Nothing Special   »   [go: up one dir, main page]

JP5553394B2 - Method for producing cadaverine - Google Patents

Method for producing cadaverine Download PDF

Info

Publication number
JP5553394B2
JP5553394B2 JP2001025488A JP2001025488A JP5553394B2 JP 5553394 B2 JP5553394 B2 JP 5553394B2 JP 2001025488 A JP2001025488 A JP 2001025488A JP 2001025488 A JP2001025488 A JP 2001025488A JP 5553394 B2 JP5553394 B2 JP 5553394B2
Authority
JP
Japan
Prior art keywords
cadaverine
lysine
gene
antiporter
decarboxylase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001025488A
Other languages
Japanese (ja)
Other versions
JP2002223770A (en
JP2002223770A5 (en
Inventor
孝 耳塚
潤 風見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001025488A priority Critical patent/JP5553394B2/en
Publication of JP2002223770A publication Critical patent/JP2002223770A/en
Publication of JP2002223770A5 publication Critical patent/JP2002223770A5/en
Application granted granted Critical
Publication of JP5553394B2 publication Critical patent/JP5553394B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、カダベリンの製造法に関するものである。カダベリンは医薬中間体などの合成原料や高分子原材料として期待され、需要が高まりつつある。  The present invention relates to a method for producing cadaverine. Cadaverine is expected to be a synthetic raw material such as a pharmaceutical intermediate and a polymer raw material, and its demand is increasing.

従来、リジンを微量のテトラリン過酸化物を含むシクロヘキサノール中で煮沸することによりカダベリンが得られることが知られている(須山正,金尾清造;アミノ酸の脱炭酸(第4報)薬学雑誌,vol.85(6),P.531-533(1965))。しかしながら大量のエネルギーおよび有機溶媒が必要であるうえに、生成効率が非常に低い(36%)。また、カダベリンは生体内に普遍的に存在する生体アミンであり、その生合成系が解明されつつある(Celia white tabor and Herbert tabor;Microbiological Reviews,vol.49,P.81-99(1985))。植物に微生物由来のリジン脱炭酸酵素をコードする遺伝子を導入すると、カダベリンの蓄積量が増加することが知られている(Lothar F.Fecker,Christiane Rugenhagen and Jochen Berlin;Plant Molecular Biology,vol.23,P.11-21(1993))。また、大腸菌由来の至適pHの異なるリジン脱炭酸酵素遺伝子が知られている(Shi-yuanmeng and George N.Bennett;Journal of Bacteriology,vol.174,P.2659-2669(1992))(Yoshimi kikuchi,Hiroyuki kojima,Takashi tanaka,Yumiko,takatsuka and Yoshiyuki kamio;Journal of Bacteriology,vol.179,P.4486-4492(1997))。さらに、リジンを高効率で発酵法により生産できることが知られている(Schilling BM, Pfefferle W, Bachmann B, Leuchtenberger W and Deckwer W;Biotechnol Bioeng,vol64,P.599-606(1999))。しかしながら、カダベリンの製造について実際的な製造技術は確立されておらず、効率よく、より温和な条件下でカダベリンを製造する方法の開発が望まれている。  Conventionally, it is known that cadaverine can be obtained by boiling lysine in cyclohexanol containing a trace amount of tetralin peroxide (Masaka Suyama, Kiyozo Kaneo; Decarboxylation of amino acids (Part 4) Pharmaceutical Journal, vol.85 (6), P.531-533 (1965)). However, large amounts of energy and organic solvents are required and production efficiency is very low (36%). Cadaverine is a biogenic amine that exists universally in the body, and its biosynthetic system is being elucidated (Celia white tabor and Herbert tabor; Microbiological Reviews, vol. 49, P. 81-99 (1985)). . It is known that introduction of a gene encoding lysine decarboxylase derived from microorganisms into plants increases the accumulation of cadaverine (Lothar F. Fecker, Christiane Rugenhagen and Jochen Berlin; Plant Molecular Biology, vol. 23, P.11-21 (1993)). In addition, lysine decarboxylase genes with different optimum pH derived from E. coli are known (Shi-yuanmeng and George N. Bennett; Journal of Bacteriology, vol. 174, P. 2659-2669 (1992)) (Yoshimi kikuchi Hiroyuki kojima, Takashi tanaka, Yumiko, Takatsuka and Yoshiyuki kamio; Journal of Bacteriology, vol. 179, P. 4486-4492 (1997)). Furthermore, it is known that lysine can be produced by fermentation with high efficiency (Schilling BM, Pfefferle W, Bachmann B, Leuchtenberger W and Deckwer W; Biotechnol Bioeng, vol 64, P. 599-606 (1999)). However, no practical production technique has been established for the production of cadaverine, and it is desired to develop a method for producing cadaverine efficiently and under milder conditions.

発明が解決しようとする課題Problems to be solved by the invention

本発明の課題は、微生物によるカダベリンの高効率かつ高収率で、エネルギー消費が少なく、有機溶媒を必要としないカダベリンの工業的製造方法を提供することである。  An object of the present invention is to provide an industrial production method of cadaverine with high efficiency and high yield of cadaverine by microorganisms, which consumes less energy and does not require an organic solvent.

課題を解決するための手段Means for solving the problem

上記問題点を解決するために、本発明者らは更に生産性の高いカダベリンの製造方法について鋭意研究を行った結果、リジン脱炭酸酵素活性およびリジン・カダベリンアンチポーター酵素活性を増強した大腸菌を4時間から120時間培養し、該培養液からカダベリンを単離精製することにより、培養液中のカダベリンの蓄積濃度、生成収率が著しく向上することを見出し、本発明に到達した In order to solve the above-mentioned problems, the present inventors have conducted intensive research on a method for producing cadaverine with higher productivity. As a result, 4 Escherichia coli having enhanced lysine decarboxylase activity and lysine-cadaverine antiporter enzyme activity were obtained. By culturing for 120 hours from the time, and isolating and purifying cadaverine from the culture solution, it was found that the accumulated concentration and production yield of cadaverine in the culture solution were remarkably improved, and the present invention was achieved .

すなわち本発明は、「リジン脱炭酸酵素およびリジン・カダベリンアンチポーターの酵素活性を増強した大腸菌4時間から120時間培養し、該培養液からカダベリンを単離精製することを特徴とするカダベリンの製造方法。」に関する。 That is, the present invention provides a feature to "lysine cultured 120 hours decarboxylase and lysine-cadaverine antiporter 4 hours E.coli with enhanced enzymatic activity, be isolated and purified cadaverine from the culture broth To produce cadaverine. "

本発明の好ましい態様では、リジン脱炭酸酵素およびリジン・カダベリンアンチポーターの細胞内での活性を増強した宿主を使用する。宿主細胞内でのリジン脱炭酸酵素およびリジン・カダベリンアンチポーターの細胞内での活性を増強する方法に制限はない。具体的には、例えば、リジン脱炭酸酵素およびリジン・カダベリンアンチポーターの酵素量を増加させる方法、もしくは酵素の構造遺伝子自体に変異を導入して、酵素そのものの比活性を上昇させることなどが挙げられる。 In a preferred embodiment of the present invention, using the activity enhanced host in the cell of a lysine decarboxylase and lysine-cadaverine antiporter. Limitations on the method to enhance the activity in the cells of the host cell lysine decarboxylase within and lysine-cadaverine antiporter is not. Specifically, for example, be a method to increase the amount of enzyme lysine decarboxylase and lysine-cadaverine antiporter or by introducing a mutation into the structural gene itself of the enzyme, increases the specific activity of the enzyme itself Etc.

細胞内の酵素量を増加させる手段としては、遺伝子の転写調節領域の改良、遺伝子のコピー数の増加、蛋白への翻訳の効率化などが挙げられる。  Means for increasing the amount of enzyme in the cell include improving the transcriptional regulatory region of the gene, increasing the copy number of the gene, and improving the efficiency of translation into protein.

転写調節領域の改良とは、遺伝子の転写量を増加させる改変を加えることをいう。例えば、プロモーターに変異を導入することによってプロモーター強化を行い、下流にある遺伝子の転写量を増加させることができる。プロモーターに変異を導入する以外にも、宿主内で強力に発現するプロモーターを導入しても良い。例えば大腸菌においては、lac、tac、trpなどのプロモーターが挙げられる。また、エンハンサーを新たに導入することによって遺伝子の転写量を増加させることができる。染色体DNAのプロモーター等の遺伝子導入については、例えば特開平1-215280号公報に記載されている。  Improving the transcriptional regulatory region means adding a modification that increases the amount of gene transcription. For example, the promoter can be strengthened by introducing a mutation into the promoter, and the transcription amount of the downstream gene can be increased. In addition to introducing mutations into the promoter, a promoter that is strongly expressed in the host may be introduced. For example, in E. coli, promoters such as lac, tac, and trp can be mentioned. In addition, the amount of gene transcription can be increased by newly introducing an enhancer. The introduction of a gene such as a chromosomal DNA promoter is described in, for example, JP-A-1-215280.

遺伝子のコピー数の上昇は、具体的には、遺伝子を多コピー型のベクターに接続して組換えDNAを作製し、該組換えDNAを宿主細胞に保持させることにより達成することができる。ここでベクターとは、プラスミドやファージ等広く用いられているものを含むが、これら以外にも、トランソポゾン(Berg, D. E. and Berg. C. M., Bio/Technol., vol.1, P.417(1983))やMuファージ(特開平2-109985号公報)も含む。遺伝子を相同組換え用プラスミド等を用いた方法で染色体に組み込んでコピー数を上昇させることも可能である。  Specifically, the increase in the copy number of a gene can be achieved by connecting the gene to a multi-copy vector to produce a recombinant DNA and allowing the host cell to hold the recombinant DNA. Here, vectors include those widely used such as plasmids and phages, but besides these, transposon (Berg, DE and Berg. CM, Bio / Technol., Vol. 1, P.417 (1983) ) And Mu phage (Japanese Patent Laid-Open No. 2-109985). It is also possible to increase the copy number by incorporating a gene into a chromosome by a method using a plasmid for homologous recombination.

蛋白の翻訳効率を上昇させる方法としては、例えば原核生物においてはSD配列(Shine, J. and Dalgarno, L., Proc. Natl. Acad. Sci. USA, 71, 1342-1346 (1974))、真核生物では Kozak のコンセンサス配列(Kozak, M., Nuc. Acids Res., Vol.15, p.8125-8148(1987))を導入、改変することや、使用コドンの最適化(特開昭59-125895)などが挙げられる。  As a method for increasing the translation efficiency of proteins, for example, in prokaryotes, SD sequences (Shine, J. and Dalgarno, L., Proc. Natl. Acad. Sci. USA, 71, 1342-1346 (1974)), true In nuclear organisms, the introduction and modification of Kozak consensus sequences (Kozak, M., Nuc. Acids Res., Vol.15, p.8125-8148 (1987)) and optimization of codons used (JP-A-59) -125895).

リジン脱炭酸酵素およびリジン・カダベリンアンチポーターの細胞内での比活性を上昇させる手段としては、酵素の構造遺伝子自体に変異を導入して、より比活性の上昇した酵素を選択する方法が挙げられる。 As a means to increase the specific activity in cells of the lysine decarboxylase and lysine-cadaverine antiporter, method by introducing a mutation into the structural gene itself of the enzyme, selecting elevated enzyme more specific activity Is mentioned.

遺伝子に変異を生じさせるには、部位特異的変異法(Kramer,W. and frita,HJ., Methods in Enzymology,vol.154,P.350(1987))リコンビナントPCR法(PCRTechnology,Stockton Press(1989)、特定の部分のDNAを化学合成する方法、または当該遺伝子をヒドロキシアミン処理する方法や当該遺伝子を保有する菌株を紫外線照射処理、もしくはニトロソグアニジンや亜硝酸などの化学薬剤で処理する方法がある。  In order to generate mutations in genes, site-specific mutagenesis (Kramer, W. and frita, HJ., Methods in Enzymology, vol.154, P.350 (1987)) Recombinant PCR (PCRTechnology, Stockton Press (1989) ), A method of chemically synthesizing a specific portion of DNA, a method of treating the gene with hydroxyamine, and a method of treating a strain having the gene with ultraviolet irradiation or a chemical agent such as nitrosoguanidine or nitrous acid. .

宿主が、リジンモノオキシゲナーゼ、リジンオキシダーゼおよびリジンムターゼなどのカダベリン以外へのリジン代謝系を持つ場合、カダベリンを選択的に産生させるために、リジンモノオキシゲナーゼ遺伝子、リジンオキシダーゼ遺伝子およびリジンムターゼ遺伝子などを破壊してもよい。  When the host has a lysine metabolism system other than cadaverine, such as lysine monooxygenase, lysine oxidase, and lysine mutase, the lysine monooxygenase gene, lysine oxidase gene, and lysine mutase gene are destroyed in order to selectively produce cadaverine. May be.

リジン脱炭酸酵素遺伝子およびリジン・カダベリンアンチポーター遺伝子の取得方法としては特に制限はなく、PCR法、ゲノムライブラリーやcDNAライブラリーからのスクリーニング法などが用いられる。本発明において、これらの遺伝子は、遺伝的多形性などによる変異型も含む。なお、遺伝的多形性とは、遺伝子上の自然突然変異により遺伝子の塩基配列が一部変化しているものをいう。  The method for obtaining the lysine decarboxylase gene and the lysine / cadaverine antiporter gene is not particularly limited, and a PCR method, a screening method from a genomic library or cDNA library, and the like are used. In the present invention, these genes include mutants due to genetic polymorphism and the like. Genetic polymorphism means that the base sequence of a gene is partially changed due to a natural mutation on the gene.

取得した遺伝子は適当な発現ベクターに組み込み、宿主内に導入する。  The obtained gene is incorporated into an appropriate expression vector and introduced into the host.

用いられる発現ベクターのタイプについては宿主細胞中で安定に維持されるものであれば特に制限はない。例えば大腸菌においては大腸菌内において複製可能なpBR322、pUC19などをベクターとして用いることが可能である。  The type of expression vector used is not particularly limited as long as it is stably maintained in the host cell. For example, in E. coli, pBR322, pUC19, etc. that can replicate in E. coli can be used as vectors.

作製される発現ベクターについては、特に制限はない。宿主内で複製可能な1種類の発現ベクターに、1種類のリジン脱炭酸酵素遺伝子を組み込み発現させても良い。また、1種類の発現ベクターに、2種類以上のリジン脱炭酸酵素遺伝子を組み込み、同一のプロモーターまたは異なるプロモーターの制御下に発現させても良い。さらに、異なる複製起点を持ち異なるプロモーターを有する発現ベクターを2種類以上を使用し、それぞれに異なるリジン脱炭酸酵素遺伝子を組み込み異なるプロモーターの制御下で、それぞれを発現させても良い。  There are no particular limitations on the expression vector to be produced. One kind of lysine decarboxylase gene may be incorporated and expressed in one type of expression vector that can replicate in the host. Alternatively, two or more lysine decarboxylase genes may be incorporated into one expression vector and expressed under the control of the same promoter or different promoters. Furthermore, two or more types of expression vectors having different origins of replication and different promoters may be used, and different lysine decarboxylase genes may be incorporated into the respective expression vectors, and each may be expressed under the control of different promoters.

2種類以上リジン脱炭酸酵素遺伝子を組み込む際、それぞれの酵素の至適pHの異なるリジン脱炭酸酵素遺伝子を組み込むことが好ましい。  When two or more types of lysine decarboxylase genes are incorporated, it is preferable to incorporate lysine decarboxylase genes having different optimum pH values for the respective enzymes.

更に好ましくは、これらリジン脱炭酸酵素発現ベクターと同一の発現ベクターにリジン・カダベリンアンチポーターを組み込み同一のプロモーターの制御下に発現させても良い。また、これらリジン脱炭酸酵素発現ベクターと異なる複製起点を持ち異なるプロモーターを有する発現ベクターにリジン・カダベリンアンチポーター遺伝子を組み込み、異なるプロモーターの制御下でリジン脱炭酸酵素およびリジン・カダベリンアンチポーターをそれぞれ発現させても良い。  More preferably, a lysine-cadaverine antiporter may be incorporated into the same expression vector as these lysine decarboxylase expression vectors and expressed under the control of the same promoter. In addition, the lysine-cadaverine antiporter gene is incorporated into an expression vector having a different origin of replication from these lysine decarboxylase expression vectors and a different promoter, and lysine decarboxylase and lysine-cadaverine antiporter are expressed under the control of different promoters You may let them.

導入方法としては特に制限はないが、例えば細菌の場合は、塩化カルシウム法、エレクトロポレーション法などが用いられる。  The introduction method is not particularly limited. For example, in the case of bacteria, a calcium chloride method, an electroporation method, or the like is used.

宿主は大腸菌が用いられる。 Host is E. coli is used.

また、宿主に、薬剤に対する耐性、栄養要求性などの性質があってもよい。  In addition, the host may have properties such as drug resistance and auxotrophy.

宿主に組み込むべきリジン脱炭酸酵素をコードする遺伝子およびリジン・カダベリンアンチポーターをコードする遺伝子は、宿主によって発現され、リジン脱炭酸酵素およびリジン・カダベリンアンチポーターとしての活性が保持されるならば特に制限はなく、微生物、動物、植物または昆虫由来のもが使用できるが、微生物由来のリジン脱炭酸酵素をコードする遺伝子およびリジン・カダベリンアンチポーターをコードする遺伝子が好ましい。  The gene encoding lysine decarboxylase and the gene encoding lysine cadaverine antiporter to be incorporated into the host are particularly restricted if they are expressed by the host and retain their activity as lysine decarboxylase and lysine cadaverine antiporter. Although genes derived from microorganisms, animals, plants or insects can be used, genes encoding lysine decarboxylase derived from microorganisms and genes encoding lysine-cadaverine antiporter are preferred.

微生物のリジン脱炭酸酵素をコードする遺伝子としては、細菌由来のものが好ましく、大腸菌、バシラス・ハロドゥランス(Bacillus halodurans)、バシラス・サブチリス(Bacillus subtilis)、セレノモナス・ルミナンチウム(Selenomonas ruminantium)、ビブリオ・コレラ(Vibrio cholerae)、ビブリオ・パラヘモリティカス(Vibrio parahaemolyticus)、ストレプトマイセス・コエリカーラ(Streptomyces coelicolor)、ストレプトマイセス・ピロサス(Streptomyces pilosus)、エイケネラ・コロデンス(Eikenella corrodens)、イユバクテリウム・アシダミノフィルム(Eubacterium acidaminophilum)、サルモネラ・ティフィムリウム(Salmonella typhimurium)、ハフニア・アルベイ(Hafniaalvei)、ナイセリア・メニンギチデス(Neisseria meningitidis)、テルモプラズマ・アシドフィルム(Thermoplasma acidophilum)またはピロコッカス・アビシ(Pyrococcus abyssi)などの由来の遺伝子が知られており、これらが好ましく用いられる。さらに好ましくは大腸菌由来の遺伝子(cadA、ldc)が用いられる。 As a gene encoding lysine decarboxylase of a microorganism, those derived from bacteria are preferable, and Escherichia coli, Bacillus halodurans, Bacillus subtilis, Selenomonas ruminantium, Vibrio cholera. (Vibrio cholerae), Vibrio parahaemolyticus, Streptomyces coelicolor, Streptomyces pilosus, Eikenella corrodens, Iyubacterium asidamino film Eubacterium acidaminophilum, Salmonella typhimurium, Hafniaalvei, Neisseria meningitidis, Thermoplasma acidop (Thermoplasma acidop) Hilum) or Pyrococcus Abishi (Pyrococcus abyssi) that has any genes from are known, they are preferably used. More preferably, genes derived from E. coli (cadA, ldc) are used.

リジン・カダベリンアンチポーターをコードする遺伝子としては、大腸菌、テルモプラズマ・アシドフィルム(Thermoplasma acidophilum)、ビブリオ・コレラ(Vibrio cholerae)などの遺伝子が知られており、これらが好ましく用いられる。さらに好ましくは大腸菌由来の遺伝子(cadB)が用いられる。  Known genes encoding lysine / cadaverine antiporter include Escherichia coli, Thermoplasma acidophilum, Vibrio cholerae, and the like, which are preferably used. More preferably, a gene derived from E. coli (cadB) is used.

本発明における培養方法について説明する。培地は炭素源、窒素源、無機イオンおよび必要に応じてその他の有機微量成分を含有する通常の培地が使用可能であり、カダベリンが産生される限り特に制限はない。 The culture method in the present invention will be described. Medium carbon source, nitrogen source, ordinary media containing other organic trace components as inorganic ions, and requires a usable capacity is not particularly limited as long as cadaverine is produced.

炭素源としてはグルコース、フラクトース、糖蜜などの糖類、フマール酸、クエン酸、コハク酸などの有機酸、メタノール、エタノール、グリセロールなどのアルコール類などを1〜15%、窒素源として酢酸アンモニウムなどの有機アンモニウム塩、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム、硝酸アンモニウムなどの無機アンモニウム塩、アンモニアガス、アンモニア水、尿素などを0.1%〜4.0%、有機微量成分としてはピリドキサルリン酸やビオチンなどの被要求性物質が0.0000001%〜0.1%、それぞれ適当量含有する培地が用いられる。  Carbon sources include sugars such as glucose, fructose and molasses, organic acids such as fumaric acid, citric acid and succinic acid, alcohols such as methanol, ethanol and glycerol, etc., and organic substances such as ammonium acetate as a nitrogen source. Inorganic ammonium salts such as ammonium salt, ammonium sulfate, ammonium chloride, ammonium phosphate, and ammonium nitrate, ammonia gas, aqueous ammonia, urea, etc. are 0.1% to 4.0%. Organic trace components such as pyridoxal phosphate, biotin, etc. A medium containing 0.0000001% to 0.1% of the required substance, each in an appropriate amount, is used.

これらの他にリン酸カルシウム、硫酸マグネシウム、塩化カルシウム、塩化ナトリウム、硫酸亜鉛、硫酸銅、硫酸第1鉄などが微量物質として必要に応じて添加される。さらにチアミン、ナイアシンなどの要求ビタミン、又はこれらを含有する酵母エキス、コーンスティープリカー、その他天然物を適当量含有した培地を用いることもできる。  In addition to these, calcium phosphate, magnesium sulfate, calcium chloride, sodium chloride, zinc sulfate, copper sulfate, ferrous sulfate and the like are added as necessary as trace substances. Furthermore, required vitamins such as thiamine and niacin, or yeast extract, corn steep liquor and other natural products containing these may be used.

培養は通常、好気的条件下で行うが、カダベリンの生成に応じて嫌気的条件下で行うことが可能である。培養中はカダベリンの生成蓄積に応じて、培地のpH上昇が起こるので、塩酸、硫酸などの酸でpH4〜pH8に調節することが有効である。好ましくは消泡剤なども添加し、培養条件の安定化を図る。培養温度は15℃〜45℃、好ましくは20℃〜37℃が用いられる。  Cultivation is usually performed under aerobic conditions, but can be performed under anaerobic conditions depending on the production of cadaverine. During culture, the pH of the medium rises according to the production and accumulation of cadaverine. Therefore, it is effective to adjust to pH 4 to pH 8 with an acid such as hydrochloric acid or sulfuric acid. Preferably, an antifoaming agent or the like is also added to stabilize the culture conditions. The culture temperature is 15 ° C to 45 ° C, preferably 20 ° C to 37 ° C.

これらの条件の下に4〜120時間振とうまたは撹拌培養することで好ましい結果が得られる。  Preferable results can be obtained by shaking or stirring for 4 to 120 hours under these conditions.

培養液中に生成したカダベリンは、菌体を遠心分離などで除去した後、常法により単離精製される。 Cadaverine produced in the culture solution is isolated and purified by a conventional method after removing the cells by centrifugation or the like .

以下、実施例により本発明を具体的に説明する。
(実施例1)
リジン脱炭酸酵素遺伝子およびリジン・カダベリンアンチポーター遺伝子のクローニングおよび同一プロモーター制御下発現ベクターの作製
宿主細胞の生産するリジンからカダベリンを産生させるために、リジン脱炭酸酵素遺伝子およびリジン・カダベリンアンチポーター遺伝子のクローニングを行った。
Hereinafter, the present invention will be described specifically by way of examples.
Example 1
Cloning of lysine decarboxylase gene and lysine cadaverine antiporter gene and preparation of expression vector under the same promoter control In order to produce cadaverine from lysine produced by host cells, Cloning was performed.

データベース(GenBank)に登録されているリジン脱炭酸酵素遺伝子(cadA)およびリジン・カダベリンアンチポーター遺伝子(cadB)(Accession No.M76411)の塩基配列を元に、PCRプライマーを設計した。その塩基配列を配列表1、配列表2に示した。PCR用プライマーの末端にはHindIII切断部位とXbaI切断部位がそれぞれ付加されている。  PCR primers were designed based on the base sequences of lysine decarboxylase gene (cadA) and lysine cadaverine antiporter gene (cadB) (Accession No. M76411) registered in the database (GenBank). The nucleotide sequences are shown in Sequence Listing 1 and Sequence Listing 2. A HindIII cleavage site and an XbaI cleavage site are added to the ends of the PCR primers.

これらのプライマーを用い、大腸菌K12株(ATCC10798)のゲノムDNAを鋳型としてPCRを行い、3,622塩基対の増幅断片を得た。この増幅断片をHindIIIおよびXbaIにより切断後、pUC19(宝酒造社製)のHindIII/XbaI切断部位に導入し、リジン脱炭酸酵素発現ベクターpCAD1を作製した(図▲1▼)。pCAD1においてクローン化したcadAおよびcadBは、pUC19が持つlacプロモーターの制御下に発現される。
(実施例2)
宿主への発現ベクターの導入
実施例1で作製した発現ベクターpCAD1を大腸菌JM109株に導入した。導入後、組換え大腸菌の選択は抗生物質であるアンピシリン耐性を指標に行い、形質転換体を得た。この形質転換株を大腸菌CAD1株と命名した。
(実施例3)
形質転換株によるカダベリンの発現
親株である大腸菌JM109株およびこの形質転換株の培養は以下のように行った。JM109株、およびこのCAD1株を培養した。すなわち、これらの菌株を各々LB培地5mlに1白金耳植菌し、30℃で24時間振とうして前培養した。
Using these primers, PCR was performed using E. coli K12 strain (ATCC10798) genomic DNA as a template to obtain an amplified fragment of 3,622 base pairs. This amplified fragment was cleaved with HindIII and XbaI and then introduced into the HindIII / XbaI cleavage site of pUC19 (Takara Shuzo) to prepare a lysine decarboxylase expression vector pCAD1 (FIG. 1). cadA and cadB cloned in pCAD1 are expressed under the control of the lac promoter of pUC19.
(Example 2)
Introduction of expression vector into host The expression vector pCAD1 prepared in Example 1 was introduced into E. coli strain JM109. After introduction, recombinant E. coli was selected using resistance to ampicillin, an antibiotic, as an index, and transformants were obtained. This transformed strain was named E. coli CAD1 strain.
(Example 3)
Expression of cadaverine by the transformed strain The parent strain Escherichia coli JM109 and this transformed strain were cultured as follows. The JM109 strain and this CAD1 strain were cultured. That is, each of these strains was inoculated with 1 platinum ear in 5 ml of LB medium, and precultured by shaking at 30 ° C. for 24 hours.

次に、LB培地45mlを50mlの三角フラスコに入れ、予め115℃、10分間蒸気滅菌した。この培地に前培養した上記菌株を植え継ぎ、4時間後に1mM IPTG(isopropyl-1-thio-β-D-galactoside)を添加し、50時間培養した。  Next, 45 ml of LB medium was placed in a 50 ml Erlenmeyer flask and preliminarily steam sterilized at 115 ° C. for 10 minutes. The above strain cultured in advance on this medium was inoculated, and 4 hours later, 1 mM IPTG (isopropyl-1-thio-β-D-galactoside) was added and cultured for 50 hours.

培養終了後、菌体を除去した培養上清中のカダベリン濃度を(Phan,A.P.H.,T.T.Ngo and H.M.Lenhoff;Anal.Biochem.,vol120,P.193-197(1982))に記載の方法に従って測定した。その結果を以下に示した。  After completion of the culture, the cadaverine concentration in the culture supernatant from which the cells were removed was measured according to the method described in (Phan, APH, TTNgo and HMLenhoff; Anal. Biochem., Vol120, P.193-197 (1982)) did. The results are shown below.

カダベリン濃度
大腸菌JM109株 0.01g/L
大腸菌CAD1株 1.22g/L
コントロールである大腸菌JM109株に比較して組換え株である大腸菌CAD1株ではカダベリンの蓄積量増加が見られた。
Cadaverine concentration E. coli JM109 strain 0.01 g / L
E. coli CAD1 strain 1.22g / L
The amount of cadaverine accumulated was increased in the recombinant E. coli CAD1 strain compared to the control E. coli strain JM109.

発明の効果Effect of the invention

本発明によれば、発酵法によりカダベリンを培養液中に生産すると、既存の方法に比較してより経済的なカダベリンの生産が可能となる。  According to the present invention, when cadaverine is produced in a culture solution by fermentation, cadaverine can be produced more economically than existing methods.

配列表Sequence listing

Figure 0005553394
Figure 0005553394
Figure 0005553394
Figure 0005553394

リジン脱炭酸酵素およびリジン・カダベリンアンチポーター発現ベクターpCAD1のフィジカルマップを示す図である。  FIG. 3 is a diagram showing a physical map of lysine decarboxylase and lysine-cadaverine antiporter expression vector pCAD1.

Claims (8)

リジン脱炭酸酵素活性およびリジン・カダベリンアンチポーター酵素活性を増強した大腸菌4時間から120時間培養し、該培養液からカダベリンを単離精製することを特徴とするカダベリンの製造方法。
Lysine was decarboxylase activity and 120 hours lysine-cadaverine antiporter activity enhanced E. coli from 4 hours incubation, the production method of cadaverine, characterized in that the isolated and purified cadaverine from the culture broth.
前記大腸菌がリジン脱炭酸酵素および/またはリジン・カダベリンアンチポーターをコードする遺伝子が組み込まれた微生物である請求項1記載のカダベリンの製造方法。
The method for producing cadaverine according to claim 1, wherein the Escherichia coli is a microorganism into which a gene encoding lysine decarboxylase and / or lysine cadaverine antiporter is incorporated.
リジン脱炭酸酵素をコードする遺伝子が、1または2種類以上である請求項2記載のカダベリンの製造方法。
Genes encoding lysine decarboxylase, 1 or 2 or more in the production method according to claim 2 Symbol placement of cadaverine is.
リジン脱炭酸酵素をコードする遺伝子が、微生物由来である請求項2または3に記載のカダベリンの製造方法。
The method for producing cadaverine according to claim 2 or 3 , wherein the gene encoding lysine decarboxylase is derived from a microorganism.
リジン脱炭酸酵素をコードする遺伝子が大腸菌由来である請求項2〜のいずれかに記載のカダベリンの製造方法。
The method for producing cadaverine according to any one of claims 2 to 4 , wherein the gene encoding lysine decarboxylase is derived from Escherichia coli.
リジン・カダベリンアンチポーターをコードする遺伝子が、微生物由来である請求項2〜のいずれかに記載のカダベリンの製造方法。
The method for producing cadaverine according to any one of claims 2 to 5 , wherein the gene encoding lysine cadaverine antiporter is derived from a microorganism.
リジン・カダベリンアンチポーターをコードする遺伝子が大腸菌由来である請求項2〜のいずれかに記載のカダベリンの製造方法。
The method for producing cadaverine according to any one of claims 2 to 6 , wherein the gene encoding lysine cadaverine antiporter is derived from Escherichia coli.
リジン脱炭酸酵素遺伝子およびリジン・カダベリンアンチポーター遺伝子を同一のプロモーターの制御下に発現させることを特徴とする請求項2〜のいずれかに記載のカダベリンの製造方法。 The method for producing cadaverine according to any one of claims 2 to 7 , wherein the lysine decarboxylase gene and the lysine cadaverine antiporter gene are expressed under the control of the same promoter.
JP2001025488A 2001-02-01 2001-02-01 Method for producing cadaverine Expired - Lifetime JP5553394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001025488A JP5553394B2 (en) 2001-02-01 2001-02-01 Method for producing cadaverine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001025488A JP5553394B2 (en) 2001-02-01 2001-02-01 Method for producing cadaverine

Publications (3)

Publication Number Publication Date
JP2002223770A JP2002223770A (en) 2002-08-13
JP2002223770A5 JP2002223770A5 (en) 2009-07-23
JP5553394B2 true JP5553394B2 (en) 2014-07-16

Family

ID=18890468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001025488A Expired - Lifetime JP5553394B2 (en) 2001-02-01 2001-02-01 Method for producing cadaverine

Country Status (1)

Country Link
JP (1) JP5553394B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244809A1 (en) 2021-05-19 2022-11-24 旭化成株式会社 Recombinant microorganism having diamine producing ability and method for manufacturing diamine

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482055B1 (en) 2003-05-26 2006-03-01 Ajinomoto Co., Inc. Method for producing cadaverine dicarboxylate and its use for the production of nylon
KR101457229B1 (en) * 2006-03-30 2014-11-04 바스프 에스이 Process for the production of cadaverine
DE102007005072A1 (en) * 2007-02-01 2008-08-07 Evonik Degussa Gmbh Process for the fermentative production of cadaverine
BRPI0910048B1 (en) 2008-03-26 2019-02-26 Toray Industries, Inc. Polyamide 56 filaments, fiber structure, airbag fabric, polyamide 56 filament production process and 56 polyamide resin
JP5504608B2 (en) * 2008-10-23 2014-05-28 東レ株式会社 Method for producing 1,5-pentanediamine
US8404465B2 (en) 2009-03-11 2013-03-26 Celexion, Llc Biological synthesis of 6-aminocaproic acid from carbohydrate feedstocks
JP4983861B2 (en) * 2009-06-15 2012-07-25 東レ株式会社 Polyamide made from cadaverine dicarboxylate
JP5170012B2 (en) * 2009-06-26 2013-03-27 東レ株式会社 Process for producing polyamide using cadaverine fermenting coryneform bacterium
EP2513302A1 (en) 2009-12-17 2012-10-24 Basf Se Processes and recombinant microorganisms for the production of cadaverine
KR20120129987A (en) * 2010-02-23 2012-11-28 도레이 카부시키가이샤 Process for production of cadaverine
BR112012025490A2 (en) 2010-04-12 2015-10-06 Toray Industries '' method for the production of 1,5 oebtanodiamine ''
WO2012077741A1 (en) 2010-12-08 2012-06-14 東レ株式会社 Method for producing cadaverine
CN103249839A (en) 2010-12-08 2013-08-14 东丽株式会社 Method for producing cadaverine
US9745608B2 (en) 2011-02-22 2017-08-29 Basf Se Processes and recombinant microorganisms for the production of cadaverine
CN102424811A (en) * 2011-12-13 2012-04-25 天津科技大学 Cadaverine-producing engineering bacterium
JP5961634B2 (en) * 2012-01-18 2016-08-02 三井化学株式会社 Mutant lysine decarboxylase and method for producing 1,5-pentamethylenediamine
WO2013129371A1 (en) 2012-02-29 2013-09-06 東レ株式会社 Polyamide resin composition with excellent color tone
EP2885400A1 (en) 2012-08-17 2015-06-24 Celexion, LLC Biological synthesis of difunctional hexanes and pentanes from carbohydrate feedstocks
US9580718B2 (en) * 2013-06-17 2017-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Attenuated live bacteria with increased acid resistance and methods of use thereof
JP6460092B2 (en) 2014-03-11 2019-01-30 味の素株式会社 Method for producing 1,5-pentadiamine using lysine decarboxylase mutant with improved thermal stability
CN105316270B (en) * 2014-06-27 2019-01-29 宁夏伊品生物科技股份有限公司 Engineering bacterium for catalytically producing 1, 5-pentanediamine and application thereof
KR20160085602A (en) 2015-01-08 2016-07-18 광운대학교 산학협력단 Method for preparing lysine decarboxylase using recombinant microorganism
WO2016123745A1 (en) 2015-02-03 2016-08-11 上海凯赛生物技术研发中心有限公司 Immobilized cell and preparation method thereof
KR101818699B1 (en) * 2015-08-25 2018-01-16 대상 주식회사 Gene coding lysine decarboxylase derived from H. alvei, recombinant vector, host cell and method for producing cadaverine using the same
KR102127996B1 (en) 2018-10-25 2020-06-29 대상 주식회사 Recombinant Corynebacterium glutamicum strains and method of producing cadaverine using the same
KR102590534B1 (en) * 2023-03-28 2023-10-16 국민대학교산학협력단 Method for the production of cadaverine with Hafnia Alvei as biocatalizer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344201B1 (en) * 1998-03-31 2002-02-05 Anthony T. Maurelli Methods of identifying bacterial genes that are incompatible with bacterial pathogenicity, and the use of such genes, such as cadA, to reduce pathogenicity in a bacteria or to combat pathogenic bacterial infections

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244809A1 (en) 2021-05-19 2022-11-24 旭化成株式会社 Recombinant microorganism having diamine producing ability and method for manufacturing diamine

Also Published As

Publication number Publication date
JP2002223770A (en) 2002-08-13

Similar Documents

Publication Publication Date Title
JP5553394B2 (en) Method for producing cadaverine
CN101679964B (en) Mutant microorganism having high putrescine productivity and method for producing putrescine using the same
US8741623B2 (en) Process for the production of cadaverine
RU2201454C2 (en) Mutant alpha-isopropylmalate synthase (ipms), dna encoding mutant ipms, method of preparing escherichia coli strain, method of l-leucine preparing
JP2004222569A (en) Corynebacterium, and cadaverine or salt thereof and method for producing the same
KR101188432B1 (en) Variant Microorganism Having Putrescine Producing Ability and Method for Preparing Putrescine Using the Same
TW200306352A (en) Method for producing L-amino acid
JP2004000114A (en) Method for producing cadaverine
EP3257939B1 (en) Novel lysine decarboxylase, and method for producing cadaverine by using same
JP2004208646A (en) Cadaverine-dicarboxylic acid salt and method for producing the same
CN108463555A (en) The method for producing benzaldehyde
CN103370421B (en) Method for the preparation of nicotinic acid
US10760104B2 (en) Method of producing D-xylonate and coryneform bacterium
CN104480169A (en) Method for producing 5'-guanylic acid
JP2002223771A (en) Method for producing cadaverine
JP2000189169A (en) L-glutamate productive bacterium and production of l- glutamic acid
CN117844728B (en) L-valine production strain and construction method and application thereof
CN117866867A (en) Caffeic acid production strain, construction method and application thereof
CN113583930B (en) Construction of corynebacterium glutamicum which is independent of antibiotics and can efficiently produce gamma-aminobutyric acid
CN116286566A (en) L-homoserine high-yield strain and construction method and application thereof
CN110872595B (en) Acid-resistant expression cassette and application thereof in fermentation production of organic acid
CN118165907B (en) Gamma-aminobutyric acid production strain and construction method and application thereof
Kumagai et al. Research overview of L-DOPA production using a bacterial enzyme, tyrosine phenol-lyase
CN117866868B (en) L-high proline production strain and construction method and application thereof
CN118006652B (en) Dopamine production strain, construction method and application thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110630

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140523

R151 Written notification of patent or utility model registration

Ref document number: 5553394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term