Nothing Special   »   [go: up one dir, main page]

JP5561583B2 - High pressure hydrogen components - Google Patents

High pressure hydrogen components Download PDF

Info

Publication number
JP5561583B2
JP5561583B2 JP2009288770A JP2009288770A JP5561583B2 JP 5561583 B2 JP5561583 B2 JP 5561583B2 JP 2009288770 A JP2009288770 A JP 2009288770A JP 2009288770 A JP2009288770 A JP 2009288770A JP 5561583 B2 JP5561583 B2 JP 5561583B2
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
strength
value
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009288770A
Other languages
Japanese (ja)
Other versions
JP2011127204A (en
Inventor
利弘 上原
信隆 安田
博司 春山
宏紀 鴨志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009288770A priority Critical patent/JP5561583B2/en
Publication of JP2011127204A publication Critical patent/JP2011127204A/en
Application granted granted Critical
Publication of JP5561583B2 publication Critical patent/JP5561583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、耐水素脆性に優れる高強度γ′相析出強化型オーステナイト系合金を用いた高圧水素用部材に関するものである。 The present invention relates to a member for high-pressure hydrogen using a high-strength γ ′ phase precipitation strengthened austenitic alloy having excellent hydrogen embrittlement resistance.

近年、地球環境保護の観点から、使用時に二酸化炭素を排出しない水素エネルギーが注目されており、その一例として、燃料電池自動車等の高圧水素容器搭載自動車の開発などが検討されている。車載容器の圧力は現状35MPaであり、この容器による航続走行距離はガソリン自動車に劣っている。ガソリン自動車並みの航続走行距離を得るためには水素ガス搭載量の増加が必要であり、さらに70MPa対応の圧力容器や関連機器の開発による水素ガスの充填圧力の高圧化が進められている。
水素エネルギーのインフラの拠点となる水素ステーションにおいて、車載容器へ高圧水素ガスを供給するディスペンサーには、コリオリ式流量計(高圧水素流量計の一例)が使用される。高圧で水素ガスを供給するため、コリオリ式流量計に使用される材料には、室温、高圧水素中において高強度かつ延性に優れることが要求される。
一般的に、多くの合金系において、高強度であるほど水素脆化が発生しやすい傾向にあるが、特許文献1のように、高強度であって水素脆化の発生が少ない合金として、γ′相強化型FeNi基合金の使用可能性が示唆されている。また、高温用途で実績のあるγ’析出強化型Fe基超合金、A286合金(JIS SUH660相当合金)は、耐水素脆性の優れた高強度合金として知られており、高圧水素用インフラ部材において高強度が必要とされる部材に使用されている。
In recent years, hydrogen energy that does not emit carbon dioxide during use has attracted attention from the viewpoint of protecting the global environment. As an example, the development of vehicles equipped with high-pressure hydrogen containers such as fuel cell vehicles has been studied. The pressure of the onboard container is currently 35 MPa, and the cruising distance by this container is inferior to that of a gasoline automobile. In order to obtain a cruising range similar to that of a gasoline vehicle, it is necessary to increase the amount of hydrogen gas loaded, and further, the pressure of hydrogen gas filling is being increased by developing a pressure vessel and related equipment compatible with 70 MPa.
A Coriolis flow meter (an example of a high-pressure hydrogen flow meter) is used as a dispenser for supplying high-pressure hydrogen gas to a vehicle-mounted container at a hydrogen station serving as a base for hydrogen energy infrastructure. In order to supply hydrogen gas at high pressure, the material used for the Coriolis flow meter is required to have high strength and excellent ductility at room temperature and high pressure hydrogen.
Generally, in many alloy systems, hydrogen embrittlement tends to occur more easily as the strength is increased. However, as disclosed in Patent Document 1, as an alloy having high strength and less hydrogen embrittlement, γ The possibility of using a 'phase-strengthened FeNi-based alloy has been suggested. In addition, the γ 'precipitation strengthened Fe-based superalloy, A286 alloy (JIS SUH660 equivalent alloy), which has a proven record in high-temperature applications, is known as a high-strength alloy having excellent hydrogen embrittlement resistance. Used for members that require strength.

特開2008−144237JP2008-144237

一般に、通常のオーステナイト系Fe基合金SUS316Lは耐水素脆性に優れた合金とされているが、供給水素の高圧化を実現するためには強度が低いため、高圧水素用インフラ部材に使用すると、部材の肉厚を非常に大きくせざるを得ず、ディスペンサーのコリオリ式流量計のような薄肉で感度を維持するような機器には使用することが難しいといった問題があった。また、SUS316Lのような室温での引張強さの低いFe基合金では、コリオリ式流量計のように、使用中に振動荷重を受ける機器に使用するには、疲労強度が不足するため、高圧水素用途には使用しづらいといった問題があった。
また、高強度を有するA286合金においても、その引張強さは1100MPa前後であり、高圧水素用インフラ機器のコンパクト化及び高圧化の要求に対して、強度が不足する恐れがある。
本発明の目的は、高強度と耐水素脆性を両立した耐水素脆性高強度オーステナイト系合金を用いた高圧水素用部材を提供することにある。
In general, an ordinary austenitic Fe-based alloy SUS316L is an alloy having excellent hydrogen embrittlement resistance, but the strength is low in order to realize high pressure of supplied hydrogen. However, it is difficult to use it for a thin-walled device such as a Coriolis flow meter of a dispenser that maintains sensitivity. In addition, a Fe-based alloy having a low tensile strength at room temperature, such as SUS316L, has insufficient fatigue strength to be used in a device that receives a vibration load during use, such as a Coriolis flow meter. There was a problem that it was difficult to use for the purpose.
In addition, the A286 alloy having high strength also has a tensile strength of around 1100 MPa, and there is a risk that the strength may be insufficient for the demand for downsizing and high-pressure infrastructure equipment for high-pressure hydrogen.
An object of the present invention is to provide a member for high-pressure hydrogen using a hydrogen -brittle high-strength austenitic alloy that has both high strength and hydrogen-brittle resistance.

本発明者等はNi量の増加によりγ’相を増加することで高強度化が図れるが、Ni自体が水素脆化しやすい元素であるため、Fe基で高強度化と耐水素脆性を両立できるNi量の検討を実施し、さらに水素のトラップサイトとなりうる(Nb、Ti)の複合炭化物を微細分散させることが可能な最適な組成に調整することによって、本発明に到達した。
即ち本発明は、耐水素脆性高強度オーステナイト系合金を用いた高圧水素用部材であって、前記耐水素脆性高強度オーステナイト系合金は、質量%でC:0.01〜0.10%、Si:0.01〜0.8%、Mn:0.01〜0.8%、Cr:14〜17%、Mo:3.5%〜5.0%、Al:1.6〜2.5%、Ti:1.5〜3.0%、Nb:0.5〜2.0%、Ni:50〜60%、B:0.001〜0.015%、Mg:0.001〜0.015%、残部はFe及び不純物からなり、原子%で下記A値が2.0〜4.0、B値が0.5〜0.6、C値が6.4〜7.6、且つ、室温における引張強さが1180MPa以上、伸びが19%以上である高圧水素用部材である。
A値 0.293[Ni]−0.513[Cr]−1.814[Mo]
B値 [Al]/([Al]+[Ti]+[Nb])
C値 [Al]+[Ti]+[Nb]
[ ]は原子%を表す。
好ましくは、前記耐水素脆性高強度オーステナイト系合金のオーステナイト基地中に分散する(Nb、Ti)の複合炭化物の円相当径が25μm以下とする高圧水素用部材である。
The inventors can increase the strength by increasing the γ ′ phase by increasing the amount of Ni, but since Ni itself is an element that is easily hydrogen embrittled, it is possible to achieve both high strength and hydrogen embrittlement resistance with Fe groups. The present invention has been achieved by investigating the amount of Ni and adjusting the composition to an optimum composition capable of finely dispersing (Nb, Ti) composite carbides that can serve as hydrogen trap sites.
That is, the present invention is a high-pressure hydrogen member using a hydrogen brittle high strength austenitic alloy, wherein the hydrogen brittle high strength austenitic alloy is C: 0.01 to 0.10% by mass, Si : 0.01-0.8%, Mn: 0.01-0.8%, Cr: 14-17%, Mo: 3.5% -5.0%, Al: 1.6-2.5% , Ti: 1.5-3.0%, Nb: 0.5-2.0%, Ni: 50-60%, B: 0.001-0.015%, Mg: 0.001-0.015 %, The balance consists of Fe and impurities, and in atomic%, the following A value is 2.0 to 4.0, B value is 0.5 to 0.6, C value is 6.4 to 7.6, and room temperature. Is a member for high-pressure hydrogen having a tensile strength of 1180 MPa or more and an elongation of 19% or more.
A value 0.293 [Ni] -0.513 [Cr] -1.814 [Mo]
B value [Al] / ([Al] + [Ti] + [Nb])
C value [Al] + [Ti] + [Nb]
[] Represents atomic%.
Preferably, the high-pressure hydrogen member has a circle equivalent diameter of 25 μm or less of the (Nb, Ti) composite carbide dispersed in the austenite base of the hydrogen-brittle high-strength austenitic alloy.

本発明により、高強度でかつ水素脆化しにくい耐水素脆性高強度オーステナイト系合金を用いた高圧水素用部材を提供することができる。 According to the present invention, it is possible to provide a high-pressure hydrogen member using a hydrogen -brittle high-strength austenitic alloy that has high strength and is difficult to be hydrogen-brittle.

回転曲げ疲労試験結果を示す図である。It is a figure which shows a rotation bending fatigue test result.

本発明の高圧水素用部材に用いる耐水素脆性高強度オーステナイト系合金において、各化学組成を規定した理由は以下の通りである。なお、特に記載のない限り化学組成を質量%で表す。
C:0.01〜0.10%
CはNb、Tiと結びついてMC型炭化物を形成し、結晶粒を微細化することで高強度化や耐水素脆性の向上に寄与する。Cが0.01%より少ないとMC型炭化物の生成量が少なくなり、結晶粒微細化効果が十分得られず、一方0.10%より多いと形成されるMC型炭化物のサイズ、量が大きくなり、耐水素脆性や疲労強度が低下する可能性があることから、Cは0.01〜0.10%とした。Cの好ましい下限は0.02%であり、好ましい上限は0.08%である。
Si:0.01〜0.8%
Siは脱酸のために0.01%以上添加する必要があるが、0.8%を超えると靱性が低下する可能性があることから、Siは0.01〜0.8%とした。Siの好ましい上限は0.5%である。
Mn:0.01〜0.8%
MnはSiと同様に脱酸のために0.01%以上添加する必要があるが、0.8%を超えると靱性が低下する可能性があることから、Mnは0.01〜0.8%とした。Mnの好ましい上限は0.5%である。
The reason why each chemical composition is specified in the hydrogen brittle high strength austenitic alloy used for the high-pressure hydrogen member of the present invention is as follows. Unless otherwise specified, the chemical composition is expressed in mass%.
C: 0.01 to 0.10%
C combines with Nb and Ti to form MC-type carbides and refines the crystal grains, thereby contributing to high strength and improved hydrogen embrittlement resistance. When C is less than 0.01%, the amount of MC-type carbide produced is small, and the effect of crystal grain refinement cannot be sufficiently obtained. On the other hand, when it exceeds 0.10%, the size and amount of MC-type carbide formed are large. Thus, hydrogen embrittlement resistance and fatigue strength may be reduced, so C was made 0.01 to 0.10%. The preferable lower limit of C is 0.02%, and the preferable upper limit is 0.08%.
Si: 0.01 to 0.8%
Si needs to be added in an amount of 0.01% or more for deoxidation, but if it exceeds 0.8%, the toughness may decrease, so Si was made 0.01 to 0.8%. A preferable upper limit of Si is 0.5%.
Mn: 0.01 to 0.8%
Like Si, Mn needs to be added in an amount of 0.01% or more for deoxidation, but if it exceeds 0.8%, the toughness may be lowered. %. A preferable upper limit of Mn is 0.5%.

Cr:14〜17%
Crは高圧水素用部材に必要な耐食性を維持するために必須な元素であり、オーステナイト基地中に固溶して固溶強化により室温での引張強さを高める効果も持つ。耐食性を維持するためには14%以上の添加が必要であり、一方、17%を超えて添加するとオーステナイト組織が不安定となり、安定した耐食性を維持しにくくなることから、Crは14〜17%とした。Crの好ましい下限は15%、好ましい上限は16.5%である。
Mo:3.5%〜5.0%
Moはオーステナイト基地に固溶して固溶強化により室温での引張強さを高める効果も持つとともに高圧水素用部材に必要な耐食性を向上させる効果を有する。Moが3.0%より少ないと室温での高い強度が十分得られず、一方5.0%を超えて添加すると固溶強化が過度になったりオーステナイト組織が不安定になったりすることで熱間加工性が低下したり、室温での延性が低下したりすることから、Moは3.5%〜5.0%とした。Moの好ましい上限は、4.6%である。
Cr: 14-17%
Cr is an essential element for maintaining the corrosion resistance necessary for the high-pressure hydrogen member , and has an effect of increasing the tensile strength at room temperature by solid solution in the austenite base and solid solution strengthening. In order to maintain the corrosion resistance, addition of 14% or more is necessary. On the other hand, if adding over 17%, the austenite structure becomes unstable and it becomes difficult to maintain stable corrosion resistance. It was. The preferable lower limit of Cr is 15%, and the preferable upper limit is 16.5%.
Mo: 3.5% to 5.0%
Mo has the effect of improving the corrosion resistance necessary for the member for high-pressure hydrogen as well as the effect of increasing the tensile strength at room temperature by solid solution strengthening in the austenite base. If Mo is less than 3.0%, sufficient high strength at room temperature cannot be obtained. On the other hand, if it exceeds 5.0%, the solid solution strengthening becomes excessive and the austenite structure becomes unstable. Since the interworkability is lowered or the ductility at room temperature is lowered, Mo is set to 3.5% to 5.0%. A preferable upper limit of Mo is 4.6%.

Al:1.6〜2.5%
Alは時効処理によってNi、Ti、Nbとともにγ’相を微細析出させて常温での高強度を得るために不可欠の元素であり、少なくとも1.6%を必要とするが、一方で2.5%を超えて添加すると熱間加工性や溶接性が劣化する恐れがあることから、Alは1.6〜2.5%とした。Alの好ましい上限は2.1%、さらに好ましい上限は1.9%である。
Ti:1.5〜3.0%
TiはC、NbとともにMC型炭化物を形成してオーステナイト結晶粒を微細化するとともに、時効処理によってNi、Al、Nbとともにγ’相を微細析出させて常温での高強度を得るために不可欠の元素であり、1.5%以上の添加を必要とする。一方、3.0%を越えて添加すると熱間加工性や溶接性が劣化する恐れがあることから、Tiは1.5〜3.0%とした。Tiの好ましい下限は1.8%であり、好ましい上限は2.5%、さらに好ましい上限は2.3%である。
Al: 1.6-2.5%
Al is an indispensable element for finely precipitating the γ ′ phase together with Ni, Ti, and Nb by aging treatment to obtain high strength at room temperature, and at least 1.6% is required. If added in excess of%, hot workability and weldability may be deteriorated, so Al was made 1.6 to 2.5%. A preferable upper limit of Al is 2.1%, and a more preferable upper limit is 1.9%.
Ti: 1.5-3.0%
Ti is indispensable for obtaining high strength at normal temperature by forming MC type carbide with C and Nb to refine the austenite crystal grains and finely precipitating γ 'phase with Ni, Al and Nb by aging treatment. It is an element and requires addition of 1.5% or more. On the other hand, if adding over 3.0%, hot workability and weldability may be deteriorated, so Ti was made 1.5 to 3.0%. The preferable lower limit of Ti is 1.8%, the preferable upper limit is 2.5%, and the more preferable upper limit is 2.3%.

Nb:0.5〜2.0%
NbはC,TiとともにMC型炭化物を形成してオーステナイト結晶粒を微細化するとともに、時効処理によってNi、Al、Tiとともにγ’相を微細析出させて常温での高強度を得るために有効な元素であり、0.5%以上の添加を必要とする。一方、2.0%を超えて添加すると粗大なMC型炭化物を生成して熱間加工性を低下させる恐れがあることから、Nbは0.5〜2.0%とした。Nbの好ましい下限は0.8%であり、好ましい上限は1.6%である。さらに好ましい下限は1.0%であり、さらに好ましい上限は1.4%である。
Ni:50〜60%
Niはオーステナイト基地を安定化して固溶化処理時にγ’相などの金属間化合物を十分固溶させ、また固溶強化に寄与するMoを十分固溶させるとともに、時効処理時に微細析出するγ’相の構成元素として析出強化により常温での引張強度の向上に欠かせない重要な元素である。Niは50%より少ないとオーステナイト組織が不安定となり、またγ’相の析出が不十分となり、常温での引張強度が低下し、また一方60%を超えて添加すると熱間加工性が低下したり、水素脆化が発生しやすくなったりすることから、Niは50〜60%とした。Niの好ましい下限は52%、好ましい上限は58%である。さらに好ましい下限は54%、さらに好ましい上限は56%である。
Nb: 0.5-2.0%
Nb is effective in forming MC type carbide with C and Ti to refine austenite crystal grains and finely precipitating γ 'phase with Ni, Al and Ti by aging treatment to obtain high strength at normal temperature. It is an element and requires addition of 0.5% or more. On the other hand, if added over 2.0%, coarse MC-type carbides may be formed and hot workability may be reduced, so Nb was made 0.5 to 2.0%. The preferable lower limit of Nb is 0.8%, and the preferable upper limit is 1.6%. A more preferred lower limit is 1.0%, and a more preferred upper limit is 1.4%.
Ni: 50-60%
Ni stabilizes the austenite base and sufficiently dissolves intermetallic compounds such as the γ 'phase during the solution treatment, and sufficiently dissolves Mo that contributes to solid solution strengthening, and also finely precipitates during the aging treatment. It is an important element indispensable for improving the tensile strength at room temperature by precipitation strengthening. If Ni is less than 50%, the austenite structure becomes unstable, and the precipitation of the γ 'phase becomes insufficient, resulting in a decrease in tensile strength at room temperature. On the other hand, if it exceeds 60%, hot workability is reduced. Or hydrogen embrittlement is likely to occur, so Ni was made 50 to 60%. The preferable lower limit of Ni is 52%, and the preferable upper limit is 58%. A more preferred lower limit is 54%, and a more preferred upper limit is 56%.

B:0.001〜0.015%
Bは少量の添加によってオーステナイト結晶粒界に偏析して粒界を強化し、熱間加工性を向上させるが、最低0.001%以上の添加により効果を生じる一方、0.015%を超えて添加するとBが偏析した粒界部分の融点が局部的に低下して逆に熱間加工性を害することから、Bは0.001〜0.015%とした。
Mg:0.001〜0.015%
MgはSとともに硫化物を形成して、Sの粒界偏析による熱間加工性の低下を防止する効果を有するが、0.001%より少ないと十分な効果が得られない一方で、0,015%を超えて添加すると低融点の化合物が生成するため熱間加工性を害することから、Mgは0.001〜0.015%とした。
残部はFe及び不純物
残部はFe及び不純物であるが、Feは上記の各元素の含有量を調整する元素である。また、本発明において、高強度Fe基超合金を製造する上で不可避的に混入する不純物を含むことができる。特に以下の元素については下記に示す範囲で含有しても差し支えない。
P≦0.04%、S≦0.015%、O≦0.015%、N≦0.05%、Cu≦1.0%
B: 0.001 to 0.015%
B is segregated at the austenite grain boundary by adding a small amount to strengthen the grain boundary and improve the hot workability. However, when B is added in an amount of 0.001% or more, the effect is obtained, but it exceeds 0.015%. When added, the melting point of the grain boundary part where B segregates is locally lowered, and conversely, hot workability is adversely affected, so B was made 0.001 to 0.015%.
Mg: 0.001 to 0.015%
Mg forms a sulfide together with S and has an effect of preventing deterioration of hot workability due to segregation of grain boundaries of S. However, if less than 0.001%, a sufficient effect cannot be obtained, while 0, If over 0.15% is added, a compound with a low melting point is formed, which impairs hot workability, so Mg was made 0.001 to 0.015%.
The balance is Fe and impurities The balance is Fe and impurities, but Fe is an element that adjusts the content of each of the above elements. Moreover, in this invention, when manufacturing a high intensity | strength Fe base superalloy, the impurity inevitably mixed can be included. In particular, the following elements may be contained within the ranges shown below.
P ≦ 0.04%, S ≦ 0.015%, O ≦ 0.015%, N ≦ 0.05%, Cu ≦ 1.0%

本発明においては、良好な耐水素脆性を有するためには、水素の許容固溶量の多いオーステナイト組織を基本組織とする必要がある。しかも高強度と良好な耐食性を得るために固溶Mo量をできるだけ多く固溶させることが必要である。
そのために、原子%で表されるA値:0.293[Ni]−0.513[Cr]−1.814[Mo]の値を2.0〜4.0に規定することにより、高強度と良好な耐食性を両立することが可能となる。A値が2.4より小さいとMoを規定量含む安定なオーステナイト組織を得ることが難しく、一方4.0を超えると固溶強化が不十分となり常温での強度が不足する恐れがある。
さらに本発明では、以下のようにγ’相中のAl比率とγ’相生成元素中であるAl、Ti、Nbの総量も規定する。
B値 [Al]/([Al]+[Ti]+[Nb])
C値 [Al]+[Ti]+[Nb]
[ ]は原子%を表す。
B値は、γ’相中のAlの比率を表すものである。Alの比率が低くB値が0.5より小さいと室温での強度が高くなり過ぎて延性が低下する一方、Alの比率が高くB値が0.6より大きいとγ’相による析出強化の効果が低下して室温での強度が低下することから、B値は0.5〜0.6とした。
C値は、γ’相生成元素中であるAl、Ti、Nbの総量を表すものである。C値が6.4より小さいと時効析出するγ’相の量が少なくなり室温での高い引張強度が得られなくなる一方、C値が7.6より大きいと時効析出するγ’相の量が多くなり、室温での延性が低下することから、C値は6.4〜7.6とした。
In the present invention, in order to have good hydrogen embrittlement resistance, it is necessary to use an austenitic structure having a large allowable solid solution amount of hydrogen as a basic structure. In addition, in order to obtain high strength and good corrosion resistance, it is necessary to dissolve as much solid solution Mo as possible.
Therefore, by specifying the value of A value expressed in atomic%: 0.293 [Ni] −0.513 [Cr] −1.814 [Mo] to 2.0 to 4.0, high strength is achieved. And good corrosion resistance. If the A value is less than 2.4, it is difficult to obtain a stable austenite structure containing a specified amount of Mo. On the other hand, if it exceeds 4.0, the solid solution strengthening is insufficient and the strength at room temperature may be insufficient.
Furthermore, in the present invention, the Al ratio in the γ ′ phase and the total amount of Al, Ti, and Nb in the γ ′ phase generating element are also defined as follows.
B value [Al] / ([Al] + [Ti] + [Nb])
C value [Al] + [Ti] + [Nb]
[] Represents atomic%.
The B value represents the ratio of Al in the γ ′ phase. If the Al ratio is low and the B value is less than 0.5, the strength at room temperature becomes too high and the ductility decreases. On the other hand, if the Al ratio is high and the B value is greater than 0.6, precipitation strengthening due to the γ 'phase will occur. Since the effect is lowered and the strength at room temperature is lowered, the B value is set to 0.5 to 0.6.
The C value represents the total amount of Al, Ti, and Nb in the γ ′ phase generating element. If the C value is less than 6.4, the amount of γ ′ phase that undergoes aging precipitation decreases and high tensile strength at room temperature cannot be obtained. On the other hand, if the C value exceeds 7.6, the amount of γ ′ phase that undergoes aging precipitation increases. The C value was set to 6.4 to 7.6 because the ductility at room temperature was decreased.

上記の化学成分の規定を満足するように添加元素量を調整した上で、適正な熱処理、すなわち適正な固溶化処理と時効処理を行うことで、1180MPa以上の室温での引張強さと19%以上の室温での伸びを得ることができる。
引張強さが1180MPa以上あれば、既存の耐水素脆性材料の中で高強度を示すA286合金より高い室温引張強さを得ることができ、同時に良好な延性をも維持できる。1210MPa以上の引張強さに調整することも可能であり、さらに好ましい。
After adjusting the amount of added elements so as to satisfy the above-mentioned chemical component regulations, by performing an appropriate heat treatment, that is, an appropriate solution treatment and an aging treatment, a tensile strength at room temperature of 1180 MPa or more and 19% or more Elongation at room temperature can be obtained.
If the tensile strength is 1180 MPa or more, it is possible to obtain room temperature tensile strength higher than that of the A286 alloy showing high strength among the existing hydrogen brittle materials, and at the same time maintain good ductility. It is also possible to adjust the tensile strength to 1210 MPa or more, and it is more preferable.

本発明にいて、オーステナイト基地中に分散する(Nb、Ti)の複合炭化物の円相当径が25μm以下であることが好ましい。
オーステナイト基地中に分散する(Nb、Ti)のMC型複合炭化物は、水素のトラップサイトとなり、水素脆化の起点となる可能性がある。(Nb、Ti)の複合炭化物が円相当径で25μmより大きいと、その炭化物に水素が多く局在して水素脆化を起こしやすくなる恐れがあることから、(Nb、Ti)の複合炭化物の円相当径を25μm以下とすることが好ましい。
In the present invention, it is preferable that the equivalent circle diameter of the composite carbide of (Nb, Ti) dispersed in the austenite base is 25 μm or less.
The MC type composite carbide of (Nb, Ti) dispersed in the austenite base serves as a hydrogen trap site and may become a starting point of hydrogen embrittlement. If the composite carbide of (Nb, Ti) is larger than 25 μm in equivalent circle diameter, there is a risk that hydrogen is localized in the carbide and hydrogen embrittlement is likely to occur. Therefore, the composite carbide of (Nb, Ti) The equivalent circle diameter is preferably 25 μm or less.

本発明で規定する組成を有する合金(本発明合金と記す)及び比較合金を真空溶解によって溶解し、熱間加工を経て直径16〜50mmの棒材を得た。
表1に本発明合金No.1〜6及び比較合金No.11〜13の化学成分を示す。ここで、比較合金No.11、12は従来材A286合金である。
An alloy having a composition defined in the present invention (referred to as an alloy of the present invention) and a comparative alloy were melted by vacuum melting, and a bar having a diameter of 16 to 50 mm was obtained through hot working.
Table 1 shows the alloy No. of the present invention. 1-6 and comparative alloy no. Chemical components 11 to 13 are shown. Here, comparative alloy No. 11 and 12 are conventional material A286 alloy.

本発明合金No.1〜6及び比較合金No.13は、1050℃での固溶化処理の後、750℃で時効処理を行い、また、比較合金No.11、12は、900℃で固溶化処理の後、720℃で時効処理を行なった。その後、厚さ1mmの板引張試験片及び平行部直径が8mmの回転曲げ疲労試験片を採取した。
常温での引張特性については、板引張試験片を用いて、水素チャージしない状態で常温にて引張試験を行い、引張特性を確認した後、いくつかの合金について水素チャージを実施し、その後、常温での引張特性を確認した。
Invention alloy No. 1-6 and comparative alloy no. No. 13 was subjected to aging treatment at 750 ° C. after solution treatment at 1050 ° C. 11 and 12 were subjected to aging treatment at 720 ° C. after solution treatment at 900 ° C. Thereafter, a plate tensile test piece having a thickness of 1 mm and a rotating bending fatigue test piece having a parallel part diameter of 8 mm were collected.
For tensile properties at room temperature, a tensile test was performed at room temperature without using a sheet tensile test piece, and after confirming the tensile properties, hydrogen charging was performed on some alloys, and then The tensile properties at were confirmed.

板引張試験片への水素チャージについては、オートクレーブを用いた高圧水素チャージ法または陰極チャージ法により水素チャージを行なった。
高圧水素チャージ法では、温度300〜400℃、水素圧力2〜20MPaの範囲で条件を選んで水素量を変化させた。吸蔵水素量は水素昇温脱離分析法により分析した。陰極チャージ法では、0.05MのHSOと0.01MのKSCN(チオシアン酸カリウム)を有する電解液に、試験片、Pt電極、熱電対を入れ、試験片をマイナス極、Pt電極をプラス極として、50〜60℃で200mA/cmの定電流を流して水素を吸蔵させた。この場合の吸蔵水素量は、不活性ガス融解法により分析した。引張試験は常温にて2.5×10−4/sの歪速度で行い、水素チャージした試験片での破断伸びを水素チャージしていない試験片での破断伸びで除した値を水素脆化指標として、水素脆化の程度を評価した。すなわち、水素脆化指標が1に近い方が水素脆化しにくい材料であることを表すことになる。
About the hydrogen charge to a plate tension test piece, hydrogen charge was performed by the high-pressure hydrogen charge method or cathode charge method which used the autoclave.
In the high-pressure hydrogen charging method, the amount of hydrogen was changed under the conditions of a temperature of 300 to 400 ° C. and a hydrogen pressure of 2 to 20 MPa. The amount of occluded hydrogen was analyzed by hydrogen thermal desorption analysis. In the cathode charging method, a test piece, a Pt electrode, and a thermocouple are placed in an electrolyte solution having 0.05 M H 2 SO 4 and 0.01 M KSCN (potassium thiocyanate), and the test piece is a negative electrode and a Pt electrode is used. As a positive electrode, hydrogen was occluded by flowing a constant current of 200 mA / cm 2 at 50 to 60 ° C. The amount of occluded hydrogen in this case was analyzed by an inert gas melting method. The tensile test is performed at room temperature at a strain rate of 2.5 × 10 −4 / s, and the value obtained by dividing the elongation at break with a hydrogen-charged specimen by the elongation at break with a specimen not charged with hydrogen is hydrogen embrittled. As an index, the degree of hydrogen embrittlement was evaluated. That is, when the hydrogen embrittlement index is close to 1, it indicates that the material is less prone to hydrogen embrittlement.

回転曲げ疲労試験片については、陰極チャージ法により水素チャージを行なった。
0.05MのHSOと0.01MのKSCNを有する電解液に、試験片、Pt電極、熱電対を入れ、試験片をマイナス極、Pt電極をプラス極として、50〜60℃で200mA/cmの定電流を流して水素を吸蔵させた。この場合の吸蔵水素量は、不活性ガス融解法により分析した。回転曲げ疲労試験は常温にてJIS Z2274に準拠して行い、10回を超えても破断しない場合は試験を中止した。
The rotating bending fatigue test piece was charged with hydrogen by the cathodic charging method.
A test piece, a Pt electrode, and a thermocouple are placed in an electrolyte solution having 0.05 M H 2 SO 4 and 0.01 M KSCN, and the test piece is a negative electrode and the Pt electrode is a positive electrode, and the current is 200 mA at 50 to 60 ° C. Hydrogen was occluded by applying a constant current of / cm 2 . The amount of occluded hydrogen in this case was analyzed by an inert gas melting method. The rotating bending fatigue test was performed at room temperature in accordance with JIS Z2274, and the test was stopped if it did not break even after exceeding 10 7 times.

また、本発明合金及び比較合金No.11について、固溶化処理ままでブロック状試験片を採取し、酸抽出法により、炭化物を抽出し、SEM観察により炭化物の円相当径を測定し、極値統計処理によって、推定最大円相当径を求めた。   Further, the alloys of the present invention and comparative alloy No. For No. 11, a block-shaped test piece is collected as it is, and the carbide is extracted by the acid extraction method. The equivalent circle diameter of the carbide is measured by SEM observation, and the estimated maximum equivalent circle diameter is obtained by the extreme value statistical processing. Asked.

表2に板引張試験の結果を示す。
本発明合金No.1〜6は、室温での引張強さが1180MPa以上であり、かつ伸びが19%以上である。また、本発明合金No.1、2は、水素を吸蔵すると水素脆化により伸びがやや低下する傾向が見られるものの、水素脆化指標の低下はあまり大きくなく0.76以上の依然として比較的大きい値を維持しており、かつ比較合金No.11〜13に比べて高い1180MPa以上の引張強さを維持している。
一方、比較合金No.11、12は従来合金であるA286相当合金であり、水素脆化指標の低下が小さく、水素脆化しにくい材料であるが、引張強さが本発明合金に比べて低い。また、比較合金No.13は比較合金No.11、12より高い引張強さを示しているが、本発明合金より引張強さが低く、かつ水素脆化指標の低下度合いが本発明合金と同程度であることから、強度的に不十分である。
Table 2 shows the results of the plate tension test.
Invention alloy No. Nos. 1 to 6 have a tensile strength at room temperature of 1180 MPa or more and an elongation of 19% or more. In addition, the alloy No. of the present invention. 1 and 2 show that when hydrogen is occluded, there is a tendency for the elongation to decrease slightly due to hydrogen embrittlement, but the decrease in the hydrogen embrittlement index is not so large and is still maintained at a relatively large value of 0.76 or more, And comparative alloy No. The tensile strength of 1180 MPa or higher, which is higher than that of 11-13, is maintained.
On the other hand, Comparative Alloy No. 11 and 12 are A286 equivalent alloys, which are conventional alloys, and are materials that have a small decrease in hydrogen embrittlement index and are difficult to hydrogen embrittle, but have a lower tensile strength than the alloys of the present invention. Comparative alloy No. No. 13 is a comparative alloy no. Although the tensile strength is higher than 11 and 12, the tensile strength is lower than that of the alloy of the present invention and the degree of decrease in the hydrogen embrittlement index is the same as that of the alloy of the present invention. is there.

図1に本発明合金No.2及び比較合金No.11(A286相当合金)の回転曲げ疲労試験結果を示す。
回転曲げ疲労試験に用いた水素チャージした試験片の水素量は、約12ppmであり、試験前後で分析を行い変化がないことを確認した。
図1より、本発明合金の疲労強度は、比較合金より高く、かつ水素チャージしても、比較合金と同様、疲労強度の低下が見られない。したがって、繰り返し応力下において水素を吸蔵しても良好な疲労強度を発揮できるものと考えられる。
In FIG. 2 and comparative alloy no. 11 shows the results of a rotating bending fatigue test of 11 (A286 equivalent alloy).
The hydrogen amount of the hydrogen-charged test piece used for the rotating bending fatigue test was about 12 ppm, and analysis was performed before and after the test to confirm that there was no change.
As shown in FIG. 1, the fatigue strength of the alloy of the present invention is higher than that of the comparative alloy, and even if hydrogen is charged, the fatigue strength is not lowered as in the comparative alloy. Therefore, it is considered that good fatigue strength can be exhibited even if hydrogen is occluded under repeated stress.

また、本発明合金及び比較合金No.11の最大炭化物サイズ(円相当径)は、本発明合金の場合、いずれも25.0μm以下であったが、比較合金No.11は、19.7μm及び31.2μmであった。本発明合金の炭化物は、(Ti,Nb)の複合炭化物である一方、比較合金No.11の炭化物は、Tiの炭化物であったことから、MC型炭化物の組成の違いが炭化物サイズに影響している可能性がある。また、定量までできていないが、本発明合金の炭化物量は、比較合金No.11の炭化物量に比べて大幅に少なかった。
以上より、本発明合金は、(Nb、Ti)の複合MC型炭化物が微細分散しているために、炭化物にトラップされる水素が少ないと思われ、炭化物界面への水素の局在が少なく、吸蔵水素が均一に分布するので、高強度の割には水素脆化が小さいものと推定される。
Further, the alloys of the present invention and comparative alloy No. 11 had a maximum carbide size (equivalent circle diameter) of 25.0 μm or less in the case of the alloy of the present invention. 11 was 19.7 μm and 31.2 μm. The carbide of the alloy of the present invention is a composite carbide of (Ti, Nb). Since 11 carbide was Ti carbide, there is a possibility that the difference in the composition of MC type carbides affects the carbide size. Although the amount of carbide in the alloy of the present invention has not been determined, the comparative alloy No. Compared to the amount of 11 carbide, it was significantly less.
From the above, the alloy of the present invention is considered to have a small amount of hydrogen trapped by the carbide because the composite MC type carbide of (Nb, Ti) is finely dispersed, and there is little localization of hydrogen at the carbide interface, Since the absorbed hydrogen is distributed uniformly, it is estimated that hydrogen embrittlement is small for high strength.

以上説明したように、本発明により水素脆化の少ない高強度Fe基合金を提供でき、高圧水素インフラ部材に用いれば、部材の軽量化や長寿命化に貢献できる。   As described above, a high-strength Fe-based alloy with less hydrogen embrittlement can be provided by the present invention, and if used for a high-pressure hydrogen infrastructure member, it can contribute to weight reduction and longer life of the member.

Claims (2)

耐水素脆性高強度オーステナイト系合金を用いた高圧水素用部材であって、前記耐水素脆性高強度オーステナイト系合金は、質量%でC:0.01〜0.10%、Si:0.01〜0.8%、Mn:0.01〜0.8%、Cr:14〜17%、Mo:3.5%〜5.0%、Al:1.6〜2.5%、Ti:1.5〜3.0%、Nb:0.5〜2.0%、Ni:50〜60%、B:0.001〜0.015%、Mg:0.001〜0.015%、残部はFe及び不純物からなり、原子%で下記A値が2.0〜4.0、B値が0.5〜0.6、C値が6.4〜7.6、且つ、室温における引張強さが1180MPa以上、伸びが19%以上であることを特徴とする高圧水素用部材
A値 0.293[Ni]−0.513[Cr]−1.814[Mo]
B値 [Al]/([Al]+[Ti]+[Nb])
C値 [Al]+[Ti]+[Nb]
[ ]は原子%を表す。
A member for high-pressure hydrogen using a hydrogen brittle high strength austenitic alloy, wherein the hydrogen brittle high strength austenitic alloy is C: 0.01 to 0.10% by mass, Si: 0.01 to 0.8%, Mn: 0.01-0.8%, Cr: 14-17%, Mo: 3.5% -5.0%, Al: 1.6-2.5%, Ti: 1. 5 to 3.0%, Nb: 0.5 to 2.0%, Ni: 50 to 60%, B: 0.001 to 0.015%, Mg: 0.001 to 0.015%, the balance being Fe The following A value is 2.0 to 4.0, B value is 0.5 to 0.6, C value is 6.4 to 7.6, and tensile strength at room temperature is atomic percent. A member for high-pressure hydrogen characterized by having 1180 MPa or more and an elongation of 19% or more.
A value 0.293 [Ni] -0.513 [Cr] -1.814 [Mo]
B value [Al] / ([Al] + [Ti] + [Nb])
C value [Al] + [Ti] + [Nb]
[] Represents atomic%.
前記耐水素脆性高強度オーステナイト系合金のオーステナイト基地中に分散する(Nb、Ti)の複合炭化物の円相当径が25μm以下であることを特徴とする請求項1に記載の高圧水素用部材2. The member for high-pressure hydrogen according to claim 1, wherein an equivalent circle diameter of the composite carbide of (Nb, Ti) dispersed in the austenite base of the hydrogen-brittle high-strength austenitic alloy is 25 μm or less.
JP2009288770A 2009-12-21 2009-12-21 High pressure hydrogen components Active JP5561583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009288770A JP5561583B2 (en) 2009-12-21 2009-12-21 High pressure hydrogen components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009288770A JP5561583B2 (en) 2009-12-21 2009-12-21 High pressure hydrogen components

Publications (2)

Publication Number Publication Date
JP2011127204A JP2011127204A (en) 2011-06-30
JP5561583B2 true JP5561583B2 (en) 2014-07-30

Family

ID=44290101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009288770A Active JP5561583B2 (en) 2009-12-21 2009-12-21 High pressure hydrogen components

Country Status (1)

Country Link
JP (1) JP5561583B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9469505B2 (en) 2010-05-21 2016-10-18 Otis Elevator Company Sheet metal guide rail for an elevator system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5663503B2 (en) * 2012-01-17 2015-02-04 大陽日酸株式会社 Measuring method of hydrogen gas emission
JP5599850B2 (en) * 2012-08-24 2014-10-01 株式会社日本製鋼所 Ni-base alloy excellent in hydrogen embrittlement resistance and method for producing Ni-base alloy material excellent in hydrogen embrittlement resistance
US11471929B2 (en) 2015-12-18 2022-10-18 Hitachi Metals, Ltd. Metal gasket and production method therefor
US10280498B2 (en) * 2016-10-12 2019-05-07 Crs Holdings, Inc. High temperature, damage tolerant superalloy, an article of manufacture made from the alloy, and process for making the alloy
WO2019189576A1 (en) * 2018-03-28 2019-10-03 日鉄ステンレス株式会社 Alloy sheet and production method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3977847B2 (en) * 2004-05-26 2007-09-19 日立金属株式会社 Heat resistant alloy for engine valves

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9469505B2 (en) 2010-05-21 2016-10-18 Otis Elevator Company Sheet metal guide rail for an elevator system

Also Published As

Publication number Publication date
JP2011127204A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP4264754B2 (en) Stainless steel for high-pressure hydrogen gas, containers and equipment made of that steel
JP4274176B2 (en) Stainless steel for high-pressure hydrogen gas, containers and equipment made of that steel
KR100663720B1 (en) Austenitic steel weld joint
JP5561583B2 (en) High pressure hydrogen components
JP6801236B2 (en) Austenitic stainless steel for low temperature hydrogen and its manufacturing method
EP2725112B1 (en) Carburization-resistant metal material and uses of the carburization-resistant metal material
JP5786830B2 (en) High-strength austenitic stainless steel for high-pressure hydrogen gas
JP6451545B2 (en) High Mn steel for high-pressure hydrogen gas, method for producing the same, and piping, container, valve and joint made of the steel
CN108138280B (en) The manufacturing method of austenite stainless steel and austenite stainless steel
JP6684620B2 (en) High-strength austenitic stainless steel excellent in hydrogen embrittlement resistance, its manufacturing method, and hydrogen equipment used in high-pressure hydrogen gas and liquid hydrogen environment
US20080175749A1 (en) Gamma PHASE STRENGTHENED FE-NI BASE SUPERALLOY
JP6149435B2 (en) Low alloy steel for high pressure hydrogen gas and pressure accumulator for high pressure hydrogen
JP4784501B2 (en) High pressure hydrogen flow meter
JP4632954B2 (en) Heat-resistant cast steel for hydrogen production reaction tubes with excellent aging ductility and creep rupture strength
JP5553636B2 (en) Weld filler
CN100567542C (en) Container and utensil that high pressure hydrogen is done with stainless steel, by this steel
EP2889387B1 (en) Ni-based alloy having excellent hydrogen embrittlement resistance, and method for producing ni-based alloy material
JP3977847B2 (en) Heat resistant alloy for engine valves
JP6933096B2 (en) Nickel steel for high pressure hydrogen
JP6933094B2 (en) Nickel steel for high pressure hydrogen
CN113195762A (en) Ferritic stainless steel
JP6798297B2 (en) Stainless steel
JP6933095B2 (en) Nickel steel for high pressure hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140529

R150 Certificate of patent or registration of utility model

Ref document number: 5561583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350