG.

以下、本発明の実施形態をアントラセン誘導体、硬化性組成物及びこの硬化物の順に詳説する。
<アントラセン誘導体>
本発明のアントラセン誘導体は、上記式(1)で表される化合物である。当該アントラセン誘導体は、ベンゾオキサジン構造とアントラセン骨格とを併せ持つことで耐熱性や難燃性により優れる熱硬化性樹脂材料として好適に用いることができる。さらに、当該アントラセン誘導体は、このようにアントラセン骨格を有するため、アントラセン特有の諸特性、例えば高光屈折率性や紫外線に対する蛍光性能等を備える。
Hereinafter, embodiments of the present invention will be described in detail in the order of an anthracene derivative, a curable composition, and this cured product.
<Anthracene derivative>
The anthracene derivative of the present invention is a compound represented by the above formula (1). The anthracene derivative can be suitably used as a thermosetting resin material that is superior in heat resistance and flame retardancy by having both a benzoxazine structure and an anthracene skeleton. Furthermore, since the anthracene derivative has an anthracene skeleton in this way, it has various characteristics peculiar to anthracene, such as high light refractive index property and fluorescence performance against ultraviolet rays.

及びRは、それぞれ独立して、炭素数1〜4の直鎖状若しくは分岐状のアルキル基、シクロアルキル基、アリル基、アラルキル基又はアリール基である。この炭素数1〜4の直鎖状又は分岐状のアルキル基としては、メチル基、エチル基、n−プロピル基、n−ブチル基、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基が挙げられる。上記シクロアルキル基としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等が挙げられる。上記アラルキル基としては、ベンジル基、フェネルチル基等が挙げられる。また、上記アリール基としては、置換基を有していてもよい芳香環から1つの水素を除いた基が挙げられ、具体例としてはフェニル基、1−ナフチル基、2−ナフチル基、1−アンスリル基、9−アンスリル基、2−フェナントリル基、3−フェナントリル基、9−フェナントリル基、1−ピレニル基、5−ナフタセニル基、1−インデニル基、2−アズレニル基、1−アセナフチル基、2−フルオレニル基、9−フルオレニル基、3−ペリレニル基、o−トリル基、m−トリル基、p−トリル基、2,3−キシリル基、2,5−キシリル基、メシチル基、p−クメニル基、p−ドデシルフェニル基、o−メトキシフェニル基、m−メトキシフェニル基、p−メトキシフェニル基、2,6−ジメトキシフェニル基、3,4−ジメトキシフェニル基、3,4,5−トリメトキシフェニル基、p−シクロヘキシルフェニル基、4−ビフェニル基、o−フルオロフェニル基、m−クロロフェニル基、p−ブロモフェニル基、p−ヒドロキシフェニル基、m−カルボキシフェニル基、o−メルカプトフェニル基、p−シアノフェニル基、m−ニトロフェニル基、m−アジドフェニル基等を挙げることができる。 R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 4 carbon atoms, a cycloalkyl group, an allyl group, an aralkyl group, or an aryl group. Examples of the linear or branched alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, isopropyl group, isobutyl group, sec-butyl group, and tert-butyl group. Is mentioned. Examples of the cycloalkyl group include a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. Examples of the aralkyl group include benzyl group and phenethyl group. Moreover, as said aryl group, the group remove | excluding one hydrogen from the aromatic ring which may have a substituent is mentioned, As a specific example, a phenyl group, 1-naphthyl group, 2-naphthyl group, 1- Anthryl group, 9-anthryl group, 2-phenanthryl group, 3-phenanthryl group, 9-phenanthryl group, 1-pyrenyl group, 5-naphthacenyl group, 1-indenyl group, 2-azurenyl group, 1-acenaphthyl group, 2- Fluorenyl group, 9-fluorenyl group, 3-perylenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,3-xylyl group, 2,5-xylyl group, mesityl group, p-cumenyl group, p-dodecylphenyl group, o-methoxyphenyl group, m-methoxyphenyl group, p-methoxyphenyl group, 2,6-dimethoxyphenyl group, 3,4-dimethoxypheny Group, 3,4,5-trimethoxyphenyl group, p-cyclohexylphenyl group, 4-biphenyl group, o-fluorophenyl group, m-chlorophenyl group, p-bromophenyl group, p-hydroxyphenyl group, m-carboxyl A phenyl group, o-mercaptophenyl group, p-cyanophenyl group, m-nitrophenyl group, m-azidophenyl group and the like can be mentioned.

a及びbは、それぞれ独立して0〜3の整数であるが、共に0であることが好ましい。a及びbが0であることで、当該アントラセン誘導体の炭素密度を高めることができ、屈折率や耐熱性等をより高めることができるとともに、この化合物自体及びこの化合物からの硬化物を効率よく製造することができる。   a and b are each independently an integer of 0 to 3, and preferably both are 0. When a and b are 0, the carbon density of the anthracene derivative can be increased, the refractive index and heat resistance can be further increased, and the compound itself and a cured product from the compound can be efficiently produced. can do.

及びRは、それぞれ独立して炭素数1〜4の直鎖状若しくは分岐状のアルキル基又はフェニル基であり、このフェニル基の有する水素原子の一部又は全部はアルキル基で置換されていてもよい。 R 3 and R 4 are each independently a linear or branched alkyl group having 1 to 4 carbon atoms or a phenyl group, and part or all of the hydrogen atoms of the phenyl group are substituted with an alkyl group. It may be.

この炭素数1〜4の直鎖状又は分岐状のアルキル基としては、上記R及びRで例示したものを挙げることができる。 Examples of the linear or branched alkyl group having 1 to 4 carbon atoms include those exemplified above for R 1 and R 2 .

上記フェニル基の有する水素原子の一部又は全部を置換するアルキル基としては、例えば炭素数1〜10の直鎖状又は分岐状のアルキル基を挙げることができる。炭素数1〜10の直鎖状又は分岐状のアルキル基としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、イソプロピル基、イソブチル基、イソペンチル基、sec−ブチル基、tert−ブチル基、sec−ペンチル基、tert−ペンチル基、tert−オクチル基等を挙げることができる。   As an alkyl group which substitutes a part or all of the hydrogen atom which the said phenyl group has, a C1-C10 linear or branched alkyl group can be mentioned, for example. Examples of the linear or branched alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n -Octyl group, isopropyl group, isobutyl group, isopentyl group, sec-butyl group, tert-butyl group, sec-pentyl group, tert-pentyl group, tert-octyl group and the like can be mentioned.

及びRとしては、フェニル基が好ましい。R及びRがフェニル基であることで、当該アントラセン誘導体の炭素密度を高めることができ、屈折率や耐熱性等をより高めることができる。 R 3 and R 4 are preferably a phenyl group. When R 3 and R 4 are phenyl groups, the carbon density of the anthracene derivative can be increased, and the refractive index, heat resistance, and the like can be further increased.

当該アントラセン誘導体において、上記a及びbが0であり、かつ、R及びRがフェニル基であるとよい。当該アントラセン誘導体は、上記構造を有することで炭素密度が特に高く、屈折率や耐熱性等をより高めることができる。また、当該アントラセン誘導体は、この化合物自体及びこの化合物からの硬化物を効率よく製造することができる。 In the anthracene derivative, a and b are 0, and R 3 and R 4 may be a phenyl group. Since the anthracene derivative has the above structure, the carbon density is particularly high, and the refractive index, heat resistance, and the like can be further increased. Moreover, the said anthracene derivative can manufacture efficiently this compound itself and the hardened | cured material from this compound.

当該アントラセン誘導体は、熱硬化性樹脂材料等に用いることができる等の高い汎用性を発揮することができる。特に、当該アントラセン誘導体は、ベンゼン環がアントラセン環の9位及び10位から配置されていることで、対称性が高く、また、熱のみで縮合を促進させる事が可能な為、樹脂材料として使用する場合のみならず、架橋剤としてベース樹脂の改質等の優れた応用展開が可能となる。特に、当該アントラセン誘導体は、アントラセン骨格の短軸となる9位及び10位にベンゼン環が配置されているため、ポリマー骨格へ導入された際、このポリマーが極めて高い炭素密度を有する等の特有な機能が発揮されることが期待される。   The anthracene derivative can exhibit high versatility such that it can be used for a thermosetting resin material or the like. In particular, the anthracene derivative is used as a resin material because the benzene ring is arranged from the 9th and 10th positions of the anthracene ring, and has high symmetry and can promote condensation only by heat. In addition to this, excellent application development such as modification of the base resin as a cross-linking agent becomes possible. In particular, since the anthracene derivative has a benzene ring at the 9th and 10th positions, which are the short axes of the anthracene skeleton, when introduced into the polymer skeleton, the polymer has a very high carbon density. The function is expected to be demonstrated.

また、当該アントラセン誘導体は、単にベンゾオキサジン構造を有する公知の化合物と比較して、アントラセン骨格を備えていることで高い屈折率を有している。具体的には、当該アントラセン誘導体の屈折率は1.65以上とすることができる。当該アントラセン誘導体の屈折率やガラス転移点等の物性は、置換基を選択することで調整することができる。   In addition, the anthracene derivative has a high refractive index by including an anthracene skeleton as compared to a known compound having a benzoxazine structure. Specifically, the refractive index of the anthracene derivative can be 1.65 or more. The physical properties such as refractive index and glass transition point of the anthracene derivative can be adjusted by selecting a substituent.

<当該アントラセン誘導体の製造方法>
本発明のアントラセン誘導体は、例えば、非反応性含酸素有機溶媒及び酸触媒の存在下で、フェノールとアントラセン−9−カルボアルデヒドとを反応させ、ビスフェノールアントラセン化合物を得る第一工程、及び、得られたビスフェノールアントラセン化合物をアニリン等の1級アミン化合物及びパラホルムアルデヒド等と反応させる第二工程により製造される。
<Method for producing the anthracene derivative>
The anthracene derivative of the present invention is obtained, for example, by reacting phenol with anthracene-9-carbaldehyde in the presence of a non-reactive oxygen-containing organic solvent and an acid catalyst to obtain a bisphenolanthracene compound, and The bisphenol anthracene compound is produced by a second step of reacting with a primary amine compound such as aniline and paraformaldehyde.

<第一工程>
この第一工程においては、非反応性含酸素有機溶媒及び酸触媒の存在下で、フェノールとアントラセン−9−カルボアルデヒドとを反応させて、ビスフェノールアントラセン化合物を得る。
<First step>
In this first step, phenol and anthracene-9-carbaldehyde are reacted in the presence of a non-reactive oxygen-containing organic solvent and an acid catalyst to obtain a bisphenol anthracene compound.

上記フェノールの配合量の下限としては、アントラセン−9−カルボアルデヒド1モルに対し2モルが好ましく、4モルがさらに好ましい。フェノールの配合量の上限としては、アントラセン−9−カルボアルデヒド1モルに対し100モルが好ましく、50モルがさらに好ましく、20モルが特に好ましい。フェノールの配合量が上記下限未満では、原料の高次縮合物が生成する等の所望でない副反応が生じることがあり、精製に多大なエネルギーを要し、逆に上記上限を超えると未反応のフェノールを除去するのに多大なエネルギーを要する為、共に非経済的である。   As a minimum of the compounding quantity of the said phenol, 2 mol is preferable with respect to 1 mol of anthracene-9-carbaldehyde, and 4 mol is more preferable. As an upper limit of the compounding quantity of phenol, 100 mol is preferable with respect to 1 mol of anthracene-9-carbaldehyde, 50 mol is more preferable, and 20 mol is especially preferable. If the amount of phenol is less than the above lower limit, undesirable side reactions such as the formation of higher-order condensates of raw materials may occur, and a large amount of energy is required for purification. Both are uneconomical because it takes a lot of energy to remove phenol.

本製造方法の第一工程においては、反応溶媒として、分子中に1以上の酸素原子を備える非反応性含酸素有機溶媒を用いるとよい。なお「非反応性」とは、この反応系におけるフェノール、アントラセン−9−カルボアルデヒド及び合成されるアントラセン誘導体とは反応しないことをいう。この非反応含酸素有機溶媒としては、例えばアルコール類、多価アルコール系エーテル、環状エーテル類、多価アルコール系エステル、ケトン類、エステル類、スルホキシド類、カルボン酸類等を用いることができる。   In the first step of the production method, a non-reactive oxygen-containing organic solvent having one or more oxygen atoms in the molecule may be used as the reaction solvent. “Non-reactive” means that it does not react with phenol, anthracene-9-carbaldehyde and synthesized anthracene derivatives in this reaction system. Examples of the non-reactive oxygen-containing organic solvent include alcohols, polyhydric alcohol ethers, cyclic ethers, polyhydric alcohol esters, ketones, esters, sulfoxides, carboxylic acids, and the like.

アルコール類としては、例えば、メタノール、エタノール、プロパノール、ブタノール等の1価アルコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、エチレングリコール、プロピレングリコール、トリメチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、ポリエチレングリコール等の2価アルコール、グリセリン等の3価アルコールが挙げられる。   Examples of alcohols include monohydric alcohols such as methanol, ethanol, propanol, and butanol, butanediol, pentanediol, hexanediol, ethylene glycol, propylene glycol, trimethylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, Examples thereof include dihydric alcohols such as propylene glycol and polyethylene glycol, and trihydric alcohols such as glycerin.

多価アルコール系エーテルとしては、例えばエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル等のグリコールエーテル類が挙げられる。   Examples of the polyhydric alcohol ether include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, ethylene glycol ethyl methyl ether, ethylene glycol mono Examples include glycol ethers such as phenyl ether.

環状エーテル類としては、例えば、1,3−ジオキサン、1,4−ジオキサン、テトラヒドロフラン等が挙げられる。多価アルコール系エステルとしては、例えば、エチレングリコールアセテート等のグリコールエステル類が挙げられる。ケトン類としては、例えばアセトン、メチルエチルケトン、メチルイソブチルケトンなどが挙げられる。アルキルエステル類としては、例えば、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。スルホキシド類としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド等が挙げられる。カルボン酸類としては、例えば、酢酸等が挙げられる。   Examples of cyclic ethers include 1,3-dioxane, 1,4-dioxane, tetrahydrofuran and the like. Examples of the polyhydric alcohol ester include glycol esters such as ethylene glycol acetate. Examples of ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone. Examples of the alkyl esters include ethyl acetate, propyl acetate, butyl acetate and the like. Examples of the sulfoxides include dimethyl sulfoxide and diethyl sulfoxide. Examples of carboxylic acids include acetic acid and the like.

これらの中でもアルコール類及び多価アルコール系エーテルが好ましく、メタノール、エチレングリコール及びエチレングリコールモノメチルエーテルが特に好ましい。   Among these, alcohols and polyhydric alcohol ethers are preferable, and methanol, ethylene glycol, and ethylene glycol monomethyl ether are particularly preferable.

非反応性含酸素有機溶媒は、上記の例示に限定されず、また、それぞれを単独又は2種以上を混合して用いても良い。非反応性含酸素有機溶媒の配合量の下限としては、フェノール100質量部に対して、1質量部が好ましく、5質量部が更に好ましく、10質量部が特に好ましい。また、非反応性含酸素有機溶媒の配合量の上限としては、フェノール100質量部に対して、1,000質量部が好ましく、500質量部がさらに好ましく、10質量部が特に好ましい。非反応性含酸素有機溶媒の配合量が上記下限未満であると、反応副生物の生成が顕著となり、生産性が低下するおそれがある。逆に、非反応性含酸素有機溶媒の配合量が上記上限を超えると、反応速度が低下し、生産性が低下するおそれや、溶媒除去のための精製エネルギーが増大するおそれがある。   The non-reactive oxygen-containing organic solvent is not limited to the above examples, and each may be used alone or in admixture of two or more. The lower limit of the amount of the non-reactive oxygen-containing organic solvent is preferably 1 part by mass, more preferably 5 parts by mass, and particularly preferably 10 parts by mass with respect to 100 parts by mass of phenol. Moreover, as an upper limit of the compounding quantity of a non-reactive oxygen-containing organic solvent, 1,000 mass parts is preferable with respect to 100 mass parts of phenol, 500 mass parts is further more preferable, and 10 mass parts is especially preferable. When the blending amount of the non-reactive oxygen-containing organic solvent is less than the above lower limit, the production of reaction by-products becomes remarkable, and the productivity may be reduced. On the other hand, when the blending amount of the non-reactive oxygen-containing organic solvent exceeds the above upper limit, the reaction rate may decrease, the productivity may decrease, and the purification energy for removing the solvent may increase.

本製造方法の第一工程における酸触媒としては、塩酸、硫酸、リン酸、過塩素酸などの無機酸、蓚酸、パラトルエンスルホン酸、メタンスルホン酸、フェノールスルホン酸などの有機酸、強酸性イオン交換樹脂等を挙げることができる。これらの触媒は、単独で用いても良いし、2種以上を組み合わせて用いてもよく、また、メルカプト酢酸等の反応助触媒を併用しても良い。酸触媒の使用量としては、反応が適当に進む範囲で適宜設定すればよいが、一般的には、フェノール100質量部に対して、0.1〜20質量部である。   As the acid catalyst in the first step of this production method, inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid and perchloric acid, organic acids such as oxalic acid, paratoluenesulfonic acid, methanesulfonic acid and phenolsulfonic acid, strongly acidic ions Exchange resin etc. can be mentioned. These catalysts may be used alone, or may be used in combination of two or more kinds, or a reaction promoter such as mercaptoacetic acid may be used in combination. The amount of the acid catalyst used may be appropriately set within a range where the reaction proceeds appropriately, but is generally 0.1 to 20 parts by mass with respect to 100 parts by mass of phenol.

この第一工程の反応は、上記フェノール、アントラセン−9−カルボアルデヒド、非反応性含酸素有機溶媒及び酸触媒を反応容器に投入して、所定時間撹拌して行われる。なお、上記反応容器への投入物の投入順序は問わない。   The reaction in the first step is performed by adding the phenol, anthracene-9-carbaldehyde, the non-reactive oxygen-containing organic solvent and the acid catalyst to the reaction vessel and stirring for a predetermined time. In addition, the order of the input of the input material into the reaction vessel is not limited.

この第一工程における反応温度は、通常0〜100℃、好ましくは25〜60℃の範囲で行われる。反応温度が低すぎると、反応時間が長くなる可能性があり、一方、反応温度が高すぎると、高次縮合物及び異性体等の反応副生物の生成が助長され、得られる化合物の純度が低下する可能性がある。   The reaction temperature in this first step is usually 0-100 ° C, preferably 25-60 ° C. If the reaction temperature is too low, the reaction time may be longer. On the other hand, if the reaction temperature is too high, formation of reaction by-products such as higher-order condensates and isomers is promoted, and the purity of the resulting compound is increased. May be reduced.

この第一工程の反応における反応容器内の圧力は、通常は常圧であるが、加圧又は減圧で行っても良く、具体的には内部圧力(ゲージ圧)が−0.02〜0.2MPaの範囲であることが好ましい。   The pressure in the reaction vessel in the reaction of the first step is usually normal pressure, but it may be increased or reduced, and specifically, the internal pressure (gauge pressure) is -0.02 to 0.00. The range is preferably 2 MPa.

この第一工程の反応時間は、用いるフェノール、非反応性含酸素有機溶媒の種類と量、原料モル比、反応温度、圧力等に左右され、一概に定めることは出来ないが一般的には、1時間〜48時間の範囲であることが好ましい。   The reaction time of this first step depends on the type of phenol used, the type and amount of the non-reactive oxygen-containing organic solvent, the raw material molar ratio, the reaction temperature, the pressure, etc., but generally cannot be determined, It is preferably in the range of 1 hour to 48 hours.

この第一工程の反応終了後、酸触媒を除去し、生成物を分離する。この触媒除去の方法としては、一般的には、メチルエチルケトン、メチルイソブチルケトン等の非水溶性有機溶媒に生成物を溶解し、水洗により除去を行うが、その他中和処理を行った後析出した中和塩を濾別する方法や、アニオン性充填剤の詰まったカラムに反応液を通過させる方法等、特に制限はない。   After completion of the reaction in the first step, the acid catalyst is removed and the product is separated. As a method for removing the catalyst, generally, the product is dissolved in a water-insoluble organic solvent such as methyl ethyl ketone and methyl isobutyl ketone, and is removed by washing with water. There is no particular limitation such as a method of filtering off the Japanese salt or a method of passing the reaction solution through a column packed with an anionic filler.

この第一工程においては触媒除去後、精製によりビスフェノールアントラセン化合物を取り出す。一般的には、目的物に対して貧溶媒として作用し、その他の副生成物や未反応原料には良溶媒として作用する溶媒(キシレン等)を添加し、析出させた後、濾別、乾燥する方法や、カラムクロマトグラフィーによる方法等によって第一工程の目的物であるビスフェノールアントラセン化合物を精製することができる。   In this first step, after removing the catalyst, the bisphenolanthracene compound is removed by purification. In general, a solvent (xylene, etc.) that acts as a poor solvent for the target product and acts as a good solvent for other by-products and unreacted raw materials is precipitated and then filtered and dried. The bisphenol anthracene compound which is the target product of the first step can be purified by a method using a method such as column chromatography.

<第二工程>
この第二工程においては、得られたビスフェノールアントラセン化合物をアニリン等の1級アミン化合物及びパラホルムアルデヒド等と反応させて、本発明のアントラセン誘導体を得ることができる。
<Second step>
In this second step, the anthracene derivative of the present invention can be obtained by reacting the obtained bisphenol anthracene compound with a primary amine compound such as aniline and paraformaldehyde.

上記1級アミン化合物は、目的とするアントラセン誘導体の構造に応じて適宜選択することができ、例えば上記式(1)におけるa及びbが0であり、R及びRがフェニル基である化合物を目的とする場合はアニリンを用いることができる。 The primary amine compound can be appropriately selected according to the structure of the target anthracene derivative. For example, a compound in which a and b in the above formula (1) are 0, and R 3 and R 4 are phenyl groups For the purpose, aniline can be used.

この1級アミン化合物の配合量としては、ビスフェノールアントラセン化合物1モルに対して1.5モル以上3モル以下が好ましく、2モル以上がさらに好ましい。1級アミン化合物の配合量が上記下限未満では、ビスフェノールアントラセン化合物の高次縮合物が生成する等の所望でない副反応が生じることがあり生成に多大なエネルギーを要し、逆に上記上限を超えると未反応の1級アミン化合物を除去するのに多大なエネルギーを要するため共に非経済的である。   The blending amount of the primary amine compound is preferably 1.5 mol or more and 3 mol or less, more preferably 2 mol or more with respect to 1 mol of the bisphenolanthracene compound. If the amount of the primary amine compound is less than the above lower limit, an undesirable side reaction such as the formation of a higher-order condensate of the bisphenol anthracene compound may occur. And it is uneconomical because it requires a lot of energy to remove the unreacted primary amine compound.

上記パラホルムアルデヒドの添加量は、例えばビスフェノールアントラセン化合物1モルに対してホルムアルデヒド換算で3モル以上10モル以下程度であり、4モル以上が好ましい。なお、このパラホルムアルデヒドの代わりにホルムアルデヒド等を用いることもできる。   The amount of paraformaldehyde added is, for example, about 3 to 10 moles in terms of formaldehyde, preferably 4 or more moles per mole of the bisphenolanthracene compound. Formaldehyde or the like can be used instead of paraformaldehyde.

この第二工程における反応は、通常非反応性の有機溶媒で行われる。この有機溶媒としては第一工程にて非反応性含酸素有機溶媒として例示したものを挙げることができる。これらの中でも環状エーテル類が好ましく、ジオキサンが特に好ましい。   The reaction in the second step is usually performed in a non-reactive organic solvent. Examples of the organic solvent include those exemplified as the non-reactive oxygen-containing organic solvent in the first step. Among these, cyclic ethers are preferable, and dioxane is particularly preferable.

この有機溶媒の使用量としては、特に限定されないがビスフェノールアントラセン化合物100質量部に対して50質量部以上1,000質量部以下が好ましく、100質量部以上400質量部以下がさらに好ましい。有機溶媒の使用量が上記下限未満であると、反応副生物の生成が顕著となり、生産性が低下するおそれがある。逆に、有機溶媒の使用量が上記上限を超えると、反応速度が低下し、生産性が低下するおそれや、溶媒除去のための精製エネルギーが増大するおそれがある。   The amount of the organic solvent used is not particularly limited, but is preferably 50 parts by mass or more and 1,000 parts by mass or less, and more preferably 100 parts by mass or more and 400 parts by mass or less with respect to 100 parts by mass of the bisphenolanthracene compound. When the amount of the organic solvent used is less than the lower limit, production of reaction by-products becomes remarkable, which may reduce productivity. On the other hand, when the amount of the organic solvent used exceeds the above upper limit, the reaction rate may decrease, the productivity may decrease, and the purification energy for removing the solvent may increase.

この第二工程の反応は、上記ビスフェノールアントラセン化合物、1級アミン化合物、パラホルムアルデヒド等、及び有機溶媒を反応容器に投入して、所定時間撹拌して行われる。なお、上記反応容器への投入物の投入順序は問わない。   The reaction in the second step is performed by putting the bisphenol anthracene compound, primary amine compound, paraformaldehyde, and the like, and an organic solvent into a reaction vessel and stirring for a predetermined time. In addition, the order of the input of the input material into the reaction vessel is not limited.

この第二工程の反応における反応温度は、通常0〜100℃、好ましくは75〜95℃の範囲で行われる。反応温度が低すぎると、反応時間が長くなる可能性があり、一方、反応温度が高すぎると、高次縮合物及び異性体等の反応副生物の生成が助長され、当該アントラセン誘導体の純度が低下する可能性がある。   The reaction temperature in the reaction in the second step is usually 0 to 100 ° C, preferably 75 to 95 ° C. If the reaction temperature is too low, the reaction time may be long. On the other hand, if the reaction temperature is too high, formation of reaction byproducts such as higher-order condensates and isomers is promoted, and the purity of the anthracene derivative is reduced. May be reduced.

この第二工程における反応容器内の圧力は、通常は常圧であるが、加圧又は減圧で行っても良く、具体的には内部圧力(ゲージ圧)が−0.02〜0.2MPaの範囲であることが好ましい。   The pressure in the reaction vessel in the second step is usually normal pressure, but may be increased or reduced, and specifically, the internal pressure (gauge pressure) is -0.02 to 0.2 MPa. A range is preferable.

この第二工程における反応時間は、用いる各化合物の種類と量、原料モル比、反応温度、圧力等に左右され、一概に定めることは出来ないが一般的には、1時間〜48時間の範囲であることが好ましい。   The reaction time in this second step depends on the type and amount of each compound used, the raw material molar ratio, the reaction temperature, the pressure, etc., and cannot be generally defined, but is generally in the range of 1 to 48 hours. It is preferable that

この第二工程の反応終了後、生成物を分離する。この生成物の分離は、反応液をメタノール等のアルコールに滴下して結晶として析出させることで効率的に行うことができる。このようにして析出された結晶は、公知の方法で、濾過、洗浄、乾燥等を行い、本発明のアントラセン誘導体を精製することができる。   After completion of the reaction in the second step, the product is separated. Separation of the product can be efficiently performed by dropping the reaction solution onto an alcohol such as methanol and precipitating it as crystals. The crystals thus precipitated can be filtered, washed, dried and the like by a known method to purify the anthracene derivative of the present invention.

<硬化性組成物>
当該硬化性組成物は、当該アントラセン誘導体及び/又はこのアントラセン誘導体から得られる重合体を含み、必要に応じて他の多官能化合物や、硬化促進剤等を含有していてもよい。当該硬化性組成物からは、耐熱性、難燃性等に優れ、かつ蛍光特性などのアントラセン骨格を有する化合物に特有な性質をも兼ね備えた硬化物を得ることができる。なお、アントラセン誘導体から得られる重合体としては、上記アントラセン誘導体が熱により架橋した重合体や、上記アントラセン誘導体と他のモノマーとの共重合体などが挙げられる。
<Curable composition>
The said curable composition contains the polymer obtained from the said anthracene derivative and / or this anthracene derivative, and may contain the other polyfunctional compound, the hardening accelerator, etc. as needed. From the said curable composition, the cured | curing material which was excellent also in the heat resistance, a flame retardance, etc., and also has the property peculiar to the compound which has anthracene structure, such as a fluorescence characteristic, can be obtained. Examples of the polymer obtained from the anthracene derivative include a polymer in which the anthracene derivative is crosslinked by heat, a copolymer of the anthracene derivative and another monomer, and the like.

当該硬化性組成物に含有されてもよい他の多官能化合物としては、例えばノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、テトラキスフェノール型エポキシ樹脂、臭素化エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、環式脂肪族エポキシ樹脂、トリグリシジルイソシアヌレートなどを挙げることができる。なお、これらの化合物は、単独で用いても、2種以上を混合して用いても良い。この他の多官能化合物の配合量としては、例えば当該アントラセン誘導体及びこのアントラセン誘導体から得られる重合体100質量部に対して10質量部以上1,000質量部以下である。   Examples of other polyfunctional compounds that may be contained in the curable composition include novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, trisphenol methane type epoxy resins, tetrakisphenol type epoxy resins, Examples thereof include brominated epoxy resins, dicyclopentadiene type epoxy resins, naphthalene type epoxy resins, glycidyl amine type epoxy resins, glycidyl ester type epoxy resins, cycloaliphatic epoxy resins, triglycidyl isocyanurates and the like. In addition, these compounds may be used independently or may be used in mixture of 2 or more types. The compounding amount of the other polyfunctional compound is, for example, 10 parts by mass or more and 1,000 parts by mass or less with respect to 100 parts by mass of the anthracene derivative and a polymer obtained from the anthracene derivative.

当該硬化性組成物は、必要に応じて、硬化促進剤を含有してもよい。この硬化促進剤としては、2−メチルイミダゾール、2−エチルイミダゾール、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール、1,8−ジアザビシクロ[5.4.0]ウンデセン−7、トリフェニルホスフィン、オクチル酸スズ等が挙げられる。この硬化促進剤の含有量としては、例えば当該アントラセン誘導体、このアントラセン誘導体から得られる重合体及び他の多官能化合物の合計100質量部に対して1質量部以上20質量部以下が好ましい。   The said curable composition may contain a hardening accelerator as needed. Examples of the curing accelerator include 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole, 1, 8-diazabicyclo [5.4.0] undecene-7, triphenylphosphine, tin octylate and the like. As content of this hardening accelerator, 1 to 20 mass parts is preferable with respect to a total of 100 mass parts of the said anthracene derivative, the polymer obtained from this anthracene derivative, and another polyfunctional compound, for example.

当該硬化性組成物は、必要に応じて、無機充填剤を含有してもよい。この無機充填剤としては、球状又は破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、ガラス粉末、マイカ、タルク、炭酸カルシウム、アルミナ、水和アルミナ等が挙げられる。この無機充填剤の含有量としては、当該硬化性組成物中に90質量%以下が好ましい。   The said curable composition may contain an inorganic filler as needed. Examples of the inorganic filler include silica powder such as spherical or crushed fused silica and crystalline silica, glass powder, mica, talc, calcium carbonate, alumina, hydrated alumina and the like. As content of this inorganic filler, 90 mass% or less is preferable in the said curable composition.

当該硬化性組成物は、必要に応じて、その他の添加剤を含有してもよい。その他の添加剤としては、例えばシランカップリング剤、イオン吸着体、酸化防止剤、紫外線吸収剤、ステアリン酸、パルチミン酸亜鉛、ステアリン酸カルシウム等の離型剤、有機系又は無機系の体質顔料、鱗片状顔料などを挙げることができる。   The curable composition may contain other additives as necessary. Examples of other additives include silane coupling agents, ion adsorbents, antioxidants, ultraviolet absorbers, mold release agents such as stearic acid, zinc palmitate and calcium stearate, organic or inorganic extender pigments, scale pieces And pigments.

当該硬化性組成物は、得られる硬化物が耐熱性、難燃性等に優れ、さらには、アントラセン特有の高光屈折性及び蛍光特性等を備えているため、例えば、接着剤、塗料、成型材料、注型材料、半導体封止材料、プリント基板絶縁材料、コーティング材料、光学材料、構造材料、フォトレジスト原料等の多岐の技術分野で利用することができる。   In the curable composition, since the obtained cured product is excellent in heat resistance, flame retardancy, and the like, and further has anthracene-specific high photorefractive properties and fluorescence characteristics, for example, adhesives, paints, molding materials, etc. It can be used in various technical fields such as casting materials, semiconductor sealing materials, printed circuit board insulating materials, coating materials, optical materials, structural materials, and photoresist raw materials.

<硬化物>
当該硬化物は、上記硬化性組成物を加熱することによって得ることができる。この硬化物の具体的な形成方法としては、例えば、当該硬化性組成物をニーダー、ロール、押出し機等で均一に混合し、トランスファー成型器や金型を用いて成型した後、80〜250℃で1時間〜24時間程度加熱する方法を挙げることができる。
<Hardened product>
The said hardened | cured material can be obtained by heating the said curable composition. As a specific method for forming the cured product, for example, the curable composition is uniformly mixed with a kneader, a roll, an extruder, etc., and molded using a transfer molding machine or a mold, and then 80 to 250 ° C. And heating for about 1 to 24 hours.

また、当該硬化性組成物を有機溶剤に溶解し、ガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙等の基材に含浸させ、加熱して得られたプリプレグをプレス成型して得てもよい。   Also, the curable composition is dissolved in an organic solvent, impregnated into a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc., and a prepreg obtained by heating is press-molded. May be obtained.

当該硬化物は、ベンゾオキサジン構造を有する樹脂としての優れた特性(高耐熱性、高難燃性等)を有する硬化物を得ることができ、さらにアントラセン特有の特性(高炭素密度、高光屈折性及び紫外線に対する蛍光性能等)を備えている。従って当該硬化物は、積層板、構造材、半導体封止材、プリント基板絶縁材、各種光学材料等、様々な分野において利用することができる。   The cured product can provide a cured product having excellent properties (high heat resistance, high flame retardancy, etc.) as a resin having a benzoxazine structure, and further has properties unique to anthracene (high carbon density, high photorefractive properties). And fluorescence performance against ultraviolet rays). Therefore, the said hardened | cured material can be utilized in various fields, such as a laminated board, a structural material, a semiconductor sealing material, a printed circuit board insulating material, and various optical materials.

以下、本発明を実施例により、さらに詳細に説明するが、本発明は本実施例によって限定されるものではない。なお、得られたアントラセン誘導体及び硬化物の測定は下記測定機器及び測定方法により行った。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by a present Example. In addition, the measurement of the obtained anthracene derivative and hardened | cured material was performed with the following measuring apparatus and measuring method.

<GPC純度>
GPC純度は、東ソー社製HLC−8220型GPC、RI検出器、TSK−Gel SuperHZ2000+HZ1000+HZ1000(4.6mmφ×150mm)カラムを用い、展開溶媒としてテトラヒドロフランを0.35mL/分で送液し、目的物ピークの面積比によって求めた。
<GPC purity>
The GPC purity was measured by using HLC-8220 GPC manufactured by Tosoh Corporation, RI detector, TSK-Gel SuperHZ2000 + HZ1000 + HZ1000 (4.6 mmφ × 150 mm) column, and tetrahydrofuran as a developing solvent at 0.35 mL / min. The area ratio was determined.

<ガラス転移温度(Tg)>
ガラス転移温度は、リガク社製DSC8230型示差走査熱量計にて、窒素雰囲気下5℃/分の昇温速度で測定し、中点ガラス転移温度を求めた。
<Glass transition temperature (Tg)>
The glass transition temperature was measured with a DSC8230 differential scanning calorimeter manufactured by Rigaku Corporation at a heating rate of 5 ° C./min in a nitrogen atmosphere to determine the midpoint glass transition temperature.

<残炭率>
残炭率と酸素指数とは比例関係があり、一般的に難燃性の高い樹脂は残炭率が高いと言われている(D.W.van Krevelen,polymer,16,p615(1975) D.W.van Krevelen,Chimia,28,p504(1974)参照)。この文献を参照し、難燃性の指標として残炭率を測定した。測定方法は、リガク社製TG8230型示差熱天秤にて、窒素雰囲気下10℃/分の昇温速度で830℃までの測定を行い、質量減少率(%)を100%から減じた数値で求めた。
<Remaining charcoal rate>
There is a proportional relationship between the residual carbon ratio and the oxygen index, and it is generally said that a resin with high flame retardancy has a high residual carbon ratio (DW van Krebelen, polymer, 16, p615 (1975) D. W. van Krebelen, Chimia, 28, p504 (1974)). With reference to this document, the residual carbon ratio was measured as an index of flame retardancy. The measurement method is a TG8230 differential thermal balance manufactured by Rigaku Corporation, measured up to 830 ° C. at a rate of temperature increase of 10 ° C./min in a nitrogen atmosphere, and obtained by subtracting the mass reduction rate (%) from 100%. It was.

H−NMR及び13C−NMR>
H−NMR及び13C−NMRは、バリアン社製UNITY−INOVA 400MHzを用い、TMSを基準物質としてDMSO−d溶媒で測定した。
<1 H-NMR and 13 C-NMR>
1 H-NMR and 13 C-NMR were measured with DMSO-d 6 solvent using UNITY-INOVA 400 MHz manufactured by Varian and TMS as a reference substance.

<屈折率>
屈折率は、京都電子工業社製RA−520N型屈折率計を用い、25℃にて1質量%、5質量%及び10質量%の各濃度でプロピレングリコールモノメチルエーテルアセテート(PGMEA)に溶解して測定し検量線を作成して100質量%時の換算屈折率を求めた。
<Refractive index>
The refractive index was dissolved in propylene glycol monomethyl ether acetate (PGMEA) at 25 ° C. at concentrations of 1% by mass, 5% by mass and 10% by mass using an RA-520N refractometer manufactured by Kyoto Electronics Industry Co., Ltd. A calibration curve was measured and a converted refractive index at 100% by mass was determined.

<吸収スペクトル及び蛍光スペクトル>
吸収スペクトルは、日本分光社製分光光度計V−570を用いて1×10−5mol/L濃度でDMSOに溶解して測定を行い、蛍光スペクトルは、日立ハイテクノロジーズ社製蛍光分光光度計F−4010を用い、1×10−5mol/L濃度でDMSOに溶解して極大波長で励起させて測定を行った。また、アズワン社製ハンディーUVランプSLUV−4を用いて、365nmの紫外線を照射し、発光の有無を観察した。
<Absorption spectrum and fluorescence spectrum>
The absorption spectrum was measured by dissolving in DMSO at a concentration of 1 × 10 −5 mol / L using a spectrophotometer V-570 manufactured by JASCO Corporation, and the fluorescence spectrum was measured by a fluorescence spectrophotometer F manufactured by Hitachi High-Technologies Corporation. Measurement was carried out using -4010 by dissolving in DMSO at a concentration of 1 × 10 −5 mol / L and exciting at the maximum wavelength. Moreover, the presence or absence of light emission was observed by irradiating 365 nm ultraviolet rays using a handy UV lamp SLUV-4 manufactured by ASONE.

[合成例1]
300mLの還流管付き反応容器にフェノール(112.8g,1.20mol)、アントラセン−9−カルボアルデヒド(49.4g,0.24mol)及びメタノール(11.3g)を入れ、40℃にて溶解した。濃硫酸(5.6g)を投入し、40℃で24時間反応を行った。次いで、反応液をメチルイソブチルケトン(169.2g)に溶解し、蒸留水(56.4g)にて水洗を数回行って触媒を除去した。減圧下にて、メチルイソブチルケトン及びフェノールを留去した後、キシレン(169.2g)及び蒸留水(11.3g)投入して10℃で攪拌した。析出した結晶を濾別後、減圧乾燥を行って、淡黄色の9−(4−ヒドロキシベンジル)−10−(4−ヒドロキシフェニル)アントラセン48.3g(収率53.3%)を得た。
[Synthesis Example 1]
Phenol (112.8 g, 1.20 mol), anthracene-9-carbaldehyde (49.4 g, 0.24 mol) and methanol (11.3 g) were placed in a 300 mL reaction vessel with a reflux tube, and dissolved at 40 ° C. . Concentrated sulfuric acid (5.6 g) was added, and the reaction was performed at 40 ° C. for 24 hours. Next, the reaction solution was dissolved in methyl isobutyl ketone (169.2 g), and washed with distilled water (56.4 g) several times to remove the catalyst. After distilling off methyl isobutyl ketone and phenol under reduced pressure, xylene (169.2 g) and distilled water (11.3 g) were added and stirred at 10 ° C. The precipitated crystals were separated by filtration and dried under reduced pressure to obtain 48.3 g (yield 53.3%) of pale yellow 9- (4-hydroxybenzyl) -10- (4-hydroxyphenyl) anthracene.

[実施例1(アントラセン誘導体の合成)]
1Lの還流管付き反応容器に上記合成例1で得られた9−(4−ヒドロキシベンジル)−10−(4−ヒドロキシフェニル)アントラセン(33.8g,0.09mol)、ジオキサン67.7g、アニリン(16.8g,0.18mol)を入れ、50℃で溶解した後、92%パラホルムアルデヒド(11.8g,ホルムアルデヒド換算で0.36mol)を投入し、85℃で24時間反応を行った。次いで、反応液を1,200gのメタノール中に滴下して結晶を析出させた後、濾別した。この粗結晶をメチルイソブチルケトン400gに溶解し、1%水酸化ナトリウム水溶液、純水の順にpH=7になるまで洗浄を行った後、結晶が析出してくるまで溶媒を減圧留去した。この結晶をメタノール200gでほぐした後、濾過、減圧乾燥して淡黄色の結晶であるアントラセン誘導体39.6gを得た。
[Example 1 (Synthesis of anthracene derivative)]
9- (4-hydroxybenzyl) -10- (4-hydroxyphenyl) anthracene (33.8 g, 0.09 mol) obtained in Synthesis Example 1 above, 67.7 g of dioxane, aniline in a 1 L reaction vessel with a reflux tube (16.8 g, 0.18 mol) was added and dissolved at 50 ° C., and then 92% paraformaldehyde (11.8 g, 0.36 mol in terms of formaldehyde) was added and reacted at 85 ° C. for 24 hours. Next, the reaction solution was dropped into 1,200 g of methanol to precipitate crystals, and then separated by filtration. The crude crystals were dissolved in 400 g of methyl isobutyl ketone, washed in order of 1% sodium hydroxide aqueous solution and pure water until pH = 7, and then the solvent was distilled off under reduced pressure until crystals were precipitated. The crystals were loosened with 200 g of methanol, filtered, and dried under reduced pressure to obtain 39.6 g of anthracene derivative as pale yellow crystals.

得られた結晶は、GPC純度86.0%、換算屈折率1.678(25℃)であり、H−NMR(400MHz,DMSO−d,δ,ppm/4.5,4.8,4H,−−N−/4.9,2H,−C −/5.3,5.6,4H,−O−C −N−/6.6,6.8,7.0〜7.1,7.1〜7.2,7.3,16H,Phenyl−/7.4,7.5,7.6,8.3,8H,Anthryl−)及び13C−NMR(400MHz,DMSO−d,δ,ppm/32.2,−−/49.0,49.4,−−N−/78.5,78.9,−O−−N−/116.5,116.7,121.4,121.8,126.4,129.0,129.3,129.5,130.1,132.5,152.3,153.7,−Phenyl/117.4,117.5,120.6,120.7,130.4,130.5,148.00,148.03,−Phenyl(Aniline)/125.3,125.4,126.0,127.4,129.8,129.9,133.2,136.0,−Anthryl)にて、目的のアントラセン誘導体(上記式(1)において、a及びbが0であり、R及びRがフェニル基である化合物)であることを確認した。図1にH−NMRチャート、図2に13C−NMRチャートを示す。また、UVランプ(365nm)照射時の青色の発光を目視にて確認した。図3に吸収スペクトル、図4に蛍光スペクトル(励起波長:381nm)を示す。 The obtained crystal had a GPC purity of 86.0% and a converted refractive index of 1.678 (25 ° C.), and 1 H-NMR (400 MHz, DMSO-d 6 , δ, ppm / 4.5, 4.8, 4H, - C H 2 -N- / 4.9,2H, -C H 2 - / 5.3,5.6,4H, -O-C H 2 -N- / 6.6,6.8, 7.0-7.1, 7.1-7.2, 7.3, 16H, Phenyl- H / 7.4, 7.5, 7.6, 8.3, 8H, Anthryl- H ) and 13 C-NMR (400 MHz, DMSO-d 6 , δ, ppm / 32.2, -C H 2- / 49.0, 49.4, -C H 2 -N- / 78.5, 78.9,- O- C H 2 -N- / 116.5,116.7,121.4,121.8,126.4,129.0,129.3,129.5,130.1, 132.5,152.3,153.7, - Phenyl /117.4,117.5,120.6,120.7,130.4,130.5,148.00,148.03,- Phenyl ( Aniline) /125.3,125.4,126.0,127.4,129.8,129.9,133.2,136.0,- Anthryl) in the anthracene derivative of the object (the equation (1 ) In which a and b are 0 and R 3 and R 4 are phenyl groups). FIG. 1 shows a 1 H-NMR chart, and FIG. 2 shows a 13 C-NMR chart. Moreover, the blue light emission at the time of UV lamp (365 nm) irradiation was confirmed visually. FIG. 3 shows an absorption spectrum, and FIG. 4 shows a fluorescence spectrum (excitation wavelength: 381 nm).

[実施例2(硬化性組成物の調製及び硬化物の形成)]
実施例1で得られたアントラセン誘導体(25.0g)を量り取り、180℃の熱板上で溶融した。これに硬化促進剤として2−フェニルイミダゾール(0.25g)を加え、充分に撹拌、混合して硬化性組成物を得た。上記方法にて調製した硬化性組成物を金型に流し込み、180℃で3時間かけて加熱して、硬化物を得た。
[Example 2 (Preparation of curable composition and formation of cured product)]
The anthracene derivative (25.0 g) obtained in Example 1 was weighed and melted on a hot plate at 180 ° C. To this, 2-phenylimidazole (0.25 g) was added as a curing accelerator, and sufficiently stirred and mixed to obtain a curable composition. The curable composition prepared by the above method was poured into a mold and heated at 180 ° C. for 3 hours to obtain a cured product.

得られた硬化物の特性の評価を行ったところ、ガラス転移温度が209.2℃、残炭率が53.17%であった。   When the characteristics of the obtained cured product were evaluated, the glass transition temperature was 209.2 ° C. and the residual carbon ratio was 53.17%.

[実施例3(硬化性組成物の調製及び硬化物の形成)]
実施例1で得られたアントラセン誘導体(6.0g)、ビスフェノール−A型エポキシ樹脂の市販品である「アデカレジンEP−4100(ADEKA社製/エポキシ当量190)」(20.0g)を量り取り、180℃の熱板上で溶融混合した。これに硬化促進剤として2−フェニルイミダゾール(0.25g)を加え、充分に撹拌、混合して硬化性組成物を得た。上記方法にて調製した硬化性組成物を金型に流し込み、180℃で3時間かけて加熱した後、さらに220℃で3時間アフターキュアを行って硬化物を得た。
[Example 3 (Preparation of curable composition and formation of cured product)]
The anthracene derivative (6.0 g) obtained in Example 1, “Adeka Resin EP-4100 (manufactured by ADEKA / epoxy equivalent 190)” (20.0 g), which is a commercial product of bisphenol-A type epoxy resin, was weighed out. It melt-mixed on a 180 degreeC hotplate. To this, 2-phenylimidazole (0.25 g) was added as a curing accelerator, and sufficiently stirred and mixed to obtain a curable composition. The curable composition prepared by the above method was poured into a mold, heated at 180 ° C. for 3 hours, and then after-cured at 220 ° C. for 3 hours to obtain a cured product.

得られた硬化物の特性の評価を行ったところ、ガラス転移温度が111.3℃、残炭率が16.43%であった。   When the characteristics of the obtained cured product were evaluated, the glass transition temperature was 111.3 ° C., and the residual carbon ratio was 16.43%.

[比較例1]
ビスフェノール−F型ベンゾオキサジン樹脂の市販品である「F−a(四国化成工業社製)」の換算屈折率を測定したところ、1.620(25℃)であった。また、UVランプ(365nm)照射を行ったが、目視では発光は確認できなかった。
[Comparative Example 1]
It was 1.620 (25 degreeC) when the conversion refractive index of "Fa (made by Shikoku Kasei Kogyo)" which is a commercial item of bisphenol-F type benzoxazine resin was measured. Moreover, although UV lamp (365 nm) irradiation was performed, light emission was not able to be confirmed visually.

[比較例2]
実施例2において、実施例1で得られたアントラセン誘導体(25.0g)の代わりに比較例1で測定した「F−a」(25.0g)を用いた以外は実施例2と同様の操作を行い、硬化物を得た。
[Comparative Example 2]
In Example 2, the same operation as in Example 2 was performed except that “Fa” (25.0 g) measured in Comparative Example 1 was used instead of the anthracene derivative (25.0 g) obtained in Example 1. To obtain a cured product.

得られた硬化物の特性の評価を行ったところ、ガラス転移温度が144.6℃、残炭率が45.12%であった。   When the characteristics of the obtained cured product were evaluated, the glass transition temperature was 144.6 ° C., and the residual carbon ratio was 45.12%.

[比較例3]
実施例3において、実施例1で得られたアントラセン誘導体(6.0g)の代わりに比較例1で測定した「F−a」(6.0g)を用いた以外は実施例3と同様の操作を行って硬化物を得た。
[Comparative Example 3]
In Example 3, the same operation as in Example 3 was used except that “F-a” (6.0 g) measured in Comparative Example 1 was used instead of the anthracene derivative (6.0 g) obtained in Example 1. To obtain a cured product.

得られた硬化物の特性の評価を行ったところ、ガラス転移温度が98.0℃、残炭率が13.88%であった。   When the characteristics of the obtained cured product were evaluated, the glass transition temperature was 98.0 ° C., and the residual carbon ratio was 13.88%.

[比較例4]
実施例1において、合成例1で得られた9−(4−ヒドロキシベンジル)−10−(4−ヒドロキシフェニル)アントラセン(33.8g,0.09mol)の代わりにビスフェノールフルオレンの市販品である「BPAF(JFEケミカル社製/9,9−ビス(4−ヒドロキシフェニル)フルオレン)」(31.5g,0.09mol)を用いた以外は、実施例1と同様の操作を行い、35.5g(収率67.5%)のビスフェノールフルオレンベンゾオキサジン化合物を得た。
[Comparative Example 4]
In Example 1, instead of 9- (4-hydroxybenzyl) -10- (4-hydroxyphenyl) anthracene (33.8 g, 0.09 mol) obtained in Synthesis Example 1, it is a commercial product of bisphenolfluorene. Except for using BPAF (JFE Chemical Co., Ltd./9,9-bis(4-hydroxyphenyl)fluorene) (31.5 g, 0.09 mol), the same operation as in Example 1 was carried out to obtain 35.5 g ( A bisphenolfluorenebenzoxazine compound having a yield of 67.5% was obtained.

得られたビスフェノールフルオレンベンゾオキサジン化合物は、GPC純度83.7%、換算屈折率1.643(25℃)であり、UVランプ(365nm)照射を行ったが、目視では発光は確認できなかった。   The obtained bisphenol fluorene benzoxazine compound had a GPC purity of 83.7% and a converted refractive index of 1.463 (25 ° C.), and was irradiated with a UV lamp (365 nm), but no luminescence was visually confirmed.

[比較例5]
実施例2において、実施例1で得られたアントラセン誘導体(25.0g)の代わりに比較例4で得られたビスフェノールフルオレンベンゾオキサジン化合物(25.0g)を用いた以外は実施例2と同様の操作を行い、硬化物を得た。
[Comparative Example 5]
Example 2 was the same as Example 2 except that the bisphenol fluorene benzoxazine compound (25.0 g) obtained in Comparative Example 4 was used instead of the anthracene derivative (25.0 g) obtained in Example 1. Operation was performed to obtain a cured product.

得られた硬化物の特性の評価を行ったところ、ガラス転移温度が203.9℃、残炭率が46.38%であった。   When the characteristics of the obtained cured product were evaluated, the glass transition temperature was 203.9 ° C. and the residual carbon ratio was 46.38%.

[比較例6]
実施例3において、実施例1で得られたアントラセン誘導体(6.0g)の代わりに比較例4で得られたビスフェノールフルオレンベンゾオキサジン化合物(6.0g)を用いた以外は実施例3と同様の操作を行って硬化物を得た。
[Comparative Example 6]
Example 3 was the same as Example 3 except that the bisphenolfluorenebenzoxazine compound (6.0 g) obtained in Comparative Example 4 was used instead of the anthracene derivative (6.0 g) obtained in Example 1. Operation was performed to obtain a cured product.

得られた硬化物の特性の評価を行ったところ、ガラス転移温度が99.5℃、残炭率が15.79%であった。   When the characteristics of the obtained cured product were evaluated, the glass transition temperature was 99.5 ° C. and the residual carbon ratio was 15.79%.

上記の評価結果をあらためて、以下の表1、表2及び表3に記載する。   The above evaluation results are listed again in Table 1, Table 2, and Table 3 below.

上記評価結果(表1)で示されるように、実施例1で合成された本発明に係るアントラセン誘導体は、他の公知のベンゾオキサジン化合物(比較例1及び4)より高い屈折率及び紫外線に対する蛍光特性を有することが示された。   As shown in the above evaluation results (Table 1), the anthracene derivative according to the present invention synthesized in Example 1 has a higher refractive index and fluorescence for ultraviolet rays than other known benzoxazine compounds (Comparative Examples 1 and 4). It was shown to have properties.

また、上記評価結果(表2)で示されるように、実施例1のアントラセン誘導体のベンゾオキサジン化合物から得られた実施例2の硬化物は、他の公知のベンゾオキサジン化合物より得られた硬化物(比較例2及び5)よりも高いガラス転移温度(高い耐熱性)、高い残炭率(高い難燃性)を有することが示された。   Further, as shown in the above evaluation results (Table 2), the cured product of Example 2 obtained from the benzoxazine compound of the anthracene derivative of Example 1 is a cured product obtained from other known benzoxazine compounds. It was shown that the glass transition temperature (high heat resistance) and the high residual carbon ratio (high flame retardance) were higher than those of (Comparative Examples 2 and 5).

また、上記評価結果(表3)で示されるように、実施例1のアントラセン誘導体のベンゾオキサジン化合物と公知の2官能エポキシ樹脂により調製された硬化性組成物から得られた実施例3の硬化物は、他の公知のベンゾオキサジン化合物と公知の2官能エポキシ樹脂により調製された硬化性組成物から得られた硬化物(比較例3及び6)よりも高いガラス転移温度(高い耐熱性)、高い残炭率(高い難燃性)を有することが示された。   Further, as shown in the above evaluation results (Table 3), the cured product of Example 3 obtained from the curable composition prepared from the benzoxazine compound of the anthracene derivative of Example 1 and a known bifunctional epoxy resin. Has a higher glass transition temperature (higher heat resistance) than a cured product (Comparative Examples 3 and 6) obtained from a curable composition prepared from another known benzoxazine compound and a known bifunctional epoxy resin. It was shown to have a residual charcoal rate (high flame retardancy).

本発明のアントラセン誘導体は、高屈折率及び蛍光性能といった特性を有する熱硬化性組成物を提供することができる。さらに、このアントラセン誘導体を含む硬化性組成物からは、高い光屈折性、蛍光特性を有する上に、高耐熱性、高難燃性等を有する硬化物を得ることができるため、例えば接着剤、塗料、積層板、成型材料、注型材料、半導体封止材料、プリント基板絶縁材料、コーティング材料、光学材料、構造材料、フォトレジスト原料などに用いることができる。   The anthracene derivative of the present invention can provide a thermosetting composition having characteristics such as a high refractive index and fluorescence performance. Furthermore, from the curable composition containing this anthracene derivative, it is possible to obtain a cured product having a high photorefractive property, a fluorescent property, a high heat resistance, a high flame retardancy, etc. It can be used for paints, laminates, molding materials, casting materials, semiconductor sealing materials, printed board insulating materials, coating materials, optical materials, structural materials, photoresist raw materials, and the like.

Claims (4)

下記式(1)で表されるアントラセン誘導体。
(式(1)中、R及びRは、それぞれ独立して、炭素数1〜4の直鎖状若しくは分岐状のアルキル基、シクロアルキル基、アリル基、アラルキル基又はアリール基である。a及びbは、それぞれ独立して、0〜3の整数である。a又はbが2以上の場合、複数のR又はRは、それぞれ独立して上記定義を満たす。R及びRは、それぞれ独立して、炭素数1〜4の直鎖状若しくは分岐状のアルキル基、シクロアルキル基、アリル基、アラルキル基又はフェニル基であり、このフェニル基の有する水素原子の一部又は全部がアルキル基で置換されていてもよい。)
An anthracene derivative represented by the following formula (1).
(In the formula (1), R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 4 carbon atoms, a cycloalkyl group, an allyl group, an aralkyl group or an aryl group. a and b are each independently an integer of 0 to 3. When a or b is 2 or more, a plurality of R 1 or R 2 independently satisfy the above definition R 3 and R 4 Are each independently a linear or branched alkyl group having 1 to 4 carbon atoms, a cycloalkyl group, an allyl group, an aralkyl group or a phenyl group, and part or all of the hydrogen atoms of the phenyl group May be substituted with an alkyl group.)
上記a及びbが0であり、R及びRがフェニル基である請求項1に記載のアントラセン誘導体。 The anthracene derivative according to claim 1, wherein a and b are 0, and R 3 and R 4 are phenyl groups. 請求項1又は請求項2に記載のアントラセン誘導体及び/又はこのアントラセン誘導体から得られる重合体を含む硬化性組成物。   A curable composition comprising the anthracene derivative according to claim 1 or 2 and / or a polymer obtained from the anthracene derivative. 請求項3に記載の硬化性組成物を硬化して得られる硬化物。   A cured product obtained by curing the curable composition according to claim 3.
JP2010236918A 2010-10-21 2010-10-21 Anthracene derivative, curable composition and cured product Active JP5580712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010236918A JP5580712B2 (en) 2010-10-21 2010-10-21 Anthracene derivative, curable composition and cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010236918A JP5580712B2 (en) 2010-10-21 2010-10-21 Anthracene derivative, curable composition and cured product

Publications (2)

Publication Number Publication Date
JP2012087103A JP2012087103A (en) 2012-05-10
JP5580712B2 true JP5580712B2 (en) 2014-08-27

Family

ID=46259132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010236918A Active JP5580712B2 (en) 2010-10-21 2010-10-21 Anthracene derivative, curable composition and cured product

Country Status (1)

Country Link
JP (1) JP5580712B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5662234B2 (en) * 2011-04-18 2015-01-28 旭有機材工業株式会社 Phenolic resin, curable composition containing the same, and cured product
WO2015104973A1 (en) * 2014-01-07 2015-07-16 Dic株式会社 Polyarylene ether resin, production method for polyarylene ether resin, curable resin material, cured product thereof, semiconductor sealing material, prepreg, circuit board, and build-up film
KR20230044982A (en) * 2020-08-03 2023-04-04 나믹스 가부시끼가이샤 Epoxy resin composition for semiconductor encapsulation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100559A (en) * 1987-10-14 1989-04-18 Canon Inc Electrophotographic sensitive body
JPH05222153A (en) * 1992-02-12 1993-08-31 Nippon Steel Chem Co Ltd New anthracene-based epoxy resin and its production
JP5096668B2 (en) * 2005-06-29 2012-12-12 ナガセケムテックス株式会社 Thermosetting resin composition
JP2009286888A (en) * 2008-05-29 2009-12-10 Sumitomo Bakelite Co Ltd Thermosetting resin composition, thermosetting resin molding material, and cured product of the same

Also Published As

Publication number Publication date
JP2012087103A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP5567889B2 (en) Anthracene derivative, compound using the same, composition, cured product, and method for producing the same
JP5788835B2 (en) Monofunctional, difunctional, and polyfunctional phosphinated phenols, derivatives thereof, and methods for their preparation
JP5778462B2 (en) Anthracene derivative and method for producing the same, curable composition, and cured product
JP5613284B2 (en) Thermosetting resin composition and cured product thereof
WO2014050789A1 (en) Epoxy compound and method for production thereof, and epoxy resin composition and cured product thereof
JP5580712B2 (en) Anthracene derivative, curable composition and cured product
JP5635786B2 (en) Anthracene derivative, resin, curable composition and cured product
JP5662234B2 (en) Phenolic resin, curable composition containing the same, and cured product
JP5552357B2 (en) Anthracene derivative, curable composition and cured product thereof
JP5875030B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5719631B2 (en) Compound, derivative, composition, cured product, and method for producing compound and derivative
JP5731818B2 (en) Anthracene derivative, curable composition, cured product, and method for producing anthracene derivative
JP6671958B2 (en) Phenol resin, epoxy resin, epoxy resin composition, prepreg and cured product thereof
JP5937431B2 (en) Resin composition and cured product thereof
JP3755629B2 (en) Method for producing phenol aralkyl resin
JP2015212356A (en) Phenolic resin, epoxy resin, epoxy resin composition, and cured product thereof
JP6537261B2 (en) Resin raw material, phenolic resin and method for producing anthracene derivative
JPH04255714A (en) Polyfunctional epoxy resin and its production
JP2004238437A (en) Naphthol-based phenolic resin and method for producing the same
JP2868854B2 (en) Novel polyvalent hydroxy compound and method for producing the same
JP2010285348A (en) Benzoxazine compound
JP2003073318A (en) Polyhydroxy compound, epoxy resin, epoxy resin composition and hardened material of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140711

R150 Certificate of patent or registration of utility model

Ref document number: 5580712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250