Nothing Special   »   [go: up one dir, main page]

JP5575299B2 - Film forming method and film forming apparatus - Google Patents

Film forming method and film forming apparatus Download PDF

Info

Publication number
JP5575299B2
JP5575299B2 JP2013084744A JP2013084744A JP5575299B2 JP 5575299 B2 JP5575299 B2 JP 5575299B2 JP 2013084744 A JP2013084744 A JP 2013084744A JP 2013084744 A JP2013084744 A JP 2013084744A JP 5575299 B2 JP5575299 B2 JP 5575299B2
Authority
JP
Japan
Prior art keywords
gas
film
processing container
film forming
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013084744A
Other languages
Japanese (ja)
Other versions
JP2013179321A (en
Inventor
正信 松永
鈴木  啓介
宰赫 張
保華 周
雅人 米澤
雅之 長谷川
一秀 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2013084744A priority Critical patent/JP5575299B2/en
Publication of JP2013179321A publication Critical patent/JP2013179321A/en
Application granted granted Critical
Publication of JP5575299B2 publication Critical patent/JP5575299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、半導体ウエハ等の被処理体にシリコン窒化膜(SiN膜)を成膜する成膜方法および成膜装置に関し、特に半導体処理技術に関する。ここで、半導体処理とは、半導体ウエハやLCD(Liquid Crystal Display)のようなFPD(Flat Panel Display)用のガラス基板などの被処理体上に半導体層、絶縁層、導電層などを所定のパターンで形成することにより、該被処理体上に半導体デバイスや、半導体デバイスに接続される配線、電極などを含む構造物を製造するために実施される種々の処理を意味する。   The present invention relates to a film forming method and a film forming apparatus for forming a silicon nitride film (SiN film) on an object to be processed such as a semiconductor wafer, and more particularly to a semiconductor processing technique. Here, the semiconductor processing means that a semiconductor layer, an insulating layer, a conductive layer, and the like are formed in a predetermined pattern on a target object such as a semiconductor wafer or a glass substrate for an FPD (Flat Panel Display) such as an LCD (Liquid Crystal Display). This means various processes performed to manufacture a structure including a semiconductor device, a wiring connected to the semiconductor device, an electrode, and the like on the object to be processed.

半導体デバイスの製造シーケンスにおいては、シリコンウエハに代表される半導体ウエハに対して絶縁膜としてシリコン窒化膜(SiN膜)を成膜する成膜処理が存在する。このようなSiN膜の成膜処理には、複数の半導体ウエハに対して一括して化学蒸着法(CVD)により成膜する縦型のバッチ式熱処理装置がしばしば用いられる。   In a semiconductor device manufacturing sequence, there is a film forming process for forming a silicon nitride film (SiN film) as an insulating film on a semiconductor wafer typified by a silicon wafer. In such a SiN film forming process, a vertical batch type heat treatment apparatus that forms a film on a plurality of semiconductor wafers by chemical vapor deposition (CVD) is often used.

近年、半導体デバイスの微細化・集積化の進展にともない、従来のCVDにおける成膜温度よりも低温で良質な特性を有するSiN膜を成膜することが求められるようになってきた。縦型のバッチ式熱処理装置において、このようなことを実現可能な技術として、Siソースガスと窒化ガスとを交互に供給しながら原子層レベル、又は分子層レベルで交互に繰り返し成膜するALD(atomic layer deposition)によってSiN膜を成膜する技術が提案されている(例えば特許文献1)。例えば、Siソースとして吸着性の良好なジクロロシラン(DCS;SiHCl)が使用され、窒化ガスとしてアンモニア(NH)が使用される。 In recent years, with the progress of miniaturization and integration of semiconductor devices, it has been required to form a SiN film having good characteristics at a temperature lower than the film formation temperature in conventional CVD. In a vertical batch-type heat treatment apparatus, as a technique capable of realizing this, an ALD (alternatively repeating film formation at an atomic layer level or a molecular layer level while alternately supplying Si source gas and nitriding gas) A technique for forming a SiN film by atomic layer deposition has been proposed (for example, Patent Document 1). For example, dichlorosilane (DCS; SiH 2 Cl 2 ) having good adsorptivity is used as the Si source, and ammonia (NH 3 ) is used as the nitriding gas.

特開2006−49809号公報JP 2006-49809 A

しかしながら、SiソースとしてDCSを用いてALDにより500℃以下で成膜を行った場合には、得られたSiN膜のウエットエッチングレートが極めて大きく、膜質が悪いものとなってしまう。   However, when the film is formed by ALD at 500 ° C. or less using DCS as the Si source, the wet etching rate of the obtained SiN film is extremely large, and the film quality is poor.

本発明は、ALDにより膜質のより良好なシリコン窒化膜を形成することができる成膜方法および成膜装置を提供しようとするものである。   An object of the present invention is to provide a film forming method and a film forming apparatus capable of forming a silicon nitride film with better film quality by ALD.

本発明の第の視点は、真空保持可能な処理容器内でシリコン窒化膜からなる製品膜を形成する成膜方法であって、前記処理容器内で製品用被処理体上に前記製品膜を形成する成膜処理を複数回繰り返すことと、次に、前記成膜処理によって前記処理容器内に付着した反応生成物を除去するクリーニング処理を、前記処理容器内に製品用被処理体を収納しない状態で行うことと、次に、前記処理容器内をシリコン窒化膜からなるコーティング膜で被覆するコーティング処理を、前記処理容器内に製品用被処理体を収納しない状態で行うことと、次に、前記処理容器内で製品用被処理体上に前記製品膜を形成する前記成膜処理を行うことと、を具備し、前記成膜処理は、パージ工程を間に挟んで吸着工程及び窒化工程を交互に含むサイクルを複数回繰り返し、前記吸着工程では、前記処理容器内へSiソースガスとしてモノクロロシランガスを供給し、前記窒化工程では、前記処理容器内へ窒化ガスとして窒素含有ガスを供給するALD(atomic layer deposition)によって行うことと、前記コーティング処理は、パージ工程を間に挟んで第1供給工程及び第2供給工程を交互に含むサイクルを複数回繰り返し、前記第1供給工程では、前記処理容器内へSiソースガスとしてジクロロシランガスを供給し、前記第2供給工程では、前記処理容器内へ窒化ガスとして窒素含有ガスを供給するALDによって行うことと、を特徴とする。 According to a first aspect of the present invention, there is provided a film forming method for forming a product film made of a silicon nitride film in a processing container capable of maintaining a vacuum, wherein the product film is formed on a workpiece for processing in the processing container. The film forming process to be formed is repeated a plurality of times, and then the cleaning process for removing the reaction product adhering to the processing container by the film forming process is not accommodated in the processing container. Performing in a state, and then performing a coating process for coating the inside of the processing container with a coating film made of a silicon nitride film in a state in which the product to-be-processed object is not accommodated in the processing container, Performing the film forming process for forming the product film on a product target object in the processing container, and the film forming process includes an adsorption process and a nitriding process with a purge process interposed therebetween. Multiple cycles including alternating Repeatedly, in the adsorption step, monochlorosilane gas is supplied as Si source gas into the processing vessel, and in the nitriding step, nitrogen-containing gas is supplied as nitriding gas into the processing vessel by ALD (atomic layer deposition). And the coating process is repeated a plurality of times including alternately a first supply process and a second supply process with a purge process in between. In the first supply process, the Si source gas is introduced into the processing container. Dichlorosilane gas is supplied, and the second supply step is performed by ALD supplying nitrogen-containing gas as nitriding gas into the processing vessel.

本発明の第の視点は、コンピュータ上で動作し、成膜装置を制御するためのプログラムが記憶されたコンピュータ読取可能な記憶媒体であって、前記プログラムは、実行時に、前記第1の視点の成膜方法が行われるように、コンピュータに前記成膜装置を制御させることを特徴とする。 A second aspect of the present invention is a computer-readable storage medium that operates on a computer and stores a program for controlling a film forming apparatus, and the program is executed when the first viewpoint is executed. The film forming apparatus is controlled by a computer so that the film forming method is performed.

本発明の第の視点は、複数の被処理体に対してシリコン窒化膜を成膜する成膜装置であって、真空保持可能な縦型の処理容器と、前記被処理体を複数段に保持した状態で前記処理容器内に保持する保持部材と、前記処理容器の外周に設けられた前記被処理体を加熱する加熱機構と、前記処理容器内へSiソースガスを供給するSiソースガス供給機構と、前記処理容器内へ窒化ガスを供給する窒素含有ガス供給機構と、前記成膜装置の動作を制御する制御部と、を具備し、前記制御部は、コンピュータと、前記コンピュータ上で動作し、前記装置を制御するための前記プログラムが記憶された前記第の視点のコンピュータ読取可能な記憶媒体と、を含むことを特徴とする。 According to a third aspect of the present invention, there is provided a film forming apparatus for forming a silicon nitride film on a plurality of objects to be processed, the vertical processing container capable of maintaining a vacuum, and the objects to be processed in a plurality of stages. A holding member that is held in the processing container in a held state, a heating mechanism that heats the object to be processed provided on the outer periphery of the processing container, and an Si source gas supply that supplies Si source gas into the processing container A mechanism, a nitrogen-containing gas supply mechanism that supplies a nitriding gas into the processing container, and a control unit that controls the operation of the film forming apparatus, the control unit operating on the computer and the computer And a computer-readable storage medium of the second viewpoint in which the program for controlling the device is stored.

本発明によれば、Siソースとしてモノクロロシランを用いてALDの手法により成膜する一方で、処理容器内のコーティング処理を成膜処理とは異なる態様で行い、コーティング膜中の塩素の濃度を高くすることにより、膜質が良好なシリコン窒化膜を形成することができる。   According to the present invention, while forming a film by the ALD method using monochlorosilane as the Si source, the coating process in the processing container is performed in a mode different from the film forming process, and the concentration of chlorine in the coating film is increased. As a result, a silicon nitride film with good film quality can be formed.

本発明の実施形態に係る半導体処理用の成膜装置の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the film-forming apparatus for semiconductor processing concerning embodiment of this invention. 図1に示す成膜装置の横断面図である。It is a cross-sectional view of the film forming apparatus shown in FIG. 本発明の実施形態に係る成膜方法におけるガスの供給のタイミングを示すタイミングチャートである。It is a timing chart which shows the timing of supply of gas in the film-forming method concerning the embodiment of the present invention. SiソースとしてMCSを用いた場合およびDCSを用いた場合について、1000/T(K)と、1サイクル当たりの成膜レート(サイクルレート)の対数との関係を示すグラフである。It is a graph which shows the relationship between 1000 / T (K) and the logarithm of the film-forming rate (cycle rate) per cycle about the case where MCS is used as Si source, and DCS is used. SiソースとしてMCSを用いた場合の各温度におけるSiソースのフロー時間とサイクルレートの対数との関係を示すグラフである。It is a graph which shows the relationship between the flow time of Si source in each temperature at the time of using MCS as Si source, and the logarithm of a cycle rate. SiソースとしてMCSを用いた場合およびDCSを用いた場合について、成膜温度とサイクルレートとの関係を示すグラフである。It is a graph which shows the relationship between the film-forming temperature and a cycle rate about the case where MCS is used as Si source, and the case where DCS is used. SiソースとしてMCSを用いた場合およびDCSを用いた場合について、成膜温度とSiN膜の屈折率との関係を示すグラフである。It is a graph which shows the relationship between the film-forming temperature and the refractive index of a SiN film | membrane about the case where MCS is used as Si source and DCS is used. SiソースとしてMCSを用いた場合およびDCSを用いた場合について、成膜温度と希フッ酸(1%DHF)によるSiN膜のエッチングレートとの関係を示すグラフである。It is a graph which shows the relationship between the film-forming temperature and the etching rate of the SiN film by dilute hydrofluoric acid (1% DHF) when MCS is used as the Si source and when DCS is used. DCSを用いて450℃、550℃、600℃、630℃で成膜したSiN膜およびMCSを用いて450℃で成膜したSiN膜における膜最表面の耐酸化性を示すグラフである。It is a graph which shows the oxidation resistance of the film | membrane outermost surface in the SiN film | membrane formed into a film at 450 degreeC using DCS at 450 degreeC, 550 degreeC, 600 degreeC, and 630 degreeC, and the SiN film | membrane formed into a film using 450 degreeC. プラズマALDおよびサーマルALDで形成したSiN膜中のCl含有量を示すグラフである。It is a graph which shows Cl content in the SiN film | membrane formed by plasma ALD and thermal ALD.

以下、添付図面を参照しながら本発明の実施形態について詳細に説明する。なお、以下の説明において、略同一の機能および構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。
図1は本発明の実施形態に係る半導体処理用の成膜装置の一例を示す縦断面図、図2は図1の成膜装置を示す横断面図である。なお、図2においては、加熱機構を省略している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description, components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description will be given only when necessary.
FIG. 1 is a longitudinal sectional view showing an example of a film forming apparatus for semiconductor processing according to an embodiment of the present invention, and FIG. 2 is a cross sectional view showing the film forming apparatus of FIG. In FIG. 2, the heating mechanism is omitted.

成膜装置100は、下端が開口され且つ上部が閉塞された円筒体状の処理容器1を有している。この処理容器1の全体は、例えば石英により形成されており、この処理容器1内の上端部近傍には、石英製の天井板2が設けられてその下側の領域が封止されている。また、この処理容器1の下端開口部には、例えばステンレススチールにより円筒体状に成形されたマニホールド3がOリング等のシール部材4を介して連結されている。   The film forming apparatus 100 includes a cylindrical processing container 1 having a lower end opened and a top closed. The entire processing container 1 is made of, for example, quartz, and a quartz ceiling plate 2 is provided in the vicinity of the upper end portion in the processing container 1, and a lower region thereof is sealed. In addition, a manifold 3 formed in a cylindrical shape from, for example, stainless steel is connected to the lower end opening of the processing container 1 via a seal member 4 such as an O-ring.

上記マニホールド3は処理容器1の下端を支持しており、このマニホールド3の下方から被処理体として多数枚、例えば50〜100枚の半導体ウエハWを多段に載置可能な石英製のウエハボート5が処理容器1内に挿入可能となっている。このウエハボート5は3本の支柱6を有し(図2参照)、支柱6に形成された溝により多数枚のウエハWが支持されるようになっている。   The manifold 3 supports the lower end of the processing vessel 1, and a quartz wafer boat 5 on which a large number of, for example, 50 to 100 semiconductor wafers W can be placed in multiple stages as objects to be processed from below the manifold 3. Can be inserted into the processing container 1. The wafer boat 5 has three columns 6 (see FIG. 2), and a large number of wafers W are supported by grooves formed in the columns 6.

このウエハボート5は、石英製の保温筒7を介してテーブル8上に載置されており、このテーブル8は、マニホールド3の下端開口部を開閉する例えばステンレススチール製の蓋部9を貫通する回転軸10上に支持される。   The wafer boat 5 is placed on a table 8 via a quartz heat insulating cylinder 7, and the table 8 passes through a lid 9 made of, for example, stainless steel that opens and closes the lower end opening of the manifold 3. It is supported on the rotating shaft 10.

そして、この回転軸10の貫通部には、例えば磁性流体シール11が設けられており、回転軸10を気密にシールしつつ回転可能に支持している。また、蓋部9の周辺部とマニホールド3の下端部との間には、例えばOリングよりなるシール部材12が介設されており、これにより処理容器1内のシール性を保持している。   And the magnetic fluid seal | sticker 11 is provided in the penetration part of this rotating shaft 10, for example, and the rotating shaft 10 is supported rotatably, sealing airtightly. Further, a sealing member 12 made of, for example, an O-ring is interposed between the peripheral portion of the lid portion 9 and the lower end portion of the manifold 3, thereby maintaining the sealing performance in the processing container 1.

上記の回転軸10は、例えばボートエレベータ等の昇降機構(図示せず)に支持されたアーム13の先端に取り付けられており、ウエハボート5および蓋部9等を一体的に昇降して処理容器1内に対して挿脱されるようになっている。なお、上記テーブル8を上記蓋部9側へ固定して設け、ウエハボート5を回転させることなくウエハWの処理を行うようにしてもよい。   The rotary shaft 10 is attached to the tip of an arm 13 supported by an elevating mechanism (not shown) such as a boat elevator, for example, and moves up and down the wafer boat 5 and the lid 9 etc. integrally. 1 is inserted into and removed from the inside. The table 8 may be fixedly provided on the lid 9 side, and the wafer W may be processed without rotating the wafer boat 5.

また、成膜装置100は、処理容器1内へ窒化ガスとして用いられる窒素含有ガス、例えばアンモニア(NH)ガスを供給する窒素含有ガス供給機構14と、処理容器1内へSiソースガスとしてモノクロロシラン(MCS)ガスを供給するSiソースガス供給機構15と、処理容器1内へパージガスとして不活性ガス、例えばNガスを供給するパージガス供給機構16とを有している。 Further, the film forming apparatus 100 includes a nitrogen-containing gas supply mechanism 14 that supplies a nitrogen-containing gas used as a nitriding gas, for example, ammonia (NH 3 ) gas, into the processing container 1, and a mono-source Si gas into the processing container 1 An Si source gas supply mechanism 15 that supplies chlorosilane (MCS) gas and a purge gas supply mechanism 16 that supplies an inert gas such as N 2 gas as a purge gas into the processing container 1 are provided.

窒素含有ガス供給機構14は、窒素含有ガス供給源17と、ガス供給源17から窒素含有ガスを導くガス配管18と、このガス配管18に接続され、マニホールド3の側壁を内側へ貫通して上方向へ屈曲されて垂直に延びる石英管よりなるガス分散ノズル19とを有している。このガス分散ノズル19の垂直部分には、ウエハボート5のウエハ支持範囲に対応する上下方向の長さに亘って複数のガス吐出孔19aが所定の間隔を隔てて形成されている。各ガス吐出孔19aから水平方向に処理容器1に向けて略均一に窒素含有ガス、例えばNHガスを吐出することができる。 The nitrogen-containing gas supply mechanism 14 is connected to the nitrogen-containing gas supply source 17, the gas pipe 18 for introducing the nitrogen-containing gas from the gas supply source 17, and the gas pipe 18, and penetrates the side wall of the manifold 3 inwardly. And a gas dispersion nozzle 19 made of a quartz tube bent in the direction and extending vertically. A plurality of gas discharge holes 19 a are formed in the vertical portion of the gas dispersion nozzle 19 at a predetermined interval over the length in the vertical direction corresponding to the wafer support range of the wafer boat 5. A nitrogen-containing gas, for example, NH 3 gas, can be discharged from the gas discharge holes 19a in a horizontal direction toward the processing container 1 substantially uniformly.

Siソースガス供給機構15は、Siソースガス供給源20と、ガス供給源20からSiソースガスを導くガス配管21と、このガス配管21に接続され、マニホールド3の側壁を内側へ貫通して上方向へ屈曲されて垂直に延びる石英管よりなるガス分散ノズル22とを有している。ここではSiソースガスのガス分散ノズル22は2本設けられている(図2参照)。各ガス分散ノズル22の垂直部分にも、ウエハボート5のウエハ支持範囲に対応する上下方向の長さに亘って複数のガス吐出孔22aが所定の間隔を隔てて形成されている。各ガス吐出孔22aから水平方向に処理容器1内に略均一にSiソースガスとしてのMCSガスを吐出することができる。なお、Siソースガスのガス分散ノズル22は1本のみであってもよい。   The Si source gas supply mechanism 15 is connected to the Si source gas supply source 20, a gas pipe 21 that guides the Si source gas from the gas supply source 20, and the gas pipe 21, and penetrates the side wall of the manifold 3 inward. And a gas dispersion nozzle 22 made of a quartz tube bent in a direction and extending vertically. Here, two gas distribution nozzles 22 for the Si source gas are provided (see FIG. 2). A plurality of gas discharge holes 22 a are formed at predetermined intervals in the vertical portion of each gas dispersion nozzle 22 over the length in the vertical direction corresponding to the wafer support range of the wafer boat 5. The MCS gas as the Si source gas can be discharged almost uniformly into the processing container 1 in the horizontal direction from each gas discharge hole 22a. Note that the number of Si source gas gas dispersion nozzles 22 may be only one.

パージガス供給機構16は、パージガス供給源23と、ガス供給源23からパージガスを導くガス配管24と、このガス配管24に接続され、マニホールド3の側壁を貫通して設けられた短い石英管よりなるガスノズル25とを有している。パージガスとしては不活性ガス例えばNガスを好適に用いることができる。 The purge gas supply mechanism 16 includes a purge gas supply source 23, a gas pipe 24 that guides the purge gas from the gas supply source 23, and a gas nozzle that is connected to the gas pipe 24 and includes a short quartz pipe provided through the side wall of the manifold 3. 25. As the purge gas, an inert gas such as N 2 gas can be preferably used.

ガス配管18、21、24には、それぞれ開閉弁18a、21a、24aおよびマスフローコントローラのような流量制御器18b、21b、24bが設けられている。これにより、窒素含有ガス、Siソースガスおよびパージガスをそれぞれ流量制御しつつ供給することができる。   The gas pipes 18, 21, 24 are provided with on-off valves 18a, 21a, 24a and flow controllers 18b, 21b, 24b such as mass flow controllers, respectively. As a result, the nitrogen-containing gas, the Si source gas, and the purge gas can be supplied while controlling their flow rates.

上記処理容器1の側壁の一部には、窒化ガスとして用いられる窒素含有ガスのプラズマを形成するプラズマ生成機構30が形成されている。このプラズマ生成機構30は、上記処理容器1の側壁を上下方向に沿って所定の幅で削りとることによって上下に細長く形成された開口31をその外側より覆うようにして処理容器1の外壁に気密に溶接されたプラズマ区画壁32を有している。プラズマ区画壁32は、断面凹部状をなし上下に細長く形成され、例えば石英で形成されている。   A plasma generation mechanism 30 that forms plasma of a nitrogen-containing gas used as a nitriding gas is formed on a part of the side wall of the processing vessel 1. This plasma generation mechanism 30 is airtight on the outer wall of the processing container 1 so as to cover the opening 31 formed vertically from the outside by scraping the side wall of the processing container 1 with a predetermined width along the vertical direction. And has a plasma compartment wall 32 welded thereto. The plasma partition wall 32 has a concave cross-sectional shape and is elongated vertically, and is made of, for example, quartz.

また、プラズマ生成機構30は、このプラズマ区画壁32の両側壁の外面に上下方向に沿って互いに対向するようにして配置された細長い一対のプラズマ電極33と、このプラズマ電極33に給電ライン34を介して接続され高周波電力を供給する高周波電源35とを有している。そして、上記プラズマ電極33に高周波電源35から例えば13.56MHzの高周波電圧を印加することにより窒素含有ガスのプラズマが発生し得る。なお、この高周波電圧の周波数は13.56MHzに限定されず、他の周波数、例えば400kHz等を用いてもよい。   The plasma generation mechanism 30 includes a pair of elongated plasma electrodes 33 disposed on the outer surfaces of both side walls of the plasma partition wall 32 so as to face each other in the vertical direction, and a power supply line 34 provided to the plasma electrode 33. And a high frequency power supply 35 for supplying high frequency power. A plasma of nitrogen-containing gas can be generated by applying a high frequency voltage of 13.56 MHz, for example, from the high frequency power source 35 to the plasma electrode 33. Note that the frequency of the high-frequency voltage is not limited to 13.56 MHz, and other frequencies such as 400 kHz may be used.

上記のようなプラズマ区画壁32を形成することにより、処理容器1の側壁の一部が凹部状に外側へ窪ませた状態となり、プラズマ区画壁32の内部空間が処理容器1の内部空間に一体的に連通された状態となる。また、プラズマ区画壁32の内部空間および開口31は、ウエハボート5に保持されている全てのウエハWを高さ方向においてカバーできるように上下方向に十分に長く形成されている。   By forming the plasma partition wall 32 as described above, a part of the side wall of the processing container 1 is recessed outward in the shape of a recess, and the internal space of the plasma partition wall 32 is integrated with the internal space of the processing container 1. Will be in a state of communication. The internal space of the plasma partition wall 32 and the opening 31 are formed long enough in the vertical direction so that all the wafers W held by the wafer boat 5 can be covered in the height direction.

窒素含有ガスのガス分散ノズル19は、処理容器1内を上方向に延びていく途中で処理容器1の半径方向外方へ屈曲されて、上記プラズマ区画壁32内の最も奥の部分(処理容器1の中心から最も離れた部分)に沿って上方に向けて起立されている。このため、高周波電源35がオンされて両電極33間に高周波電界が形成された際に、ガス分散ノズル19のガス噴射孔19aから噴射された窒素含有ガス、例えばNHガスがプラズマ化されて処理容器1の中心に向けて拡散しつつ流れる。 The gas dispersion nozzle 19 for the nitrogen-containing gas is bent outward in the radial direction of the processing container 1 in the middle of extending upward in the processing container 1, and is the innermost part (processing container in the plasma partition wall 32). (The portion farthest from the center of 1)). For this reason, when the high frequency power supply 35 is turned on and a high frequency electric field is formed between the electrodes 33, a nitrogen-containing gas, for example, NH 3 gas injected from the gas injection holes 19a of the gas dispersion nozzle 19 is converted into plasma. It flows while diffusing toward the center of the processing container 1.

上記プラズマ区画壁32の外側には、これを覆うようにして例えば石英よりなる絶縁保護カバー36が取り付けられている。また、この絶縁保護カバー36の内側部分には、図示しない冷媒通路が設けられており、例えば冷却された窒素ガスを流すことにより上記プラズマ電極33を冷却し得るようになっている。   An insulating protective cover 36 made of, for example, quartz is attached to the outside of the plasma partition wall 32 so as to cover it. In addition, a refrigerant passage (not shown) is provided in the inner portion of the insulating protective cover 36, and the plasma electrode 33 can be cooled by flowing a cooled nitrogen gas, for example.

Siソースガスの2本のガス分散ノズル22は、処理容器1の内側壁の上記開口31を挟む位置に起立して設けられている。このガス分散ノズル22に形成された複数のガス噴射孔22aより処理容器1の中心方向に向けてSiソースガスとしてMCSガスを吐出し得る。   The two gas distribution nozzles 22 of the Si source gas are provided upright at a position sandwiching the opening 31 on the inner wall of the processing container 1. MCS gas can be discharged as the Si source gas from the plurality of gas injection holes 22a formed in the gas dispersion nozzle 22 toward the center of the processing vessel 1.

一方、処理容器1の開口31の反対側の部分には、処理容器1内を真空排気するための排気口37が設けられている。この排気口37は処理容器1の側壁を上下方向へ削りとることによって細長く形成されている。処理容器1のこの排気口37に対応する部分には、排気口37を覆うように断面コ字状に成形された排気口カバー部材38が溶接により取り付けられている。この排気口カバー部材38は、処理容器1の側壁に沿って上方に延びており、処理容器1の上方にガス出口39を規定している。そして、このガス出口39から真空ポンプ等を含む真空排気機構VEMにより真空引きされる。そして、この処理容器1の外周を囲むようにしてこの処理容器1およびその内部のウエハWを加熱する筒体状の加熱機構40が設けられている。   On the other hand, an exhaust port 37 for evacuating the inside of the processing container 1 is provided at a portion opposite to the opening 31 of the processing container 1. The exhaust port 37 is formed in an elongated shape by scraping the side wall of the processing container 1 in the vertical direction. An exhaust port cover member 38 having a U-shaped cross section so as to cover the exhaust port 37 is attached to a portion corresponding to the exhaust port 37 of the processing container 1 by welding. The exhaust port cover member 38 extends upward along the side wall of the processing container 1, and defines a gas outlet 39 above the processing container 1. The gas outlet 39 is evacuated by an evacuation mechanism VEM including a vacuum pump and the like. A cylindrical heating mechanism 40 for heating the processing container 1 and the wafer W therein is provided so as to surround the outer periphery of the processing container 1.

成膜装置100の各構成部の制御、例えばバルブ18a、21a、24aの開閉による各ガスの供給・停止、マスフローコントローラ18b、21b、24bによるガス流量の制御、真空排気機構による排気制御、および高周波電源35のオン・オフ制御、加熱機構40の制御によりウエハWの温度制御等は例えばマイクロプロセッサ(コンピュータ)からなるコントローラ50により行われる。すなわち、コントローラ50は、ガス供給制御機構、温度制御機構等として機能する。コントローラ50には、オペレータが成膜装置100を管理するためにコマンドの入力操作等を行うキーボードや、成膜装置100の稼働状況を可視化して表示するディスプレイ等からなるユーザーインターフェース51が接続されている。   Control of each component of the film forming apparatus 100, for example, supply / stop of each gas by opening / closing valves 18a, 21a, 24a, control of gas flow rate by mass flow controllers 18b, 21b, 24b, exhaust control by vacuum exhaust mechanism, and high frequency The temperature control of the wafer W by the on / off control of the power source 35 and the control of the heating mechanism 40 is performed by a controller 50 made of, for example, a microprocessor (computer). That is, the controller 50 functions as a gas supply control mechanism, a temperature control mechanism, and the like. Connected to the controller 50 is a user interface 51 including a keyboard for an operator to input commands for managing the film forming apparatus 100, a display for visualizing and displaying the operating status of the film forming apparatus 100, and the like. Yes.

コントローラ50には記憶部52が接続されている。記憶部52は、成膜装置100で実行される各種処理をコントローラ50の制御にて実現するための制御プログラムや、処理条件に応じて成膜装置100の各構成部に処理を実行させるためのプログラムすなわちレシピが格納される。レシピは、例えば記憶部52の中の記憶媒体に記憶される。記憶媒体は、ハードディスクや半導体メモリ等の固定型のものであってもよいし、CD-ROM、DVD、フラッシュメモリ等の可搬性のものであってもよい。また、他の装置から、例えば専用回線を介してレシピを適宜伝送させるようにしてもよい。   A storage unit 52 is connected to the controller 50. The storage unit 52 is a program for realizing various processes executed by the film forming apparatus 100 under the control of the controller 50, and for causing each component of the film forming apparatus 100 to execute processes according to the processing conditions. A program or recipe is stored. The recipe is stored in a storage medium in the storage unit 52, for example. The storage medium may be a fixed type such as a hard disk or a semiconductor memory, or may be a portable type such as a CD-ROM, DVD, or flash memory. Moreover, you may make it transmit a recipe suitably from another apparatus via a dedicated line, for example.

そして、レシピは、必要に応じて、ユーザーインターフェース51からの指示等にて記憶部52から読み出され、読み出されたレシピに従った処理をコントローラ50が実行することで、成膜装置100は、コントローラ50の制御のもと、所望の処理が実施される。   Then, the recipe is read from the storage unit 52 according to an instruction from the user interface 51 or the like as necessary, and the controller 50 executes processing according to the read recipe, whereby the film forming apparatus 100 is A desired process is performed under the control of the controller 50.

次に、以上のように構成された成膜装置を用いて行なわれる本実施形態に係るSiN膜の成膜方法について図3を参照して説明する。図3は本発明の実施形態に係る成膜方法におけるガスの供給のタイミングを示すタイミングチャートである。   Next, a method of forming a SiN film according to the present embodiment performed using the film forming apparatus configured as described above will be described with reference to FIG. FIG. 3 is a timing chart showing gas supply timing in the film forming method according to the embodiment of the present invention.

まず、常温において、例えば50〜100枚の半導体ウエハWが搭載された状態のウエハボート5を予め所定の温度に制御された処理容器1内にその下方から上昇させることによりロードする。次に、蓋部9でマニホールド3の下端開口部を閉じることにより処理容器1内を密閉空間とする。半導体ウエハWとしては、直径300mmのものが例示されるが、これに限るものではない。   First, at normal temperature, for example, the wafer boat 5 on which 50 to 100 semiconductor wafers W are mounted is loaded into the processing container 1 controlled in advance at a predetermined temperature by raising it from below. Next, the inside of the processing container 1 is made into a sealed space by closing the lower end opening of the manifold 3 with the lid 9. An example of the semiconductor wafer W is 300 mm in diameter, but is not limited thereto.

そして処理容器1内を真空引きして所定のプロセス圧力に維持する。これとともに、加熱機構40への供給電力を制御して、ウエハ温度を上昇させてプロセス温度に維持する。そして、ウエハボート5を回転させた状態で成膜処理を開始する。   Then, the inside of the processing container 1 is evacuated to maintain a predetermined process pressure. At the same time, the power supplied to the heating mechanism 40 is controlled to increase the wafer temperature and maintain it at the process temperature. Then, the film forming process is started with the wafer boat 5 rotated.

この際の成膜処理は、図3に示すように、工程S1と工程S2とを交互に繰り返すいわゆるプラズマALDにより行う。工程S1では、SiソースガスとしてMCSガスを処理容器1に供給し、ウエハW上に吸着させる。工程S2では、窒化ガスである窒素含有ガス、例えばNHガスをプラズマ化して処理容器1に供給し、ウエハW上に吸着されたSiソースガスを窒化させる。これら工程S1および工程S2の間で処理容器1内から処理容器1内に残留するガスを除去する工程S3a、S3bを実施する。 As shown in FIG. 3, the film forming process at this time is performed by so-called plasma ALD in which the step S1 and the step S2 are alternately repeated. In step S <b> 1, MCS gas as Si source gas is supplied to the processing container 1 and is adsorbed on the wafer W. In step S2, a nitrogen-containing gas that is a nitriding gas, for example, NH 3 gas, is converted into plasma and supplied to the processing chamber 1, and the Si source gas adsorbed on the wafer W is nitrided. Between these steps S1 and S2, steps S3a and S3b for removing the gas remaining in the processing vessel 1 from the processing vessel 1 are performed.

具体的には、工程S1においては、Siソースガス供給機構15のガス供給源20からSiソースガスとしてMCSガスをガス配管21およびガス分散ノズル22を介してガス吐出孔22aから処理容器1内にT1の期間供給する。これにより、半導体ウエハ上にMCSを吸着させる。このときの期間T1は2〜30secが例示される。また、Siソースガスの流量は1〜5L/min(slm)が例示される。また、この際の処理容器1内の圧力は66.65〜666.5Pa(0.5〜5Torr)、好ましくは266.6〜600Pa(2〜4.5Torr)が例示される。   Specifically, in step S1, MCS gas is supplied as Si source gas from the gas supply source 20 of the Si source gas supply mechanism 15 into the processing container 1 from the gas discharge hole 22a through the gas pipe 21 and the gas dispersion nozzle 22. Supply for period T1. Thereby, MCS is adsorbed on the semiconductor wafer. The period T1 at this time is exemplified by 2 to 30 sec. Further, the flow rate of the Si source gas is exemplified by 1 to 5 L / min (slm). Moreover, the pressure in the processing container 1 at this time is 66.65 to 666.5 Pa (0.5 to 5 Torr), preferably 266.6 to 600 Pa (2 to 4.5 Torr).

工程S2においては、窒素含有ガス供給機構14のガス供給源17から窒素含有ガスとして例えばNHガスをガス配管18およびガス分散ノズル19を介してガス吐出孔19aから吐出する。このとき、プラズマ生成機構30の高周波電源35をオンにして高周波電界を形成し、この高周波電界により窒素含有ガス、例えばNHガスをプラズマ化する。そして、このようにプラズマ化された窒素含有ガスが処理容器1内に供給される。これにより、半導体ウエハWに吸着されたMCSが窒化されてSiNが形成される。この処理の期間T2は5〜120secの範囲が例示される。また、窒素含有ガスの流量は半導体ウエハWの搭載枚数によっても異なるが、NHガスの場合は0.5〜10L/min(slm)が例示される。また、高周波電源35の周波数は特に限定されないが、13.56MHzが例示され、パワーとしては5〜1000W、好ましくは10〜200Wが採用される。また、この際の処理容器1内の圧力は13.33〜266.6Pa(0.1〜2Torr)、好ましくは13.33〜120Pa(0.1〜0.93Torr)が例示される。 In step S <b> 2, for example, NH 3 gas is discharged as a nitrogen-containing gas from the gas supply source 17 of the nitrogen-containing gas supply mechanism 14 through the gas discharge hole 19 a through the gas pipe 18 and the gas dispersion nozzle 19. At this time, the high-frequency power source 35 of the plasma generation mechanism 30 is turned on to form a high-frequency electric field, and nitrogen-containing gas, for example, NH 3 gas is converted into plasma by this high-frequency electric field. The nitrogen-containing gas that has been converted into plasma is supplied into the processing container 1. Thereby, MCS adsorbed on the semiconductor wafer W is nitrided to form SiN. The period T2 of this process is exemplified by a range of 5 to 120 seconds. The flow rate of the nitrogen-containing gas varies depending on the number of semiconductor wafers W mounted, but in the case of NH 3 gas, 0.5 to 10 L / min (slm) is exemplified. Moreover, although the frequency of the high frequency power supply 35 is not specifically limited, 13.56 MHz is illustrated and power is 5-1000W, Preferably 10-200W is employ | adopted. Moreover, the pressure in the processing container 1 at this time is 13.33 to 266.6 Pa (0.1 to 2 Torr), preferably 13.33 to 120 Pa (0.1 to 0.93 Torr).

この場合に、窒素含有ガスとしては、NHガスの他、Nガス、Nガス等を挙げることができ、これらを高周波電界によりプラズマ化して窒化剤として用いる。 In this case, examples of the nitrogen-containing gas include NH 3 gas, N 2 gas, N 2 H 4 gas, and the like, which are converted into plasma by a high-frequency electric field and used as a nitriding agent.

また、工程S1と工程S2との間に行われる工程S3a、S3bは、工程S1の後または工程S2の後に処理容器1内に残留するガスを除去して次の工程において所望の反応を生じさせる工程である。ここでは、処理容器1内を真空排気しつつパージガス供給機構16のガス供給源23からガス配管24およびガスノズル25を介してパージガスとして不活性ガス例えばNガスを処理容器1内に供給する。この工程S3a、S3bの期間T3a、T3bとしては2〜15secが例示される。また、パージガス流量としては0.5〜15L/min(slm)が例示される。なお、この工程S3a、S3bは処理容器1内に残留しているガスを除去することができれば、パージガスを供給せずに全てのガスの供給を停止した状態で真空引きを継続して行うようにしてもよい。ただし、パージガスを供給することにより、短時間で処理容器1内の残留ガスを除去することができる。 Further, in steps S3a and S3b performed between step S1 and step S2, gas remaining in the processing container 1 is removed after step S1 or after step S2 to cause a desired reaction in the next step. It is a process. Here, an inert gas such as N 2 gas is supplied into the processing vessel 1 as a purge gas from the gas supply source 23 of the purge gas supply mechanism 16 through the gas pipe 24 and the gas nozzle 25 while evacuating the inside of the processing vessel 1. Examples of the periods T3a and T3b of the steps S3a and S3b include 2 to 15 sec. The purge gas flow rate is exemplified by 0.5 to 15 L / min (slm). Note that, in steps S3a and S3b, if the gas remaining in the processing container 1 can be removed, the evacuation is continuously performed with the supply of all gases stopped without supplying the purge gas. May be. However, the residual gas in the processing container 1 can be removed in a short time by supplying the purge gas.

このようにして、SiソースガスであるMCSガスを供給する工程S1とプラズマにより励起した窒素含有ガスを供給する工程S2とを、間に処理容器1内からガスを除去する工程S3a、S3bを挟んで、交互に繰り返し供給する。これにより、SiN膜の薄い膜を一層ずつ繰り返し積層して所定の厚さのSiN膜とすることができる。このときの繰り返し回数は、得ようとするSiN膜の膜厚により適宜決定される。   In this manner, the step S1 for supplying the MCS gas as the Si source gas and the step S2 for supplying the nitrogen-containing gas excited by the plasma are sandwiched between the steps S3a and S3b for removing the gas from the processing vessel 1. In this case, it is repeatedly supplied alternately. As a result, a thin SiN film can be repeatedly laminated one layer at a time to form a SiN film having a predetermined thickness. The number of repetitions at this time is appropriately determined depending on the thickness of the SiN film to be obtained.

この成膜の際のウエハの温度(成膜温度)に関しては、上限はALDが可能になる温度であり、下限はALDにより良質な膜形成が可能な温度である。具体的には150〜550℃の範囲とする。   Regarding the temperature of the wafer during film formation (film formation temperature), the upper limit is a temperature at which ALD can be performed, and the lower limit is a temperature at which a high-quality film can be formed by ALD. Specifically, it is set to a range of 150 to 550 ° C.

次に、図1に示す装置において、プラズマALD成膜を行った実験について説明する。まず、成膜温度について以下に詳細に説明する。   Next, an experiment in which plasma ALD film formation is performed in the apparatus shown in FIG. 1 will be described. First, the film forming temperature will be described in detail below.

SiソースとしてMCSを用いた場合およびDCSを用いた場合についてSiN膜の成膜を行った。この実験において成膜温度は変更したがプラズマ生成時間は一定とした。このようにして形成されたSiN膜について、図4から図9を参照して以下に述べるような特性について評価をおこなった。   A SiN film was formed when MCS was used as the Si source and when DCS was used. In this experiment, the film formation temperature was changed, but the plasma generation time was constant. With respect to the SiN film thus formed, the following characteristics were evaluated with reference to FIGS.

図4は、SiソースとしてMCSを用いた場合およびDCSを用いた場合について、1000/T(K)と、1サイクル当たりの成膜レート(サイクルレート)の対数との関係を示すグラフである。図4は、横軸に1000/T(K)をとり、縦軸にサイクルレートの対数をとって示す。図4におけるプロット点は、高温側から順に、DCSのグループでは、630℃、600℃、550℃、500℃、480℃、450℃、400℃、350℃、300℃で、MCSのグループでは、600℃、520℃、500℃、450℃、400℃、350℃、300℃である。   FIG. 4 is a graph showing the relationship between 1000 / T (K) and the logarithm of the film formation rate (cycle rate) per cycle when MCS is used as the Si source and when DCS is used. In FIG. 4, the horizontal axis represents 1000 / T (K), and the vertical axis represents the logarithm of the cycle rate. The plot points in FIG. 4 are 630 ° C., 600 ° C., 550 ° C., 500 ° C., 480 ° C., 450 ° C., 400 ° C., 350 ° C., 300 ° C. in the DCS group, and in the MCS group, in order from the high temperature side. They are 600 degreeC, 520 degreeC, 500 degreeC, 450 degreeC, 400 degreeC, 350 degreeC, and 300 degreeC.

図5は、SiソースとしてMCSを用いた場合の各温度におけるSiソースのフロー時間とサイクルレートの対数との関係を示すグラフである。図5は、横軸にSiソースのフロー時間をとり、縦軸にサイクルレートの対数をとって示す。   FIG. 5 is a graph showing the relationship between the flow time of the Si source and the logarithm of the cycle rate at each temperature when MCS is used as the Si source. FIG. 5 shows the Si source flow time on the horizontal axis and the logarithm of the cycle rate on the vertical axis.

図4に示すように、サイクルレートは、成膜温度が600℃では、MCSの場合のほうが、DCSの場合よりも著しく高くなった。また、図5に示すように、MCSの場合のサイクルレートは、成膜温度が550℃では、フロー時間の増加にともなって急激に上昇した。このようにフロー時間に依存してサイクルレートが急激に上昇すると、ALDプロセスにおける膜厚制御、特に、同一バッチ内のウエハ間の膜厚均一性の制御が困難となる。成膜温度が550℃までは、MCSを用いた場合のサイクルレートがDCSを用いた場合と同等かそれ以下となった。成膜温度が550℃ではDCSを用いたプラズマALDが可能な温度であった。これらを考慮し、MCSを用いた場合の成膜温度の上限を550℃とする。   As shown in FIG. 4, the cycle rate was remarkably higher in the case of MCS than in the case of DCS at a film forming temperature of 600 ° C. Further, as shown in FIG. 5, the cycle rate in the case of MCS increased rapidly with an increase in the flow time when the film formation temperature was 550 ° C. Thus, when the cycle rate rapidly increases depending on the flow time, it becomes difficult to control the film thickness in the ALD process, particularly to control the film thickness uniformity between wafers in the same batch. Up to a film forming temperature of 550 ° C., the cycle rate when MCS was used was equal to or lower than that when DCS was used. When the film formation temperature was 550 ° C., the plasma ALD using DCS was possible. Considering these, the upper limit of the film forming temperature when MCS is used is 550 ° C.

ただし、ALDは、膜厚制御性の観点から、時間による膜厚変化の小さい領域で行うことが好ましい。ALDは、理想的には時間により膜厚が実質的に変化しない飽和ALD領域で行うものである。このような観点から、MCSを用いた場合の成膜温度は、図5に示すように、520℃以下が好ましい。   However, ALD is preferably performed in a region where the change in film thickness with time is small from the viewpoint of film thickness controllability. ALD is ideally performed in a saturated ALD region where the film thickness does not substantially change with time. From such a viewpoint, the film forming temperature when MCS is used is preferably 520 ° C. or lower as shown in FIG.

図6は、SiソースとしてMCSを用いた場合およびDCSを用いた場合について、成膜温度とサイクルレートとの関係を示すグラフである。図6は、横軸に成膜温度をとり、縦軸にサイクルレートをとって示す。この図から、MCSを用いた場合には、150℃まで成膜可能であることが確認された。このため、MCSを用いた場合の成膜温度の下限を150℃とする。より良質な膜を得る観点から成膜温度は、300℃以上が好ましく、400℃以上がより好ましい。   FIG. 6 is a graph showing the relationship between the film forming temperature and the cycle rate when MCS is used as the Si source and when DCS is used. FIG. 6 shows the film formation temperature on the horizontal axis and the cycle rate on the vertical axis. From this figure, it was confirmed that the film could be formed up to 150 ° C. when MCS was used. For this reason, the lower limit of the film formation temperature when MCS is used is set to 150 ° C. From the viewpoint of obtaining a higher quality film, the film forming temperature is preferably 300 ° C. or higher, more preferably 400 ° C. or higher.

また、図1に示すような、プラズマ生成機構30が処理容器1と一体的に配設され、且つ複数のウエハに沿って延びるガス分散ノズル19、22から処理ガスを供給する装置においては、より低い温度でもより高いALDサイクルレート(成膜速度)およびより良好な膜質を得ることができる。例えば、図6および図4に示すように、500℃未満の処理温度、例えば、300℃、350℃、400℃、450℃、におけるMCSを用いた場合のサイクルレートは実用可能なものである。また、ALDプロセスにおける膜厚制御性の観点からすると、図5に示すように、MCSを用いた場合の処理温度が450℃より低いことが望ましい。   Further, in the apparatus for supplying the processing gas from the gas dispersion nozzles 19 and 22 in which the plasma generation mechanism 30 is integrally provided with the processing container 1 and extends along a plurality of wafers as shown in FIG. Even at a low temperature, a higher ALD cycle rate (deposition rate) and better film quality can be obtained. For example, as shown in FIGS. 6 and 4, the cycle rate when using MCS at a processing temperature of less than 500 ° C., for example, 300 ° C., 350 ° C., 400 ° C., 450 ° C. is practical. From the viewpoint of film thickness controllability in the ALD process, it is desirable that the processing temperature when MCS is used is lower than 450 ° C. as shown in FIG.

このように、MCSを用いた際の成膜温度の範囲は150〜550℃に設定される。膜質および成膜速度を重視した場合、この成膜温度の範囲は400〜520℃が好ましい。また、膜質をある程度維持する一方で、膜厚制御性および装置の負担を重視した場合、この成膜温度の範囲は150〜450℃が好ましく、200〜400℃がより好ましく、300〜400℃が更に好ましい。なお、処理温度を300〜400℃とする場合には、上述の吸着工程S1の期間T1は2〜20secに設定し、好ましくは3〜9secに設定する。また、上述の窒化工程S2の期間T2は10〜90secに設定し、好ましくは20〜70secに設定する。この場合のT2/T1は0.5〜45に設定し、好ましくは2.2〜23に設定する。   Thus, the range of the film formation temperature when using MCS is set to 150 to 550 ° C. In the case where importance is attached to the film quality and the film forming speed, the film forming temperature range is preferably 400 to 520 ° C. In addition, while maintaining the film quality to some extent, when the film thickness controllability and the burden on the apparatus are emphasized, the film forming temperature range is preferably 150 to 450 ° C, more preferably 200 to 400 ° C, and more preferably 300 to 400 ° C. Further preferred. In addition, when processing temperature shall be 300-400 degreeC, the period T1 of the above-mentioned adsorption process S1 is set to 2-20 sec, Preferably it sets to 3-9 sec. In addition, the period T2 of the above-described nitriding step S2 is set to 10 to 90 sec, preferably 20 to 70 sec. In this case, T2 / T1 is set to 0.5 to 45, preferably 2.2 to 23.

図7は、SiソースとしてMCSを用いた場合およびDCSを用いた場合について、成膜温度とSiN膜の屈折率との関係を示すグラフである。図7は、横軸に成膜温度をとり、縦軸に屈折率をとって示す。屈折率2が化学量論的なSiN膜(Si)であり、2に近づくほど化学量論的なSiN膜に近い膜が形成されていることになる。図7に示すように、MCSを用いて成膜したSiN膜のほうが同一成膜条件でDCSを用いて成膜したSiN膜よりも化学量論的なSiN膜に近いものであった。このことから、MCSのほうがDCSよりも窒化しやすいSiソースであると考えられる。そのため、MCSのほうが、より低温での成膜が可能であるものと推測される。 FIG. 7 is a graph showing the relationship between the deposition temperature and the refractive index of the SiN film when MCS is used as the Si source and when DCS is used. FIG. 7 shows the film formation temperature on the horizontal axis and the refractive index on the vertical axis. The refractive index 2 is a stoichiometric SiN film (Si 3 N 4 ), and the closer to 2, the closer to the stoichiometric SiN film is formed. As shown in FIG. 7, the SiN film formed using MCS was closer to the stoichiometric SiN film than the SiN film formed using DCS under the same film formation conditions. From this, it is considered that MCS is a Si source that is more easily nitrided than DCS. For this reason, it is presumed that MCS can form a film at a lower temperature.

また、このようにMCSは窒化しやすいSiソースであり、低温成膜でも良好な膜質のSiN膜が得られ、しかも1分子当たりのCl量がDCSよりも少なく、低温成膜でもCl残留量が少ないため、MCSを用いて成膜したSiN膜は、DCSを用いて成膜したSiN膜よりも、同じ成膜温度で比較すると、より良好な薬液耐性が得られ、また、低温成膜でも薬液耐性の低下が小さい。   In addition, MCS is a Si source that is easily nitrided as described above, and an SiN film having a good film quality can be obtained even at low temperature film formation. Further, the amount of Cl per molecule is smaller than that of DCS, and the residual amount of Cl is low even at low temperature film formation. Therefore, the SiN film formed using MCS has better chemical resistance when compared at the same film formation temperature than the SiN film formed using DCS. Small reduction in resistance.

図8は、SiソースとしてMCSを用いた場合およびDCSを用いた場合について、成膜温度と希フッ酸(1%DHF)によるSiN膜のエッチングレートとの関係を示すグラフである。この希フッ酸(100:1DHF)はウエットエッチングに一般的に用いられる薬液である。図8は、横軸に成膜温度をとり、縦軸に下記のように規格化したエッチングレートをとって示す。なお、規格化したエッチングレートは、DCSを用いて760℃で成膜したSiN膜の希フッ酸(100:1DHF)によるエッチングレートを1として表した値である。この図に示すように、SiソースとしてDCSを用いた場合には、成膜温度が500℃より低くなると薬液耐性が急激に低下したのに対して、SiソースとしてMCSを用いた場合には、450℃でも良好な薬液耐性を有していた。   FIG. 8 is a graph showing the relationship between the film formation temperature and the etching rate of the SiN film with dilute hydrofluoric acid (1% DHF) when MCS is used as the Si source and when DCS is used. This dilute hydrofluoric acid (100: 1 DHF) is a chemical solution generally used for wet etching. FIG. 8 shows the film formation temperature on the horizontal axis and the etching rate normalized as follows on the vertical axis. Note that the normalized etching rate is a value expressed by assuming that the etching rate of the SiN film formed using DCS at 760 ° C. with dilute hydrofluoric acid (100: 1 DHF) is 1. As shown in this figure, when DCS is used as the Si source, the chemical resistance rapidly decreases when the film forming temperature is lower than 500 ° C., whereas when MCS is used as the Si source, It had good chemical resistance even at 450 ° C.

また、SiソースとしてDCSを用いて500℃よりも低い低温成膜を行う場合には、得られたSiN膜の最表面が酸化されやすいが、SiソースとしてMCSを用いた場合には、低温成膜で得られた膜表面の耐酸化性が著しく改善される。最表面の酸化は、ウエハのアンローディングの際に空気中の水分等により引き起こされるが、この最表面の酸化の程度は、膜の最表面のウエットエッチングレート(R)と、膜の内部(バルク)のウエットエッチングレート(R)との差(R−R)で表すことができると考えられる。 In addition, when the low temperature film formation lower than 500 ° C. is performed using DCS as the Si source, the outermost surface of the obtained SiN film is easily oxidized, but when MCS is used as the Si source, the low temperature film formation is performed. The oxidation resistance of the film surface obtained with the film is significantly improved. The oxidation of the outermost surface is caused by moisture in the air at the time of unloading of the wafer. The degree of oxidation of the outermost surface depends on the wet etching rate (R S ) of the outermost surface of the film and the inside of the film ( It is considered that it can be expressed by the difference (R S −R B ) from the wet etching rate (R B ) of the “bulk”.

図9は、DCSを用いて450℃、550℃、600℃、630℃で成膜したSiN膜およびMCSを用いて450℃で成膜したSiN膜における膜最表面の耐酸化性を示すグラフである。図9では、これらの膜の耐酸化性をR−Rの値で示す。この図に示すように、DCSを用いた場合には、成膜温度450℃において、R−Rの値が著しく大きいのに対し、MCSを用いた場合には、成膜温度450℃で形成した膜のR−Rの値(耐酸化性)は、DCSを用いて550℃以上で成膜した場合と同等であった。これは、MCSのほうがDCSに比べて1分子当たりの塩素の量が少なく、表面に残留する塩素濃度が低いためと推測される。 FIG. 9 is a graph showing the oxidation resistance of the outermost surface of the SiN film formed at 450 ° C., 550 ° C., 600 ° C., and 630 ° C. using DCS and the SiN film formed at 450 ° C. using MCS. is there. In Figure 9, it shows the oxidation resistance of these films by the value of R S -R B. As shown in this figure, in the case of using the DCS, in the film forming temperature 450 ° C., while significantly large value of R S -R B, when using the MCS is a film forming temperature 450 ° C. forming values of R S -R B of the film (oxidation resistance) were comparable to the case of film formation at 550 ° C. or higher using a DCS. This is presumably because MCS has a smaller amount of chlorine per molecule than DCS, and the concentration of chlorine remaining on the surface is lower.

ところで、上述のような成膜処理を所定数のバッチのウエハWに対して繰り返した後、クリーニング処理を行う。クリーニング処理では、処理容器1内に製品ウエハが搭載されていないウエハボート5を保温筒7に載せた状態で、予め所定の温度に加熱された処理容器1内にその下方から上昇させることによりロードする。次に、蓋部9でマニホールド3の下端開口部を閉じることにより処理容器1内を密閉空間とする。次に、処理容器1内を排気しながら、クリーニングガスとして、例えばHFガスやFガス等のフッ素含有ガスを処理容器1内に供給する。 By the way, after the film forming process as described above is repeated for a predetermined number of batches of wafers W, a cleaning process is performed. In the cleaning process, the wafer boat 5 on which product wafers are not mounted in the processing container 1 is placed on the heat insulating cylinder 7, and then loaded into the processing container 1 heated in advance to a predetermined temperature from below. To do. Next, the inside of the processing container 1 is made into a sealed space by closing the lower end opening of the manifold 3 with the lid 9. Next, a fluorine-containing gas such as HF gas or F 2 gas is supplied into the processing container 1 as a cleaning gas while exhausting the processing container 1.

これにより、処理容器1の内壁、ウエハボート5、保温筒7、ガス分散ノズル19、22に付着した反応生成物を除去する。クリーニング処理の際の処理容器1内の温度は、300〜500℃の範囲が好ましく、300〜450℃の範囲がより好ましい。なお、クリーニング処理のため、図1に仮想線で示すように、処理容器1にクリーニングガス供給機構41を接続することができる。クリーニングガス供給機構41は、クリーニングガスのガス供給源42と、ガス供給源42から延びるガス配管43とを有している。ガス配管43は途中で分岐して、ガス配管18およびガス配管21に接続されている。   Thereby, the reaction product adhering to the inner wall of the processing container 1, the wafer boat 5, the heat insulating cylinder 7, and the gas dispersion nozzles 19 and 22 is removed. The temperature in the processing container 1 during the cleaning process is preferably in the range of 300 to 500 ° C, more preferably in the range of 300 to 450 ° C. For the cleaning process, a cleaning gas supply mechanism 41 can be connected to the processing container 1 as indicated by a virtual line in FIG. The cleaning gas supply mechanism 41 includes a cleaning gas supply source 42 and a gas pipe 43 extending from the gas supply source 42. The gas pipe 43 branches in the middle and is connected to the gas pipe 18 and the gas pipe 21.

クリーニング処理後で、次の成膜処理の前に、製品ウエハが搭載されていないウエハボート5を保温筒7に載せた状態で、処理容器1内のコーティング処理を行い、処理容器1の内壁やウエハボート等の表面を被覆する。これは、これらの部材(石英製)からのパーティクルやNa等の汚染物等が飛散して製品膜を汚染することを抑制するためである。プラズマALDにより製品膜の成膜を行う成膜装置においては、従来、このコーティング処理についても、制御の簡易性や歩留まりを上げるために、成膜処理と同じ処理ガスを使用してプラズマALDにより行っている。   After the cleaning process and before the next film forming process, a coating process in the processing container 1 is performed in a state where the wafer boat 5 on which product wafers are not mounted is placed on the heat insulating cylinder 7, and the inner wall of the processing container 1 Cover the surface of a wafer boat or the like. This is to prevent particles from these members (made of quartz) and contaminants such as Na from scattering and contaminating the product film. Conventionally, in a film forming apparatus for forming a product film by plasma ALD, this coating process is also performed by plasma ALD using the same processing gas as the film forming process in order to increase the controllability and yield. ing.

しかし、MCSを用いてプラズマALDによりコーティング膜を形成した場合、DCSを用いた場合に比べて、製品膜に対するNa汚染が生じやすくなる。これは、MCSを用いた場合、上述のように、形成された膜中に含まれる塩素(Siソースガスに由来する)の濃度が低くなることに起因すると考えられる。即ち、半導体デバイスの性能の観点から、製品膜中の汚染物としての塩素の濃度は当然低いことが好ましいが、コーティング膜の塩素の濃度はNaトラップ効果を発揮するため、ある程度のレベルであることが好ましい。   However, when a coating film is formed by plasma ALD using MCS, Na contamination to the product film is more likely to occur than when DCS is used. When MCS is used, it is considered that the concentration of chlorine (derived from the Si source gas) contained in the formed film is lowered as described above. That is, from the viewpoint of semiconductor device performance, the concentration of chlorine as a contaminant in the product film is preferably low, but the concentration of chlorine in the coating film exhibits a Na trap effect, so that it is at a certain level. Is preferred.

かかる観点から、本発明者らが研究を進めたところ、MCSをSiソースガスとして用いる場合には、製品膜をプラズマALDにより形成する場合でも、コーティング処理はサーマルALDにより行うことが好ましいことが見出された。サーマルALDによりコーティング処理を行うことにより、コーティング膜中の塩素濃度を高くすることができ、且つ処理容器1内の底部から頂部まで十分な厚さのコーティング膜を形成することができる。   From this point of view, the present inventors have conducted research and found that when MCS is used as the Si source gas, it is preferable to perform the coating process by thermal ALD even when the product film is formed by plasma ALD. It was issued. By performing the coating process by thermal ALD, the chlorine concentration in the coating film can be increased, and a coating film having a sufficient thickness can be formed from the bottom to the top in the processing container 1.

図10は、プラズマALDおよびサーマルALDで形成したSiN膜中のCl含有量を示すグラフである。このデータはSiソースガスとしてDCSを用いたものであるが、MCSを用いた場合も同様な結果が得られることが確認されている。図10に示すように、プラズマの有無により、Cl濃度の明らかに有意差がある。サーマルALDのほうが膜中のClの濃度が高いため、サーマルALDによりコーティング処理を行うことにより、より高いClによるNaトラップ効果が期待できる。   FIG. 10 is a graph showing the Cl content in a SiN film formed by plasma ALD and thermal ALD. This data uses DCS as the Si source gas, but it has been confirmed that similar results can be obtained when MCS is used. As shown in FIG. 10, there is a clear significant difference in Cl concentration depending on the presence or absence of plasma. Since thermal ALD has a higher Cl concentration in the film, a higher Na trap effect due to Cl can be expected by coating with thermal ALD.

具体的には、このサーマルALDは、プラズマを生成しない点を除いて、図3に示すタイミングチャートと同様に、MCSガスを供給する吸着工程と、窒化ガスを供給する窒化工程とを交互に繰り返すことにより行う。吸着工程では、SiソースガスであるMCSを処理容器1に供給し、処理容器1の内面等の上に吸着させる。窒化工程では、窒化ガスであるNHガスをプラズマ化することなく処理容器1に供給し、処理容器1の内面等の上に吸着されたSiソースガスを窒化させる。これら吸着工程および窒化工程の間で処理容器1内から処理容器1内に残留するガスを除去するパージ工程を実施する。 Specifically, the thermal ALD alternately repeats an adsorption process for supplying MCS gas and a nitridation process for supplying nitriding gas, as in the timing chart shown in FIG. 3, except that plasma is not generated. By doing. In the adsorption process, MCS, which is a Si source gas, is supplied to the processing container 1 and is adsorbed on the inner surface of the processing container 1 or the like. In the nitriding step, NH 3 gas, which is a nitriding gas, is supplied to the processing vessel 1 without being converted to plasma, and the Si source gas adsorbed on the inner surface or the like of the processing vessel 1 is nitrided. A purge process for removing the gas remaining in the processing container 1 from the processing container 1 is performed between the adsorption process and the nitriding process.

このコーティング処理において、処理容器1内の加熱温度を成膜処理よりも高くする。具体的な加熱温度は、300〜630℃に設定され、好ましくは500〜630℃に設定される。その他の条件に関しては、製品膜を形成する成膜用のプラズマALDとほぼ同様の条件で行うことができる。また、コーティング処理における工程の長さも、成膜処理における工程の長さと同様の範囲とすることができるが、パージ工程の長さは短くしてもよい。   In this coating process, the heating temperature in the processing container 1 is set higher than in the film forming process. A specific heating temperature is set to 300 to 630 ° C, preferably 500 to 630 ° C. Regarding other conditions, it can be performed under substantially the same conditions as the plasma ALD for film formation for forming a product film. In addition, the length of the process in the coating process can be in the same range as the length of the process in the film forming process, but the length of the purge process may be shortened.

なお、本発明は上記実施形態に限定されることなく、種々変形可能である。例えば、上記実施形態では本発明を複数の半導体ウエハを搭載して一括して成膜を行うバッチ式の成膜装置に適用した例を示したが、これに限らず、一枚のウエハ毎に成膜を行う枚葉式の成膜装置に適用することもできる。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, in the above-described embodiment, the present invention is applied to a batch-type film forming apparatus in which a plurality of semiconductor wafers are mounted and collectively formed. However, the present invention is not limited to this. The present invention can also be applied to a single-wafer type film forming apparatus for forming a film.

また、上記実施形態においては、窒化ガスである窒素含有ガスとしてNHガスを用いたが、これに限らず、上述したように、Nガス、Nガス等の他の窒素含有ガスを用いることができる。 In the above embodiment uses NH 3 gas as the nitrogen-containing gas is a nitriding gas is not limited thereto, as described above, N 2 gas, other nitrogen-containing gas such as N 2 H 4 gas Can be used.

さらに、上記実施形態においては、プラズマ生成機構を処理容器に一体的に組み込んだ例について説明したが、これに限定されず、プラズマ生成機構を処理容器とは別体で設け、窒素含有ガスを処理容器の外で予めプラズマ化して処理容器に導入するリモートプラズマ装置を用いてもよい。   Furthermore, in the above-described embodiment, the example in which the plasma generation mechanism is integrated into the processing container has been described. However, the present invention is not limited to this, and the plasma generation mechanism is provided separately from the processing container to process the nitrogen-containing gas. You may use the remote plasma apparatus which plasmifies beforehand outside a container and introduce | transduces into a processing container.

さらにまた、上記実施形態においては、窒素含有ガスであるNHガスをプラズマ化して用いたが、窒素含有ガスによっては、必ずしもプラズマ化する必要はない。 Furthermore, in the above-described embodiment, the NH 3 gas that is a nitrogen-containing gas is used after being made into plasma, but depending on the nitrogen-containing gas, it is not necessarily required to be turned into plasma.

さらにまた、上記実施形態ではMCSガスとNHガスとを完全に交互に供給したが、MCSガスを供給するときにもNHガスを供給する等、必ずしも完全に交互に供給する必要はない。 Furthermore, in the above-described embodiment, the MCS gas and the NH 3 gas are completely and alternately supplied. However, it is not always necessary to supply the MCS gas and the NH 3 gas completely alternately.

さらにまた、被処理体としては、半導体ウエハに限定されず、LCDガラス基板等の他の基板にも本発明を適用することができる。   Furthermore, the object to be processed is not limited to a semiconductor wafer, and the present invention can be applied to other substrates such as an LCD glass substrate.

1;処理容器
5;ウエハボート
14;窒素含有ガス供給機構
15;Siソースガス供給機構
16;パージガス供給機構
19;窒素含有ガス分散ノズル
22;Siソースガス分散ノズル
30;プラズマ生成機構
33;プラズマ電極
35;高周波電源
40;加熱機構
100;成膜装置
W;半導体ウエハ(被処理体)
1; processing vessel 5; wafer boat 14; nitrogen-containing gas supply mechanism 15; Si source gas supply mechanism 16; purge gas supply mechanism 19; nitrogen-containing gas dispersion nozzle 22; Si source gas dispersion nozzle 30; 35; high frequency power supply 40; heating mechanism 100; film forming apparatus W; semiconductor wafer (object to be processed)

Claims (7)

真空保持可能な処理容器内でシリコン窒化膜からなる製品膜を形成する成膜方法であって、
前記処理容器内で製品用被処理体上に前記製品膜を形成する成膜処理を複数回繰り返すことと、
次に、前記成膜処理によって前記処理容器内に付着した反応生成物を除去するクリーニング処理を、前記処理容器内に製品用被処理体を収納しない状態で行うことと、
次に、前記処理容器内をシリコン窒化膜からなるコーティング膜で被覆するコーティング処理を、前記処理容器内に製品用被処理体を収納しない状態で行うことと、
次に、前記処理容器内で製品用被処理体上に前記製品膜を形成する前記成膜処理を行うことと、
を具備し、
前記成膜処理は、パージ工程を間に挟んで吸着工程及び窒化工程を交互に含むサイクルを複数回繰り返し、前記吸着工程では、前記処理容器内へSiソースガスとしてモノクロロシランガスを供給し、前記窒化工程では、前記処理容器内へ窒化ガスとして窒素含有ガスを供給するALD(atomic layer deposition)によって行うことと、
前記コーティング処理は、パージ工程を間に挟んで第1供給工程及び第2供給工程を交互に含むサイクルを複数回繰り返し、前記第1供給工程では、前記処理容器内へSiソースガスとしてジクロロシランガスを供給し、前記第2供給工程では、前記処理容器内へ窒化ガスとして窒素含有ガスを供給するALDによって行うことと、
を特徴とする成膜方法。
A film forming method for forming a product film made of a silicon nitride film in a processing container capable of maintaining a vacuum,
Repeating the film forming process for forming the product film on the product to be processed in the processing container a plurality of times;
Next, performing a cleaning process for removing a reaction product adhering to the processing container by the film forming process in a state where the product object is not stored in the processing container;
Next, a coating process for coating the inside of the processing container with a coating film made of a silicon nitride film is performed in a state where the product target is not stored in the processing container;
Next, performing the film forming process for forming the product film on the product object to be processed in the processing container;
Comprising
The film forming process repeats a cycle including an adsorption process and a nitridation process alternately with a purge process in between, and in the adsorption process, a monochlorosilane gas is supplied as an Si source gas into the processing container, The nitriding step is performed by ALD (atomic layer deposition) for supplying a nitrogen-containing gas as a nitriding gas into the processing vessel;
In the coating process, a cycle including a first supply process and a second supply process are repeated a plurality of times with a purge process in between. In the first supply process, dichlorosilane gas is introduced into the processing container as a Si source gas. Supplying the second supply step by ALD supplying a nitrogen-containing gas as a nitriding gas into the processing vessel;
A film forming method characterized by the above.
前記処理容器は、複数の被処理体を複数段に配置するように構成され、前記処理容器は石英製部分を含み、ここから汚染物としてNaが発生する可能があることを特徴とする請求項1に記載の成膜方法。 The processing container is configured to arrange a plurality of workpiece in a plurality of stages, wherein said processing container includes a quartz part, characterized in that Na as a contaminant may occur here Item 2. The film forming method according to Item 1 . 前記成膜処理は、処理温度を150〜550℃に設定し、前記Siソースガスを供給する際の処理圧力を66.65〜666.5Paに設定することを特徴とする請求項1または請求項2に記載の成膜方法。 The film forming process, sets the processing temperature of 150 to 550 ° C., according to claim 1 or claim and sets the process pressure when supplying the 66.65~666.5Pa the Si source gas 2. The film forming method according to 2 . 前記成膜処理は、前記処理容器内に前記Siソースガスをプラズマ化せずに供給する一方、前記窒化ガスを前記処理容器の側壁に取り付けられたプラズマ生成機構によりプラズマ化して供給するプラズマALDで行うことを特徴とする請求項1乃至請求項のいずれかに記載の成膜方法。 The film forming process is a plasma ALD in which the Si source gas is supplied into the processing container without being converted into plasma, and the nitriding gas is supplied in a plasma state by a plasma generation mechanism attached to a side wall of the processing container. the film deposition method according to any one of claims 1 to 3, characterized in that to perform. 前記窒素含有ガスは、NHガスであることを特徴とする請求項1乃至請求項のいずれかに記載の成膜方法。 Wherein the nitrogen-containing gas, film deposition method according to any one of claims 1 to 4, characterized in that a NH 3 gas. コンピュータ上で動作し、成膜装置を制御するためのプログラムが記憶された記憶媒体であって、前記プログラムは、実行時に、請求項1乃至請求項のいずれかに記載の成膜方法が行われるように、コンピュータに前記成膜装置を制御させることを特徴とするコンピュータ読取可能な記憶媒体。 A storage medium that operates on a computer and stores a program for controlling the film forming apparatus, wherein the program is executed by the film forming method according to any one of claims 1 to 5. As described above, a computer-readable storage medium that causes a computer to control the film forming apparatus. 複数の被処理体に対してシリコン窒化膜を成膜する成膜装置であって、
真空保持可能な縦型の処理容器と、
前記被処理体を複数段に保持した状態で前記処理容器内に保持する保持部材と、
前記処理容器の外周に設けられた前記被処理体を加熱する加熱機構と、
前記処理容器内へSiソースガスを供給するSiソースガス供給機構と、
前記処理容器内へ窒化ガスを供給する窒素含有ガス供給機構と、
前記成膜装置の動作を制御する制御部と、
を具備し、前記制御部は、コンピュータと、前記コンピュータ上で動作し、前記装置を制御するための前記プログラムが記憶された請求項に記載のコンピュータ読取可能な記憶媒体と、を含むことを特徴とする縦型成膜装置。
A film forming apparatus for forming a silicon nitride film on a plurality of objects to be processed,
A vertical processing container capable of holding a vacuum;
A holding member that holds the object to be processed in a plurality of stages in the processing container;
A heating mechanism for heating the object to be processed provided on the outer periphery of the processing container;
A Si source gas supply mechanism for supplying Si source gas into the processing vessel;
A nitrogen-containing gas supply mechanism for supplying a nitriding gas into the processing vessel;
A control unit for controlling the operation of the film forming apparatus;
The control unit includes: a computer; and a computer-readable storage medium according to claim 6 , wherein the computer operates on the computer and stores the program for controlling the device. A vertical film forming apparatus.
JP2013084744A 2009-11-27 2013-04-15 Film forming method and film forming apparatus Active JP5575299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013084744A JP5575299B2 (en) 2009-11-27 2013-04-15 Film forming method and film forming apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009269831 2009-11-27
JP2009269831 2009-11-27
JP2013084744A JP5575299B2 (en) 2009-11-27 2013-04-15 Film forming method and film forming apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010228615A Division JP5250600B2 (en) 2009-11-27 2010-10-08 Film forming method and film forming apparatus

Publications (2)

Publication Number Publication Date
JP2013179321A JP2013179321A (en) 2013-09-09
JP5575299B2 true JP5575299B2 (en) 2014-08-20

Family

ID=49270636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013084744A Active JP5575299B2 (en) 2009-11-27 2013-04-15 Film forming method and film forming apparatus

Country Status (1)

Country Link
JP (1) JP5575299B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9558936B2 (en) 2015-03-25 2017-01-31 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus and semiconductor manufacturing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9828672B2 (en) 2015-03-26 2017-11-28 Lam Research Corporation Minimizing radical recombination using ALD silicon oxide surface coating with intermittent restoration plasma
US9633838B2 (en) * 2015-12-28 2017-04-25 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Vapor deposition of silicon-containing films using penta-substituted disilanes
KR20210062712A (en) * 2018-10-19 2021-05-31 램 리써치 코포레이션 IN SITU protective coating of chamber components for semiconductor processing
JP7333758B2 (en) * 2020-01-23 2023-08-25 東京エレクトロン株式会社 Film forming method and film forming apparatus
JP7455013B2 (en) * 2020-07-10 2024-03-25 東京エレクトロン株式会社 Plasma processing equipment and plasma processing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241827A (en) * 1988-03-24 1989-09-26 Fujitsu Ltd Growth of silicon nitride film
KR100707819B1 (en) * 2002-11-11 2007-04-13 가부시키가이샤 히다치 고쿠사이 덴키 Substrate processing device
KR100974134B1 (en) * 2006-03-28 2010-08-04 가부시키가이샤 히다치 고쿠사이 덴키 Substrate treating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9558936B2 (en) 2015-03-25 2017-01-31 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus and semiconductor manufacturing method

Also Published As

Publication number Publication date
JP2013179321A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5250600B2 (en) Film forming method and film forming apparatus
JP5346904B2 (en) Vertical film forming apparatus and method of using the same
JP5514129B2 (en) Film forming method, film forming apparatus, and method of using film forming apparatus
JP5258229B2 (en) Film forming method and film forming apparatus
JP5202372B2 (en) Metal contamination reduction method for film forming apparatus, semiconductor device manufacturing method, storage medium, and film forming apparatus
JP4382750B2 (en) CVD method for forming a silicon nitride film on a substrate to be processed
KR100957879B1 (en) Film forming method and apparatus for semiconductor process, and computer readable medium
KR100954243B1 (en) Film formation apparatus and method for semiconductor process and computer-readble medium
KR101129741B1 (en) Film formation apparatus for semiconductor process and method for using same
JP5575299B2 (en) Film forming method and film forming apparatus
JP5793241B1 (en) Semiconductor device manufacturing method, substrate processing apparatus, program, and recording medium
JP6656103B2 (en) Method and apparatus for forming nitride film
JP5693348B2 (en) Film forming method and film forming apparatus
JP5221089B2 (en) Film forming method, film forming apparatus, and storage medium
JP5839514B2 (en) Film forming method, film forming apparatus, and method of using film forming apparatus
JP2011243620A (en) Film formation method and film formation apparatus
JP2016178224A (en) Method for forming silicon nitride film, and device for forming silicon nitride film
JP2018166190A (en) Method of suppressing sticking of cleaning by-product, method of cleaning inside of reaction chamber using the same, and room temperature deposition apparatus
JP7572124B2 (en) Film formation method
JP2014064039A (en) Film deposition method and film deposition device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140701

R150 Certificate of patent or registration of utility model

Ref document number: 5575299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250