Nothing Special   »   [go: up one dir, main page]

JP5438946B2 - Method for producing high-purity raw material containing phthalic dichloride compound - Google Patents

Method for producing high-purity raw material containing phthalic dichloride compound Download PDF

Info

Publication number
JP5438946B2
JP5438946B2 JP2008277165A JP2008277165A JP5438946B2 JP 5438946 B2 JP5438946 B2 JP 5438946B2 JP 2008277165 A JP2008277165 A JP 2008277165A JP 2008277165 A JP2008277165 A JP 2008277165A JP 5438946 B2 JP5438946 B2 JP 5438946B2
Authority
JP
Japan
Prior art keywords
compound
phthalic
raw material
producing
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008277165A
Other languages
Japanese (ja)
Other versions
JP2010105929A (en
Inventor
芳一 木村
佳浩 高尾
俊光 杉山
豪 花輪
宏倫 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ihara Nikkei Chemical Industry Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Ihara Nikkei Chemical Industry Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihara Nikkei Chemical Industry Co Ltd, Nippon Light Metal Co Ltd filed Critical Ihara Nikkei Chemical Industry Co Ltd
Priority to JP2008277165A priority Critical patent/JP5438946B2/en
Priority to EP09802927.5A priority patent/EP2325158B1/en
Priority to US13/056,483 priority patent/US8642805B2/en
Priority to ES09802927.5T priority patent/ES2564981T3/en
Priority to PCT/JP2009/063362 priority patent/WO2010013684A1/en
Publication of JP2010105929A publication Critical patent/JP2010105929A/en
Priority to US14/099,662 priority patent/US20140100389A1/en
Application granted granted Critical
Publication of JP5438946B2 publication Critical patent/JP5438946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

この発明は農薬原料、医薬原料、高分子原料、樹脂添加剤、殺虫剤原料として有用な高純度なフタル酸ジクロリド化合物含有高純度原料の製造方に関する。
The present invention agricultural chemicals, pharmaceutical materials, polymeric materials, resin additives, to useful high purity phthaloyl dichloride compound containing high purity source of manufacturing how as insecticides material.

塩化亜鉛を触媒として、無水フタル酸とトリクロロメチルベンゼンとを反応させ、フタル酸ジクロリド化合物を製造する方法が知られている(非特許文献1、特許文献1、特許文献2参照)。   There is known a method of producing a phthalic dichloride compound by reacting phthalic anhydride with trichloromethylbenzene using zinc chloride as a catalyst (see Non-Patent Document 1, Patent Document 1, and Patent Document 2).

しかしながら、上記方法で製造したフタル酸ジクロリド化合物は特別な精製処理でもしないかぎり95%前後の純度を持つものしか得られず、5%程度の未反応の無水フタル酸が混在してしまう。この理由は以下のとおりである。上記の方法では反応率95%を越えて高めることは困難であり原料に用いた無水フタル酸が5%程度残ってしまう。これと生成物であるフタル酸ジクロリドとは沸点が非常に近いうえ、無水フタル酸は昇華する性質があるために、通常の工業生産で用いられる多段階の精留設備を用いても両者を完全に分離することはきわめて困難である。   However, the phthalic acid dichloride compound produced by the above method can be obtained only with a purity of around 95% unless special purification treatment is performed, and about 5% of unreacted phthalic anhydride is mixed. The reason for this is as follows. In the above method, it is difficult to increase the reaction rate beyond 95%, and about 5% of phthalic anhydride used as a raw material remains. This and the product phthalic acid dichloride are very close in boiling point, and phthalic anhydride has the property of sublimation, so both can be completely used even with the multi-stage rectification equipment used in normal industrial production. It is extremely difficult to separate them.

具体的にいうと、上記非特許文献1によれば、無水フタル酸に対して塩化亜鉛を10質量%用い110〜120℃で反応を行うことで、純度95%のフタル酸ジクロリドが得られると記載されている。つまり、それはおよそ5%の無水フタル酸が不純物として混在することを意味する。上記特許文献1,2では、塩化亜鉛を1質量%用いて200℃で20時間反応させると95%の収率でフタル酸ジクロリドが製造できると記載されているが、目的生成物の純度に関しては記載がない。また上記特許文献1,2は上記塩化亜鉛の代わりに酸化亜鉛を用いてもよいと記載され、これがおそらく反応して塩化亜鉛を生成するだろうと推定する。また同様に亜鉛粉を用いてもよいとする。しかし、この推定は実証されておらず得られる生成物の収率や純度についても不明である。   Specifically, according to Non-Patent Document 1 described above, by reacting at 10 to 120 ° C. with 10% by mass of zinc chloride with respect to phthalic anhydride, 95% purity phthalic acid dichloride is obtained. Have been described. That is, it means that about 5% of phthalic anhydride is mixed as an impurity. Patent Documents 1 and 2 describe that 1 mass% of zinc chloride can be reacted at 200 ° C. for 20 hours to produce phthalic dichloride with a yield of 95%. There is no description. Patent Documents 1 and 2 describe that zinc oxide may be used in place of zinc chloride, and it is presumed that this will probably react to produce zinc chloride. Similarly, zinc powder may be used. However, this estimation has not been verified and the yield and purity of the resulting product are also unknown.

すなわち既知の方法では未反応の無水フタル酸が不可避的に5%程度残存し、上述のように物性上、通常の蒸留または再結晶でこれを取り除くことは非常に困難であり、製品化する際にフタル酸ジクロリドに不要な不純物が混在してしまう。工業利用に鑑み現実的な効率で無水フタル酸から高純度のフタル酸ジクロリドを製造するならば、上記のような非現実的な精製処理によるのではなく、反応率を向上させ極力無水フタル酸を少なくするしかないが、これを実現する触媒は知られていない。   That is, in the known method, unreacted phthalic anhydride inevitably remains about 5%, and it is very difficult to remove this by ordinary distillation or recrystallization as described above. Unnecessary impurities are mixed in phthalic acid dichloride. If high-purity phthalic acid dichloride is produced from phthalic anhydride with practical efficiency in view of industrial use, the reaction rate should be improved and phthalic anhydride should be used as much as possible, rather than by unrealistic purification treatment as described above. There are no known catalysts to achieve this, although there is little to do.

このように例えば99%以上のフタル酸ジクロリド化合物を工業的に製造することは実質的に不可能であるか、あるいは煩雑かつ特別な処理工程を要するという多大の困難を伴っていた。   Thus, for example, 99% or more of the phthalic acid dichloride compound is practically impossible to manufacture industrially, or it is accompanied by great difficulty that a complicated and special treatment step is required.

米国特許第1963748号明細書U.S. Pat. No. 1,963,748 米国特許第1963749号明細書US Pat. No. 1,963,749 J.Am.Chem.Soc.1937年59巻206頁J. et al. Am. Chem. Soc. 1937 Volume 59 Page 206

本発明は、上記従来の課題に鑑み、工業的に有用な高純度のフタル酸ジクロリド化合物を、煩雑な工程や特別な処理を要さずに得ることができるフタル酸ジクロリド化合物含有高純度原料の製造方法の提供を目的とする。
The present invention is the light of the conventional problems, an industrially useful high-purity phthaloyl dichloride compound, complicated steps and special processing requiring not to obtain it can dichloride compounds containing high purity material phthalate and an object thereof is to provide a manufacturing how.

本発明者らは上記課題の解決にむけ鋭意研究開発を行った結果、無水フタル酸化合物とトリクロロメチルベンゼン化合物とを酸化亜鉛触媒又は特定の方法で調製した塩化亜鉛触媒の存在下で反応させると、高純度なフタル酸ジクロリド化合物含有原料を得ることができることを見出し、この知見に基づき本発明を完成した。
As a result of diligent research and development aimed at solving the above problems, the present inventors have reacted a phthalic anhydride compound and a trichloromethylbenzene compound in the presence of a zinc oxide catalyst or a zinc chloride catalyst prepared by a specific method. The present inventors have found that a raw material containing a highly pure phthalic acid dichloride compound can be obtained, and based on this finding, completed the present invention.

すなわち、上記の目的は以下の手段によって達成された。
〔1〕フタル酸ジクロリド化合物を97%超で含む高純度原料の製造方法であって、
酸化亜鉛のみを触媒として、下記一般式(1)で表される無水フタル酸化合物と、下記一般式(2)で表されるトリクロロメチルベンゼン化合物とを反応させ、下記一般式(3)で表されるフタル酸ジクロリド化合物を製造するフタル酸ジクロリド化合物含有高純度原料の製造方法。

Figure 0005438946
(一般式(1)及び(3)中、Xは水素原子またはハロゲン原子を表す。Rは、ハロゲン原子、低級アルキル基、及びハロゲン置換低級アルキル基のいずれかを意味する。mは0〜2の整数を表す。)
〔2〕前記一般式(1)で表わされる化合物が無水フタル酸である〔1〕に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。
〔3〕前記一般式(1)で表わされる化合物が3−クロロ無水フタル酸または4−クロロ無水フタル酸である〔1〕に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。
〔4〕前記一般式(2)で表わされる化合物が4−クロロトリクロロメチルベンゼンである〔1〕〜〔3〕のいずれか1項に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。
〔5〕前記一般式(2)で表わされる化合物がトリクロロメチルベンゼンである〔1〕〜〔3〕のいずれか1項に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。
〔6〕フタル酸ジクロリド化合物の純度が99%以上である〔1〕〜〔5〕のいずれか1項に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。
〔7〕前記無水フタル酸化合物と、前記トリクロロメチルベンゼン化合物との反応を、160〜220℃で行う〔1〕〜〔6〕のいずれか1項に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。
〔8〕前記無水フタル酸化合物に対して酸化亜鉛を10モル%以下で使用する〔1〕〜〔7〕のいずれか1項に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。
〔9〕前記無水フタル酸化合物に対して酸化亜鉛を1モル%以下で使用する〔1〕〜〔8〕のいずれか1項に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。
〔10〕前記トリクロロメチルベンゼン化合物と酸化亜鉛とを先に添加し、酸化亜鉛を触媒化した後に前記無水フタル酸化合物を添加して反応させる〔1〕〜〔9〕のいずれか1項に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。
〔11〕前記無水フタル酸化合物の精製操作を実質的に介さずに化学製品の製造に適用する〔1〕〜〔10〕のいずれか1項に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。
That is, the above object has been achieved by the following means.
[1] A method for producing a high-purity raw material containing more than 97% of a phthalic dichloride compound,
Using only zinc oxide as a catalyst, a phthalic anhydride compound represented by the following general formula (1) is reacted with a trichloromethylbenzene compound represented by the following general formula (2), and represented by the following general formula (3). A method for producing a high-purity raw material containing a phthalic dichloride compound for producing a phthalic dichloride compound.
Figure 0005438946
(In general formulas (1) and (3), X represents a hydrogen atom or a halogen atom. R represents any of a halogen atom, a lower alkyl group, and a halogen-substituted lower alkyl group. Represents an integer.)
[2] The method for producing a phthalic dichloride compound- containing high-purity raw material according to [1] , wherein the compound represented by the general formula (1) is phthalic anhydride.
[3] The method for producing a phthalic dichloride compound- containing high-purity raw material according to [1] , wherein the compound represented by the general formula (1) is 3-chlorophthalic anhydride or 4-chlorophthalic anhydride.
[4] The method for producing a phthalic acid dichloride compound- containing high-purity raw material according to any one of [1] to [3] , wherein the compound represented by the general formula (2) is 4-chlorotrichloromethylbenzene.
[5] The method for producing a high-purity raw material containing a phthalic dichloride compound according to any one of [1] to [3] , wherein the compound represented by the general formula (2) is trichloromethylbenzene.
[6] The method for producing a high-purity raw material containing a phthalic dichloride compound according to any one of [1] to [5], wherein the purity of the phthalic dichloride compound is 99% or more.
[7] The reaction between the phthalic anhydride compound and the trichloromethylbenzene compound is performed at 160 to 220 ° C. The high-purity raw material containing a phthalic dichloride compound according to any one of [1] to [6] Production method.
[8] The method for producing a phthalic dichloride compound-containing high-purity raw material according to any one of [1] to [7], wherein zinc oxide is used at 10 mol% or less with respect to the phthalic anhydride compound.
[9] The method for producing a phthalic dichloride compound-containing high-purity raw material according to any one of [1] to [8], wherein zinc oxide is used in an amount of 1 mol% or less with respect to the phthalic anhydride compound.
[10] The method according to any one of [1] to [9], wherein the trichloromethylbenzene compound and zinc oxide are added first, and after the zinc oxide is catalyzed, the phthalic anhydride compound is added and reacted. Of high purity raw material containing phthalic dichloride compound.
[11] The production of a high-purity raw material containing a phthalic dichloride compound as described in any one of [1] to [10], which is applied to the production of a chemical product substantially without going through the purification operation of the phthalic anhydride compound. Method.

本発明の製造方法によれば、工業的に有用な高純度のフタル酸ジクロリド化合物含有原料を、煩雑な工程や特別な処理を要さずに、安全かつ効率的に高収率で得ることができる。本発明の製造方法により得られるフタル酸ジクロリド化合物は余計な不純物の除去処理等を介さずに高純度のものとして得ることができ、特に高い純度がもとめられる殺虫剤等の原料化合物としてきわめて有用である。
According to the production method of the present invention, an industrially useful high-purity phthalic acid dichloride compound- containing raw material can be obtained safely and efficiently in a high yield without requiring complicated steps and special treatment. I can . The phthalic acid dichloride compound obtained by the production method of the present invention can be obtained in high purity without going through unnecessary impurities removal treatment, etc., and is extremely useful as a raw material compound for pesticides and the like that require particularly high purity. is there.

本発明のフタル酸ジクロリド化合物含有高純度原料の製造方法においては、酸化亜鉛を触媒として、上記一般式(1)で表される無水フタル酸化合物と、上記一般式(2)で表されるトリクロロメチルベンゼン化合物とを反応させ、上記一般式(3)で表されるフタル酸ジクロリド化合物を製造する。
In the method for producing a high-purity raw material containing a phthalic dichloride compound according to the present invention, a phthalic anhydride compound represented by the above general formula (1) and a trichloro represented by the above general formula (2) using zinc oxide as a catalyst. A methylbenzene compound is reacted to produce a phthalic acid dichloride compound represented by the above general formula (3).

一般式(1)及び(3)中、Xは水素原子またはハロゲン原子を表し、なかでも、水素原子又は塩素原子であることが好ましい。ベンゼン環上の置換基Xの置換位置に限定はないが、オルト位において立体障害の大きな置換基があるときは、上記触媒の量を増やすか、反応温度を上げることが好ましい。上記一般式(1)で表される化合物の具体的な例としては、無水フタル酸、3−クロロ無水フタル酸または4−クロロ無水フタル酸が挙げられる。   In general formulas (1) and (3), X represents a hydrogen atom or a halogen atom, and among them, a hydrogen atom or a chlorine atom is preferable. The substitution position of the substituent X on the benzene ring is not limited, but when there is a substituent having a large steric hindrance at the ortho position, it is preferable to increase the amount of the catalyst or increase the reaction temperature. Specific examples of the compound represented by the general formula (1) include phthalic anhydride, 3-chlorophthalic anhydride, or 4-chlorophthalic anhydride.

上記一般式(2)において上記置換基Rは、ハロゲン原子、低級アルキル基、及びハロゲン置換低級アルキル基であるが、これを例示すると、塩素、臭素等のハロゲン原子、クロロカルボニル基、メチル基、エチル基等の低級アルキル基、トリクロロメチル基、ジクロロメチル基、クロロメチル基等のハロゲン置換低級アルキル基が挙げられる。この低級アルキル基は、炭素原子数1〜3のアルキル基であることが好ましい。ハロゲン原子としては塩素原子が好ましい。   In the general formula (2), the substituent R is a halogen atom, a lower alkyl group, and a halogen-substituted lower alkyl group. Examples thereof include a halogen atom such as chlorine and bromine, a chlorocarbonyl group, a methyl group, Examples include lower alkyl groups such as an ethyl group, and halogen-substituted lower alkyl groups such as a trichloromethyl group, a dichloromethyl group, and a chloromethyl group. This lower alkyl group is preferably an alkyl group having 1 to 3 carbon atoms. As the halogen atom, a chlorine atom is preferable.

上記一般式(2)で表される化合物の具体的な例としては、トリクロロメチルベンゼン、1−クロロ−4−トリクロロメチルベンゼン、1−クロロ−2−トリクロロメチルベンゼン、2,4−ジクロロ−1−トリクロロメチルベンゼン、3,4−ジクロロ−1−トリクロロメチルベンゼン、1,4−ビス(トリクロロメチル)ベンゼン、1,3−ビス(トリクロロメチル)ベンゼン等が挙げられる。なかでも、一般式(2)で表わされる化合物が4−クロロトリクロロメチルベンゼン又はトリクロロメチルベンゼンであることが好ましい。
上記一般式(2)で表される化合物は含まれるトリクロロメチル基換算で、一般式(1)で表される化合物に対して1.0〜3.0当量、好ましくは1.3〜1.8当量用いられることが好ましい。
Specific examples of the compound represented by the general formula (2) include trichloromethylbenzene, 1-chloro-4-trichloromethylbenzene, 1-chloro-2-trichloromethylbenzene, 2,4-dichloro-1 -Trichloromethylbenzene, 3,4-dichloro-1-trichloromethylbenzene, 1,4-bis (trichloromethyl) benzene, 1,3-bis (trichloromethyl) benzene and the like. Especially, it is preferable that the compound represented by General formula (2) is 4-chlorotrichloromethylbenzene or trichloromethylbenzene.
The compound represented by the general formula (2) is 1.0 to 3.0 equivalents, preferably 1.3 to 1.1, in terms of the trichloromethyl group contained, with respect to the compound represented by the general formula (1). It is preferable to use 8 equivalents.

本発明において用いられる酸化亜鉛の種類に限定はないが、よく乾燥したものを用いることが好ましい。その使用量は前記一般式(1)で表される化合物に対して0.05〜10モル%であることが好ましく、0.5〜1.0モル%であることがより好ましい。この範囲で上記触媒を用いることにより、一層収率良く短時間で所望の反応を完結させることができる。なお、本発明の製造方法においては、上記化合物以外の化合物等を反応系内に添加することを妨げるものではない。   Although there is no limitation in the kind of zinc oxide used in this invention, it is preferable to use what was dried well. The amount used is preferably 0.05 to 10 mol%, more preferably 0.5 to 1.0 mol%, relative to the compound represented by the general formula (1). By using the above catalyst in this range, the desired reaction can be completed in a shorter time with higher yield. In addition, in the manufacturing method of this invention, adding compounds other than the said compound etc. in a reaction system is not prevented.

上記本発明の製造方法においては、酸化亜鉛又は酸化亜鉛と上記一般式(2)で表されるトリクロロメチルベンゼン化合物とを反応させて得られるフタル酸ジクロリド化合物製造用の塩化亜鉛触媒を用いることが好ましい。このとき、上記特定の塩化亜鉛触媒を調製した系内でそのまま(in situ)、上記一般式(1)で表される無水フタル酸化合物と、前記一般式(2)で表されるトリクロロメチルベンゼン化合物とを反応させ、上記一般式(3)で表されるフタル酸ジクロリド化合物を製造することが好ましい。ただし、上記一般式(1)で表される化合物を添加せずに酸化亜鉛と上記一般式(2)で表される化合物から反応系内で高活性な塩化亜鉛触媒を調製したのち、上記一般式(1)で表される化合物を加え反応させることもできるし、一般式(1)で表わされる化合物の存在下で酸化亜鉛と一般式(2)で表わされる化合物とを反応させて塩化亜鉛触媒を調製しつつフタル酸ジクロリド化合物の製造を行うこともできる。   In the production method of the present invention, a zinc chloride catalyst for producing a phthalic dichloride compound obtained by reacting zinc oxide or zinc oxide with the trichloromethylbenzene compound represented by the general formula (2) is used. preferable. At this time, the phthalic anhydride compound represented by the general formula (1) and the trichloromethylbenzene represented by the general formula (2) are used as they are in the system in which the specific zinc chloride catalyst is prepared. It is preferable to produce a phthalic dichloride compound represented by the above general formula (3) by reacting with a compound. However, after preparing a highly active zinc chloride catalyst in the reaction system from zinc oxide and the compound represented by the above general formula (2) without adding the compound represented by the above general formula (1), the above general The compound represented by the formula (1) can be added and reacted, or in the presence of the compound represented by the general formula (1), zinc oxide and the compound represented by the general formula (2) are reacted to form zinc chloride. It is also possible to produce a phthalic dichloride compound while preparing the catalyst.

ここで本発明のフタル酸ジクロリド化合物含有高純度原料の製造方法における、酸化亜鉛および塩化亜鉛の触媒としての特別な作用機序について一部推定を含めて説明する。
塩化亜鉛は吸湿性を持つ。そのために乾燥状態を維持するように保管し反応系内に投入したとしても、幾分吸湿してしまうことは避けがたく、これにより触媒活性が低下することがありうる。これに対し、酸化亜鉛は空気中での吸湿性が高くなく上記のような触媒劣化をおこさず、高い触媒活性が得られることが考えられる。とりわけ、これを工業的規模の生産に適用するため大量に使用するときには、その乾燥状態を維持することが難しく、上記酸化亜鉛を用いることによる触媒作用の安定化効果は一層顕著になる。また、酸化亜鉛が上記一般式(2)で表わされる化合物と反応し、これ以外の方法で塩化物としたときとは異なる特別な触媒表面、すなわちフタル酸ジクロリドの生成反応に特に活性の高い塩化亜鉛触媒ないしその表面が形成されたと推定される。この酸化亜鉛から調製され高度に活性化された塩化亜鉛触媒が、上記吸湿による触媒劣化が抑えられた作用と相俟って、従来なしえなかった極めて高い純度のフタル酸ジクロリドの製造を実現したと考えられる。
Here, the special action mechanism as a catalyst of zinc oxide and zinc chloride in the method for producing a high-purity raw material containing a phthalic dichloride compound of the present invention will be described with some estimation.
Zinc chloride is hygroscopic. Therefore, even if it is stored so as to maintain a dry state and put into the reaction system, it is unavoidable to absorb some moisture, and this may reduce the catalyst activity. On the other hand, it is considered that zinc oxide does not have a high hygroscopic property in the air and does not cause the catalyst deterioration as described above, and a high catalytic activity is obtained. In particular, when it is used in a large amount for application to industrial scale production, it is difficult to maintain its dry state, and the effect of stabilizing the catalytic action by using the zinc oxide becomes more remarkable. In addition, zinc oxide reacts with the compound represented by the above general formula (2) and is a special catalyst surface different from the case where it is converted into a chloride by other methods, that is, a chloride having a particularly high activity in the formation reaction of phthalic dichloride. It is presumed that a zinc catalyst or its surface was formed. The zinc chloride catalyst prepared from this zinc oxide and highly activated, combined with the above-mentioned effect of suppressing catalyst deterioration due to moisture absorption, has realized the production of extremely high purity dichloride phthalate that could not be achieved in the past. it is conceivable that.

上記一般式(1)で表わされる化合物と一般式(2)で表わされる化合物との反応温度は、触媒の使用量によって変わるが、160〜220℃とすることが好ましく、180〜200℃で反応を行うことがより好ましい。反応時間は、反応スケール、反応温度などの条件により変化するが、たとえば8〜30時間で反応が完結させることができる。本発明において上記の反応は無溶媒で行うことが好ましい。   Although the reaction temperature of the compound represented by the general formula (1) and the compound represented by the general formula (2) varies depending on the amount of the catalyst used, it is preferably 160 to 220 ° C, and the reaction is performed at 180 to 200 ° C. It is more preferable to carry out. Although reaction time changes with conditions, such as reaction scale and reaction temperature, reaction can be completed in 8 to 30 hours, for example. In the present invention, the above reaction is preferably performed without a solvent.

本発明の製造方法によればフタル酸ジクロリドを高純度で得ることができ、例えば反応直後の状態で特別な処理を介さずに99%以上のものとして得ることができる。
本発明の製造方法において反応終了後に、通常は、未反応の一般式(2)で表される化合物、該一般式(2)で表された化合物が反応したのちのトリクロロメチル基がクロロカルボニル基に変化した化合物(この化合物も工業材料等に有用な化合物として用いることができる。)、目的生成物である一般式(3)で表わされる化合物の3成分が混在するが、これらは通常容易に分離することができる。そして微量であるが残存することがある未反応の一般式(1)で表わされる化合物は、例えば0.5〜1%残存することがあるが、換言すれば目的化合物である一般式(3)で表される化合物を純度99.0〜99.5%で得ることができる。これは、従来知られている実際的な技術により製造した場合の93〜97%純度のものより、はるかに高純度のものが得られることを意味する。
According to the production method of the present invention, phthalic acid dichloride can be obtained with high purity, for example, 99% or more can be obtained immediately after the reaction without any special treatment.
In the production method of the present invention, after completion of the reaction, usually, an unreacted compound represented by the general formula (2), and a trichloromethyl group after the reaction represented by the compound represented by the general formula (2) is a chlorocarbonyl group. 3 compounds (this compound can also be used as a useful compound for industrial materials and the like) and the compound represented by the general formula (3) which is the target product are mixed, but these are usually easily Can be separated. The unreacted compound represented by the general formula (1) which may remain in a trace amount may remain, for example, 0.5 to 1%, in other words, the general formula (3) which is the target compound. Can be obtained with a purity of 99.0 to 99.5%. This means that a much higher purity can be obtained than a 93-97% purity produced by a conventionally known practical technique.

本発明の製造方法によれば、上述のとおり、安価で取り扱いやすい触媒を用いて高純度なフタル酸ジクロリド化合物を、危険な触媒や助触媒等によらない簡便かつ安全な方法で、高収率で得ることができる。この利点はとくに殺虫剤等を工業的に生産する分野において大きな貢献をもたらす。たとえば、殺虫剤として高い効果を示すフタルベンズアミド化合物を製造するための原料としてフタル酸ジクロリドを用いるとき(下記反応スキームA参照)、無水フタル酸が大量に混入している原料を用いた場合には、次工程の2段階にわたるアミド化反応において、第1段目の副生成物(反応中間体)[2]が不純物として残ってしまうこととなる(下記反応スキームB参照)。それは収率の低下とともに殺虫剤としての性能の低下をもたらすことがあることを意味し、高品質なものを提供しようとすれば煩雑な工程を介してでも不純物の除去作業が強いられることとなる。あるいは、副生成物[2]をフタルベンズアミド化合物[3]とするためにクロロ蟻酸メチル等を用いるカルボン酸を活性化することが考えられるが、直接RNHを作用させただけではこの反応は進行しない。 According to the production method of the present invention, as described above, a high-purity phthalic acid dichloride compound using an inexpensive and easy-to-handle catalyst can be obtained in a simple and safe manner without using a dangerous catalyst or a cocatalyst. Can be obtained at This advantage makes a great contribution especially in the field of industrial production of insecticides and the like. For example, when phthalic acid dichloride is used as a raw material for producing a phthalbenzamide compound having a high effect as an insecticide (see Reaction Scheme A below), when a raw material mixed with a large amount of phthalic anhydride is used In the amidation reaction over two steps in the next step, the first-stage by-product (reaction intermediate) [2] remains as an impurity (see Reaction Scheme B below). It means that the performance as a pesticide may be lowered with a decrease in yield, and if high quality products are to be provided, the removal work of impurities is forced even through complicated processes. . Alternatively, by-products [2] it is conceivable to activate the carboxylic acid using methyl chloroformate, etc. to phthalic benzamide compound [3], only allowed to act directly R 2 NH 2 The reaction Does not progress.

Figure 0005438946
(上記スキーム中、R,Rはアルキル基又はアリール基を表す。)
Figure 0005438946
(In the above scheme, R 1 and R 2 represent an alkyl group or an aryl group.)

このような点の克服に鑑み、反応中間体[1]を経由するフタルベンズアミド化合物[3]の製造方法が最近開発されている(特開2002−326989号公報参照)。また、フタルベンズアミド化合物からなる殺虫剤の性能改良について研究開発が継続されており、例えば欧州特許出願公開第1006107号明細書、ファインケミカル(シーエムシー出版)2007年36巻58頁記載の高性能の殺虫剤が挙げられる。これらの新技術に適用しうる原料化合物とするためにも、フタル酸ジクロリドに無水フタル酸を極力含まない高純度なものが要求されており、本発明の製造方法およびこれに適した触媒によれば、このようなニーズに好適に応えることができる。   In view of overcoming these problems, a method for producing a phthalbenzamide compound [3] via a reaction intermediate [1] has recently been developed (see JP 2002-326989 A). In addition, research and development have been continued for improving the performance of insecticides comprising phthalbenzamide compounds. For example, high-performance insecticides described in European Patent Application No. 1006107, Fine Chemical (CMC Publishing) 2007, Vol. Agents. In order to obtain raw material compounds that can be applied to these new technologies, phthalic acid dichloride is required to have a high purity containing as little phthalic anhydride as possible, and the production method of the present invention and a catalyst suitable for this are required. Thus, it is possible to appropriately meet such needs.

以下、実施例に基づき本発明をさらに詳細に説明するが本発明はこれらに限定するものではない。なお、以下の実施例及び比較例において「%」は特に断らないかがり「モル%」を意味する。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these. In the following examples and comparative examples, “%” means “mol%” unless otherwise specified.

[実施例1]
2L容の4つ口フラスコに、無水フタル酸 370g(2.5モル)、4−クロロトリクロロメチルベンゼン 756g(3.3モル)、酸化亜鉛 2.08g(0.025モル、無水フタル酸に対して1モル%)を入れ、155℃で32時間攪拌を続けた。反応液のガスクロマトグラフィー(GC)(島津社製 GC2014[商品名]、カラム:GLサイエンス社製 INERT CAP5[商品名]を使用した。以下の実施例・比較例において同様である。)による分析で3.6%の無水フタル酸が残っていることがわかったので、反応温度を195℃にし、9時間攪拌した。上記GC分析で、無水フタル酸は0.48%に減少していたので、この反応液を減圧下で留出させたのち、20段の蒸留塔にて精留した。その結果、GC純度99.88%の4−クロロ安息香酸クロリド 394g(反応した4−クロロトリクロロメチルベンゼン基準90%収率)とフタル酸ジクロリド 326g(無水フタル酸基準で64%収率)、bp.120−122℃/4〜5torrを得た(文献値 bp 131−133℃/9−10mmHg:Organic Synthesis Coll. VolII, 528頁)。生成物のGC分析により、無水フタル酸は0.84%であり、目的化合物の純度は99.1%であることを確認した。
[Example 1]
In a 2 L four-necked flask, 370 g (2.5 mol) of phthalic anhydride, 756 g (3.3 mol) of 4-chlorotrichloromethylbenzene, 2.08 g of zinc oxide (0.025 mol, based on phthalic anhydride) 1 mol%) was added and stirring was continued at 155 ° C. for 32 hours. Analysis by gas chromatography (GC) of the reaction solution (GC2014 [trade name] manufactured by Shimadzu Corp., column: INERT CAP5 [trade name] manufactured by GL Science Inc. was used in the following Examples and Comparative Examples). It was found that 3.6% of phthalic anhydride remained, so that the reaction temperature was 195 ° C. and the mixture was stirred for 9 hours. According to the GC analysis, phthalic anhydride was reduced to 0.48%. Therefore, the reaction solution was distilled under reduced pressure and then rectified in a 20-stage distillation column. As a result, 394 g of 4-chlorobenzoic acid chloride having a GC purity of 99.88% (90% yield based on reacted 4-chlorotrichloromethylbenzene) and 326 g of phthalic dichloride (64% yield based on phthalic anhydride), bp . 120-122 ° C./4-5 torr were obtained (literature value bp 131-133 ° C./9-10 mmHg: Organic Synthesis Coll. Vol II, page 528). GC analysis of the product confirmed that the phthalic anhydride was 0.84% and the purity of the target compound was 99.1%.

[実施例2]
無水フタル酸 73.8g(0.50モル)、トリクロロメチルベンゼン 177g(0.90モル)、酸化亜鉛 0.41g(無水フタル酸に対して1モル%)の混合物を155℃にて13時間攪拌した。反応混合物のGC分析で無水フタル酸が1.4%残っていたので、トリクロロメチルベンゼン 46gを追加し反応液を195℃に上げ4時間攪拌した。GC分析では無水フタル酸0.35%となり、99.3%のフタル酸ジクロリドが生成していることを確認した。
[Example 2]
A mixture of 73.8 g (0.50 mol) of phthalic anhydride, 177 g (0.90 mol) of trichloromethylbenzene and 0.41 g of zinc oxide (1 mol% based on phthalic anhydride) was stirred at 155 ° C. for 13 hours. did. Since 1.4% of phthalic anhydride remained in the GC analysis of the reaction mixture, 46 g of trichloromethylbenzene was added, and the reaction solution was heated to 195 ° C. and stirred for 4 hours. It was confirmed by GC analysis that phthalic anhydride was 0.35% and 99.3% of phthalic dichloride was formed.

[実施例3]
4−クロロ無水フタル酸 35g(0.19モル)、4−クロロトリクロロメチルベンゼン 57.5g(0.25モル)、酸化亜鉛 0.15g(4−クロロ無水フタル酸に対して1モル%)の混合物を155℃にて4時間、170℃にて28時間攪拌後、200℃にてさらに6時間攪拌した。GC分析では4−クロロ無水フタル酸の残存は0.7%となり、99.0%の4−クロロフタル酸ジクロリドが生成していることを確認した。反応生成物の構造はGC−MSにて確認した(GC−MSの結果:m/z=201(M−35、相対強度100%)、203(相対強度64%))。
[Example 3]
4-chlorophthalic anhydride 35 g (0.19 mol), 4-chlorotrichloromethylbenzene 57.5 g (0.25 mol), zinc oxide 0.15 g (1 mol% based on 4-chlorophthalic anhydride) The mixture was stirred at 155 ° C. for 4 hours, 170 ° C. for 28 hours, and further stirred at 200 ° C. for 6 hours. In GC analysis, the residual 4-chlorophthalic anhydride was 0.7%, and it was confirmed that 99.0% of 4-chlorophthalic acid dichloride was produced. The structure of the reaction product was confirmed by GC-MS (GC-MS result: m / z = 201 (M + -35, relative intensity 100%), 203 (relative intensity 64%)).

[実施例4]
4−クロロトリクロロメチルベンゼン 411.8g(1.79モル)と酸化亜鉛 1.112g(0.0136モル)を混合し160℃で2時間攪拌した。GC分析の結果、4−クロロ安息香酸クロリドが0.32%生成していることを確認した。計算上、塩化亜鉛が同量生成しているとすれば、0.0057モルの高活性な塩化亜鉛が存在していることになる。そこに、無水フタル酸200g(1.35モル)を加え、160℃で27時間攪拌した。GC分析によって無水フタル酸が2.5%残っていたので反応温度を200℃に上げ、さらに6時間攪拌した。無水フタル酸は0.53%にまで減少した。
[Example 4]
4-chlorotrichloromethylbenzene (411.8 g, 1.79 mol) and zinc oxide (1.112 g, 0.0136 mol) were mixed and stirred at 160 ° C. for 2 hours. As a result of GC analysis, it was confirmed that 0.32% of 4-chlorobenzoic acid chloride was produced. Assuming that the same amount of zinc chloride is calculated, 0.0057 mol of highly active zinc chloride is present. Thereto was added 200 g (1.35 mol) of phthalic anhydride, and the mixture was stirred at 160 ° C. for 27 hours. Since 2.5% of phthalic anhydride remained by GC analysis, the reaction temperature was raised to 200 ° C., and the mixture was further stirred for 6 hours. Phthalic anhydride was reduced to 0.53%.

[比較例1]
無水フタル酸 148g(1.0モル)、4−クロロトリクロロメチルベンゼン 299g(1.3モル)、塩化亜鉛 1.37g(0.01モル)の混合物を200℃にて12時間攪拌した。反応混合物のGC分析で無水フタル酸が3.7%残っていた。さらに反応を継続し、14時間後、16時間後にGC分析を行ったが、無水フタル酸が4.15%、4.10%でありそれ以上減少しなかった。
[Comparative Example 1]
A mixture of 148 g (1.0 mol) of phthalic anhydride, 299 g (1.3 mol) of 4-chlorotrichloromethylbenzene and 1.37 g (0.01 mol) of zinc chloride was stirred at 200 ° C. for 12 hours. GC analysis of the reaction mixture left 3.7% phthalic anhydride. Further, the reaction was continued, and GC analysis was performed after 14 hours and 16 hours. However, phthalic anhydride was 4.15% and 4.10%, which did not decrease any more.

[比較例2]
無水フタル酸 150g(1.013モル)、トリクロロメチルベンゼン 228g(1.165モル)、塩化亜鉛 0.84g(0.006モル)の混合物を200℃にて20時間攪拌した。反応混合物のGC分析で無水フタル酸が2.9%残り、フタル酸ジクロリド 94.5%が生成していることを確認した。
[Comparative Example 2]
A mixture of 150 g (1.013 mol) of phthalic anhydride, 228 g (1.165 mol) of trichloromethylbenzene and 0.84 g (0.006 mol) of zinc chloride was stirred at 200 ° C. for 20 hours. GC analysis of the reaction mixture confirmed that 2.9% of phthalic anhydride remained and 94.5% of phthalic dichloride was formed.

Claims (11)

フタル酸ジクロリド化合物を97%超で含む高純度原料の製造方法であって、
酸化亜鉛のみを触媒として、下記一般式(1)で表される無水フタル酸化合物と、下記一般式(2)で表されるトリクロロメチルベンゼン化合物とを反応させ、下記一般式(3)で表されるフタル酸ジクロリド化合物を製造するフタル酸ジクロリド化合物含有高純度原料の製造方法。
Figure 0005438946
(一般式(1)及び(3)中、Xは水素原子またはハロゲン原子を表す。Rは、ハロゲン原子、低級アルキル基、及びハロゲン置換低級アルキル基のいずれかを意味する。mは0〜2の整数を表す。)
A method for producing a high-purity raw material containing more than 97% of a phthalic dichloride compound,
Using only zinc oxide as a catalyst, a phthalic anhydride compound represented by the following general formula (1) is reacted with a trichloromethylbenzene compound represented by the following general formula (2), and represented by the following general formula (3). A method for producing a high-purity raw material containing a phthalic dichloride compound for producing a phthalic dichloride compound.
Figure 0005438946
(In general formulas (1) and (3), X represents a hydrogen atom or a halogen atom. R represents any of a halogen atom, a lower alkyl group, and a halogen-substituted lower alkyl group. Represents an integer.)
前記一般式(1)で表わされる化合物が無水フタル酸である請求項1に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。 The method for producing a high-purity raw material containing a phthalic dichloride compound according to claim 1, wherein the compound represented by the general formula (1) is phthalic anhydride. 前記一般式(1)で表わされる化合物が3−クロロ無水フタル酸または4−クロロ無水フタル酸である請求項1に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。 The method for producing a phthalic dichloride compound- containing high-purity raw material according to claim 1, wherein the compound represented by the general formula (1) is 3-chlorophthalic anhydride or 4-chlorophthalic anhydride. 前記一般式(2)で表わされる化合物が4−クロロトリクロロメチルベンゼンである請求項1〜3のいずれか1項に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。 The method for producing a phthalic dichloride compound- containing high-purity raw material according to any one of claims 1 to 3, wherein the compound represented by the general formula (2) is 4-chlorotrichloromethylbenzene. 前記一般式(2)で表わされる化合物がトリクロロメチルベンゼンである請求項1〜3のいずれか1項に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。 The method for producing a phthalic dichloride compound- containing high-purity raw material according to any one of claims 1 to 3, wherein the compound represented by the general formula (2) is trichloromethylbenzene. フタル酸ジクロリド化合物の純度が99%以上である請求項1〜5のいずれか1項に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。The method for producing a high-purity raw material containing a phthalic dichloride compound according to any one of claims 1 to 5, wherein the purity of the phthalic dichloride compound is 99% or more. 前記無水フタル酸化合物と、前記トリクロロメチルベンゼン化合物との反応を、160〜220℃で行う請求項1〜6のいずれか1項に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。  The method for producing a high-purity raw material containing a phthalic dichloride compound according to any one of claims 1 to 6, wherein the reaction between the phthalic anhydride compound and the trichloromethylbenzene compound is performed at 160 to 220 ° C. 前記無水フタル酸化合物に対して酸化亜鉛を10モル%以下で使用する請求項1〜7のいずれか1項に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。  The method for producing a phthalic dichloride compound-containing high-purity raw material according to any one of claims 1 to 7, wherein zinc oxide is used at 10 mol% or less with respect to the phthalic anhydride compound. 前記無水フタル酸化合物に対して酸化亜鉛を1モル%以下で使用する請求項1〜8のいずれか1項に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。  The method for producing a high-purity raw material containing a phthalic dichloride compound according to any one of claims 1 to 8, wherein zinc oxide is used at 1 mol% or less with respect to the phthalic anhydride compound. 前記トリクロロメチルベンゼン化合物と酸化亜鉛とを先に添加し、酸化亜鉛を触媒化した後に前記無水フタル酸化合物を添加して反応させる請求項1〜9のいずれか1項に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。  The phthalic acid dichloride compound according to any one of claims 1 to 9, wherein the trichloromethylbenzene compound and zinc oxide are added first, and after the zinc oxide is catalyzed, the phthalic anhydride compound is added and reacted. A method for producing a high purity raw material. 前記無水フタル酸化合物の精製操作を実質的に介さずに化学製品の製造に適用する請求項1〜10のいずれか1項に記載のフタル酸ジクロリド化合物含有高純度原料の製造方法。  The method for producing a high-purity raw material containing a phthalic dichloride compound according to any one of claims 1 to 10, which is applied to the production of a chemical product substantially without going through the purification operation of the phthalic anhydride compound.
JP2008277165A 2008-07-29 2008-10-28 Method for producing high-purity raw material containing phthalic dichloride compound Active JP5438946B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008277165A JP5438946B2 (en) 2008-10-28 2008-10-28 Method for producing high-purity raw material containing phthalic dichloride compound
EP09802927.5A EP2325158B1 (en) 2008-07-29 2009-07-27 Process for production of phthaloyl dichloride compounds
US13/056,483 US8642805B2 (en) 2008-07-29 2009-07-27 Method of producing phthaloyl dichloride compound, catalyst for use in the method, and method of forming the catalyst
ES09802927.5T ES2564981T3 (en) 2008-07-29 2009-07-27 Method for producing a phthaloyl dichloride compound
PCT/JP2009/063362 WO2010013684A1 (en) 2008-07-29 2009-07-27 Process for production of phthaloyl dichloride compounds, catalyst to be used therein, and process for preparation of same
US14/099,662 US20140100389A1 (en) 2008-07-29 2013-12-06 Method of producing phthaloyl dichloride compound, catalyst for use in the method, and method of forming the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008277165A JP5438946B2 (en) 2008-10-28 2008-10-28 Method for producing high-purity raw material containing phthalic dichloride compound

Publications (2)

Publication Number Publication Date
JP2010105929A JP2010105929A (en) 2010-05-13
JP5438946B2 true JP5438946B2 (en) 2014-03-12

Family

ID=42295745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277165A Active JP5438946B2 (en) 2008-07-29 2008-10-28 Method for producing high-purity raw material containing phthalic dichloride compound

Country Status (1)

Country Link
JP (1) JP5438946B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1963749A (en) * 1932-07-30 1934-06-19 Monsanto Chemicals Manufacture of aromatic dicarboxylic acid chlorides
JPS61155350A (en) * 1984-12-28 1986-07-15 Ihara Nikkei Kagaku Kogyo Kk Production of fatty acid chloride and aromatic acid chloride
JPH0753418A (en) * 1993-08-09 1995-02-28 Ihara Nikkei Kagaku Kogyo Kk Production of long-chain alkyl halides
JP4056366B2 (en) * 2002-11-20 2008-03-05 信越化学工業株式会社 Method for producing zinc chloride carrier

Also Published As

Publication number Publication date
JP2010105929A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP6987930B2 (en) Method for producing 1- (3,5-dichlorophenyl) -2,2,2-trifluoro-etanone and its derivative
JP5438946B2 (en) Method for producing high-purity raw material containing phthalic dichloride compound
JP5196341B2 (en) Method for producing biphenyl derivative
US8729320B2 (en) Method for producing difluorocyclopropane compound
WO2010013684A1 (en) Process for production of phthaloyl dichloride compounds, catalyst to be used therein, and process for preparation of same
JP3999028B2 (en) Process for producing optically active 2-acylated 1,2-diol compound derivative
US6797844B2 (en) Process for producing phthalaldehyde
JP5900182B2 (en) Method for producing α, α-difluoroaromatic compound
JPH072751A (en) 2,3-difluoro-6-nitrobenzonitrile, 2-chloro-5,6- difluorobenzonitrile (2,3-difluoro-6-chlorobenzonitrile), their production and method of using them to produce 2,3,6-trifluorobenzoic acid
JP5071795B2 (en) Process for producing benzooxathiin compound
JP2005530793A (en) Catalyst-free production process for alkoxybenzonitrile
JP2017002002A (en) Fluorine-containing organic compound and manufacturing method of biaryl compound by the same and grignard reagent
JP2013180976A (en) METHOD OF MANUFACTURING α,α-DIFLUORO AROMATIC COMPOUND
JP2023138110A (en) Method for producing 3-chlorophthalide
JP5468400B2 (en) Process for producing 4-chloropyridine-2-carboxylic acid chloride
JP2010053126A (en) Method for producing phthalic acid dichloride compound, and catalyst used for the production method
JPH09255617A (en) Production of alkylbenzoyl chloride
JP2023138109A (en) Method for producing 3-chlorophthalide
JP2020059671A (en) Process for producing dialdehyde
JP2002179607A (en) Method for producing phthalaldehyde
JP5117756B2 (en) Method for producing crotonic acid ester of higher alcohol
JP5773850B2 (en) Method for producing optically active α-alkylserine derivative
WO2013015203A1 (en) Isopropyl 3-chloro-4-methylbenzoate and method for producing same
JPH08268950A (en) Production of fluorene-9-carbaldehyde compound
JP2008247746A (en) Method for producing haloiodoaniline compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5438946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250