JP5437520B1 - Cu-Co-Si-based copper alloy strip and method for producing the same - Google Patents
Cu-Co-Si-based copper alloy strip and method for producing the same Download PDFInfo
- Publication number
- JP5437520B1 JP5437520B1 JP2013158463A JP2013158463A JP5437520B1 JP 5437520 B1 JP5437520 B1 JP 5437520B1 JP 2013158463 A JP2013158463 A JP 2013158463A JP 2013158463 A JP2013158463 A JP 2013158463A JP 5437520 B1 JP5437520 B1 JP 5437520B1
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- alloy strip
- annealing
- mass
- based copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 47
- 229910020711 Co—Si Inorganic materials 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000005096 rolling process Methods 0.000 claims abstract description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 239000010949 copper Substances 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract 2
- 238000000137 annealing Methods 0.000 claims description 29
- 238000005097 cold rolling Methods 0.000 claims description 23
- 239000013078 crystal Substances 0.000 claims description 8
- 230000032683 aging Effects 0.000 claims description 7
- 238000005098 hot rolling Methods 0.000 claims description 5
- 238000005482 strain hardening Methods 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 3
- 229910052790 beryllium Inorganic materials 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910018098 Ni-Si Inorganic materials 0.000 description 2
- 229910018529 Ni—Si Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 210000005069 ears Anatomy 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910021244 Co2Si Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/026—Alloys based on copper
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B2003/005—Copper or its alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
【課題】導電率や強度を維持しつつ、加工性に優れたCu−Co−Si系銅合金条及びその製造方法を提供する。
【解決手段】Co:0.5〜3.0質量%,Si:0.1〜1.0質量%を含有し、Co/Siの質量比:3.0〜5.0であって、残部が銅および不可避的不純物からなり、ランクフォード値rの板面内異方性Δrの絶対値が0.2以下(但し、Δr=(r0+r90−2×r45)/2で表され、圧延平行方向に対して0度、45度、90度のr値をそれぞれr0、r45、r90とする)であるCu−Co−Si系銅合金条である。
【選択図】なしProvided are a Cu—Co—Si based copper alloy strip excellent in workability while maintaining conductivity and strength, and a method for producing the same.
SOLUTION: Co: 0.5 to 3.0% by mass, Si: 0.1 to 1.0% by mass, Co / Si mass ratio: 3.0 to 5.0, the balance being copper and inevitable impurities, Rankford value The absolute value of the in-plane anisotropy Δr of r is 0.2 or less (provided that Δr = (r0 + r90-2 × r45) / 2), and is 0 °, 45 °, and 90 ° with respect to the rolling parallel direction. Cu-Co-Si-based copper alloy strips having r values of r0, r45, and r90, respectively.
[Selection figure] None
Description
本発明は電子材料などの電子部品の製造に好適に使用可能なCu−Co−Si系銅合金板及び通電用又は放熱用電子部品に関し、特に、電機・電子機器、自動車等に搭載される端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の素材として使用されるCu−Co−Si系銅合金板、及び該銅合金板を用いた電子部品に関する。中でも、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に好適なCu−Co−Si系銅合金板及び該銅合金板を用いた電子部品に関するものである。 TECHNICAL FIELD The present invention relates to a Cu—Co—Si based copper alloy plate and a current carrying or heat radiating electronic component that can be suitably used for the production of electronic parts such as electronic materials. The present invention relates to a Cu—Co—Si based copper alloy plate used as a material for electronic components such as connectors, relays, switches, sockets, bus bars, lead frames, and heat sinks, and electronic components using the copper alloy plates. Among these, Cu— suitable for use in high current electronic parts such as connectors and terminals for high current used in electric vehicles, hybrid cars, etc., or for use in electronic parts for heat dissipation such as liquid crystal frames used in smartphones and tablet PCs. The present invention relates to a Co—Si based copper alloy plate and an electronic component using the copper alloy plate.
電子機器の端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電気又は熱を伝えるための材料として、強度と導電率に優れた銅合金条が広く用いられている。ここで、電気伝導性と熱伝導性は比例関係にある。ところで、近年、電子機器のコネクタにおいて高電流化が進んでおり、良好な曲げ性を有し,55%IACS以上の導電率、600MPa以上の耐力を有することが必要と考えられている。また、はんだ性を確保するため、コネクタ材料には良好なめっき性やはんだ濡れ性が求められる。 Copper alloy strips having excellent strength and conductivity are widely used as materials for transmitting electricity or heat, such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, and heat sinks of electronic devices. Here, electrical conductivity and thermal conductivity are in a proportional relationship. By the way, in recent years, high currents have been developed in connectors of electronic devices, and it is considered necessary to have good bendability, conductivity of 55% IACS or more, and proof stress of 600 MPa or more. Moreover, in order to ensure solderability, the connector material is required to have good plating properties and solder wettability.
一方、例えばスマートフォンやタブレットPCの液晶には液晶フレームと呼ばれる放熱部品が用いられている。このような放熱用途の銅合金板においても、高熱伝導率化が進んでおり、良好な曲げ性を有し、高強度を有することが必要と考えられている。このため、放熱用途の銅合金板においても、55%IACS以上の導電率、550MPa以上の耐力を有することが必要と考えられている。 On the other hand, for example, a heat radiating component called a liquid crystal frame is used for a liquid crystal of a smartphone or a tablet PC. Even in such a copper alloy plate for heat dissipation, high thermal conductivity is progressing, and it is considered necessary to have good bendability and high strength. For this reason, it is considered that a copper alloy plate for heat dissipation needs to have a conductivity of 55% IACS or more and a proof stress of 550 MPa or more.
しかしながら、60%IACS以上の導電率をNi-Si系銅合金で達成することは難しく,Co-Si系銅合金の開発が進められてきた。Co-Siを含む銅合金はCo2Siの固溶量が少ないため、Ni-Si系銅合金よりも導電率を高くすることができる。
このCo-Si系銅合金として、介在物の大きさを2μm以下として粗大な析出物を少なくすることで、めっき密着性に優れた銅合金が開示されている(特許文献1)。
However, it is difficult to achieve a conductivity of 60% IACS or higher with Ni-Si copper alloys, and Co-Si copper alloys have been developed. Since the copper alloy containing Co-Si has a small amount of Co2Si, the conductivity can be made higher than that of the Ni-Si based copper alloy.
As this Co—Si based copper alloy, a copper alloy excellent in plating adhesion is disclosed by setting the size of inclusions to 2 μm or less and reducing coarse precipitates (Patent Document 1).
ところで、Co-Si系銅合金は導電率や強度に優れるものの、絞りや張り出しといった加工に適しておらず、加工時にクラックや形状不良が生じやすい。このため、電子機器のコネクタや放熱板等にCo-Si系銅合金を適用する場合の加工設計が困難になったり、加工が難しい場合は導電率(熱伝導率)が不足する他の合金を用いて必要な機能が得られなかったりといった不具合があった。
すなわち、本発明は上記の課題を解決するためになされたものであり、導電率や強度を維持しつつ、加工性に優れたCu−Co−Si系銅合金条及びその製造方法の提供を目的とする。さらには、本発明は、該銅合金板の製造方法、及び大電流用途又は放熱用途に好適な電子部品を提供することをも目的とする。
By the way, although a Co—Si based copper alloy is excellent in electrical conductivity and strength, it is not suitable for processing such as drawing or overhanging, and cracks and shape defects are likely to occur during processing. For this reason, it is difficult to design a process when applying a Co-Si based copper alloy to a connector or a heat sink of an electronic device, or if the processing is difficult, use another alloy that lacks conductivity (thermal conductivity). There was a problem that necessary functions could not be obtained.
That is, the present invention has been made to solve the above-described problems, and an object thereof is to provide a Cu—Co—Si based copper alloy strip excellent in workability while maintaining conductivity and strength, and a method for producing the same. And Furthermore, another object of the present invention is to provide a method for producing the copper alloy plate and an electronic component suitable for high current use or heat dissipation use.
本発明のCu−Co−Si系銅合金条は、Co:0.5〜3.0質量%,Si:0.1〜1.0質量%を含有し、Co/Siの質量比:3.0〜5.0であって、残部が銅および不可避的不純物からなり、ランクフォード値rの面内異方性Δrの絶対値が0.2以下(但し、Δr=(r0+r90−2×r45)/2で表され、圧延平行方向に対して0度、45度、90度のr値をそれぞれr0、r45、r90とする)である。 The Cu—Co—Si based copper alloy strip of the present invention contains Co: 0.5 to 3.0 mass%, Si: 0.1 to 1.0 mass%, Co / Si mass ratio: 3.0 to 5.0, with the balance being copper. And the absolute value of the in-plane anisotropy Δr of the Rankford value r is 0.2 or less (where Δr = (r0 + r90-2 × r45) / 2), with respect to the rolling parallel direction. R values of 0 degrees, 45 degrees, and 90 degrees are r0, r45, and r90, respectively).
本発明のCu−Co−Si系銅合金条において、加工硬化係数(n値)が0.04以上であることが好ましい。
圧延面で観察した結晶粒径が20μm以下であることが好ましい。
Ni、Cr、Mg、Mn、Ag、P、Sn、Zn、As、Sb、Be、B、Ti、Zr、Al及びFeよりなる群から選ばれる1種以上を合計0.001〜2.5質量%含有することが好ましい。
In the Cu—Co—Si based copper alloy strip of the present invention, the work hardening coefficient (n value) is preferably 0.04 or more.
The crystal grain size observed on the rolling surface is preferably 20 μm or less.
Containing 0.001 to 2.5 mass% in total of at least one selected from the group consisting of Ni, Cr, Mg, Mn, Ag, P, Sn, Zn, As, Sb, Be, B, Ti, Zr, Al, and Fe Is preferred.
本発明のCu−Co−Si系銅合金条の製造方法は、前記Cu−Co−Si系銅合金条の製造方法であって、熱間圧延、第1の焼鈍、加工度10%以上の第1の冷間圧延、溶体化処理、時効処理をこの順で行い、かつ、前記第1の焼鈍と前記第1の冷間圧延とを2回以上繰り返し、前記第1の焼鈍は、焼鈍前後で引張強度が10〜40%減少する条件とする。 The method for producing a Cu—Co—Si based copper alloy strip according to the present invention is a method for producing the Cu—Co—Si based copper alloy strip, which includes hot rolling, first annealing, and a workability of 10% or more. 1 cold rolling, solution treatment, and aging treatment are performed in this order, and the first annealing and the first cold rolling are repeated twice or more. The first annealing is performed before and after annealing. The tensile strength is reduced by 10 to 40%.
本発明は更に別の一側面において、上記Cu−Co−Si系銅合金条を用いた大電流用電子部品である。 In still another aspect, the present invention is an electronic component for large current using the Cu—Co—Si based copper alloy strip.
本発明は更に別の一側面において、上記Cu−Co−Si系銅合金条を用いた放熱用電子部品である。 In another aspect of the present invention, there is provided a heat dissipation electronic component using the Cu—Co—Si based copper alloy strip.
本発明によれば、導電率や強度を維持しつつ、加工性に優れたCu−Co−Si系銅合金条及びその製造方法、並びに大電流用途又は放熱用途に好適な電子部品を提供することが可能である。この銅合金板は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム等の電子部品の素材として好適に使用することができ、特に大電流を通電する電子部品の素材又は大熱量を放散する電子部品の素材として有用である。 According to the present invention, it is possible to provide a Cu—Co—Si based copper alloy strip excellent in workability while maintaining conductivity and strength, a manufacturing method thereof, and an electronic component suitable for high current use or heat dissipation use. Is possible. This copper alloy plate can be suitably used as a material for electronic parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, etc., and particularly dissipates the material or large amount of heat of electronic parts that carry a large current. It is useful as a material for electronic parts.
以下、本発明の実施形態に係るCu−Co−Si系銅合金条について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。 Hereinafter, the Cu—Co—Si based copper alloy strip according to the embodiment of the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.
まず、銅合金条の組成の限定理由について説明する。
<Co及びSi>
Co及びSiは、時効処理を行うことによりCoとSiが微細なCo2Siを主とした金属間化合物の析出粒子を形成し、合金の強度を著しく増加させる。また、時効処理でのCo2Siの析出に伴い、導電性が向上する。ただし、Co濃度が0.5%未満の場合、またはSi濃度が0.1(Co%の1/5)%未満の場合は、他方の成分を添加しても所望とする強度が得られない。また、Co濃度が3.0%を超える場合、またはSi濃度が1.0(Co%の1/3)%を超える場合は十分な強度が得られるものの、導電性が低くなり、更には強度の向上に寄与しない粗大なCo−Si系粒子(晶出物及び析出物)が母相中に生成し、曲げ加工性、エッチング性およびめっき性の低下を招く。よって、Coの含有量を0.5〜3.0質量%とする。好ましくは、Coの含有量を1.0〜2.0質量%とする。同様に、Siの含有量を0.1〜1.0質量%とする。好ましくは、Siの含有量を0.2〜0.7質量%とする。
First, the reasons for limiting the composition of the copper alloy strip will be described.
<Co and Si>
Co and Si are subjected to an aging treatment to form precipitated particles of an intermetallic compound mainly composed of Co 2 Si in which Co and Si are fine, and remarkably increase the strength of the alloy. Further, the conductivity is improved with the precipitation of Co 2 Si in the aging treatment. However, when the Co concentration is less than 0.5%, or when the Si concentration is less than 0.1 (1/5 of Co%), the desired strength cannot be obtained even if the other component is added. Also, if the Co concentration exceeds 3.0%, or if the Si concentration exceeds 1.0 (1/3 of Co%)%, sufficient strength can be obtained, but the conductivity is lowered and further contributes to improvement of strength. Coarse Co—Si-based particles (crystallized product and precipitate) that are not formed are generated in the matrix phase, leading to a decrease in bending workability, etching property, and plating property. Therefore, the Co content is set to 0.5 to 3.0 mass%. Preferably, the Co content is 1.0 to 2.0 mass%. Similarly, the Si content is 0.1 to 1.0 mass%. Preferably, the Si content is 0.2 to 0.7 mass%.
Co/Siの質量比を3.0〜5.0とすると、析出硬化後の強度と導電率を共に向上させることができる。Co/Siの質量比が3.0未満であるとCo2Siとして析出しないSiの濃度が多くなって導電率が低下する。Co/Siの質量比が5を超えるとCo2Siとして析出しないCoの濃度が多くなって導電率が低下する。 When the mass ratio of Co / Si is 3.0 to 5.0, both strength and conductivity after precipitation hardening can be improved. If the Co / Si mass ratio is less than 3.0, the concentration of Si that does not precipitate as Co 2 Si increases and the conductivity decreases. When the mass ratio of Co / Si exceeds 5, the concentration of Co that does not precipitate as Co 2 Si increases and the conductivity decreases.
さらに、Ni、Cr、Mg、Mn、Ag、P、Sn、Zn、As、Sb、Be、
B、Ti、Zr、Al及びFeよりなる群から選ばれる1種以上を合計0.001〜2.5質量%含有することが好ましい。これら元素は固溶強化や析出強化等により強度上昇に寄与する。これら元素の合計量が0.001質量%未満であると上記効果が得られない場合がある。又、これら元素の合計量が2.5質量%を超えると導電率が低下したり、熱間圧延で割れる場合がある。
Furthermore, Ni, Cr, Mg, Mn, Ag, P, Sn, Zn, As, Sb, Be,
It is preferable to contain a total of 0.001 to 2.5 mass% of one or more selected from the group consisting of B, Ti, Zr, Al, and Fe. These elements contribute to an increase in strength by solid solution strengthening or precipitation strengthening. If the total amount of these elements is less than 0.001% by mass, the above effect may not be obtained. On the other hand, if the total amount of these elements exceeds 2.5% by mass, the electrical conductivity may be lowered or cracked by hot rolling.
本発明のCu−Co−Si系銅合金条の厚みは特に限定されないが、例えば0.03〜0.6mmとすることができる。 The thickness of the Cu—Co—Si based copper alloy strip of the present invention is not particularly limited, but may be 0.03 to 0.6 mm, for example.
<ランクフォード値rの板面内異方性Δr>
次に、銅合金条の特徴となる規定について説明する。本発明者らは、Cu−Co−Si系銅合金条を所定の条件で製造することで、ランクフォード値rの板面内異方性Δrが0.2以下となる合金が得られることがわかった。これは、下記の条件で焼鈍と圧延を繰り返すことで、圧延方向と板厚方向における結晶粒の形状や歪の導入のされ方が均一になり、変形時の板厚方向の減少が抑制されるためと考えられる。
ここで、rは、板の厚み方向と板幅方向のどちらに変形しやすいかという塑性ひずみ値を示し、rが高いほど深絞り性に優れる。
rは理論的には、次式により求められる。
r=ln(Wo /W)/ln(to /t)
ここで、Wo 、Wは変形前、後の板幅であり、to 、tは変形前、後の板厚である。ただし、試験片を取り出す個所によってrが変化し、板面方向によっては深絞り性が低下することがある。そこで、本発明においては、r値の板面内異方性Δrに着目し、この値が小さいほど、どの方向でも深絞り性が良いことになり、加工性が大幅に向上する。又、深絞り成形の際、材料の縮み易さが方向によって異なると、フランジ部の壁(耳)高さが不均一となるが、Δrが小さいほど、耳の高さが小さくなり、加工性が向上する。
Δr=(r0+r90−2×r45)/2
で表される。ここで、圧延平行方向に対して0度、45度、90度の方向に試料を引張試験して得られたr値をそれぞれr0、r45、r90とし、これらの値からΔrを算出する。
<In-plane anisotropy Δr of Rankford value r>
Next, the rules that characterize the copper alloy strip will be described. The inventors of the present invention can obtain an alloy in which the in-plane anisotropy Δr of the Rankford value r is 0.2 or less by producing a Cu—Co—Si based copper alloy strip under predetermined conditions. all right. This is because annealing and rolling are repeated under the following conditions, the shape of crystal grains in the rolling direction and the plate thickness direction and how to introduce strain become uniform, and the reduction in the plate thickness direction during deformation is suppressed. This is probably because of this.
Here, r indicates a plastic strain value indicating whether the plate is easily deformed in the thickness direction or the plate width direction, and the higher r is, the better the deep drawability is.
Theoretically, r is obtained by the following equation.
r = ln (Wo / W) / ln (t0 / t)
Here, Wo and W are plate widths before and after deformation, and to and t are plate thicknesses before and after deformation. However, r varies depending on where the test piece is taken out, and the deep drawability may deteriorate depending on the plate surface direction. Therefore, in the present invention, attention is paid to the r value in-plane anisotropy Δr, and the smaller this value, the better the deep drawability in any direction, and the workability is greatly improved. In addition, when deep drawing is performed, if the ease of shrinkage of the material varies depending on the direction, the wall (ear) height of the flange portion becomes non-uniform, but the smaller the Δr, the smaller the ear height and the workability. Will improve.
Δr = (r0 + r90-2 × r45) / 2
It is represented by Here, r values obtained by subjecting the sample to tensile tests in directions of 0 °, 45 °, and 90 ° with respect to the rolling parallel direction are defined as r0, r45, and r90, respectively, and Δr is calculated from these values.
そして、Cu−Co−Si系銅合金条を製造する条件として、インゴットを熱間圧延、第1の焼鈍、加工度10%以上の第1の冷間圧延、溶体化処理、時効処理をこの順で行い、かつ、第1の焼鈍と第1の冷間圧延とを2回以上繰り返し、第1の焼鈍は、焼鈍前後で引張強度が10〜40%減少する条件とすると、|Δr|≦0.2の合金条が得られる。
なお、溶体化処理と時効処理との間に最終冷間圧延を行ってもよい。
第1の焼鈍と第1の冷間圧延を上記条件で行うことで、上記したように、圧延方向と板厚方向と板幅方向の結晶粒の形状や歪の導入のされ方が均一になり、変形時の板厚方向の減少が抑制されるため、Δrが0.2以下となると考えられる。
第1の焼鈍と第1の冷間圧延との繰り返し回数が2回未満であると、上記した効果が得られず、|Δr|>0.2となる。
第1の焼鈍において、焼鈍前後で引張強度が20%未満しか減少しない場合、上記した効果が得られず、|Δr|>0.2となる。一方、焼鈍前後で引張強度が40%を超えると結晶粒径が大きくなり過ぎ、絞り加工時に肌荒れが生じる。第1の焼鈍は、焼鈍前後で引張強度が15〜30%減少する条件とすると好ましい。
第1の冷間圧延の加工度が10%未満の場合、上記した効果が得られず、|Δr|>0.2となる。なお、第1の冷間圧延の加工度の上限は、例えば97%である。加工度が97%を超えると2回目の冷間圧延の加工度が10%未満となる。第1の冷間圧延の加工度が15〜50%であると好ましい。
As the conditions for producing the Cu—Co—Si copper alloy strip, the ingot is subjected to hot rolling, first annealing, first cold rolling with a workability of 10% or more, solution treatment, and aging treatment in this order. And the first annealing and the first cold rolling are repeated twice or more, and the first annealing is performed under the condition that the tensile strength is reduced by 10 to 40% before and after annealing. | Δr | ≦ 0 .2 alloy strip is obtained.
Note that final cold rolling may be performed between the solution treatment and the aging treatment.
By performing the first annealing and the first cold rolling under the above-mentioned conditions, as described above, the shape of the crystal grains in the rolling direction, the plate thickness direction, and the plate width direction and the way of introducing strain become uniform. Since the decrease in the thickness direction during deformation is suppressed, Δr is considered to be 0.2 or less.
If the number of repetitions of the first annealing and the first cold rolling is less than 2, the above-described effect cannot be obtained, and | Δr |> 0.2.
In the first annealing, when the tensile strength decreases by less than 20% before and after annealing, the above-described effect cannot be obtained, and | Δr |> 0.2. On the other hand, if the tensile strength exceeds 40% before and after annealing, the crystal grain size becomes too large and rough skin occurs during drawing. The first annealing is preferably performed under conditions where the tensile strength decreases by 15 to 30% before and after annealing.
When the workability of the first cold rolling is less than 10%, the above effect cannot be obtained, and | Δr |> 0.2. In addition, the upper limit of the workability of the first cold rolling is, for example, 97%. When the workability exceeds 97%, the workability of the second cold rolling becomes less than 10%. The workability of the first cold rolling is preferably 15 to 50%.
熱間圧延と第1の焼鈍との間に冷間圧延(初期冷間圧延)を行ってもよく、その加工度は0〜98%とすることができる。
その他の条件は、通常のCu−Co−Si系銅合金条の製造条件と同等とすることができる。
Cold rolling (initial cold rolling) may be performed between the hot rolling and the first annealing, and the working degree can be set to 0 to 98%.
Other conditions can be made equivalent to the manufacturing conditions of a normal Cu—Co—Si based copper alloy strip.
加工硬化係数(n値)が0.04以上であると、Δrの絶対値を確実に0.2以下とすることができ、銅合金条の加工性が向上するので好ましい。
ここで、引張試験において試験片を引張り、荷重を負荷すると、弾性限度を越えて最高荷重点に達するまでの塑性変形域では試験片各部は一様に伸びる(均一伸び)。この均一伸びが発生する塑性変形域では真応力σtと真ひずみεtの間には式1
σt=Kεt n
の関係が成立し、これをn乗硬化則という。「n」を加工硬化係数とする(須藤一:材料試験法、内田老鶴圃社、(1976)、p.34)。nは0≦n≦1の値をとり、nが大きいほど加工硬化の程度が大きく、局所的な変形を受けた部分が加工硬化した際に他の部分に変形が移り、くびれが生じにくくなる。このため、n値が大きい材料は一様な伸びを示し、深絞り性等の加工性が良好となると共に、加工後の表面の肌荒れを抑制できる。
圧延面で観察した結晶粒径が20μm以下であると、銅合金条の加工性が向上すると共に、加工後の表面の肌荒れを抑制できるので好ましい。
When the work hardening coefficient (n value) is 0.04 or more, the absolute value of Δr can be surely made 0.2 or less, and the workability of the copper alloy strip is improved, which is preferable.
Here, when a test piece is pulled and a load is applied in a tensile test, each part of the test piece extends uniformly (uniform elongation) in the plastic deformation region exceeding the elastic limit and reaching the maximum load point. In the plastic deformation region where the uniform elongation occurs, there is an equation 1 between the true stress σ t and the true strain ε t.
σ t = Kε t n
This relationship is established, and this is called the n-th power hardening rule. “N” is defined as a work hardening coefficient (Kazuto Sudo: Material Testing Method, Uchida Otsukurakusha, (1976), p. 34). n takes a value of 0 ≦ n ≦ 1, and the larger the value of n, the greater the degree of work hardening. When a part that has undergone local deformation is work hardened, the deformation is transferred to other parts, and constriction is less likely to occur. . For this reason, the material with a large n value exhibits uniform elongation, the workability such as deep drawability becomes good, and the surface roughness after processing can be suppressed.
It is preferable that the crystal grain size observed on the rolled surface is 20 μm or less because the workability of the copper alloy strip is improved and the rough surface of the surface after processing can be suppressed.
電気銅を原料とし、大気溶解炉を用いて表1、表2に示す組成の銅合金を溶製し、インゴットに鋳造した。このインゴットを850〜1000℃で熱間圧延を行ない、適宜面削等を行い10mmの厚みとした。その後、表1、表2に示す条件で初期冷間圧延を行った(一部の試料は初期冷間圧延を行わなかった)。
次に、それぞれ表1、表2に示す条件で、第1の焼鈍及び第1の冷間圧延を2回又は3回繰り返し行った。さらに、850〜1000℃で5〜100秒の溶体化処理を行い、次に加工度0〜20%の最終冷間圧延を行い、さらに時効処理(強度が最大となる温度で5時間)を行い、0.2mmの厚みの試料を製造した。
各試料につき、以下の評価を行った。
Using copper as a raw material, copper alloys having the compositions shown in Tables 1 and 2 were melted using an atmospheric melting furnace and cast into ingots. This ingot was hot-rolled at 850 to 1000 ° C., and was appropriately chamfered to a thickness of 10 mm. Thereafter, initial cold rolling was performed under the conditions shown in Tables 1 and 2 (some samples were not subjected to initial cold rolling).
Next, the first annealing and the first cold rolling were repeated twice or three times under the conditions shown in Tables 1 and 2, respectively. Furthermore, solution treatment is performed at 850 to 1000 ° C. for 5 to 100 seconds, followed by final cold rolling at a workability of 0 to 20%, and further aging treatment (5 hours at a temperature at which the strength is maximum). A sample with a thickness of 0.2 mm was manufactured.
Each sample was evaluated as follows.
<引張強度(TS)>
引張試験機により、JIS−Z2241に従い、圧延方向と平行な方向における引張強度(TS)を測定した。
<Tensile strength (TS)>
The tensile strength (TS) in the direction parallel to the rolling direction was measured by a tensile tester according to JIS-Z2241.
<r値>
引張試験機により、JIS−Z2241に従い、圧延平行方向に対して0度、45度、90度の向きに引っ張り、伸びが5%(破断伸びが5%以下の場合は2.5%)のときの板幅と長さを測り、引張試験前後の板幅をそれぞれW0、Wとし、引張試験前後の長さをそれぞれL0、Lとし、r値=ln(Wo /W)/ln(WL/W0Lo)によってr値を算出した。圧延平行方向に対して0度、45度、90度のr値をそれぞれr0、r45、r90とした。
<Δr値>
Δr=(r0+r90−2×r45)/2によって算出した
<n値>
引張試験機により、JIS−Z2241に従い、圧延方向と平行な方向に引張試験したとき、塑性変形域で真応力σtと真ひずみεtを求め、式1
σt=Kεt n
で求めた。
<R value>
A plate with a tensile tester in accordance with JIS-Z2241 in the direction of 0 °, 45 °, 90 ° with respect to the rolling parallel direction and an elongation of 5% (2.5% if the elongation at break is 5% or less) The width and length are measured, the plate width before and after the tensile test is set to W 0 and W, the length before and after the tensile test is set to L 0 and L, respectively, and r value = ln (Wo / W) / ln (WL / W The r value was calculated by 0 Lo). The r values of 0 degrees, 45 degrees, and 90 degrees with respect to the rolling parallel direction were defined as r0, r45, and r90, respectively.
<Δr value>
<N value> calculated by Δr = (r0 + r90−2 × r45) / 2
When a tensile test is performed in a direction parallel to the rolling direction according to JIS-Z2241, using a tensile tester, the true stress σ t and the true strain ε t are obtained in the plastic deformation region.
σ t = Kε t n
I asked for it.
<圧延面で観察した結晶粒径(平均結晶粒径(GS))>
得られた試料の圧延面について、JIS H0501の切断法により平均結晶粒径を測定した。
<導電率(%IACS)>
得られた試料の導電率(%IACS)を4端子法により測定した。
<絞り加工性>
エリクセン社製試験機を用い、ブランク径:φ64mm、ポンチ(パンチ)径:φ33mm、シート圧力:3.0kN、潤滑剤:グリスの条件で、カップを作製した。
このカップを開放端側を下にしてガラス板上に置き、耳同士の間の凹部とガラス板との間隙を、読み取り顕微鏡で測定し、カップに発生した4個の耳の間の凹部の間隙の平均値を求め、耳の高さとした。
又、カップの外観を目視観察し、肌荒れの有無を判定した。
以下の基準で絞り加工性を評価した。
○:耳の高さが0.5mm以下で、肌荒れがないもの
×:耳の高さが0.5mmを超え、肌荒れが生じたもの
<Crystal grain size observed on rolling surface (average grain size (GS))>
About the rolling surface of the obtained sample, the average crystal grain size was measured by the cutting method of JIS H0501.
<Conductivity (% IACS)>
The conductivity (% IACS) of the obtained sample was measured by the 4-terminal method.
<Drawing workability>
Using an Eriksen tester, a cup was prepared under the conditions of blank diameter: φ64 mm, punch (punch) diameter: φ33 mm, sheet pressure: 3.0 kN, and lubricant: grease.
This cup is placed on a glass plate with the open end side down, and the gap between the recesses and the glass plate between the ears is measured with a reading microscope, and the gap between the four ears generated in the cup is measured. The average value was calculated as ear height.
Further, the appearance of the cup was visually observed to determine the presence or absence of rough skin.
Drawing workability was evaluated according to the following criteria.
○: Ear height is 0.5mm or less and there is no rough skin ×: Ear height exceeds 0.5mm and rough skin occurs
得られた結果を表1に示す。なお、各実施例は、いずれもTSが550MPa以上、導電率が55%IACS以上であった。 The obtained results are shown in Table 1. In each example, TS was 550 MPa or more and conductivity was 55% IACS or more.
表1、表2から明らかなように、第1の焼鈍と加工度10%以上の第1の冷間圧延とを2回以上繰り返し、第1の焼鈍を焼鈍前後で引張強度が20〜40%減少する条件として製造した各実施例の場合、|Δr|≦0.2となり、絞り加工性が向上した。 As is clear from Tables 1 and 2, the first annealing and the first cold rolling with a workability of 10% or more are repeated twice or more, and the first annealing is 20-40% in tensile strength before and after annealing. In the case of each example manufactured as a decreasing condition, | Δr | ≦ 0.2, and drawing workability was improved.
一方、第1の焼鈍を焼鈍前後で引張強度が40%を超えて減少するようにした比較例1〜4の場合、|Δr|>0.2となり、絞り加工性が劣った。
第1の焼鈍と第1の冷間圧延とを1回しか繰り返さなかった比較例5の場合も、|Δr|>0.2となり、絞り加工性が劣った。
第1の焼鈍と第1の冷間圧延とを行わなかった比較例6の場合も、|Δr|>0.2となり、絞り加工性が劣った。
第1の冷間圧延の加工度を10%未満とした比較例7の場合も、|Δr|>0.2となり、絞り加工性が劣った。
On the other hand, in the case of Comparative Examples 1 to 4 in which the first annealing was performed so that the tensile strength decreased by more than 40% before and after annealing, | Δr |> 0.2 and the drawability was inferior.
In the case of Comparative Example 5 in which the first annealing and the first cold rolling were repeated only once, | Δr |> 0.2, and the drawing workability was inferior.
Also in the case of Comparative Example 6 in which the first annealing and the first cold rolling were not performed, | Δr |> 0.2, and the drawability was inferior.
Also in the case of Comparative Example 7 in which the workability of the first cold rolling was less than 10%, | Δr |> 0.2, and the drawability was inferior.
Claims (7)
ランクフォード値rの板面内異方性Δrの絶対値が0.2以下(但し、Δr=(r0+r90−2×r45)/2で表され、圧延平行方向に対して0度、45度、90度のr値をそれぞれr0、r45、r90とする)であるCu−Co−Si系銅合金条。 Co: 0.5-3.0% by mass, Si: 0.1-1.0% by mass, Co / Si mass ratio: 3.0-5.0, with the balance consisting of copper and inevitable impurities,
The absolute value of the in-plane anisotropy Δr of the Rankford value r is 0.2 or less (provided that Δr = (r0 + r90-2 × r45) / 2, and 0 degrees, 45 degrees with respect to the rolling parallel direction, Cu-Co-Si-based copper alloy strips having r values of 90 degrees as r0, r45, and r90, respectively.
熱間圧延、第1の焼鈍、加工度10%以上の第1の冷間圧延、溶体化処理、時効処理をこの順で行い、かつ、前記第1の焼鈍と前記第1の冷間圧延とを2回以上繰り返し、
前記第1の焼鈍は、焼鈍前後で引張強度が10〜40%減少する条件とするCu−Co−Si系銅合金条の製造方法。 It is a manufacturing method of the Cu-Co-Si system copper alloy strip according to any one of claims 1 to 4,
Hot rolling, first annealing, first cold rolling with a workability of 10% or more, solution treatment, aging treatment are performed in this order, and the first annealing and the first cold rolling Repeat twice or more,
The first annealing is a method for producing a Cu—Co—Si based copper alloy strip in which the tensile strength is reduced by 10 to 40% before and after annealing.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013158463A JP5437520B1 (en) | 2013-07-31 | 2013-07-31 | Cu-Co-Si-based copper alloy strip and method for producing the same |
TW103121160A TWI509092B (en) | 2013-07-31 | 2014-06-19 | Cu-Co-Si copper alloy strip and method for producing the same |
KR1020140088299A KR101612186B1 (en) | 2013-07-31 | 2014-07-14 | Cu-co-si-based copper alloy strip and method of manufacturing the same |
CN201410371606.6A CN104342582B (en) | 2013-07-31 | 2014-07-31 | Cu-Co-Si-based copper alloy strip and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013158463A JP5437520B1 (en) | 2013-07-31 | 2013-07-31 | Cu-Co-Si-based copper alloy strip and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5437520B1 true JP5437520B1 (en) | 2014-03-12 |
JP2015028202A JP2015028202A (en) | 2015-02-12 |
Family
ID=50396683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013158463A Active JP5437520B1 (en) | 2013-07-31 | 2013-07-31 | Cu-Co-Si-based copper alloy strip and method for producing the same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5437520B1 (en) |
KR (1) | KR101612186B1 (en) |
CN (1) | CN104342582B (en) |
TW (1) | TWI509092B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160117210A (en) * | 2015-03-30 | 2016-10-10 | 제이엑스금속주식회사 | Cu-Ni-Si BASED ROLLED COPPER ALLOY AND METHOD FOR MANUFACTURING THE SAME |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4708485B2 (en) * | 2009-03-31 | 2011-06-22 | Jx日鉱日石金属株式会社 | Cu-Co-Si based copper alloy for electronic materials and method for producing the same |
JP4620173B1 (en) * | 2010-03-30 | 2011-01-26 | Jx日鉱日石金属株式会社 | Cu-Co-Si alloy material |
JP4830035B2 (en) * | 2010-04-14 | 2011-12-07 | Jx日鉱日石金属株式会社 | Cu-Si-Co alloy for electronic materials and method for producing the same |
JP2011246740A (en) * | 2010-05-24 | 2011-12-08 | Jx Nippon Mining & Metals Corp | Cu-Co-Si BASED ALLOY SHEET OR STRIP FOR ELECTRONIC MATERIAL |
JP4672804B1 (en) * | 2010-05-31 | 2011-04-20 | Jx日鉱日石金属株式会社 | Cu-Co-Si based copper alloy for electronic materials and method for producing the same |
JP4601085B1 (en) * | 2010-06-03 | 2010-12-22 | Jx日鉱日石金属株式会社 | Cu-Co-Si-based copper alloy rolled plate and electrical component using the same |
JP4708497B1 (en) | 2010-06-03 | 2011-06-22 | Jx日鉱日石金属株式会社 | Cu-Co-Si alloy plate and method for producing the same |
JP4834781B1 (en) * | 2010-08-24 | 2011-12-14 | Jx日鉱日石金属株式会社 | Cu-Co-Si alloy for electronic materials |
JP2012072470A (en) * | 2010-09-29 | 2012-04-12 | Jx Nippon Mining & Metals Corp | Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING THE SAME |
JP4799701B1 (en) * | 2011-03-29 | 2011-10-26 | Jx日鉱日石金属株式会社 | Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same |
JP5039862B1 (en) * | 2011-07-15 | 2012-10-03 | Jx日鉱日石金属株式会社 | Corson alloy and manufacturing method thereof |
JP2013104082A (en) | 2011-11-11 | 2013-05-30 | Jx Nippon Mining & Metals Corp | Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME |
-
2013
- 2013-07-31 JP JP2013158463A patent/JP5437520B1/en active Active
-
2014
- 2014-06-19 TW TW103121160A patent/TWI509092B/en active
- 2014-07-14 KR KR1020140088299A patent/KR101612186B1/en active IP Right Grant
- 2014-07-31 CN CN201410371606.6A patent/CN104342582B/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015028202A (en) | 2015-02-12 |
KR101612186B1 (en) | 2016-04-12 |
CN104342582B (en) | 2017-01-11 |
TW201512431A (en) | 2015-04-01 |
CN104342582A (en) | 2015-02-11 |
TWI509092B (en) | 2015-11-21 |
KR20150015368A (en) | 2015-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5437519B1 (en) | Cu-Co-Si-based copper alloy strip and method for producing the same | |
JP5117604B1 (en) | Cu-Ni-Si alloy and method for producing the same | |
JP5320642B2 (en) | Copper alloy manufacturing method and copper alloy | |
CN103502487B (en) | The manufacture method of copper alloy for electronic apparatus, copper alloy for electronic apparatus, copper alloy for electronic apparatus plastic working material and electronics assembly | |
JP2007100111A (en) | Cu-Ni-Sn-P-BASED COPPER ALLOY EXCELLENT IN PRESS-PUNCHING PROPERTY, AND ITS PRODUCTION METHOD | |
JP5619389B2 (en) | Copper alloy material | |
TWI521071B (en) | Conductive and stress relief characteristics of excellent copper alloy plate | |
US9653191B2 (en) | Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal | |
JP5189708B1 (en) | Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same | |
JP6128976B2 (en) | Copper alloy and high current connector terminal material | |
JP2010270355A (en) | Copper alloy sheet material and method for producing the same | |
US20110038753A1 (en) | Copper alloy sheet material | |
JP6749121B2 (en) | Copper alloy plate with excellent strength and conductivity | |
TW201522671A (en) | Copper alloy plate, and electronic component for large current applications and electronic component for heat dissipation applications each provided with same | |
JP6050738B2 (en) | Copper alloy sheet with excellent conductivity, moldability and stress relaxation properties | |
WO2015068420A1 (en) | Copper alloy plate, and electronic part for heat dissipation use which is equipped with same | |
JP5437520B1 (en) | Cu-Co-Si-based copper alloy strip and method for producing the same | |
WO2014041865A1 (en) | Copper alloy plate having excellent electroconductive properties and stress relaxation properties | |
JP6749122B2 (en) | Copper alloy plate with excellent strength and conductivity | |
JP5827530B2 (en) | Cu-Ni-Si based copper alloy sheet with excellent spring limit and stress relaxation resistance and good shear workability | |
JP6310004B2 (en) | Cu-Co-Ni-Si alloy for electronic parts | |
JP5988745B2 (en) | Cu-Ni-Si based copper alloy plate with Sn plating and method for producing the same | |
JP6140555B2 (en) | Cu-Zr-Ti copper alloy strip | |
JP2016035111A (en) | Copper alloy sheet excellent in conductivity, molding property and stress relaxation characteristic | |
JP2014208868A (en) | Copper alloy and high-current connector terminal material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131015 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131211 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5437520 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |