JP5433921B2 - Polymer porous hollow fiber membrane - Google Patents
Polymer porous hollow fiber membrane Download PDFInfo
- Publication number
- JP5433921B2 JP5433921B2 JP2006122042A JP2006122042A JP5433921B2 JP 5433921 B2 JP5433921 B2 JP 5433921B2 JP 2006122042 A JP2006122042 A JP 2006122042A JP 2006122042 A JP2006122042 A JP 2006122042A JP 5433921 B2 JP5433921 B2 JP 5433921B2
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- fiber membrane
- membrane
- polymer
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- External Artificial Organs (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Artificial Filaments (AREA)
Description
本発明は、水性流体の処理に使用される高分子多孔質中空糸膜に関する。詳しくは、疎水性高分子と親水性高分子を含んでなり、内表面および外表面に緻密層を有し、内表面から外表面に向かって当初空孔率が増大し、少なくともひとつの極大部を通過後、再び外表面側で空孔率が減少する特徴的な構造を有し、主として分離特性を規定する内表面の孔径と排除限界粒子径が特定の関係にあることによって、長期間の安定した膜性能、洗浄による膜性能の回復性に優れた高分子多孔質中空糸膜に関するものである。 The present invention relates to a polymer porous hollow fiber membrane used for treatment of an aqueous fluid. Specifically, it comprises a hydrophobic polymer and a hydrophilic polymer, has a dense layer on the inner surface and the outer surface, the initial porosity increases from the inner surface toward the outer surface, and at least one local maximum After passing through the material, it has a characteristic structure in which the porosity decreases again on the outer surface side, and the pore size of the inner surface that mainly defines the separation characteristics and the exclusion limit particle size have a specific relationship, The present invention relates to a polymer porous hollow fiber membrane excellent in stable membrane performance and recoverability of membrane performance by washing.
水性流体の処理を目的とした中空糸膜は、精密濾過、限外濾過などの工業用途や、血液透析、血液濾過、血液透析濾過などの医療用途に広く利用されており、その素材としてはセルロース、酢酸セルロース、ポリエチレン、ポリスルホン、ポリフッ化ビニリデン、ポリカーボネート、ポリアクリロニトリルなどが用いられている。 Hollow fiber membranes for the treatment of aqueous fluids are widely used in industrial applications such as microfiltration and ultrafiltration, and medical applications such as hemodialysis, hemofiltration, and hemodiafiltration. Cellulose acetate, polyethylene, polysulfone, polyvinylidene fluoride, polycarbonate, polyacrylonitrile and the like are used.
このような中空糸膜に求められる基本的な特性としては、例えば、次の各点が挙げられる。
(1)被除去物質の除去性が高いこと
(2)透過物質の透過性が高いこと
((1)、(2)をあわせて分画特性)
(3)処理流体の透過性が高いこと(透過性)
((1)、(2)、(3)をあわせて膜特性)
(4)強度が十分に高く破断やリークしにくいこと(強度)
(5)分画特性が経時的に低下しないこと(分画特性の保持性)
(6)処理流体の透過性が経時的に低下しないこと(透過性の保持性)
((5)、(6)をあわせて膜特性の保持性)
また、基本的に単回使用で廃棄される医療用途以外の膜においては、
(7)洗浄による分画特性の回復に優れていること(分画特性の回復性)
(8)洗浄による透過性の回復に優れていること(透過性の回復性)
((7)、(8)をあわせて膜特性の回復性)
も加えられる。
Examples of basic characteristics required for such a hollow fiber membrane include the following points.
(1) High removability of the substance to be removed (2) High permeability of the permeating substance (Fractionation characteristics in combination with (1) and (2))
(3) High permeability of processing fluid (permeability)
(Membrane properties combined with (1), (2), (3))
(4) Strength is high enough to prevent breakage and leakage (strength)
(5) The fractionation characteristics do not deteriorate over time (retention property of fractionation characteristics)
(6) The permeability of the processing fluid does not decrease over time (permeability retention)
(Retaining properties of film characteristics by combining (5) and (6))
In addition, in membranes other than medical uses that are basically discarded after a single use,
(7) Excellent recovery of fractionation characteristics by washing (Recovery of fractionation characteristics)
(8) Excellent recovery of permeability by washing (recoverability of permeability)
(Restoration of film characteristics by combining (7) and (8))
Is also added.
従来、中空糸膜は上記(3)の濾過性能の向上に注目して開発されたものが多く、それ以外の特性が犠牲になることがあった。膜の透過性を向上させるには、孔径を大きくする方法が一般的であるが、これは同時に分画性能と強度の低下を招く傾向にある。 Conventionally, many hollow fiber membranes have been developed by paying attention to the improvement in the filtration performance of (3) above, and other characteristics may be sacrificed. In order to improve the permeability of the membrane, a method of increasing the pore diameter is generally used, but this tends to cause a decrease in fractionation performance and strength at the same time.
中空糸膜は膜の構造から、中空糸膜の膜厚方向で孔径が実質的に変化しない対称膜と、孔径が連続的あるいは不連続に変化し、膜の内表面、内部、外表面で孔径が異なっている非対称膜に大別される。このうち対称膜は、濾過にあたって膜厚部分全体が流体の流れに対し大きな抵抗を示し、大きな流量を得ることが困難である上、溶質(被除去物質)の目詰まりが生じやすいという欠点がある。 The hollow fiber membrane has a symmetrical structure in which the pore diameter does not change substantially in the thickness direction of the hollow fiber membrane, and the pore diameter changes continuously or discontinuously from the membrane structure. Are roughly classified into different asymmetric membranes. Among them, the symmetric membrane has a drawback that the entire film thickness portion shows a large resistance to the flow of fluid during filtration, and it is difficult to obtain a large flow rate, and the solute (substance to be removed) is likely to be clogged. .
流体の濾過による被除去物質の除去には、膜表面の孔径による表層効果と、膜厚部分による深層効果の双方による寄与がある。このうち主として深層効果に依存する分離は、分画特性の鋭敏化が期待できるが、ある程度の厚みを利用しての分離であるため、大きな流量を得るのが困難であり、非除去物質の目詰まりによって経時的に流量が低下するという短所が存在する。前述の対称膜においては、この深層効果の寄与が比較的大きいために、上記の欠点が顕在化しやすいと考えられる。 Removal of a substance to be removed by fluid filtration has contributions by both the surface layer effect due to the pore diameter on the membrane surface and the depth effect due to the film thickness portion. Of these, separation that mainly depends on the depth effect can be expected to be sensitive to fractionation characteristics, but it is difficult to obtain a large flow rate because it is a separation using a certain amount of thickness. There is a disadvantage that the flow rate decreases with time due to clogging. In the above-mentioned symmetrical film, since the contribution of the deep layer effect is relatively large, it is considered that the above-mentioned defects are easily manifested.
このような背景から、分画特性と透過性を主として規定する薄い緻密層を設けた非対称膜の検討がなされている。特許文献1では、内面に存在する孔の形が滑らかな周を有する楕円形〜円形で最大長径が少なくとも0.1μmであり、外面にスキン層、断面にマクロボイドを有さない芳香族ポリスルホン中空糸膜が開示されている。この技術においては、孔の形を楕円形〜円形にすることでシャープな分画特性を実現し、血液濾過時に血球成分に対してかかる局部的な力を低減させることで溶血などの問題を解決しうるとされている。
確かに孔の形を制御することでこのような効果は期待できるであろうが、ここでは、断面部分での構造についての配慮が不十分であり、特に膜特性の保持性や膜特性の回復性についての配慮は欠落している。
Against this background, studies have been made on asymmetric membranes provided with a thin dense layer that mainly defines fractionation characteristics and permeability. In Patent Document 1, an aromatic polysulfone hollow having a smooth circumference with an elliptical to circular shape having a smooth circumference and a maximum major axis of at least 0.1 μm, a skin layer on the outer surface, and no macrovoids on the cross section A yarn membrane is disclosed. In this technology, the shape of the hole is made oval to circular to achieve sharp fractionation characteristics, and the local force applied to blood cell components during blood filtration is reduced to solve problems such as hemolysis. It is supposed to be possible.
Certainly, such an effect can be expected by controlling the shape of the hole, but here, the consideration of the structure at the cross-section is insufficient, especially the retention of the membrane properties and the recovery of the membrane properties. There is a lack of consideration for sex.
特許文献2では、芳香族ポリスルホンとポリビニルピロリドンからなり、特定のポリビニルピロリドン含量、膜構造、破断強度が規定された中空糸状精密濾過膜が開示されている。この膜は、透過性を向上させるために、膜内表面の孔径を制御することが好ましく、具体的には、濾過により阻止しようとする物質の径よりも小さい孔径でなければならず、0.01〜1μm、好ましくは0.05〜0.5μmであるとされている。しかしながら、孔の形状やサイズによっては孔径を測定しても誤差が大きくなるため、内圧濾過時の阻止径が0.015〜1μmであることが必要であるとされている。また、膜の破断強度が50kgf/cm2未満では、リーク等が多発し実用的でないことから、少なくとも50kgf/cm2以上であるとの記載が見られる。また、濾過液が血液であった場合の配慮として、血漿タンパク質の吸着を抑制するために親水性であるポリビニルピロリドンの膜内表面における濃度が20〜45重量%であるとされている。この技術においては、高い強度、高い透水性能(高い透過性)、目詰まりが少ないこと(分画特性の保持性)について考慮されており、事実、これらの問題点についてある程度の解決はなされているものと考えられるが、上水膜、飲料処理膜として長期間にわたり使用した場合の膜性能の保持性、洗浄による膜特性の回復性についての記載は見られず、未だ配慮が不十分であると言わざるを得ない。 Patent Document 2 discloses a hollow fiber microfiltration membrane comprising an aromatic polysulfone and polyvinylpyrrolidone and having a specific polyvinylpyrrolidone content, membrane structure, and breaking strength. In order to improve the permeability, it is preferable to control the pore size of the inner surface of the membrane. Specifically, the membrane must have a pore size smaller than the size of the substance to be blocked by filtration. It is said that it is 01-1 micrometer, Preferably it is 0.05-0.5 micrometer. However, depending on the shape and size of the hole, even if the hole diameter is measured, the error becomes large. Therefore, the blocking diameter at the time of internal pressure filtration is required to be 0.015 to 1 μm. Further, when the breaking strength of the film is less than 50 kgf / cm 2 , leaks and the like occur frequently and are not practical, and therefore, it is described that it is at least 50 kgf / cm 2 or more. Further, as a consideration when the filtrate is blood, the concentration of polyvinylpyrrolidone, which is hydrophilic, on the inner surface of the membrane in order to suppress the adsorption of plasma proteins is said to be 20 to 45% by weight. In this technology, high strength, high water permeability (high permeability), and less clogging (retention property of fractionation characteristics) are taken into consideration, and in fact, some of these problems have been solved. However, there is no description about the retention of membrane performance when used as a water film or a beverage treatment membrane for a long period of time, and the recovery of membrane properties by washing, and the consideration is still insufficient. I must say.
特許文献3では、ε−カプロラクタム可溶性のポリマーからなり、500〜5000000ダルトンの分離限界を有する分離層A、流体力学的抵抗は分離層Aおよび層Cに対して無視できるほど小さい支持層B、孔径は分離層Aよりは大きいが支持層Bよりは小さい層Cの多層多重構造からなる半透膜が開示されているが、この技術において解決すべき課題として記載されているのは、分離限界および流体力学的透過性が正確に調整でき、その際、分離限界とは独立して流体力学的透過性が正確に調整でき、これにより要求に応じて低域、中間域または高域の透過度を有する指定の分離限界を有する膜の製造が可能となる膜の提供とされており、強度、膜特性の保持性、膜性能の回復性については配慮されていない。 In Patent Document 3, a separation layer A made of a polymer soluble in ε-caprolactam and having a separation limit of 500 to 5000000 daltons, a support layer B having a small hydrodynamic resistance with respect to the separation layers A and C, and a pore diameter Is disclosed as a problem to be solved in this technology, which is a separation limit and a semi-permeable membrane having a multilayer multi-layer structure of layer C larger than separation layer A but smaller than support layer B. The hydrodynamic permeability can be adjusted precisely, in which case the hydrodynamic permeability can be adjusted accurately independently of the separation limit, which allows the low, middle or high frequencies to be adjusted as required. It is considered to provide a membrane capable of producing a membrane having a specified separation limit, and no consideration is given to strength, retention of membrane characteristics, and recovery of membrane performance.
また、構造的にはこれに類似した膜として特許文献4では、膜内壁部表面近傍層における微細孔の孔径が500nm以下であり、膜厚方向断面に分布する微細孔の分布において少なくとも1つ以上の極大孔径を有し、その極大孔径が特定の値である膜が開示されている。この技術は、実質的には生体適合性に優れた医療用膜についてのものであり、血液と接触する内表面の緻密化で高分子量タンパク質の膜内部への侵入の抑制、高分子量タンパク質と膜の接触面積低減を図り、生体適合性の向上を狙っている。また、膜断面の孔径極大部を経て、外面近傍で再び緻密な構造とするのは、膜外面からのエンドトキシンフラグメントの侵入を抑制するためである。すなわち、膜の密−疎−密構造は、血液処理膜としての物質除去能力、生体適合性、エンドトキシン侵入抑制のために必要な構造であり、それ以外、例えば、膜特性の保持性、膜性能の回復性との関わりについての記載は見られない。
本発明の課題は、上水(浄水)膜、飲料処理膜、血液処理膜など種々の水性流体処理膜において、優れた分画特性、透過性を有しながら、モジュール成形時や実際の使用時に破断やリークを招くことのない十分な強度を有し、これらの性能、特性の経時的な低下の抑制が実現され、洗浄による膜特性の回復性に優れた高分子多孔質中空糸膜を提供することにある。 The problem of the present invention is that various water-based fluid treatment membranes such as clean water (purified water) membranes, beverage treatment membranes, blood treatment membranes, etc. have excellent fractionation characteristics and permeability. Providing a polymer porous hollow fiber membrane that has sufficient strength that does not cause breakage or leakage, suppresses deterioration of these performances and properties over time, and is excellent in recovering membrane properties by washing There is to do.
本発明者らは、水性流体の処理に使用される中空糸膜に要求される基本特性である膜特性(分画特性および透過性)、強度、膜特性の保持性、膜特性の回復性、全てに配慮し、これらを高いレベルで同時に実現した高分子多孔質中空糸膜を得るために鋭意検討した結果、特定の構成により上記課題を解決することができ、本発明に至った。 The inventors of the present invention have fundamental characteristics required for hollow fiber membranes used in the treatment of aqueous fluids: membrane characteristics (fractionation characteristics and permeability), strength, retention of membrane characteristics, recoverability of membrane characteristics, As a result of intensive investigations to obtain a polymer porous hollow fiber membrane that realizes all of these at the same time at a high level, the above problems can be solved by a specific configuration, leading to the present invention.
すなわち本発明の高分子多孔質中空糸膜は、
(1)疎水性高分子と親水性高分子を含んでなり、
(a)内表面および外表面に緻密層を有し、
(b)内表面における孔径が外表面における孔径よりも小さく、
(c)内表面から外表面に向かって当初空孔率が増大し、少なくともひとつの極大部を通過後、再び外表面側で空孔率が減少し、
(d)微粒子の通過試験によって得られる排除限界粒子径をφmax[μm]、内表面の孔径をdIS[μm]、φmaxを超えるdISの存在割合をDR[%]としたとき、2[%]≦DR≦20[%]である
ことを特徴とする。
(2)中空糸膜の内表面をIS、中空糸膜の外表面をOS、中空糸膜の断面での空孔率極大部をCSmaxとし、各部位の孔径をそれぞれdIS、dOS、dCSmax、各部位の空孔率をpIS、pOS、pCSmaxとしたとき、
(a)0.001[μm]≦dIS≦1[μm] かつ
(b)0.1[μm]≦dCSmax≦10[μm] かつ
(c)5[%]≦pIS≦30[%] かつ
(d)40[%]≦pCSmax≦80[%]
であることを特徴とする。
(3)中空糸膜の内表面をIS、中空糸膜の外表面をOS、中空糸膜の断面を内表面から外表面方向に8等分したときの各部分を内表面方向から順にCS1、CS2、CS3、CS4、CS5、CS6、CS7、CS8とし、各部位の孔径をそれぞれdIS、dOS、dCS1、dCS2、dCS3、dCS4、dCS5、dCS6、dCS7、dCS8、各部位の空孔率をpIS、pOS、pCS1、pCS2、pCS3、pCS4、pCS5、pCS6、pCS7、pCS8としたとき、
(a)dIS≦dCS1<dCS2≦dCS3≧dCS4>dCS5>dCS6>dCS7>dCS8≧dOS かつ
(b)pIS<pCS1≦pCS2<pCS3>pCS4≧pCS5≧pCS6≧pCS7≧pCS8>pOS
であることを特徴とする。
(4)バブルポイントによって得られる最大孔径をdBmax[μm]、25℃における純水の透過性をF[L/(h・m2・bar)]としたとき、
(a)(1/10000)・F≦dBmax≦(1/4000)・F かつ
(b)0.05[μm]≦dBmax≦1[μm]
であることを特徴とする。
(5)中空糸膜全体における親水性高分子の含量をCa[重量%]、内表面における親水性高分子の含量をCi[重量%]、外表面における親水性高分子の含量をCo[重量%]としたとき、
(a) 1[重量%]≦Ca≦10[重量%] かつ
(b) Ca≦CiかつCa≦Co かつ
(c) Co≦Ci
であることを特徴とする。
(6)疎水性高分子がポリスルホン系高分子であることを特徴とする。
(7)親水性高分子がポリビニルピロリドンであることを特徴とする。
That is, the polymer porous hollow fiber membrane of the present invention is
(1) comprising a hydrophobic polymer and a hydrophilic polymer;
(A) having a dense layer on the inner and outer surfaces;
(B) the hole diameter on the inner surface is smaller than the hole diameter on the outer surface;
(C) The initial porosity increases from the inner surface toward the outer surface, and after passing through at least one local maximum, the porosity decreases again on the outer surface side,
(D) When the exclusion limit particle diameter obtained by the fine particle passage test is φmax [μm], the pore diameter of the inner surface is dIS [μm], and the existence ratio of dIS exceeding φmax is DR [%], 2 [%] ≦ DR ≦ 20 [%].
(2) The inner surface of the hollow fiber membrane is IS, the outer surface of the hollow fiber membrane is OS, the maximum porosity in the cross section of the hollow fiber membrane is CSmax, and the pore diameter of each part is dIS, dOS, dCSmax, When the porosity of the part is pIS, pOS, pCSmax,
(A) 0.001 [μm] ≦ dIS ≦ 1 [μm] and (b) 0.1 [μm] ≦ dCSmax ≦ 10 [μm] and (c) 5 [%] ≦ pIS ≦ 30 [%] and ( d) 40 [%] ≦ pCSmax ≦ 80 [%]
It is characterized by being.
(3) IS is the inner surface of the hollow fiber membrane, OS is the outer surface of the hollow fiber membrane, and each portion when the cross section of the hollow fiber membrane is divided into eight equal parts from the inner surface toward the outer surface is CS1, CS2, CS3, CS4, CS5, CS6, CS7, CS8, the hole diameter of each part is dIS, dOS, dCS1, dCS2, dCS3, dCS4, dCS5, dCS6, dCS7, dCS8, the porosity of each part is pIS, When pOS, pCS1, pCS2, pCS3, pCS4, pCS5, pCS6, pCS7, pCS8,
(A) dIS ≦ dCS1 <dCS2 ≦ dCS3 ≧ dCS4>dCS5>dCS6>dCS7> dCS8 ≧ dOS and (b) pIS <pCS1 ≦ pCS2 <pCS3> pCS4 ≧ pCS5 ≧ pCS6 ≧ pCS7 ≧ pCS8> pOS
It is characterized by being.
(4) When the maximum pore diameter obtained by the bubble point is dBmax [μm] and the permeability of pure water at 25 ° C. is F [L / (h · m 2 · bar)],
(A) (1/10000) · F ≦ dBmax ≦ (1/4000) · F and (b) 0.05 [μm] ≦ dBmax ≦ 1 [μm]
It is characterized by being.
(5) The content of hydrophilic polymer in the entire hollow fiber membrane is Ca [wt%], the content of hydrophilic polymer on the inner surface is Ci [wt%], and the content of hydrophilic polymer on the outer surface is Co [weight] %]
(A) 1 [wt%] ≦ Ca ≦ 10 [wt%] and (b) Ca ≦ Ci and Ca ≦ Co and (c) Co ≦ Ci
It is characterized by being.
(6) The hydrophobic polymer is a polysulfone polymer.
(7) The hydrophilic polymer is polyvinylpyrrolidone.
本発明の高分子多孔質中空糸膜は、上水(浄水)膜、飲料処理膜、血液処理膜など種々の水性流体処理膜に利用が可能であり、特に膜特性の保持性、洗浄による膜特性の回復性に優れることから、上水(浄水)膜、飲料処理膜などの工業用膜として好ましく利用され得る。 The polymer porous hollow fiber membrane of the present invention can be used for various aqueous fluid treatment membranes such as clean water (purified water) membranes, beverage treatment membranes, blood treatment membranes, and in particular, retention of membrane properties, membranes by washing Since it is excellent in the recoverability of characteristics, it can be preferably used as industrial membranes such as clean water (purified water) membranes and beverage treatment membranes.
以下、本発明を詳細に説明する。
本発明の高分子多孔質中空糸膜は、疎水性高分子と親水性高分子を含んでなることが好ましく、疎水性高分子としては、例えば、ポリエステル、ポリカーボネート、ポリウレタン、ポリアミド、ポリスルホン(以下PSfと略記する)、ポリエーテルスルホン(以下PESと略記する)、ポリメチルメタクリレート、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデンなどが例示される。中でも、下記の化1、化2で示される繰返し単位を有するPSf、PESなどのポリスルホン系高分子は高い透水性の膜を得るのに有利であり、好ましい。ここで言うポリスルホン系高分子は、官能基やアルキル基などの置換基を含んでいてもよく、炭化水素骨格の水素原子はハロゲンなど他の原子や置換基で置換されていてもよい。また、これらは単独で使用しても、2種以上を混合して使用してもよい。
Hereinafter, the present invention will be described in detail.
The polymer porous hollow fiber membrane of the present invention preferably comprises a hydrophobic polymer and a hydrophilic polymer. Examples of the hydrophobic polymer include polyester, polycarbonate, polyurethane, polyamide, polysulfone (hereinafter referred to as PSf). And a polyethersulfone (hereinafter abbreviated as PES), polymethyl methacrylate, polypropylene, polyethylene, polyvinylidene fluoride, and the like. Among them, polysulfone-based polymers such as PSf and PES having repeating units represented by the following chemical formulas 1 and 2 are advantageous and preferable for obtaining a highly water-permeable membrane. The polysulfone polymer referred to here may contain a substituent such as a functional group or an alkyl group, and the hydrogen atom of the hydrocarbon skeleton may be substituted with another atom such as halogen or a substituent. These may be used alone or in combination of two or more.
本発明における親水性高分子としては、例えば、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン(以下PVPと略記する)、カルボキシメチルセルロース、デンプンなどの高分子炭水化物などが例示される。中でも、ポリスルホンとの相溶性、水性流体処理膜としての使用実績から、PVPが好ましい。これらは単独で使用しても、2種以上を混合して使用してもよい。PVPの分子量としては重量平均分子量10000〜1500000のものが好ましく用いられ得る。具体的には、BASF社より市販されている分子量9000のもの(K17)、以下同様に45000(K30)、450000(K60)、900000(K80)、1200000(K90)を用いるのが好ましい。 Examples of the hydrophilic polymer in the present invention include polymer carbohydrates such as polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone (hereinafter abbreviated as PVP), carboxymethyl cellulose, and starch. Among these, PVP is preferable from the viewpoint of compatibility with polysulfone and its use as an aqueous fluid treatment membrane. These may be used alone or in admixture of two or more. As the molecular weight of PVP, those having a weight average molecular weight of 10,000 to 1500,000 can be preferably used. Specifically, it is preferable to use those having a molecular weight of 9000 (K17) commercially available from BASF, and 45,000 (K30), 450,000 (K60), 900000 (K80), and 1200000 (K90).
本発明の高分子多孔質中空糸膜は、内表面および外表面に緻密層を有し、内表面における孔径が外表面における孔径よりも小さく、内表面から外表面に向かって当初空孔率が増大し、少なくともひとつの極大部を通過後、再び外表面側で空孔率が減少する構造であることを特徴とする。本発明における孔径、空孔率は乾燥膜の電子顕微鏡写真をコンピュータに取り込み、画像解析ソフトにより解析して数値化することにより求められる。具体的には、画像解析ソフトに読み込んだ画像の総面積、空孔部分の面積の総和、空孔部分の個数から、次の式[1]で空孔率が、式[2]および[3]で孔径(平均孔径)が求められる。
空孔率[%]=100×(空孔部分の面積の総和/読み込んだ画像の総面積) [1]
空孔の面積(平均空孔面積)[μm2]=空孔部分の面積の総和/空孔部分の個数 [2]
孔径(平均孔径)[μm]=(平均空孔面積/π)1/2 [3]
The polymer porous hollow fiber membrane of the present invention has a dense layer on the inner surface and the outer surface, the pore diameter on the inner surface is smaller than the pore diameter on the outer surface, and the initial porosity from the inner surface toward the outer surface is The structure is characterized in that, after passing through at least one local maximum, the porosity decreases again on the outer surface side. The pore diameter and porosity in the present invention can be determined by taking an electron micrograph of the dried film into a computer, analyzing it with image analysis software, and digitizing it. Specifically, based on the total area of the image read into the image analysis software, the total area of the hole portions, and the number of the hole portions, the porosity is expressed by the following equations [1] and expressed by the equations [2] and [3]. ], The pore diameter (average pore diameter) is obtained.
Porosity [%] = 100 × (total area of holes / total area of read image) [1]
Hole area (average hole area) [μm 2 ] = total area of holes / number of holes [2]
Pore diameter (average pore diameter) [μm] = (average pore area / π) 1/2 [3]
本発明において、孔の形状は特に制限されないが、上記の式[3]でわかるように孔を円形と近似してその面積から孔径を算出しているので、スリット状、紡錘状、不定形状などの形状で円形から著しく異なっている場合には算出値と実態との乖離が大きくなってしまうので、楕円形または円形であることがより好ましい。 In the present invention, the shape of the hole is not particularly limited, but as can be seen from the above equation [3], the hole diameter is calculated from the area by approximating the hole as a circle, so that a slit shape, a spindle shape, an indefinite shape, etc. When the shape is significantly different from the circle, the difference between the calculated value and the actual state becomes large, and therefore, it is more preferably an ellipse or a circle.
内表面および外表面に緻密層を有し、内表面における孔径が外表面における孔径よりも小さいということは、内表面および外表面が分画特性と透過性を規定し、その分画特性と透過性への寄与は内表面側の緻密層が主、外表面側の緻密層が従であるということを意味する。水性流体を内部灌流でクロスフロー濾過により処理する場合、内表面では流体によるせん断力が生じるため、表面への被除去物質の積層を避けやすい。この際、表面に緻密層があることでよりその効果は高くなる。また、この緻密層の背後の部分は、大孔径、大空孔率のスポンジ状支持層となっているほうが、流体の抵抗が低くなり、高透過性を得られやすい点で有利である。すなわち、膜構造は、内表面−膜内部で密−疎となった構造が好ましい。これとは逆の疎−密構造では、膜厚部分への被除去物質目詰まりが進行してしまい、好ましくない。ところが、孔径には必然的に分布が存在するため、被除去物質がトラップされず、ある程度すり抜けてしまうのは避け難い。このため、内表面の薄い緻密層のみで分画特性が規定される膜では、分画特性の鈍化を来たしたり、また、鋭敏な分画特性を得るには中空糸膜の生産性が犠牲となってしまう。 Having a dense layer on the inner and outer surfaces, and the pore size on the inner surface being smaller than the pore size on the outer surface, the inner and outer surfaces define fractionation characteristics and permeability, and the fractionation characteristics and transmission The contribution to the property means that the dense layer on the inner surface side is the main and the dense layer on the outer surface side is the subordinate. When an aqueous fluid is processed by cross flow filtration with internal perfusion, shearing force is generated by the fluid on the inner surface, so that it is easy to avoid the deposition of a substance to be removed on the surface. At this time, the effect is further enhanced by the presence of the dense layer on the surface. In addition, it is advantageous that the portion behind the dense layer is a sponge-like support layer having a large pore diameter and a large porosity because the fluid resistance is low and high permeability can be easily obtained. That is, the film structure is preferably a structure in which the inner surface is dense and sparse within the film. A sparse-dense structure opposite to this is not preferable because clogging of the substance to be removed proceeds to the film thickness portion. However, since the pore diameter necessarily has a distribution, it is difficult to avoid that the substance to be removed is not trapped and slips through to some extent. For this reason, in membranes whose fractionation characteristics are defined only by a dense layer with a thin inner surface, the fractionation characteristics are slowed down, and the productivity of hollow fiber membranes is sacrificed to obtain sensitive fractionation characteristics. turn into.
本発明の高分子多孔質中空糸膜は、内外両表面に緻密層を持つため、内表面の緻密層をすり抜けた被除去物質は外表面の緻密層でトラップされる可能性があるため、より鋭敏な分画特性を得ることができる。 Since the porous polymer hollow fiber membrane of the present invention has dense layers on both the inner and outer surfaces, the substance to be removed that has passed through the dense layer on the inner surface may be trapped by the dense layer on the outer surface. Sensitive fractionation characteristics can be obtained.
ここで、膜壁部分において空孔率が極大となる部位は、膜壁の中央からやや内表面よりに存在することが好ましい。このような構造をとることで、内面近傍においては表面から内部方向への孔径分布の傾きが大きくなり、分画既定層が薄くなることで透過性の向上に寄与する。また、外面近傍では内部から表面方向への孔径分布の傾きが小さくなり、深層濾過の効果によって分画に寄与する。具体的には、中空糸膜の内表面をIS、中空糸膜の外表面をOS、中空糸膜の断面を内表面から外表面方向に8等分したときの各部分を内表面方向から順にCS1、CS2、CS3、CS4、CS5、CS6、CS7、CS8とし、各部位の孔径をそれぞれdIS、dOS、dCS1、dCS2、dCS3、dCS4、dCS5、dCS6、dCS7、dCS8、各部位の空孔率をpIS、pOS、pCS1、pCS2、pCS3、pCS4、pCS5、pCS6、pCS7、pCS8としたとき、
(a)dIS≦dCS1<dCS2≦dCS3≧dCS4>dCS5>dCS6>dCS7>dCS8≧dOS かつ
(b)pIS<pCS1≦pCS2<pCS3>pCS4≧pCS5≧pCS6≧pCS7≧pCS8>pOS
となることが好ましい。
Here, it is preferable that the portion where the porosity is maximum in the membrane wall portion is present slightly from the inner surface from the center of the membrane wall. By adopting such a structure, in the vicinity of the inner surface, the inclination of the pore size distribution from the surface to the inner direction becomes larger, and the fractionation predetermined layer becomes thinner, which contributes to the improvement of permeability. In addition, in the vicinity of the outer surface, the inclination of the pore size distribution from the inside to the surface direction becomes small, and contributes to fractionation by the effect of depth filtration. Specifically, the inner surface of the hollow fiber membrane is IS, the outer surface of the hollow fiber membrane is OS, and each section when the cross section of the hollow fiber membrane is divided into eight equal parts from the inner surface to the outer surface direction in order from the inner surface direction. CS1, CS2, CS3, CS4, CS5, CS6, CS7, CS8, and the hole diameter of each part is dIS, dOS, dCS1, dCS2, dCS3, dCS4, dCS5, dCS6, dCS7, dCS8, and the porosity of each part. When pIS, pOS, pCS1, pCS2, pCS3, pCS4, pCS5, pCS6, pCS7, pCS8,
(A) dIS ≦ dCS1 <dCS2 ≦ dCS3 ≧ dCS4>dCS5>dCS6>dCS7> dCS8 ≧ dOS and (b) pIS <pCS1 ≦ pCS2 <pCS3> pCS4 ≧ pCS5 ≧ pCS6 ≧ pCS7 ≧ pCS8> pOS
It is preferable that
本発明の高分子多孔質中空糸膜は、内表面が緻密層であることにより、クロスフロー濾過による内表面でのせん断力の効果も効いて、膜特性が保持されやすい。さらに、密−疎−密構造の内表面が緻密層であるため、逆洗時に被除去物質が外れやすく、膜特性の回復性に優れる。外面緻密層でも被除去物質のトラップは行われていると考えられるが、逆洗時には孔径小→孔径大方向に洗浄液が流れるので、前記トラップされた被除去物質が外れやすい。また、詳細な機構は不明だが、恐らくは密−疎−密の構造のため、膜壁内部での洗浄液の流れが非直線的にランダム化することで、洗浄効果がより高まる。 In the polymer porous hollow fiber membrane of the present invention, since the inner surface is a dense layer, the effect of shearing force on the inner surface by crossflow filtration is also effective, and the membrane characteristics are easily maintained. Furthermore, since the inner surface of the dense-sparse-dense structure is a dense layer, the substance to be removed is easily removed during backwashing, and the film characteristics are highly recoverable. It is considered that the substance to be removed is trapped even in the outer dense layer. However, since the cleaning liquid flows in the direction from the small pore diameter to the large pore diameter during backwashing, the trapped substance to be removed is likely to come off. Although the detailed mechanism is unknown, it is probably a dense-sparse-dense structure, and the flow of the cleaning liquid inside the membrane wall is randomized non-linearly, so that the cleaning effect is further enhanced.
本発明の高分子多孔質中空糸膜では、微粒子の通過試験によって得られる排除限界粒子径をφmax[μm]、内表面の孔径をdIS[μm]、φmaxを超えるdISの存在割合をDR[%]としたとき、2[%]≦DR≦20[%]であることが大きな特徴のひとつである。 In the polymer porous hollow fiber membrane of the present invention, the exclusion limit particle diameter obtained by the fine particle passage test is φmax [μm], the pore diameter of the inner surface is dIS [μm], and the presence ratio of dIS exceeding φmax is DR [%. ], It is one of the major features that 2 [%] ≦ DR ≦ 20 [%].
膜濾過による被除去物質の除去には、膜表面の孔径による表層効果と、膜厚部分による深層効果の双方による寄与があることは既に記したが、本発明のような特性を有するのは、分画特性には表層効果の寄与が比較的大きいことを意味する。膜壁の厚みによって分離するのが深層効果であるから、この効果に依存する分離機構では、膜内部への被除去物質の目詰まりが生じやすい。これは膜特性の経時的な低下を意味し、好ましい挙動とは言えない。また、表層効果で分離されている場合、被除去物質は膜表面で留まるため、逆洗により外れやすい。すなわち、深層効果よりも、表層効果を支配的にした分離機構の膜であることが、優れた膜特性の保持性、優れた膜特性の回復性を有する膜の設計につながる。本発明においては、上記、微粒子の通過試験によって得られる排除限界粒子径をφmax[μm]、内表面の孔径をdIS[μm]、φmaxを超えるdISの存在割合をDR[%]としたとき、2[%]≦DR≦20[%]とすることにより、膜特性の保持性、膜特性の回復性に優れた高分子多孔質膜を得ることに至った。ここで、DRが20%を超えると、深層濾過の寄与が大きくなりすぎ、膜特性の保持性、膜特性の回復性が低下して好ましくない。また、表面の細孔にはある程度の分布が不可避であり、これを極端に狭めるのは生産性の著しい低下を招き好ましくない。このため、DRが2%以上であることが好ましい。このような観点から、より好ましいDRの範囲は、2[%]≦DR≦15[%]であり、さらに好ましくは3[%]≦DR≦10[%]である。 Although it has already been described that the removal of the substance to be removed by membrane filtration has a contribution from both the surface layer effect due to the pore diameter of the membrane surface and the depth effect due to the film thickness portion, it has the characteristics as in the present invention. This means that the contribution of the surface effect to the fractionation characteristic is relatively large. Since it is the depth effect that separates according to the thickness of the membrane wall, the separation mechanism depending on this effect tends to clog the substance to be removed inside the membrane. This means a decrease in film characteristics over time, which is not a preferable behavior. Further, when separated by the surface layer effect, the substance to be removed stays on the surface of the film and is easily removed by backwashing. In other words, a film having a separation mechanism in which the surface layer effect is more dominant than the deep layer effect leads to the design of a film having excellent retention of membrane characteristics and excellent recovery of membrane characteristics. In the present invention, when the exclusion limit particle diameter obtained by the fine particle passage test is φmax [μm], the pore diameter of the inner surface is dIS [μm], and the presence ratio of dIS exceeding φmax is DR [%] By setting 2 [%] ≦ DR ≦ 20 [%], a polymer porous membrane excellent in retention of membrane characteristics and recoverability of membrane properties was obtained. Here, when DR exceeds 20%, the contribution of the depth filtration becomes too large, and the retention of the membrane characteristics and the recovery of the membrane characteristics are undesirably lowered. Further, a certain degree of distribution is inevitable in the pores on the surface, and it is not preferable to extremely narrow the pores because it causes a significant decrease in productivity. For this reason, it is preferable that DR is 2% or more. From such a viewpoint, a more preferable DR range is 2 [%] ≦ DR ≦ 15 [%], and further preferably 3 [%] ≦ DR ≦ 10 [%].
本発明の高分子多孔質中空糸膜の内表面における孔径は、0.001μm〜1μmであることが好ましく、0.01μm〜1μmがより好ましい。これよりも孔径が小さいと透過性が低いため好ましくなく、これよりも大きいと膜の強度が低下するため好ましくない。また、内表面における空孔率は5%〜30%であることが好ましく、7%〜25%であることがより好ましい。これよりも空孔率が小さいと透過性が低いため好ましくなく、これよりも大きいと膜の強度が低下するため好ましくない。本発明の高分子多孔質中空糸膜は膜壁部分に空孔率が極大となる部位が存在するのが特徴のひとつであるが、この極大部における孔径は、内表面、外表面での孔径よりも大きく、かつ、0.1μm〜10μmであることが好ましく、0.2μm〜8μmであることがより好ましい。これよりも孔径が小さいと膜構造の傾斜が緩やかとなりすぎてしまい、膜特性、膜特性の保持性、膜特性の回復性が低下してしまって好ましくない。これよりも大きいと膜の強度が低下するため好ましくない。また、極大部における空孔率は、内表面、外表面での空孔率よりも大きく、かつ、40%〜80%であることが好ましく、45%〜70%であることがより好ましい。これよりも空孔率が小さいと膜構造の傾斜が緩やかとなりすぎてしまい、膜特性、膜特性の保持性、膜特性の回復性が低下してしまって好ましくない。これよりも大きいと膜の強度が低下するため好ましくない。外表面における孔径は内表面における孔径よりも大きければ特に制限されないが、0.02〜2μmが好ましい。これよりも孔径が小さいと透過性が低いため好ましくなく、これよりも大きいと膜の強度が低下するため好ましくない。外表面における空孔率は特に制限されないが、5%〜30%であることが好ましく、7%〜25%であることがより好ましい。これよりも空孔率が小さいと透過性が低く、隣接する中空糸膜同士の固着がおこりやすいため好ましくなく、これよりも大きいと膜の強度が低下するため好ましくない。なお、ここでいう空孔率、孔径とはそれぞれ、前記式[1]で得られる空孔率、[2]および[3]で得られる平均孔径である。 The pore diameter on the inner surface of the polymer porous hollow fiber membrane of the present invention is preferably 0.001 μm to 1 μm, and more preferably 0.01 μm to 1 μm. If the pore size is smaller than this, the permeability is low, which is not preferable, and if the pore size is larger than this, the strength of the membrane is lowered, which is not preferable. The porosity on the inner surface is preferably 5% to 30%, more preferably 7% to 25%. If the porosity is lower than this, the permeability is low, which is not preferable, and if it is higher than this, the strength of the film is lowered, which is not preferable. The polymer porous hollow fiber membrane of the present invention is characterized in that there is a portion where the porosity is maximized in the membrane wall portion. The pore diameter at this maximum portion is the pore diameter at the inner surface and the outer surface. And is preferably 0.1 μm to 10 μm, and more preferably 0.2 μm to 8 μm. If the pore diameter is smaller than this, the inclination of the film structure becomes too gentle, and the film characteristics, the retention of the film characteristics, and the recoverability of the film characteristics deteriorate, which is not preferable. If it is larger than this, the strength of the film decreases, which is not preferable. Moreover, the porosity in the maximum portion is larger than the porosity on the inner surface and the outer surface, and is preferably 40% to 80%, and more preferably 45% to 70%. If the porosity is smaller than this, the inclination of the film structure becomes too gentle, and the film characteristics, the retention of the film characteristics, and the recoverability of the film characteristics deteriorate, which is not preferable. If it is larger than this, the strength of the film decreases, which is not preferable. The pore diameter on the outer surface is not particularly limited as long as it is larger than the pore diameter on the inner surface, but is preferably 0.02 to 2 μm. If the pore size is smaller than this, the permeability is low, which is not preferable. The porosity on the outer surface is not particularly limited, but is preferably 5% to 30%, and more preferably 7% to 25%. If the porosity is lower than this, the permeability is low, and the adjacent hollow fiber membranes are likely to stick to each other, which is not preferable, and if it is higher than this, the strength of the membrane is reduced, which is not preferable. Here, the porosity and the pore diameter are the porosity obtained by the above formula [1] and the average pore diameter obtained by [2] and [3], respectively.
本発明の高分子多孔質中空糸膜においては、バブルポイントによって得られる最大孔径をdBmax[μm]、25℃における純水の透過性をF[L/(h・m2・bar)]としたとき、
(a)(1/10000)・F≦dBmax≦(1/4000)・F かつ
(b)0.05[μm]≦dBmax≦1[μm]
の関係にあることが好ましい。ある透水性を実現するには、細孔の径と数が寄与していると考えられる。透水性を向上させるために細孔の数を大幅に増加させると、膜の強度が低下し、実際の使用時にリークや破断が生じてしまう可能性が高まる。また、細孔の径を大幅に増大させると、除去すべき物質が漏れ出てしまう可能性が高まる。dmaxが(1/10000)・Fよりも小さい場合には、Fを実現するために孔数が多くならなければならず、膜強度の低下を招き好ましくない。また、dmaxが(1/4000)・Fよりも大きい場合には、孔径が大きくなり、分離特性の悪化を招き好ましくない。(1/10000)・F≦dmax≦(1/4000)・Fの範囲にdmaxがあることによって、十分な膜強度と分離特性が実現される。
In the polymer porous hollow fiber membrane of the present invention, the maximum pore diameter obtained by the bubble point is dBmax [μm], and the permeability of pure water at 25 ° C. is F [L / (h · m 2 · bar)]. When
(A) (1/10000) · F ≦ dBmax ≦ (1/4000) · F and (b) 0.05 [μm] ≦ dBmax ≦ 1 [μm]
It is preferable that the relationship is In order to realize a certain water permeability, it is thought that the diameter and number of pores contribute. If the number of pores is greatly increased in order to improve water permeability, the strength of the membrane decreases, and the possibility of leakage or breakage during actual use increases. Moreover, if the diameter of the pores is greatly increased, the possibility that the substance to be removed leaks increases. When dmax is smaller than (1/10000) · F, the number of holes must be increased in order to realize F, which causes a decrease in film strength. On the other hand, if dmax is larger than (1/4000) · F, the pore diameter becomes large, which causes undesirable separation characteristics. When dmax is in the range of (1/10000) · F ≦ dmax ≦ (1/4000) · F, sufficient film strength and separation characteristics are realized.
長期の安定した透過性、分離特性を得るためには、膜への被処理液由来物質の非特異的な吸着を抑制することが必要である。水性流体を膜処理する場合、膜素材の親水性を高めることによってこのような非特異吸着は低下させることができるが、親水性高分子溶離の可能性もあり、効果的に極力抑えた量の導入が好ましい。本発明においては、中空糸膜全体における親水性高分子の含量をCa[重量%]、内表面における親水性高分子の含量をCi[重量%]、外表面における親水性高分子の含量をCo[重量%]としたとき、
(a) 1[重量%]≦Ca≦10[重量%] かつ
(b) Ca≦CiかつCa≦Co かつ
(c) Co≦Ci
であることが好ましい。これを満足することにより、全体の量は親水性付与に必要かつ十分な量が、被処理液と主に接触する膜表面に濃縮、特に分離特性を規定する内表面に濃縮されて存在することになり、好ましい。
In order to obtain long-term stable permeability and separation characteristics, it is necessary to suppress nonspecific adsorption of the substance derived from the liquid to be treated to the membrane. In the case of membrane treatment of an aqueous fluid, such non-specific adsorption can be reduced by increasing the hydrophilicity of the membrane material, but there is also the possibility of hydrophilic polymer elution, and the amount of effectively suppressed as much as possible. Introduction is preferred. In the present invention, the content of the hydrophilic polymer in the entire hollow fiber membrane is Ca [wt%], the content of the hydrophilic polymer on the inner surface is Ci [wt%], and the content of the hydrophilic polymer on the outer surface is Co. [Weight%]
(A) 1 [wt%] ≦ Ca ≦ 10 [wt%] and (b) Ca ≦ Ci and Ca ≦ Co and (c) Co ≦ Ci
It is preferable that By satisfying this, the total amount necessary and sufficient for imparting hydrophilicity should be concentrated on the surface of the membrane that is mainly in contact with the liquid to be treated, especially concentrated on the inner surface that defines the separation characteristics. It is preferable.
架橋などの処理によって構造の一部を改変した親水性高分子は、本来その親水性高分子が持つ特性と微妙に異なる挙動を示すことが考えられる。水性流体処理時の膜特性、およびその保持性を確保するために、本発明の高分子多孔質中空糸膜に含まれる親水性高分子は実質的に不溶化されていないことが好ましく、具体的には不溶成分の含有率が膜全体に対して2重量%未満であることが好ましい。ここで言う不溶成分の含有率は、成形、乾燥された中空糸膜を製膜原液に使用される溶媒に溶解した際に、溶解せずに残存する成分の比率を意味する。具体的には、以下の方法で算出される含有率を意味する。すなわち、中空糸膜10gを取り、100mlのジメチルホルムアミドに溶解した溶液を遠心分離機で1500rpm、10分間かけた後上澄みを除去する。残った不溶物に再度、100mlのジメチルホルムアミドを添加して、撹拌をおこなった後、同条件で遠心分離操作をおこない、上澄みを除去する。再び、100mlのジメチルホルムアミドを添加して撹拌し、同様の遠心分離操作をおこなった後、上澄みを除去する。残った固形物を蒸発乾固して、その量から不溶成分の含有率を求める。 It is conceivable that a hydrophilic polymer having a part of its structure modified by a treatment such as cross-linking exhibits a behavior slightly different from the characteristics inherent to the hydrophilic polymer. In order to ensure the membrane characteristics and retention during aqueous fluid treatment, the hydrophilic polymer contained in the polymer porous hollow fiber membrane of the present invention is preferably not substantially insolubilized, specifically The content of insoluble components is preferably less than 2% by weight based on the entire film. The content rate of the insoluble component mentioned here means the ratio of the component that remains without being dissolved when the hollow fiber membrane that has been molded and dried is dissolved in the solvent used for the membrane forming raw solution. Specifically, the content rate calculated by the following method is meant. That is, 10 g of a hollow fiber membrane is taken, a solution dissolved in 100 ml of dimethylformamide is applied at 1500 rpm for 10 minutes with a centrifuge, and then the supernatant is removed. 100 ml of dimethylformamide is again added to the remaining insoluble matter, and the mixture is stirred and then centrifuged under the same conditions to remove the supernatant. Again, 100 ml of dimethylformamide is added and stirred, the same centrifugation operation is performed, and then the supernatant is removed. The remaining solid is evaporated to dryness, and the content of insoluble components is determined from the amount.
本発明の高分子多孔質中空糸膜の径や膜厚は、使用される用途に応じて適宜選択すればよく、特に制限されないが、内径は100〜1500μmが好ましく、より好ましくは130〜1300μmである。また、膜厚は5〜600μmが好ましく、より好ましくは10〜500μmである。これよりも内径が小さいと、用途によっては被処理液中の成分により内腔の閉塞などが生じる可能性があり、好ましくない。これよりも内径が大きいと、中空糸膜のつぶれ、ゆがみなどを生じやすくなるため、好ましくない。膜厚がこれよりも小さいと、中空糸膜のつぶれ、ゆがみなどを生じやすくなるため、好ましくない。これよりも膜厚が大きいと、処理流体が膜壁を通過する際の抵抗が大きくなり、透過性が低下するため好ましくない。 The diameter and thickness of the polymeric porous hollow fiber membrane of the present invention may be appropriately selected according to the intended use, and are not particularly limited, but the inner diameter is preferably 100-1500 μm, more preferably 130-1300 μm. is there. The film thickness is preferably 5 to 600 μm, more preferably 10 to 500 μm. If the inner diameter is smaller than this, depending on the use, there is a possibility that the lumen is blocked by a component in the liquid to be treated, which is not preferable. If the inner diameter is larger than this, the hollow fiber membrane tends to be crushed and distorted, which is not preferable. If the film thickness is smaller than this, the hollow fiber membrane tends to be crushed, distorted, etc., which is not preferable. A film thickness larger than this is not preferable because the resistance when the processing fluid passes through the membrane wall increases and the permeability decreases.
本発明の高分子多孔質中空糸膜の製造方法はなんら限定されるものではないが、疎水性高分子、親水性高分子、溶媒、非溶媒を混合溶解し、脱泡したものを製膜溶液として芯液とともに二重管ノズルの環状部、中心部から同時に吐出し、空走部(エアギャップ部)を経て凝固浴中に導いて中空糸膜を形成し(乾湿式紡糸法)、水洗後巻き取り、乾燥する方法が例示される。 The method for producing the polymer porous hollow fiber membrane of the present invention is not limited in any way, but a membrane-forming solution is prepared by mixing and dissolving a hydrophobic polymer, a hydrophilic polymer, a solvent, and a non-solvent and degassing the solution. As the core liquid is discharged simultaneously from the annular part and center part of the double-tube nozzle, it is guided to the coagulation bath through the idle part (air gap part) to form a hollow fiber membrane (dry wet spinning method), and after washing with water The method of winding and drying is illustrated.
製膜溶液に使用される溶媒は、N−メチル−2−ピロリドン(以下NMPと略記する)、N,N−ジメチルホルムアミド(以下DMFと略記する)、N,N−ジメチルアセトアミド(以下DMAcと略記する)、ジメチルスルホキシド(以下DMSOと略記する)、ε−カプロラクタムなど、使用される疎水性高分子、親水性高分子の良溶媒であれば広く使用することが可能であるが、疎水性高分子としてPSf、PESなどのポリスルホン系高分子を使用する場合には、NMP、DMF、DMAcなどのアミド系アプロティック溶媒が好ましく、NMPが特に好ましい。なお、本発明においてアミド系溶媒とは、構造中にN−C(=O)のアミド結合を含有する溶媒を意味し、アプロティック溶媒とは、構造中において炭素原子以外のヘテロ原子に直接結合した水素原子を含有していない溶媒を意味する。 Solvents used in the film-forming solution are N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP), N, N-dimethylformamide (hereinafter abbreviated as DMF), N, N-dimethylacetamide (hereinafter abbreviated as DMAc). ), Dimethyl sulfoxide (hereinafter abbreviated as DMSO), ε-caprolactam, etc., can be widely used as long as they are good solvents for hydrophobic polymers and hydrophilic polymers. When a polysulfone polymer such as PSf or PES is used, an amide aprotic solvent such as NMP, DMF, or DMAc is preferable, and NMP is particularly preferable. In the present invention, the amide solvent means a solvent containing an N—C (═O) amide bond in the structure, and the aprotic solvent is directly bonded to a hetero atom other than a carbon atom in the structure. Means a solvent containing no hydrogen atom.
また、製膜溶液には高分子の非溶媒を添加することも可能である。使用される非溶媒としては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール(以下DEGと略記する)、トリエチレングリコール(以下TEGと略記する)、ポリエチレングリコール(以下PEGと略記する)、グリセリン、水などが例示されるが、疎水性高分子としてPSf、PESなどのポリスルホン系高分子、親水性高分子としてPVPを使用する場合には、DEG、TEG、PEGなどのエーテルポリオールが好ましく、TEGが特に好ましい。なお、本発明においてエーテルポリオールとは、構造中に少なくともひとつのエーテル結合と、ふたつ以上の水酸基を有する物質を意味する。 It is also possible to add a polymer non-solvent to the film forming solution. Examples of the non-solvent used include ethylene glycol, propylene glycol, diethylene glycol (hereinafter abbreviated as DEG), triethylene glycol (hereinafter abbreviated as TEG), polyethylene glycol (hereinafter abbreviated as PEG), glycerin, water, and the like. In the case of using a polysulfone polymer such as PSf and PES as the hydrophobic polymer and PVP as the hydrophilic polymer, ether polyols such as DEG, TEG, and PEG are preferable, and TEG is particularly preferable. . In the present invention, the ether polyol means a substance having at least one ether bond and two or more hydroxyl groups in the structure.
詳細な機構は不明であるが、これらの溶媒、非溶媒を使用して調製した製膜原液を使用することで、紡糸工程における相分離(凝固)が制御され、本発明の好ましい膜構造を形成するのに有利になると考えられる。なお、相分離の制御には、後述の芯液組成や凝固浴中の液(外部凝固液)の組成も重要になる。 Although the detailed mechanism is unknown, phase separation (coagulation) in the spinning process is controlled by using a membrane forming stock solution prepared using these solvents and non-solvents, and the preferred membrane structure of the present invention is formed. It is thought that it becomes advantageous to do. For controlling the phase separation, the composition of the core liquid described later and the composition of the liquid in the coagulation bath (external coagulation liquid) are also important.
製膜原液における疎水性高分子の濃度は、該原液からの製膜が可能であれば特に制限されないが、10〜35重量%が好ましく、10〜30重量%がより好ましい。高い透過性を得るには疎水性高分子の濃度は低いほうが好ましいが、過度に低いと強度の低下や、分画特性の悪化を招く可能性があるので、10〜25重量%が好ましい。親水性高分子の添加量は、中空糸膜に親水性を付与し、水性流体処理時の非特異吸着を抑制するのに十分な量であれば特に制限されないが、疎水性高分子に対する親水性高分子の比率として10〜30重量%が好ましく、10〜20重量%がより好ましい。親水性高分子の添加量がこれよりも少ないと、膜への親水性付与が不十分となり、膜特性の保持性が低下する可能性がある。また、これよりも多いと、親水性付与効果が飽和してしまい効率がよくなく、また、製膜原液の相分離(凝固)が過度に進行しやすくなり、本発明の好ましい膜構造を形成するのに不利となる。 The concentration of the hydrophobic polymer in the film-forming stock solution is not particularly limited as long as film formation from the stock solution is possible, but is preferably 10 to 35% by weight, and more preferably 10 to 30% by weight. In order to obtain high permeability, it is preferable that the concentration of the hydrophobic polymer is low. However, if the concentration is too low, strength may be lowered and fractionation characteristics may be deteriorated, so 10 to 25% by weight is preferable. The amount of hydrophilic polymer added is not particularly limited as long as it is sufficient to impart hydrophilicity to the hollow fiber membrane and suppress non-specific adsorption during aqueous fluid treatment. The polymer ratio is preferably 10 to 30% by weight, more preferably 10 to 20% by weight. If the amount of the hydrophilic polymer added is less than this, the imparting of hydrophilicity to the film will be insufficient, and the retention of film characteristics may be reduced. On the other hand, if the amount is larger than this, the hydrophilicity-imparting effect is saturated and the efficiency is not good, and the phase separation (coagulation) of the film-forming solution tends to proceed excessively, thereby forming the preferred membrane structure of the present invention. Disadvantageous.
製膜原液中における溶媒/非溶媒の比は、紡糸工程における相分離(凝固)の制御に重要な要因となる。具体的には、溶媒/非溶媒の含有量が重量比で30/70〜70/30であることが好ましく、35/65〜60/40であることがより好ましく、35/65〜55/45であることがさらに好ましい。溶媒の含有量がこれよりも少ないと凝固が進行しやすくなり、膜構造が緻密化しすぎて透過性が低下してしまう。また、溶媒含有量がこれよりも多いと相分離の進行が過度に抑制され、大孔径の空孔が生じやすくなり、分画特性や強度の低下を招く可能性が大きくなり好ましくない。 The ratio of solvent / non-solvent in the film-forming stock solution is an important factor for controlling phase separation (coagulation) in the spinning process. Specifically, the content of the solvent / non-solvent is preferably 30/70 to 70/30 by weight, more preferably 35/65 to 60/40, and 35/65 to 55/45. More preferably. If the content of the solvent is less than this, solidification tends to proceed, the membrane structure becomes too dense, and the permeability is lowered. On the other hand, if the solvent content is higher than this, the progress of the phase separation is excessively suppressed, and pores having a large pore diameter are likely to be generated, and the possibility of a decrease in fractionation characteristics and strength is increased.
製膜原液は、疎水性高分子、親水性高分子、溶媒、非溶媒を混合、攪拌して溶解することで得られる。この際、適宜温度をかけることで効率的に溶解を行うことができるが、過度の加熱は高分子の分解を招く危険があるので、好ましくは30〜100℃、より好ましくは40〜80℃である。また、親水性高分子としてPVPを使用する場合、PVPは空気中の酸素の影響により酸化分解を起こす傾向にあることから、紡糸溶液の溶解は不活性気体封入下で行うのが好ましい。不活性気体としては、窒素、アルゴンなどが上げられるが、窒素を用いるのが好ましい。このとき、溶解タンク内の残存酸素濃度は3%以下であることが好ましい。窒素封入圧力を高めてやれば溶解時間短縮が望めるが、高圧にするには設備費用が嵩む点と、作業安全性の面から大気圧以上2kgf/cm2以下が好ましい。 The film-forming stock solution is obtained by mixing a hydrophobic polymer, a hydrophilic polymer, a solvent, and a non-solvent, and dissolving them by stirring. At this time, the solution can be efficiently dissolved by appropriately applying the temperature, but excessive heating may cause decomposition of the polymer, so that it is preferably 30 to 100 ° C, more preferably 40 to 80 ° C. is there. When PVP is used as the hydrophilic polymer, PVP tends to undergo oxidative degradation due to the influence of oxygen in the air. Therefore, the spinning solution is preferably dissolved in an inert gas. Nitrogen, argon, etc. are raised as the inert gas, but nitrogen is preferably used. At this time, the residual oxygen concentration in the dissolution tank is preferably 3% or less. If the nitrogen filling pressure is increased, the melting time can be shortened. However, in order to increase the pressure, the equipment cost is increased, and from the viewpoint of work safety, atmospheric pressure and 2 kgf / cm 2 or less are preferable.
製膜を行うに際しては、中空糸膜への異物混入による膜構造の欠陥の生成を回避するために、異物を排除した製膜原液を使用することが好ましい。具体的には、異物の少ない原料を用いる、製膜原液を濾過し異物を低減する方法等が有効である。本発明では、中空糸膜束の膜厚よりも小さな孔径のフィルターを用いて製膜原液を濾過してからノズルより吐出するのが好ましく、具体的には均一溶解した紡糸溶液を溶解タンクからノズルまで導く間に設けられた孔径10〜50μmの焼結フィルターを通過させる。濾過処理は少なくとも1回行えば良いが、ろ過処理を何段階かにわけて行う場合は後段になるに従いフィルターの孔径を小さくしていくのが濾過効率およびフィルター寿命を延ばす意味で好ましい。フィルターの孔径は10〜45μmがより好ましく、10〜40μmがさらに好ましい。フィルター孔径が小さすぎると背圧が上昇し、生産性が落ちることがある。 When film formation is performed, it is preferable to use a film-forming stock solution from which foreign matters are excluded in order to avoid generation of defects in the membrane structure due to foreign matters mixed into the hollow fiber membrane. Specifically, a method of reducing a foreign material by filtering a film forming stock solution using a raw material with few foreign materials is effective. In the present invention, it is preferable to filter the membrane-forming stock solution using a filter having a pore diameter smaller than the film thickness of the hollow fiber membrane bundle and then discharge from the nozzle. Specifically, the uniformly dissolved spinning solution is discharged from the dissolution tank to the nozzle. Is passed through a sintered filter having a pore diameter of 10 to 50 μm. The filtration process may be performed at least once. However, when the filtration process is performed in several stages, it is preferable to reduce the pore size of the filter as the latter stage in order to extend the filtration efficiency and the filter life. The pore size of the filter is more preferably 10 to 45 μm, further preferably 10 to 40 μm. If the filter pore size is too small, the back pressure may increase and productivity may decrease.
また、製膜原液からは気泡を排除するのが欠陥のない中空糸膜を得るのに有効である。気泡混入を抑える方法としては、製膜原液の脱泡を行うのが有効である。製膜原液の粘度にもよるが、静置脱泡や減圧脱泡を用いることができる。この場合、溶解タンク内を常圧から−100〜−750mmHgに減圧した後、タンク内を密閉し30分〜180分間静置する。この操作を数回繰り返し脱泡処理を行う。減圧度が低すぎる場合には、脱泡の回数を増やす必要があるため処理に長時間を要することがある。また減圧度が高すぎると、系の密閉度を上げるためのコストが高くなることがある。トータルの処理時間は5分〜5時間とするのが好ましい。処理時間が長すぎると、減圧の影響により製膜原液の構成成分が分解、劣化することがある。処理時間が短すぎると脱泡の効果が不十分になることがある。 Moreover, it is effective to eliminate the bubbles from the membrane forming stock solution to obtain a hollow fiber membrane having no defects. As a method for suppressing the mixing of bubbles, it is effective to defoam the film forming stock solution. Depending on the viscosity of the film-forming stock solution, stationary defoaming or vacuum defoaming can be used. In this case, after the inside of the dissolution tank is reduced from normal pressure to −100 to −750 mmHg, the inside of the tank is sealed and allowed to stand for 30 minutes to 180 minutes. This operation is repeated several times to perform defoaming treatment. If the degree of vacuum is too low, the treatment may take a long time because it is necessary to increase the number of defoaming times. On the other hand, when the degree of vacuum is too high, the cost for increasing the degree of sealing of the system may increase. The total treatment time is preferably 5 minutes to 5 hours. If the treatment time is too long, the constituent components of the film-forming stock solution may be decomposed and deteriorated due to the effect of reduced pressure. If the treatment time is too short, the defoaming effect may be insufficient.
中空糸膜の製膜時に使用される芯液の組成は、製膜原液に含まれる溶媒および非溶媒と、水との混合液を使用することが好ましい。この際、芯液中に含まれる該溶媒と該非溶媒の比率は、製膜原液の溶媒/非溶媒比率と同一とすることが好ましい。製膜原液に使用されるのと同一の溶媒および非溶媒を、製膜原液中の比率と同一にして混合し、これに水を添加して希釈したものが好ましく用いられる。芯液中の水の含量は、10〜40重量%、好ましくは15〜30重量%である。水の含有量がこれよりも多いと凝固が進行しやすくなり、膜構造が緻密化しすぎて透過性が低下してしまう。また、水含有量がこれよりも少ないと相分離の進行が過度に抑制され、大孔径の空孔が生じやすくなり、分画特性や強度の低下を招く可能性が大きくなり好ましくない。 As the composition of the core liquid used at the time of forming the hollow fiber membrane, it is preferable to use a mixed solution of a solvent and a non-solvent contained in the membrane forming stock solution and water. At this time, the ratio of the solvent and the non-solvent contained in the core liquid is preferably the same as the solvent / non-solvent ratio of the film-forming stock solution. Preferably, the same solvent and non-solvent used in the film-forming stock solution are mixed in the same ratio as in the film-forming stock solution and then diluted by adding water. The content of water in the core liquid is 10 to 40% by weight, preferably 15 to 30% by weight. If the water content is higher than this, solidification tends to proceed, the membrane structure becomes too dense, and the permeability decreases. On the other hand, if the water content is less than this, the progress of the phase separation is excessively suppressed, and pores having a large pore diameter are likely to be generated, which increases the possibility of causing a decrease in fractionation characteristics and strength.
外部凝固液の組成は、製膜原液に含まれる溶媒および非溶媒と、水との混合液を使用することが好ましい。この際、芯液中に含まれる該溶媒と該非溶媒の比率は、製膜原液の溶媒/非溶媒比率と同一であることが好ましい。製膜原液に使用されるのと同一の溶媒および非溶媒を、製膜原液中の比率と同一にして混合し、これに水を添加して希釈したものが好ましく用いられる。外部凝固液中の水の含量は、30〜85重量%、好ましくは40〜80重量%である。水の含有量がこれよりも多いと凝固が進行しやすくなり、膜構造が緻密化しすぎて透過性が低下してしまう。また、水含有量がこれよりも少ないと相分離の進行が過度に抑制され、大孔径の空孔が生じやすくなり、分画特性や強度の低下を招く可能性が大きくなり好ましくない。また、外部凝固液の温度は、低いと凝固が進行しやすくなり、膜構造が緻密化しすぎて透過性が低下してしまう。また、高いと相分離の進行が過度に抑制され、大孔径の空孔が生じやすくなり、分画特性や強度の低下を招く可能性が大きくなってしまうので、30〜80℃、好ましくは40〜70℃である。 As the composition of the external coagulation liquid, it is preferable to use a mixed liquid of a solvent and a non-solvent contained in the film-forming stock solution and water. At this time, the ratio of the solvent and the non-solvent contained in the core liquid is preferably the same as the solvent / non-solvent ratio of the film-forming stock solution. Preferably, the same solvent and non-solvent used in the film-forming stock solution are mixed in the same ratio as in the film-forming stock solution and then diluted by adding water. The content of water in the external coagulation liquid is 30 to 85% by weight, preferably 40 to 80% by weight. If the water content is higher than this, solidification tends to proceed, the membrane structure becomes too dense, and the permeability decreases. On the other hand, if the water content is less than this, the progress of the phase separation is excessively suppressed, and pores having a large pore diameter are likely to be generated, which increases the possibility of causing a decrease in fractionation characteristics and strength. On the other hand, when the temperature of the external coagulation liquid is low, coagulation tends to proceed, the membrane structure becomes too dense, and the permeability is lowered. On the other hand, if it is high, the progress of the phase separation is excessively suppressed, and pores having a large pore diameter are likely to be generated, and the possibility of causing a decrease in fractionation characteristics and strength is increased. Therefore, 30 to 80 ° C., preferably 40 ~ 70 ° C.
本発明において、膜構造を制御する因子のひとつには、ノズルの温度が挙げられる。ノズルの温度は、低いと凝固が進行しやすくなり、膜構造が緻密化しすぎて透過性が低下してしまう。また、高いと相分離の進行が過度に抑制され、大孔径の空孔が生じやすくなり、分画特性や強度の低下を招く可能性が大きくなってしまうので、30〜90℃、好ましくは40〜80℃である。 In the present invention, one of the factors controlling the film structure is the temperature of the nozzle. If the temperature of the nozzle is low, solidification tends to proceed, the membrane structure becomes too dense, and the permeability decreases. On the other hand, if it is high, the progress of phase separation is excessively suppressed, and pores having a large pore diameter are likely to be generated, and the possibility of causing a decrease in fractionation characteristics and strength is increased. Therefore, 30 to 90 ° C., preferably 40 ~ 80 ° C.
本発明の高分子多孔質中空糸膜を得る好ましい製造方法としては、芯液とともに二重管ノズルから吐出した製膜原液を、エアギャップ部分を経て外部凝固液を満たした凝固浴中に導いて中空糸膜を形成する乾湿式紡糸法が例示されるが、ノズルから吐出された製膜原液の、エアギャップ部分での滞留時間が膜構造を制御する因子のひとつとなり得る。滞留時間が短いと、エアギャップ部分での相分離による凝集粒子の成長が抑制された状態で外部凝固液によりクエンチされるので、外表面が緻密化して透過性が低下してしまう。また、外表面の緻密化により、得られた中空糸膜が固着しやすい傾向となって好ましくない。滞留時間が長いと、大孔径の空孔が生じやすくなり、分画特性や強度の低下を招く可能性が大きくなってしまう。エアギャップにおける滞留時間の好ましい範囲は0.05〜4秒であり、0.1〜3秒がより好ましい。 As a preferred production method for obtaining the polymer porous hollow fiber membrane of the present invention, the membrane forming stock solution discharged from the double tube nozzle together with the core solution is introduced into a coagulation bath filled with an external coagulation solution through an air gap portion. The dry-wet spinning method for forming the hollow fiber membrane is exemplified, but the residence time of the membrane-forming stock solution discharged from the nozzle in the air gap portion can be one of the factors controlling the membrane structure. If the residence time is short, the outer coagulating liquid quenches the growth of aggregated particles due to phase separation in the air gap portion, so that the outer surface becomes dense and the permeability is lowered. In addition, the densification of the outer surface is not preferable because the obtained hollow fiber membrane tends to stick. When the residence time is long, pores having a large pore diameter are likely to be generated, and the possibility that the fractionation characteristics and the strength are reduced is increased. A preferable range of the residence time in the air gap is 0.05 to 4 seconds, and more preferably 0.1 to 3 seconds.
上記、比較的滞留時間の短いエアギャップ部分を経て、凝固浴に導かれた中空糸膜は、芯液からの凝固が進行しながら、外部からの凝固はある程度抑制された状態で、比較的凝固性のマイルドな外部凝固液と接触する。すなわち、凝固浴内に突入した直後の中空糸膜は未だ完全に構造が決定しない「生きた」状態にあるが、この「生きた」中空糸膜が凝固浴内で完全に凝固し、構造が決定されて引き上げられる。前述のとおり、外部凝固液の凝固性は比較的マイルドであるので、凝固浴内での滞留時間は完全に凝固が完了するまで十分にとる必要がある。具体的には、5〜20秒が好ましく、10〜20秒がより好ましい。凝固浴内での滞留時間がこれよりも短いと凝固が不十分となり、これよりも長いと製膜速度の低下や凝固浴の大型化が必要となりいずれも好ましくない。 The hollow fiber membrane guided to the coagulation bath through the air gap portion having a relatively short residence time is relatively coagulated in a state in which coagulation from the core liquid proceeds while coagulation from the outside is suppressed to some extent. Contact with a mild external clotting solution. That is, the hollow fiber membrane immediately after entering the coagulation bath is in a “live” state in which the structure is not yet completely determined, but this “live” hollow fiber membrane is completely solidified in the coagulation bath, and the structure is Determined and raised. As described above, since the coagulability of the external coagulation liquid is relatively mild, the residence time in the coagulation bath needs to be sufficient until the coagulation is completely completed. Specifically, 5 to 20 seconds is preferable, and 10 to 20 seconds is more preferable. If the residence time in the coagulation bath is shorter than this, coagulation is insufficient, and if it is longer than this, it is not preferable because it is necessary to decrease the film forming speed or enlarge the coagulation bath.
本発明の高分子多孔質膜は、内表面および外表面に緻密層を有し、内表面における孔径が外表面における孔径よりも小さく、内表面から外表面に向かって当初空孔率が増大し、少なくともひとつの極大部を通過後、再び外表面側で空孔率が減少する構造を持つのが大きな特徴であるが、このような構造を実現するには、上記の製膜原液を使用し、上記の紡糸条件によって中空糸膜を得る方法を採るのが好適である。内表面から外表面に向かって密−疎−密の非対称構造を構成させるには、中空糸膜の内側からの凝固(主として芯液による相分離・凝固)と外側からの凝固(主としてエアギャップ、外部凝固液での相分離・凝固)のバランスをとり、両者を拮抗させることで内外両表面から膜壁内部に向かっての凝固を制御しなければならない。そのための有効な制御手段が、上記芯液の組成、外部凝固液の組成・温度、エアギャップ部分での滞留時間、凝固浴内での滞留時間である。これらを上記の範囲に設定することによって、本発明の特徴的な膜構造を得ることができる。 The porous polymer membrane of the present invention has a dense layer on the inner surface and the outer surface, the pore diameter on the inner surface is smaller than the pore diameter on the outer surface, and the initial porosity increases from the inner surface toward the outer surface. The main feature is that after passing through at least one local maximum, the porosity decreases again on the outer surface side, but in order to realize such a structure, the above film forming stock solution is used. It is preferable to adopt a method for obtaining a hollow fiber membrane under the above spinning conditions. To form a dense-sparse-dense asymmetric structure from the inner surface to the outer surface, solidification from the inside of the hollow fiber membrane (mainly phase separation / coagulation by the core liquid) and solidification from the outside (mainly the air gap, It is necessary to control the coagulation from the inner and outer surfaces toward the inside of the membrane wall by balancing the phases and coagulating them. Effective control means for that purpose are the composition of the core liquid, the composition / temperature of the external coagulation liquid, the residence time in the air gap portion, and the residence time in the coagulation bath. By setting these within the above range, the characteristic film structure of the present invention can be obtained.
本発明の高分子多孔質中空糸膜を得るには、内外両表面からの凝固進行を微妙に制御する必要があるが、その際に注意しなければならない点として、中空糸膜の凝固浴中における屈曲がある。乾湿式紡糸においては、通常、下向きに配列したノズルから製膜原液を重力方向に吐出、エアギャップ部分を経て凝固浴に導き、凝固浴内で進行方向を上向きに変更して凝固浴から引き上げ、水洗浴での洗浄を経て巻き取るのが一般的である。本発明の高分子多孔質中空糸膜は、凝固浴内突入直後には完全に構造が決定しない「生きた」状態にあるので、凝固浴内での方向転換が急激に行われると、膜構造の欠陥や破壊を招くため好ましくない。具体的には、方向転換時の曲率半径が20〜300mm、より好ましくは30〜200mmとするのが好ましい。また、多点ガイドを使用し、複数のポイントで徐々に方向を転換する方法も好ましい。 In order to obtain the polymer porous hollow fiber membrane of the present invention, it is necessary to delicately control the progress of solidification from both the inner and outer surfaces. There is a bend. In dry-wet spinning, the film-forming stock solution is usually discharged from the nozzles arranged downward in the direction of gravity, led to the coagulation bath through the air gap part, the direction of travel is changed upward in the coagulation bath, and pulled up from the coagulation bath. It is common to wind up after washing in a water bath. Since the polymer porous hollow fiber membrane of the present invention is in a “live” state in which the structure is not completely determined immediately after entering the coagulation bath, the membrane structure is changed when the direction is rapidly changed in the coagulation bath. This is not preferable because it causes defects and destruction. Specifically, the radius of curvature at the time of changing the direction is preferably 20 to 300 mm, more preferably 30 to 200 mm. Also preferred is a method of gradually changing direction at a plurality of points using a multipoint guide.
本発明の高分子多孔質中空糸膜の製造において、完全に中空糸膜構造が固定される以前に実質的に延伸をかけないことが好ましい。実質的に延伸を掛けないとは、ノズルから吐出された紡糸溶液に弛みや過度の緊張が生じないように、紡糸工程中のローラー速度をコントロールすることを意味する。吐出線速度/凝固浴第一ローラー速度比(ドラフト比)は0.7〜1.8が好ましい範囲である。前記比が0.7未満では、走行する中空糸膜に弛みが生じ生産性の低下につながることがあるので、ドラフト比は0.8以上がより好ましく、0.9以上がさらに好ましく、0.95以上がよりさらに好ましい。1.8を超える場合には中空糸膜の緻密層が裂けるなど膜構造が破壊されることがある。そのため、ドラフト比は、より好ましくは1.7以下、さらに好ましくは1.6以下、よりさらに好ましくは1.5以下、特に好ましくは1.4以下である。ドラフト比をこの範囲に調整することにより細孔の変形や破壊を防ぐことができ、膜性能の保持性やシャープな分画特性を発現することが可能となる。 In the production of the polymer porous hollow fiber membrane of the present invention, it is preferable that stretching is not substantially applied before the hollow fiber membrane structure is completely fixed. The fact that the film is not substantially stretched means that the roller speed during the spinning process is controlled so that the spinning solution discharged from the nozzle is not loosened or excessively tensioned. The discharge linear speed / coagulation bath first roller speed ratio (draft ratio) is preferably in the range of 0.7 to 1.8. If the ratio is less than 0.7, the traveling hollow fiber membrane may be loosened, leading to a decrease in productivity. Therefore, the draft ratio is more preferably 0.8 or more, more preferably 0.9 or more, and More preferably 95 or more. If it exceeds 1.8, the membrane structure may be destroyed, for example, the dense layer of the hollow fiber membrane is torn. Therefore, the draft ratio is more preferably 1.7 or less, still more preferably 1.6 or less, still more preferably 1.5 or less, and particularly preferably 1.4 or less. By adjusting the draft ratio within this range, it is possible to prevent the deformation and destruction of the pores, and to maintain the membrane performance and to exhibit sharp fractionation characteristics.
製膜速度(紡速)については、欠陥のない中空糸膜が得られ、生産性が確保できれば特に制限されないが、好ましくは、5〜40m/min、より好ましくは7〜20m/minである。これよりも紡速が低いと、生産性が低下して好ましくない。これよりも紡速が高いと、上記の紡糸条件、特にエアギャップ部分での滞留時間や、凝固浴内での滞留時間を確保するのが困難となり、好ましくない。 The film forming speed (spinning speed) is not particularly limited as long as a hollow fiber membrane having no defect is obtained and productivity can be secured, but is preferably 5 to 40 m / min, more preferably 7 to 20 m / min. If the spinning speed is lower than this, productivity is lowered, which is not preferable. If the spinning speed is higher than this, it is difficult to secure the above spinning conditions, particularly the residence time in the air gap portion and the residence time in the coagulation bath, which is not preferable.
製膜後、水洗浴での洗浄を経て巻き取ることで得られた中空糸膜は、使用中や洗浄操作による膜特性の変化を抑制し、膜特性の保持性・安定性、膜特性の回復性を確保するために、加熱処理を施すのが好ましい。この加熱処理を熱水への浸漬処理とすることで、同時に、中空糸膜に残存する溶媒や非溶媒などを洗浄・除去する効果も期待できる。熱水の温度は、60〜100℃、より好ましくは70〜90℃、処理時間は30〜120min、より好ましくは40〜90min、さらに好ましくは50〜80minである。温度がこれよりも低く、処理時間がこれよりも短いと、中空糸膜にかかる熱履歴が不十分となり膜特性の保持性・安定性が低下する可能性があり、また、洗浄効果が不十分となり溶出物が増加する可能性が高くなり好ましくない。温度がこれよりも高く、処理時間がこれよりも長いと、水が沸騰してしまったり、処理に長時間を要するため生産性が低下し、好ましくない。熱水に対する中空糸膜の浴比は、中空糸膜が十分に浸る量の熱水を使用すれば、特に制限されないが、あまり多量の熱水を使用するのは、生産性が低下し好ましくない。 The hollow fiber membrane obtained by rolling after washing in a washing bath after film formation suppresses changes in membrane properties during use and washing operations, and retains and stabilizes membrane properties and restores membrane properties. In order to ensure the property, it is preferable to perform heat treatment. By making this heat treatment an immersion treatment in hot water, the effect of washing and removing the solvent, non-solvent, etc. remaining in the hollow fiber membrane can be expected at the same time. The temperature of the hot water is 60 to 100 ° C., more preferably 70 to 90 ° C., and the treatment time is 30 to 120 min, more preferably 40 to 90 min, and still more preferably 50 to 80 min. If the temperature is lower than this and the treatment time is shorter than this, the heat history applied to the hollow fiber membrane may be insufficient, and the retention and stability of the membrane characteristics may be lowered, and the cleaning effect is insufficient. Therefore, there is a high possibility that the amount of eluate increases, which is not preferable. If the temperature is higher than this and the treatment time is longer than this, water will boil or the treatment will take a long time, resulting in decreased productivity. The bath ratio of the hollow fiber membrane to the hot water is not particularly limited as long as the hollow fiber membrane is sufficiently soaked in hot water, but using a large amount of hot water is not preferable because the productivity decreases. .
製膜、加熱処理を完了した中空糸膜は、乾燥することによって、最終的に完成する。乾燥方法は、風乾、減圧乾燥、熱風乾燥など通常利用される乾燥方法が広く利用できる。最近、血液処理膜の乾燥などで利用されているマイクロ波乾燥なども利用可能であるが、簡便な装置で効率的に大量の中空糸膜を乾燥できる点で、熱風乾燥が好ましく利用され得る。乾燥に先立って、上記の加熱処理を施しておくことで、熱風乾燥による膜特性の変化も抑制することができる。熱風乾燥時の熱風温度は特に制限されないが、好ましくは40〜100℃、より好ましくは50〜80℃である。これよりも温度が低いと乾燥までに長時間を要し、これよりも温度が高いと熱風生成のためのエネルギーコストが高くなり、いずれも好ましくない。熱風の温度は、上記の熱水加熱処理の温度よりも低いことが好ましい。 The hollow fiber membrane that has been subjected to film formation and heat treatment is finally completed by drying. As a drying method, commonly used drying methods such as air drying, reduced pressure drying, and hot air drying can be widely used. Recently, microwave drying, which has been used for drying blood treatment membranes, can be used. However, hot air drying can be preferably used in that a large amount of hollow fiber membranes can be efficiently dried with a simple apparatus. By performing the above heat treatment prior to drying, changes in film properties due to hot air drying can also be suppressed. The hot air temperature at the time of hot air drying is not particularly limited, but is preferably 40 to 100 ° C, more preferably 50 to 80 ° C. If the temperature is lower than this, it takes a long time to dry, and if the temperature is higher than this, the energy cost for generating hot air becomes high, which is not preferable. The temperature of the hot air is preferably lower than the temperature of the hot water heat treatment.
以下、本発明の有効性を実施例を挙げて説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例における評価方法は以下の通りである。 Hereinafter, the effectiveness of the present invention will be described with reference to examples, but the present invention is not limited thereto. In addition, the evaluation methods in the following examples are as follows.
1.中空糸膜の電子顕微鏡による構造観察・解析
乾燥した中空糸膜を切断し、内表面、外表面、断面の走査型電子顕微鏡(SEM)写真を、倍率10000倍または2000倍で撮影した。SEM写真を466dpiの解像度でコンピュータに取り込み、画像解析ソフトを使用して解析を行い、空孔率と平均細孔面積、細孔分布を求めた。具体的には、まず、取り込んだ画像を二値化処理し、空孔部が黒、構成ポリマー部分が白となった画像を得た。この画像を解析することにより、空孔部分の個数、各空孔部分の面積、空孔部分の面積の総和を得た。読み込んだ画像の総面積と、空孔項部分の面積の総和から、次式[1]により空孔率を算出した。
空孔率[%]=100×(空孔部分の面積の総和/読み込んだ画像の総面積) [1]
空孔部分の面積の総和と、空孔部分の個数から平均空孔面積を算出し、さらに空孔の形状を円と近似して、平均空孔面積から平均孔径を算出した。(次式[2]および[3])
空孔の面積(平均空孔面積)[μm2]=空孔部分の面積の総和/空孔部分の個数 [2]
孔径(平均孔径)[μm]=(平均空孔面積/π)1/2 [3]
さらに、各空孔部分の面積から上記同様、空孔の形状を円と近似した場合の孔径を算出し、その結果を表計算ソフトに取り込んでヒストグラムを作成して、細孔分布としてまとめた。
1. Structure observation and analysis of hollow fiber membrane by electron microscope The dried hollow fiber membrane was cut, and a scanning electron microscope (SEM) photograph of the inner surface, outer surface, and cross section was taken at a magnification of 10,000 or 2000 times. SEM photographs were taken into a computer at a resolution of 466 dpi and analyzed using image analysis software to determine porosity, average pore area, and pore distribution. Specifically, first, the captured image was binarized to obtain an image in which the hole portion was black and the constituent polymer portion was white. By analyzing this image, the total number of holes, the area of each hole, and the area of the holes was obtained. From the total area of the read image and the total area of the pore term portion, the porosity was calculated by the following equation [1].
Porosity [%] = 100 × (total area of holes / total area of read image) [1]
The average hole area was calculated from the total area of the hole portions and the number of the hole portions, and the shape of the holes was approximated to a circle, and the average hole diameter was calculated from the average hole area. (Formulas [2] and [3])
Hole area (average hole area) [μm 2 ] = total area of holes / number of holes [2]
Pore diameter (average pore diameter) [μm] = (average pore area / π) 1/2 [3]
Further, as described above, the hole diameter when the hole shape was approximated to a circle was calculated from the area of each hole portion, and the result was taken into spreadsheet software to create a histogram and summarize it as a pore distribution.
2.ミニモジュールの作製
中空糸膜を約30cmの長さに切断し、両末端をパラフィンフィルムで束ねて中空糸膜束を作製した。この中空糸膜束の両端をパイプ(スリーブ)に挿入し、ウレタンポッティング剤で固めた。端部を切断して、両末端がスリーブで固定された両端開口ミニモジュールを得た。中空糸膜の本数は、内面の表面積が50〜100cm2になるよう適宜設定した。
2. Production of Mini Module A hollow fiber membrane was cut into a length of about 30 cm and both ends were bundled with a paraffin film to produce a hollow fiber membrane bundle. Both ends of this hollow fiber membrane bundle were inserted into a pipe (sleeve) and hardened with a urethane potting agent. The ends were cut to obtain a double-end open mini-module with both ends fixed by sleeves. The number of hollow fiber membranes was appropriately set so that the surface area of the inner surface was 50 to 100 cm 2 .
3.モジュールの作製
中空糸膜を約30cmの長さに切断し、ポリエチレンフィルムで巻いて中空糸膜束とした。この中空糸膜束を円筒型のポリカーボネート製モジュールケースに挿入し、両末端をウレタンポッティング剤で固めた。端部を切断して、両末端が開口したモジュールを得た。中空糸膜の本数は、内面の表面積が約200cm2となるよう適宜設定した。なお、円筒状のモジュールケースは円筒面2箇所にポートを設け、中空糸膜の外面を流体が灌流できるようにし、両末端にはエンドキャップを装着して、中空糸膜の内面を流体が灌流できるようにした。
3. Production of Module A hollow fiber membrane was cut into a length of about 30 cm and wound with a polyethylene film to obtain a hollow fiber membrane bundle. This hollow fiber membrane bundle was inserted into a cylindrical polycarbonate module case, and both ends were hardened with a urethane potting agent. The edge part was cut | disconnected and the module which both ends opened was obtained. The number of hollow fiber membranes was appropriately set so that the surface area of the inner surface was about 200 cm 2 . The cylindrical module case is provided with ports at two locations on the cylindrical surface so that fluid can perfuse the outer surface of the hollow fiber membrane. End caps are attached to both ends, and the fluid perfuses the inner surface of the hollow fiber membrane. I was able to do it.
4.ループ型ミニモジュールの作製
中空糸膜を約40cmの長さに切断し、ループ型に束ね、端部をパラフィンフィルムで固定した。このループ型中空糸膜束の端部をパイプ(スリーブ)に挿入し、ウレタンポッティング剤で固めた。端部を切断して、端部がスリーブで固定されたループ型ミニモジュールを得た。中空糸膜の本数は、内面の表面積が20〜50cm2になるよう適宜設定した。
4). Production of Loop Type Mini-Module A hollow fiber membrane was cut to a length of about 40 cm, bundled into a loop type, and the end was fixed with a paraffin film. The end of this loop type hollow fiber membrane bundle was inserted into a pipe (sleeve) and hardened with a urethane potting agent. The end portion was cut to obtain a loop type mini module having the end portion fixed by a sleeve. The number of hollow fiber membranes was appropriately set so that the surface area of the inner surface was 20 to 50 cm 2 .
5.膜面積の計算
モジュールの膜面積は中空糸膜の内面側の径を基準として求めた。次式[4]によってモジュールの膜面積が計算できる。
A=n×π×d×L [4]
ここで、nは中空糸膜の本数、πは円周率、dは中空糸膜の内径[m]、Lはモジュールにおける中空糸膜の有効長[m]である。
5. Calculation of membrane area The membrane area of the module was determined based on the inner diameter of the hollow fiber membrane. The membrane area of the module can be calculated by the following equation [4].
A = n × π × d × L [4]
Here, n is the number of hollow fiber membranes, π is the circumference, d is the inner diameter [m] of the hollow fiber membrane, and L is the effective length [m] of the hollow fiber membrane in the module.
6.微粒子による排除限界粒子径の測定
単分散ポリスチレンラテックス懸濁液(原液濃度は10w/v%)を、0.1容量%のTween20水溶液で希釈し、0.01w/v%となるよう調整した(PSt−Tween液と呼称する)。ミニモジュールの片方の端部(導入側)から中空糸膜の内腔に、このPSt−Tween液を導入し、もう一方の端部(流出側)からPSt−Tween液が漏れ出たところで流出側の端部を封止し、引き続き導入側からPSt−Tween液の導入を継続して、中空糸膜によるデッドエンド濾過を行った。同様に、ポリスチレンラテックス懸濁液を含まない0.1容量%のTween20水溶液の濾過を行った。250nmにおける液の吸光度を測定し、次式[5]によってポリスチレンラテックスの除去率Rjを算出した。
Rj[%]=100×(ApPSt−ApT)/(AfPSt−AfT) [5]
ただし、ApPStはPSt−Tween液の濾液の250nmにおける吸光度、ApTは0.1容量%Tween20水溶液の濾液の250nmにおける吸光度、AfPStはミニモジュールに導入されたPSt−Tween液の250nmにおける吸光度、AfTは0.1容量%Tween20水溶液の250nmにおける吸光度を示す。単分散ポリスチレンラテックスの粒径を変えて上記Rjを求め、Rj≧95%となる最小の粒径を排除限界粒子径とした。
6). Measurement of Exclusion Limit Particle Size by Fine Particles A monodisperse polystyrene latex suspension (stock solution concentration: 10 w / v%) was diluted with 0.1 vol% Tween 20 aqueous solution and adjusted to 0.01 w / v% ( (Referred to as PSt-Tween solution). The PSt-Tween solution is introduced into the hollow fiber membrane lumen from one end (introduction side) of the mini-module, and the PSt-Tween solution leaks out from the other end (outflow side). The end of each was sealed, and the PSt-Tween solution was continuously introduced from the introduction side, and dead-end filtration with a hollow fiber membrane was performed. Similarly, filtration of 0.1 volume% Tween20 aqueous solution which does not contain a polystyrene latex suspension was performed. The absorbance of the liquid at 250 nm was measured, and the polystyrene latex removal rate Rj was calculated by the following equation [5].
Rj [%] = 100 × (ApPSt−ApT) / (AfPSt−AfT) [5]
However, ApPSt is the absorbance at 250 nm of the filtrate of the PSt-Tween solution, ApT is the absorbance at 250 nm of the filtrate of the 0.1 volume% Tween20 aqueous solution, AfPSt is the absorbance at 250 nm of the PSt-Tween solution introduced into the minimodule, and AfT is The light absorbency in 250 nm of 0.1 volume% Tween20 aqueous solution is shown. The Rj was determined by changing the particle size of the monodisperse polystyrene latex, and the minimum particle size satisfying Rj ≧ 95% was defined as the exclusion limit particle size.
7.バブルポイントの測定・最大孔径の算出
ループ型ミニモジュール全体を十分な量の2−プロパノール(以下iPAと略記する)に1時間以上浸漬して、内腔、膜壁部分にiPAを行き渡らせた。ループ型モジュールの中空糸膜部分全体がiPAに浸った状態で、スリーブを圧力計を装着して加圧圧力がモニターできるようにした窒素ラインに接続し、1分間に1barの割合で加圧した。中空糸膜の膜壁部分からコンスタントに気泡が出始めたポイントをバブルポイントP[bar]として記録した。1種のサンプルにつき、3回の測定を実施し、バブルポイントの測定値の平均値をそのサンプルとのバブルポイントとした。さらに、次式[6]により、iPAで測定したバブルポイント(P[bar])から算出される最大孔径dBmaxを得た。
dBmax[μm]=0.0286×22.9/P [6]
7). Bubble Point Measurement / Maximum Pore Diameter Calculation The entire loop mini-module was immersed in a sufficient amount of 2-propanol (hereinafter abbreviated as iPA) for 1 hour or longer to spread iPA over the lumen and membrane wall. With the entire hollow fiber membrane portion of the loop type module immersed in iPA, the sleeve was connected to a nitrogen line fitted with a pressure gauge so that the pressurized pressure could be monitored, and pressurized at a rate of 1 bar per minute. . The point at which bubbles started to emerge constantly from the membrane wall portion of the hollow fiber membrane was recorded as the bubble point P [bar]. Three types of measurement were performed for one type of sample, and the average value of the measured values of bubble points was defined as the bubble point with the sample. Furthermore, the maximum pore diameter dBmax calculated from the bubble point (P [bar]) measured by iPA was obtained from the following equation [6].
dBmax [μm] = 0.0286 × 22.9 / P [6]
8.透水率(純水Fluxと略記する)の測定
モジュールのエンドキャップ2箇所(それぞれ内面流入口、内面流出口と呼称する)に回路を接続し、モジュールへの純水の流入圧とモジュールからの純水の流出圧を測定できるようにした。中空糸膜の内外両面に純水を満たした。内面流入口から純水をモジュールに導入し、内面流出口に接続した回路(圧力測定点よりも下流)を鉗子で封じて流れを止め、モジュールの内面流入口から入った純水を全濾過するようにした。25℃に保温した純水を加圧タンクに入れ、レギュレーターにより圧力を制御しながら、25℃恒温槽で保温したモジュールへ純水を送り、透析液流出口から流出した濾液量をメスシリンダーで測定した。膜間圧力差(TMP)は
TMP=(Pi+Po)/2 [7]
とした。ここで、Piはモジュールの内面流入口側圧力、Poはモジュールの内面流出口側圧力である。TMPを4点変化させ濾過流量を測定し、それらの関係の傾きから純水Flux[L/h/bar]を算出した。このときTMPと濾過流量の相関係数は0.999以上でなくてはならないとした。中空糸膜の純水Fluxは膜面積とモジュールの透水率から算出した。
純水Flux=純水Flux(M)/A [8]
ここで純水Fluxは中空糸膜の透水率[L/m2/h/bar]、純水Flux(M)はモジュールの透水率[L/h/bar]、Aはモジュールの膜面積[m2]である。
8). Measurement of water permeability (abbreviated as pure water flux) A circuit is connected to two end caps of the module (referred to as the inner surface inlet and the inner surface outlet, respectively), the inflow pressure of pure water into the module and the pure water from the module. The water outflow pressure can be measured. Both the inner and outer surfaces of the hollow fiber membrane were filled with pure water. Pure water is introduced into the module from the inner surface inlet, the circuit connected to the inner surface outlet (downstream from the pressure measurement point) is sealed with forceps to stop the flow, and the pure water that has entered from the inner surface inlet of the module is completely filtered. I did it. Purified water kept at 25 ° C is put into a pressurized tank, pressure is controlled by a regulator, pure water is sent to the module kept at 25 ° C constant temperature bath, and the amount of filtrate flowing out from the dialysate outlet is measured with a graduated cylinder. did. The transmembrane pressure difference (TMP) is TMP = (Pi + Po) / 2 [7]
It was. Here, Pi is the inner surface inlet side pressure of the module, and Po is the inner surface outlet side pressure of the module. The TMP was changed at four points, the filtration flow rate was measured, and the pure water flux [L / h / bar] was calculated from the slope of the relationship. At this time, the correlation coefficient between TMP and the filtration flow rate must be 0.999 or more. The pure water flux of the hollow fiber membrane was calculated from the membrane area and the water permeability of the module.
Pure water flux = pure water flux (M) / A [8]
Here, pure water Flux is the water permeability of the hollow fiber membrane [L / m 2 / h / bar], pure water Flux (M) is the water permeability of the module [L / h / bar], and A is the membrane area of the module [m. 2 ].
9.中空糸膜表面におけるPVP含量の測定
中空糸膜1本を両面テープ上に貼り付け、ナイフで開腹した後展開して内表面を露出させた。これを試料台に貼り付けてElectron Spectroscopy for Chemical Analysis(ESCA)での測定を行った。なお、上記の操作は中空糸膜内表面の測定を実施する際のものであるが、外表面の測定時には、開腹・内表面露出は不要であり、単に両面テープで中空糸膜を試料台に貼り付けて測定した。測定条件は次に示すとおりであった。
測定装置:アルバック・ファイ ESCA5800
励起X線:MgKα線
X線出力:14kV、25mA
光電子脱出角度:45°
分析径:400μmφ
パスエネルギー:29.35eV
分解能:0.125eV/step
真空度:約10-7Pa以下
窒素の測定値(N)と硫黄の測定値(S)から、次式[9]または[10]により膜表面でのPVP含量を算出した。
<PVP添加PES膜の場合>
PVP含量[重量%]
=100×(N×111)/(N×111+S×232) [9]
<PVP添加PSf膜の場合>
PVP含量[重量%]
=100×(N×111)/(N×111+S×442) [10]
9. Measurement of PVP content on the surface of the hollow fiber membrane One hollow fiber membrane was stuck on a double-sided tape, opened with a knife and then developed to expose the inner surface. This was affixed to a sample stage and measured with Electron Spectroscopy for Chemical Analysis (ESCA). The above operation is for measuring the inner surface of the hollow fiber membrane. However, when measuring the outer surface, it is not necessary to open the laparotomy and expose the inner surface. Measurement was performed by pasting. The measurement conditions were as shown below.
Measuring device: ULVAC-Phi ESCA5800
Excitation X-ray: MgKα ray X-ray output: 14 kV, 25 mA
Photoelectron escape angle: 45 °
Analysis diameter: 400μmφ
Pass energy: 29.35 eV
Resolution: 0.125 eV / step
Degree of vacuum: about 10 −7 Pa or less From the measured value (N) of nitrogen and the measured value (S) of sulfur, the PVP content on the film surface was calculated by the following formula [9] or [10].
<In case of PVP-added PES membrane>
PVP content [wt%]
= 100 × (N × 111) / (N × 111 + S × 232) [9]
<In the case of PVP-added PSf film>
PVP content [wt%]
= 100 × (N × 111) / (N × 111 + S × 442) [10]
10.中空糸膜全体におけるPVP含量の測定
中空糸膜をDMSO−d6に溶解させ、60℃で1H−NMRを測定した。測定には、Brucker社製Avance−500を使用した。1H−NMRスペクトルにおける7.2ppm付近のポリスルホン系高分子の芳香環由来のピーク(a)と、2.0ppm付近のPVPのピロリドン環由来のピーク(b)の積分強度比より、次式[11]でPVPの含量を算出した。
PVP含有率[重量%]
={(b/nb)×111×100}/{(a/na)×Ma+(b/nb)×111}
[11]
ただし、Maはポリスルホン系高分子の繰り返し単位の分子量、111はPVPの繰り返し単位の分子量、naは繰り返し単位中に含まれる上記aのプロトンの個数、nbは繰り返し単位中に含まれる上記bのプロトンの個数を示す。
10. Measurement of PVP content in whole hollow fiber membrane The hollow fiber membrane was dissolved in DMSO-d6, and 1H-NMR was measured at 60 ° C. For measurement, an Avance-500 manufactured by Brucker was used. From the integral intensity ratio of the peak (a) derived from the aromatic ring of the polysulfone polymer around 7.2 ppm in the 1H-NMR spectrum and the peak (b) derived from the pyrrolidone ring of PVP around 2.0 ppm, the following formula [11 ] To calculate the PVP content.
PVP content [wt%]
= {(B / nb) × 111 × 100} / {(a / na) × Ma + (b / nb) × 111}
[11]
Where Ma is the molecular weight of the repeating unit of the polysulfone polymer, 111 is the molecular weight of the repeating unit of PVP, na is the number of protons of the a contained in the repeating unit, and nb is the proton of b of the repeating unit contained in the repeating unit. The number of
11.ワイン透過率(ワインFluxと略記する)の測定
丹波ワイン社から市販されている酵母を含有した濁りワイン「丹波新酒にごり2005」を、メルシャン社から市販されている「ワインライフ[白]」で希釈し、濁度が10NTUになるよう調整した(以下評価用ワインと呼称する)。 モジュールはRO水に1時間以上浸漬した後、評価用ワインで置換し、内外両面に評価用ワインを満たした。容器内に評価用ワインを満たし、22℃になるよう温度を制御した。この容器からポンプを介して評価用ワインがモジュールの内面を灌流して容器に戻ると同時に、中空糸膜によって濾過された評価用ワインも容器に戻るよう回路を組んだ。その際、モジュールへの評価用ワインの流入圧とモジュールからの評価用ワインの流出圧を測定できるようにした。中空糸膜の内腔を、評価用ワインが1.5m/secの流速で流れるように、内面流入口から評価用ワインを導入した。この際、TMPは約1.5barになるよう調整した。この状態で、中空糸膜内腔に評価用ワインを灌流、一部を濾過するクロスフロー濾過を継続して実施した。所定の時間が経過した時点で、一定時間に濾過されるワインの量を測定した(例えば灌流開始後10〜11minの時点における濾過量、20〜21minの時点における濾過量)。ワインFluxを次式[12]により算出した。
ワインFlux[L/m2/h/bar]
=(1分あたりのワイン濾過量[L/min]×60/A)/TMP[bar] [12]
ただし、Aはモジュールの膜面積[m2]である。
11. Measurement of wine permeability (abbreviated as “Wine Flux”) Diluted “Tanba Shinshu Nigori 2005”, a turbid wine containing yeast marketed by Tamba Wines, with “Wine Life [White]” marketed by Mercian The turbidity was adjusted to 10 NTU (hereinafter referred to as evaluation wine). After immersing the module in RO water for 1 hour or longer, the module was replaced with evaluation wine, and both the inner and outer surfaces were filled with the evaluation wine. The container was filled with wine for evaluation and the temperature was controlled to 22 ° C. A circuit was constructed so that the wine for evaluation perfused the inner surface of the module from the container through the pump and returned to the container, and the wine for evaluation filtered by the hollow fiber membrane also returned to the container. At that time, the inflow pressure of the evaluation wine to the module and the outflow pressure of the evaluation wine from the module can be measured. The evaluation wine was introduced from the inner surface inlet so that the evaluation wine flowed through the lumen of the hollow fiber membrane at a flow rate of 1.5 m / sec. At this time, TMP was adjusted to about 1.5 bar. In this state, the evaluation wine was perfused into the lumen of the hollow fiber membrane, and cross-flow filtration for filtering a part was continued. When a predetermined time has elapsed, the amount of wine filtered in a certain time was measured (for example, the filtration amount at the time point of 10 to 11 minutes after the start of perfusion, and the filtration amount at the time point of 20 to 21 minutes). Wine Flux was calculated by the following equation [12].
Wine Flux [L / m 2 / h / bar]
= (Wine filtration amount per minute [L / min] × 60 / A) / TMP [bar] [12]
Here, A is the membrane area [m 2 ] of the module.
(実施例1)
PES(住友ケムテック社製スミカエクセル(登録商標)4800P)19.0重量部、BASF社製PVP(コリドン(登録商標)K30)3.0重量部、三菱化学社製NMP35.1重量部、三井化学社製TEG42.9重量部を70℃で3時間にわたって混合、溶解し均一な溶液を得た。さらに、70℃で常圧−700mmHgまで減圧した後、溶媒等が揮発して溶液組成が変化しないようにすぐに系内を密封して2時間放置脱泡を行い、この溶液を製膜原液とした。一方、NMP35.1重量部、TEG42.9重量部、RO水22.0重量部の混合液を調製し、この溶液を芯液とした。二重管ノズルの環状部から上記製膜原液を、中心部から上記芯液を吐出し、20mmのエアギャップを経て、NMP13.5重量部、TEG16.5重量部、RO水70.0重量部の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は65℃、外部凝固液温度は55℃に設定した。凝固浴内から中空糸膜を引き出し、10m/minの紡速で巻き取った。凝固浴内では径50mmの円筒状ガイドを3個使用して中空糸膜の進行方向を徐々に変え、凝固浴から引き出した。凝固浴内における中空糸膜の浸漬深さは最大で800mm、凝固浴内での中空糸膜の走行距離は2000mmであった。中空糸膜は、内径が約1200μm、膜厚が約340μmになるよう、製膜原液、芯液の吐出量を制御した。
Example 1
19.0 parts by weight of PES (Sumika Excel (registered trademark) 4800P manufactured by Sumitomo Chemtech), 3.0 parts by weight of PVP (Collidon (registered trademark) K30) manufactured by BASF, 35.1 parts by weight of NMP manufactured by Mitsubishi Chemical, Mitsui Chemicals 42.9 parts by weight of TEG manufactured by KK were mixed and dissolved at 70 ° C. over 3 hours to obtain a uniform solution. Further, after reducing the pressure to 70-700 mmHg at 70 ° C., the system is immediately sealed so that the solvent composition does not volatilize and the solution composition does not change, and left to degas for 2 hours. did. On the other hand, a mixed solution of 35.1 parts by weight of NMP, 42.9 parts by weight of TEG, and 22.0 parts by weight of RO water was prepared, and this solution was used as a core solution. The film-forming stock solution is discharged from the annular part of the double tube nozzle, and the core liquid is discharged from the center part. After passing through an air gap of 20 mm, 13.5 parts by weight of NMP, 16.5 parts by weight of TEG, 70.0 parts by weight of RO water To a coagulation bath filled with an external coagulation liquid consisting of At this time, the nozzle temperature was set to 65 ° C., and the external coagulating liquid temperature was set to 55 ° C. The hollow fiber membrane was pulled out from the coagulation bath and wound up at a spinning speed of 10 m / min. In the coagulation bath, three cylindrical guides having a diameter of 50 mm were used, and the traveling direction of the hollow fiber membrane was gradually changed and pulled out from the coagulation bath. The maximum immersion depth of the hollow fiber membrane in the coagulation bath was 800 mm, and the travel distance of the hollow fiber membrane in the coagulation bath was 2000 mm. For the hollow fiber membrane, the discharge amount of the membrane forming stock solution and the core solution was controlled so that the inner diameter was about 1200 μm and the film thickness was about 340 μm.
中空糸膜束は、80℃のRO水に60min浸漬して加熱処理を行った。その後、60℃で10hにわたり熱風乾燥を実施し、内径1180μm、膜厚330μmの中空糸膜(A)を得た。上記の方法で内表面、外表面、断面(膜厚方向に8分割した視野についてそれぞれ)のSEM観察を行い、画像解析を実施して各部位における空孔率と孔径を求めた。内表面、外表面、断面全体のSEM写真はそれぞれ図1、図2、図3に、空孔率、孔径の測定結果は表1に示した。表中、ISとは中空糸膜の内表面、OSとは中空糸膜の外表面、CS1、CS2、CS3、CS4、CS5、CS6、CS7、CS8とは中空糸膜の断面を内表面から外表面方向に8等分したときの各部分(内表面方向から順に1〜8)を意味する。内表面および外表面に緻密層が存在し、内表面における孔径(0.05μm)が外表面における孔径(0.12μm)よりも小さく、開孔率、孔径がCS3において極大(58%、1.34μm)となっていることがわかる。 The hollow fiber membrane bundle was heat-treated by being immersed in 80 ° C. RO water for 60 minutes. Thereafter, hot air drying was performed at 60 ° C. for 10 hours to obtain a hollow fiber membrane (A) having an inner diameter of 1180 μm and a film thickness of 330 μm. SEM observation of the inner surface, outer surface, and cross-section (each of the fields divided into eight in the film thickness direction) was performed by the above method, and image analysis was performed to determine the porosity and the hole diameter in each part. The SEM photographs of the inner surface, the outer surface, and the entire cross section are shown in FIGS. 1, 2, and 3, respectively, and the measurement results of the porosity and the hole diameter are shown in Table 1. In the table, IS is the inner surface of the hollow fiber membrane, OS is the outer surface of the hollow fiber membrane, and CS1, CS2, CS3, CS4, CS5, CS6, CS7, and CS8 are the cross sections of the hollow fiber membrane from the inner surface. It means each part (1 to 8 in order from the inner surface direction) when it is divided into eight equal parts in the surface direction. There are dense layers on the inner surface and the outer surface, the hole diameter (0.05 μm) on the inner surface is smaller than the hole diameter (0.12 μm) on the outer surface, and the hole area ratio and the hole diameter are maximum (58%, 1.. 34 μm).
中空糸膜(A)の内表面における孔径の分布と、径0.02μm、0.05μm、0.08μm、0.11μm、0.23μmのポリスチレンラテックスの除去率を同時にプロットしたものを図4に示した。各粒径におけるポリスチレンラテックスの除去率から、中空糸膜(A)の排除限界粒子径(φmax)は0.08μmと判断できる。中空糸膜(A)の内表面において、φmaxを超える孔径の存在割合DR[%]は、7.6%であった。φmaxの値と、DRの値は表2にも示した。 FIG. 4 is a plot of pore diameter distribution on the inner surface of the hollow fiber membrane (A) and removal rates of polystyrene latexes having a diameter of 0.02 μm, 0.05 μm, 0.08 μm, 0.11 μm, and 0.23 μm simultaneously. Indicated. From the removal rate of polystyrene latex at each particle size, the exclusion limit particle size (φmax) of the hollow fiber membrane (A) can be determined to be 0.08 μm. On the inner surface of the hollow fiber membrane (A), the existing ratio DR [%] of the pore diameter exceeding φmax was 7.6%. The values of φmax and DR are also shown in Table 2.
さらに、上記の方法で測定、算出した中空糸膜(A)のdBmax(バブルポイントによって得られる最大孔径)、純水Flux、中空糸膜全体におけるPVPの含量、内表面におけるPVPの含量、外表面におけるPVPの含量を表2に示した。表中、dBmaxとはiPAで測定したバブルポイントから算出される最大孔径、Caとは中空糸膜全体におけるPVPの含量、Ciとは中空糸膜内表面におけるPVP含量、Coとは中空糸膜外表面におけるPVP含量を意味する。dBmax(0.20μm)は(1/10000)×純水Flux(0.115)と(1/4000)×純水Flux(0.2875)の間に収まっていることがわかる。また、Ca(1.8wt%)、Ci(29wt%)、Co(24wt%)は、1≦Ca≦10かつ、Ca≦Ciかつ、Ca≦Coかつ、Co≦Ciの関係にあることがわかる。 Furthermore, dBmax (maximum pore diameter obtained by bubble point) of hollow fiber membrane (A) measured and calculated by the above method, pure water flux, PVP content in the entire hollow fiber membrane, PVP content in the inner surface, outer surface Table 2 shows the content of PVP. In the table, dBmax is the maximum pore diameter calculated from the bubble point measured by iPA, Ca is the content of PVP in the entire hollow fiber membrane, Ci is the PVP content in the inner surface of the hollow fiber membrane, and Co is outside the hollow fiber membrane. It means the PVP content on the surface. It can be seen that dBmax (0.20 μm) falls between (1/10000) × pure water flux (0.115) and (1/4000) × pure water flux (0.2875). Further, it can be seen that Ca (1.8 wt%), Ci (29 wt%), and Co (24 wt%) have a relationship of 1 ≦ Ca ≦ 10, Ca ≦ Ci, Ca ≦ Co, and Co ≦ Ci. .
中空糸膜(A)で作製したモジュールにより、上記の方法でワインFluxを測定した。結果は表3に示した。表中、WineFlux1―30とは新たなモジュールで30minのワイン濾過(クロスフロー濾過)を実施した時点で測定したワインFlux、WineFlux1―120とはさらにワイン濾過を継続し、120min経過時点で測定したワインFlux、WineFlux2−30とは120minのワイン濾過後、中空糸膜の外側から内腔方向に60℃の温水を2barの圧力で10minにわたって逆濾過して洗浄を実施したモジュールを使用し、ワイン濾過を30min実施した時点でのワインFlux、保持率とはWineFlux1−30に対するWineFlux1−120の値を百分率で示した値、回復率とはWineFlux1−30に対するWineFlux2−30の値を百分率で示した値をそれぞれ意味する。また、WineFlux1−120測定時、濾液として得られたワインの濁度を測定した。結果は表3に濾液濁度として示した。 With the module produced with the hollow fiber membrane (A), the wine flux was measured by the above method. The results are shown in Table 3. In the table, WineFlux 1-30 is a new module, wine Flux measured at the time of wine filtration (cross flow filtration) for 30 min, WineFlux 1-120 is wine filtration, and wine measured at 120 min elapsed Flux, WineFlux2-30 is a wine filtration for 120 min, and then using a module that was washed by reverse filtration of hot water at 60 ° C. for 10 min from the outside of the hollow fiber membrane to the lumen direction at a pressure of 2 bar. Wine Flux at the time of carrying out for 30 min, retention rate is a value indicating the value of WineFlux 1-120 against WineFlux 1-30 as a percentage, and recovery rate is a value indicating the value of WineFlux 1-30 relative to WineFlux 1-30 as a percentage, respectively. meansMoreover, the turbidity of the wine obtained as a filtrate was measured at the time of WineFlux 1-120 measurement. The results are shown in Table 3 as filtrate turbidity.
(実施例2)
PSf(アモコ社製P−3500)18.5重量部、BASF社製PVP(コリドン(登録商標)K30)3.5重量部、三菱化学社製NMP35.1重量部、三井化学社製TEG42.9重量部を70℃で3時間にわたって混合、溶解し均一な溶液を得た。さらに、70℃で常圧−700mmHgまで減圧した後、溶媒等が揮発して溶液組成が変化しないようにすぐに系内を密封して2時間放置脱泡を行い、この溶液を製膜原液とした。一方、NMP35.1重量部、TEG42.9重量部、RO水22.0重量部の混合液を調製し、この溶液を芯液とした。二重管ノズルの環状部から上記製膜原液を、中心部から上記芯液を吐出し、20mmのエアギャップを経て、NMP13.5重量部、TEG16.5重量部、RO水70.0重量部の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は63℃、外部凝固液温度は55℃に設定した。凝固浴内から中空糸膜を引き出し、10m/minの紡速で巻き取った。凝固浴内では径50mmの円筒状ガイドを3個使用して中空糸膜の進行方向を徐々に変え、凝固浴から引き出した。凝固浴内における中空糸膜の浸漬深さは最大で800mm、凝固浴内での中空糸膜の走行距離は2000mmであった。中空糸膜は、内径が約1200μm、膜厚が約340μmになるよう、製膜原液、芯液の吐出量を制御した。
(Example 2)
18.5 parts by weight of PSf (P-3500 manufactured by Amoco), 3.5 parts by weight of PVP (Collidon (registered trademark) K30) manufactured by BASF, 35.1 parts by weight of NMP manufactured by Mitsubishi Chemical, and TEG42.9 manufactured by Mitsui Chemicals The parts by weight were mixed and dissolved at 70 ° C. for 3 hours to obtain a uniform solution. Further, after reducing the pressure to 70-700 mmHg at 70 ° C., the system is immediately sealed so that the solvent composition does not volatilize and the solution composition does not change, and left to degas for 2 hours. did. On the other hand, a mixed solution of 35.1 parts by weight of NMP, 42.9 parts by weight of TEG, and 22.0 parts by weight of RO water was prepared, and this solution was used as a core solution. The film-forming stock solution is discharged from the annular part of the double tube nozzle, and the core liquid is discharged from the center part. After passing through an air gap of 20 mm, 13.5 parts by weight of NMP, 16.5 parts by weight of TEG, 70.0 parts by weight of RO water To a coagulation bath filled with an external coagulation liquid consisting of At this time, the nozzle temperature was set to 63 ° C., and the external coagulating liquid temperature was set to 55 ° C. The hollow fiber membrane was pulled out from the coagulation bath and wound up at a spinning speed of 10 m / min. In the coagulation bath, three cylindrical guides having a diameter of 50 mm were used, and the traveling direction of the hollow fiber membrane was gradually changed and pulled out from the coagulation bath. The maximum immersion depth of the hollow fiber membrane in the coagulation bath was 800 mm, and the travel distance of the hollow fiber membrane in the coagulation bath was 2000 mm. For the hollow fiber membrane, the discharge amount of the membrane forming stock solution and the core solution was controlled so that the inner diameter was about 1200 μm and the film thickness was about 340 μm.
中空糸膜束は、80℃のRO水に60min浸漬して加熱処理を行った。その後、60℃で10hにわたり熱風乾燥を実施し、内径1160μm、膜厚320μmの中空糸膜(B)を得た。上記の方法で内表面、外表面、断面(膜厚方向に8分割した視野についてそれぞれ)のSEM観察を行い、画像解析を実施して各部位における空孔率と孔径を求めた。ISを中空糸膜の内表面、OSを中空糸膜の外表面、CS1、CS2、CS3、CS4、CS5、CS6、CS7、CS8を中空糸膜の断面を内表面から外表面方向に8等分したときの各部分としたとき、中空糸膜(B)は内外両表面に緻密層が存在し、その構造を示す数値は次のとおりであった。また、実施例1と同様に中空糸膜(B)の内表面における孔径の分布と、φmax、DRを求めた。結果は表2に示した。
ISでの孔径 :0.04μm
ISでの空孔率 :8%
OSでの孔径 :0.05μm
OSでの空孔率 :11%
断面において空孔率が極大となる部位:CS3
CS3での孔径 :2.31μm
CS3での空孔率 :59%
The hollow fiber membrane bundle was heat-treated by being immersed in 80 ° C. RO water for 60 minutes. Thereafter, hot air drying was performed at 60 ° C. for 10 hours to obtain a hollow fiber membrane (B) having an inner diameter of 1160 μm and a film thickness of 320 μm. SEM observation of the inner surface, outer surface, and cross-section (each of the fields divided into eight in the film thickness direction) was performed by the above method, and image analysis was performed to determine the porosity and the hole diameter in each part. IS is the inner surface of the hollow fiber membrane, OS is the outer surface of the hollow fiber membrane, CS1, CS2, CS3, CS4, CS5, CS6, CS7, and CS8 are divided into eight equal sections from the inner surface to the outer surface. The hollow fiber membrane (B) had dense layers on both the inner and outer surfaces, and the numerical values indicating the structure were as follows. Further, in the same manner as in Example 1, the pore size distribution, φmax, and DR on the inner surface of the hollow fiber membrane (B) were determined. The results are shown in Table 2.
Pore diameter in IS: 0.04 μm
IS porosity: 8%
OS pore size: 0.05 μm
Porosity in OS: 11%
Site where porosity is maximized in cross section: CS3
Hole diameter at CS3: 2.31 μm
Porosity in CS3: 59%
さらに、実施例1と同様に測定した中空糸膜(B)のdBmax、純水Flux、Ca、Ci、Coを表2に示した。dBmaxは(1/10000)×純水Flux(0.124)と(1/4000)×純水Flux(0.310)の間に収まっていることがわかる。また、Ca、Ci、Coは、1≦Ca≦10かつ、Ca≦Ciかつ、Ca≦Coかつ、Co≦Ciの関係にあることがわかる。 Further, Table 2 shows the dBmax, pure water flux, Ca, Ci, and Co of the hollow fiber membrane (B) measured in the same manner as in Example 1. It can be seen that dBmax falls between (1/10000) × pure water flux (0.124) and (1/4000) × pure water flux (0.310). In addition, it can be seen that Ca, Ci, and Co have a relationship of 1 ≦ Ca ≦ 10, Ca ≦ Ci, Ca ≦ Co, and Co ≦ Ci.
中空糸膜(B)で作製したモジュールにより、実施例1と同様にワインFluxを測定した。結果は表3に示した。 The wine flux was measured in the same manner as in Example 1 using the module produced with the hollow fiber membrane (B). The results are shown in Table 3.
(比較例1)
市販のポリエチレン製精密濾過膜(以下PE-MF膜と呼称する)を使用し、実施例1と同様にSEMで構造を観察した。IS、OS、断面全体のSEM写真をそれぞれ図5、図6、図7に示した。図7の断面像から均質の対称膜であり、膜壁部分での空孔率の極大部位は見られないことがわかる。PE−MF膜の構造を示す数値は次のとおりであった。また、実施例1と同様にPE−MF膜のdBmax、純水Flux、内表面における孔径の分布、φmax、DRを求めた。結果は表2に示した。さらに、PE-MF膜で作製したモジュールにより、実施例1と同様にワインFluxを測定した。結果は表3に示した。
ISでの孔径 :0.22μm
ISでの空孔率 :31%
OSでの孔径 :0.22μm
OSでの空孔率 :29%
断面において空孔率が極大となる部位:なし
(Comparative Example 1)
A commercially available polyethylene microfiltration membrane (hereinafter referred to as PE-MF membrane) was used, and the structure was observed by SEM in the same manner as in Example 1. IS, OS, and SEM photographs of the entire cross section are shown in FIGS. 5, 6, and 7, respectively. It can be seen from the cross-sectional image of FIG. 7 that the film is a homogeneous symmetric film, and the maximum portion of the porosity in the film wall portion is not seen. Numerical values indicating the structure of the PE-MF membrane were as follows. Further, in the same manner as in Example 1, dBmax, pure water flux, pore size distribution on the inner surface, φmax, and DR were obtained. The results are shown in Table 2. Furthermore, wine flux was measured in the same manner as in Example 1 using a module made of a PE-MF membrane. The results are shown in Table 3.
Pore diameter in IS: 0.22 μm
Porosity at IS: 31%
OS pore size: 0.22 μm
Porosity in OS: 29%
Site where porosity is maximum in cross section: None
(比較例2)
市販のポリフッ化ビニリデン製精密濾過膜(以下PVDF-MF膜と呼称する)を使用し、実施例1と同様にSEMで構造を観察した。IS、OS、断面全体のSEM写真をそれぞれ図8、図9、図10に示した。図10の断面像から均質の対称膜であり、膜壁部分での空孔率の極大部位は見られないことがわかる。PVDF−MF膜の構造を示す数値は次のとおりであった。また、実施例1と同様にPE−MF膜のdBmax、純水Flux、内表面における孔径の分布、φmax、DRを求めた。結果は表2に示した。さらに、PVDF-MF膜で作製したモジュールにより、実施例1と同様にワインFluxを測定した。結果は表3に示した。
ISでの孔径 :0.31μm
ISでの空孔率 :35%
OSでの孔径 :0.18μm
OSでの空孔率 :25%
断面において空孔率が極大となる部位:なし
(Comparative Example 2)
A commercially available microfiltration membrane made of polyvinylidene fluoride (hereinafter referred to as PVDF-MF membrane) was used, and the structure was observed by SEM in the same manner as in Example 1. The SEM photographs of IS, OS, and the entire cross section are shown in FIGS. 8, 9, and 10, respectively. It can be seen from the cross-sectional image of FIG. 10 that the film is a homogeneous symmetric film, and the maximum portion of the porosity in the film wall portion is not seen. Numerical values indicating the structure of the PVDF-MF membrane were as follows. Further, in the same manner as in Example 1, dBmax, pure water flux, pore size distribution on the inner surface, φmax, and DR were obtained. The results are shown in Table 2. Furthermore, wine flux was measured in the same manner as in Example 1 using a module made of a PVDF-MF membrane. The results are shown in Table 3.
Pore diameter in IS: 0.31 μm
Porosity at IS: 35%
OS pore size: 0.18 μm
Porosity in OS: 25%
Site where porosity is maximum in cross section: None
(比較例3)
PES(住友ケムテック社製スミカエクセル(登録商標)4800P)17.5重量部、BASF社製PVP(コリドン(登録商標)K90)4.5重量部、DMAc75.0重量部、RO水3.0重量部を50℃で2時間にわたって混合、溶解し均一な溶液を得た。さらに、50℃で常圧−700mmHgまで減圧した後、溶媒等が揮発して溶液組成が変化しないようにすぐに系内を密封して2時間放置脱泡を行い、この溶液を製膜原液とした。一方、DMAc40.0重量部、RO水60.0重量部の混合液を調製し、この溶液を芯液とした。二重管ノズルの環状部から上記製膜原液を、中心部から上記芯液を吐出し、450mmのエアギャップを経て、DMAc20.0重量部、RO水80.0重量部の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は65℃、外部凝固液温度は60℃に設定した。凝固浴内から中空糸膜を引き出し、75m/minの紡速で巻き取った。凝固浴内では径12mmの棒状ガイドを1個使用して中空糸膜の進行方向を変え、凝固浴から引き出した。凝固浴内における中空糸膜の浸漬深さは最大で200mm、凝固浴内での中空糸膜の走行距離は600mmであった。中空糸膜は、内径が約200μm、膜厚が約30μmになるよう、製膜原液、芯液の吐出量を制御した。
(Comparative Example 3)
17.5 parts by weight of PES (Sumitomo Chemtech (registered trademark) 4800P manufactured by Sumitomo Chemtech) 4.5 parts by weight of PVP (Collidon (registered trademark) K90) manufactured by BASF, 75.0 parts by weight of DMAc, 3.0 parts by weight of RO water The parts were mixed and dissolved at 50 ° C. for 2 hours to obtain a uniform solution. Further, after reducing the pressure at 50 ° C. to normal pressure −700 mmHg, the system is immediately sealed so that the solvent composition does not volatilize and the solution composition does not change, and left to degas for 2 hours. did. On the other hand, a mixed solution of 40.0 parts by weight of DMAc and 60.0 parts by weight of RO water was prepared, and this solution was used as a core solution. The film-forming stock solution is discharged from the annular part of the double-tube nozzle, the core liquid is discharged from the center part, and the outside is made of a mixed liquid of DMAc 20.0 parts by weight and RO water 80.0 parts by weight through an air gap of 450 mm. Guided to a coagulation bath filled with coagulation liquid. At this time, the nozzle temperature was set to 65 ° C., and the external coagulating liquid temperature was set to 60 ° C. The hollow fiber membrane was pulled out from the coagulation bath and wound up at a spinning speed of 75 m / min. In the coagulation bath, one rod-shaped guide having a diameter of 12 mm was used to change the traveling direction of the hollow fiber membrane, and the hollow fiber membrane was drawn from the coagulation bath. The maximum immersion depth of the hollow fiber membrane in the coagulation bath was 200 mm, and the travel distance of the hollow fiber membrane in the coagulation bath was 600 mm. The hollow fiber membrane was controlled in terms of the amount of the membrane forming stock solution and the core solution discharged so that the inner diameter was about 200 μm and the film thickness was about 30 μm.
得られた中空糸膜は、エンボス加工されたポリエチレン製のフィルムを巻きつけた後27cmの長さに切断して中空糸膜束とした。この中空糸膜束を80℃のRO水に30min浸漬する操作を4回繰り返し、加熱・洗浄処理を行った。得られた湿潤中空糸膜束を600rpm×5minの遠心脱液処理し、オーブン内に反射板を設置し均一加熱ができるような構造を持つマイクロ波発生装置によりマイクロ波を照射すると同時に前記乾燥装置内を7kPaに減圧し60minの乾燥処理を行った。マイクロ波の出力は初期1.5kWから20minごとに0.5kWずつ低下させた。この乾燥処理により、内径195μm、膜厚29μmの中空糸膜(C)を得た。 The obtained hollow fiber membrane was wound with an embossed polyethylene film and then cut into a length of 27 cm to form a hollow fiber membrane bundle. The operation of immersing this hollow fiber membrane bundle in RO water at 80 ° C. for 30 min was repeated four times to perform heating and washing treatment. The obtained wet hollow fiber membrane bundle is subjected to centrifugal liquid removal treatment at 600 rpm × 5 min, and the drying apparatus is simultaneously irradiated with microwaves by a microwave generator having a structure in which a reflector can be installed in the oven and heated uniformly. The inside was depressurized to 7 kPa and dried for 60 minutes. The output of the microwave was reduced by 0.5 kW every 20 min from the initial 1.5 kW. By this drying treatment, a hollow fiber membrane (C) having an inner diameter of 195 μm and a film thickness of 29 μm was obtained.
中空糸膜(C)を使用し、実施例1と同様にSEMで構造を観察した。構造としては、ISにのみ緻密層を有し、内表面から外表面の方向に向かって空孔率が増大する非対称膜であった。中空糸膜(C)の構造を示す数値は次のとおりであった。また、実施例1と同様に中空糸膜の内表面におけるφmaxの測定を試みたが、ポリスチレンラテックスでの測定では0.02μm未満であり、正確な測定は不可能であった。このため、DRの算出も不可能であった。dBmaxの測定においては、バブルポイントに達する前に糸が破壊されてしまい、測定できなかった。純水Flux、純水Flux、Ca、Ci、Coについては実施例1と同様に測定し、結果は表2に示した。さらに、中空糸膜(C)で作製したモジュールにより、実施例1と同様にワインFluxを測定した。結果は表3に示した。
ISでの孔径 :0.01μm
ISでの空孔率 :8%
OSでの孔径 :0.53μm
OSでの空孔率 :15%
断面において空孔率が極大となる部位:なし
Using the hollow fiber membrane (C), the structure was observed with SEM in the same manner as in Example 1. As a structure, it was an asymmetric membrane having a dense layer only in IS and increasing the porosity from the inner surface toward the outer surface. Numerical values indicating the structure of the hollow fiber membrane (C) were as follows. Further, the measurement of φmax on the inner surface of the hollow fiber membrane was attempted in the same manner as in Example 1, but the measurement with polystyrene latex was less than 0.02 μm, and accurate measurement was impossible. For this reason, it is impossible to calculate DR. In the measurement of dBmax, the yarn was broken before the bubble point was reached and could not be measured. Pure water flux, pure water flux, Ca, Ci, and Co were measured in the same manner as in Example 1, and the results are shown in Table 2. Furthermore, the wine flux was measured in the same manner as in Example 1 using a module made of the hollow fiber membrane (C). The results are shown in Table 3.
IS pore size: 0.01 μm
IS porosity: 8%
OS pore size: 0.53 μm
Porosity in OS: 15%
Site where porosity is maximum in cross section: None
ワイン透過率の測定結果から明らかになったように本発明の高分子多孔質中空糸膜は、ワインFluxの保持率、回復率が高く、膜特性の保持性、回復性に優れていることがわかる。また、濾液として得られたワインの濁度も低く、濾過成分の優れた透過性と、保持成分(非濾過成分)の除去、すなわち優れた分画特性が同時に実現されている。本発明の特徴である特定の構成、膜構造がこれらの優れた特性の発揮に寄与していると考えられる。 As clarified from the measurement results of the wine permeability, the polymer porous hollow fiber membrane of the present invention has a high wine flux retention and recovery rate and is excellent in membrane property retention and recovery. Recognize. Further, the turbidity of the wine obtained as a filtrate is low, and excellent permeability of the filtration component and removal of the retention component (non-filtration component), that is, excellent fractionation characteristics are realized at the same time. It is considered that the specific configuration and film structure that are the characteristics of the present invention contribute to the achievement of these excellent characteristics.
本発明の高分子多孔質中空糸膜は、上水膜、飲料処理膜、血液処理膜など種々の水性流体処理膜として適用可能であり、分画特性、透過性に優れ、またこれらの特性の経時的な低下の抑制、洗浄による膜特性の回復性が実現されているという利点を有し、産業界に寄与することが大である。 The polymer porous hollow fiber membrane of the present invention can be applied as various aqueous fluid treatment membranes such as a water treatment membrane, a beverage treatment membrane and a blood treatment membrane, and has excellent fractionation characteristics and permeability. It has the advantages of suppressing deterioration over time and recovering film properties by cleaning, and contributes greatly to the industry.
Claims (6)
(b)内表面における孔径が外表面における孔径よりも小さく、
(c)内表面から外表面に向かって当初空孔率が増大し、少なくともひとつの極大部を通過後、再び外表面側で空孔率が減少し、
(d)微粒子の通過試験によって得られる排除限界粒子径をφmax[μm]、内表面の孔径をdIS[μm]、φmaxを超えるdISの存在割合をDR[%]としたとき、2[%]≦DR≦20[%]であり、
(e)ポリスルホン系高分子とポリビニルピロリドンとを含み、
(f)上水(浄水)または飲料処理に用いるものであり、
(g)緻密層の背後の部分はスポンジ状支持層であり、
(h)ポリスルホン系高分子は、ポリスルホンおよび/またはポリエーテルスルホンである
ことを特徴とする高分子多孔質中空糸膜。 (A) having a dense layer on the inner and outer surfaces;
(B) the hole diameter on the inner surface is smaller than the hole diameter on the outer surface;
(C) The initial porosity increases from the inner surface toward the outer surface, and after passing through at least one local maximum, the porosity decreases again on the outer surface side,
(D) When the exclusion limit particle diameter obtained by the fine particle passage test is φmax [μm], the pore diameter of the inner surface is dIS [μm], and the existence ratio of dIS exceeding φmax is DR [%], 2 [%] ≦ DR ≦ 20 [%],
(E) comprising a polysulfone polymer and polyvinylpyrrolidone;
(F) tap water all SANYO used for (clean water) or beverage processing,
(G) The part behind the dense layer is a sponge-like support layer,
(H) The polymer porous hollow fiber membrane wherein the polysulfone polymer is polysulfone and / or polyethersulfone .
(a)0.001[μm]≦dIS≦1[μm] かつ
(b)0.1[μm]≦dCSmax≦10[μm] かつ
(c)5[%]≦pIS≦30[%] かつ
(d)40[%]≦pCSmax≦80[%]
である請求項1記載の高分子多孔質中空糸膜。 When the inner surface of the hollow fiber membrane is IS, the maximum porosity of the cross section of the hollow fiber membrane is CSmax, the hole diameter of each part is dIS, dCSmax, and the porosity of each part is pIS, pCSmax,
(A) 0.001 [μm] ≦ dIS ≦ 1 [μm] and (b) 0.1 [μm] ≦ dCSmax ≦ 10 [μm] and (c) 5 [%] ≦ pIS ≦ 30 [%] and ( d) 40 [%] ≦ pCSmax ≦ 80 [%]
The polymer porous hollow fiber membrane according to claim 1.
(a)dIS≦dCS1<dCS2≦dCS3≧dCS4>dCS5>dCS6>dCS7>dCS8≧dOS かつ
(b)pIS<pCS1≦pCS2<pCS3>pCS4≧pCS5≧pCS6≧pCS7≧pCS8>pOS
である請求項1または2記載の高分子多孔質中空糸膜。 The inner surface of the hollow fiber membrane is IS, the outer surface of the hollow fiber membrane is OS, and the section when the cross section of the hollow fiber membrane is divided into eight equal parts from the inner surface to the outer surface direction in order from the inner surface direction is CS1, CS2, CS3 , CS4, CS5, CS6, CS7, CS8, the pore diameter of each part is dIS, dOS, dCS1, dCS2, dCS3, dCS4, dCS5, dCS6, dCS7, dCS8, and the porosity of each part is pIS, pOS, pCS1 , PCS2, pCS3, pCS4, pCS5, pCS6, pCS7, pCS8,
(A) dIS ≦ dCS1 <dCS2 ≦ dCS3 ≧ dCS4>dCS5>dCS6>dCS7> dCS8 ≧ dOS and (b) pIS <pCS1 ≦ pCS2 <pCS3> pCS4 ≧ pCS5 ≧ pCS6 ≧ pCS7 ≧ pCS8> pOS
The polymer porous hollow fiber membrane according to claim 1 or 2.
(a)(1/10000)・F≦dBmax≦(1/4000)・F かつ
(b)0.05[μm]≦dBmax≦1[μm]
であることを特徴とする請求項1〜3いずれかに記載の高分子多孔質中空糸膜。 When the maximum pore diameter obtained by the bubble point is dBmax [μm] and the permeability of pure water at 25 ° C. is F [L / (h · m 2 · bar)],
(A) (1/10000) · F ≦ dBmax ≦ (1/4000) · F and (b) 0.05 [μm] ≦ dBmax ≦ 1 [μm]
The polymer porous hollow fiber membrane according to any one of claims 1 to 3, wherein
(a) 1[重量%]≦Ca≦10[重量%] かつ
(b) Ca≦CiかつCa≦Co かつ
(c) Co≦Ci
であることを特徴とする請求項1〜4いずれかに記載の高分子多孔質中空糸膜。 The content of the hydrophilic polymer in the entire hollow fiber membrane is Ca [wt%], the content of the hydrophilic polymer on the inner surface is Ci [wt%], and the content of the hydrophilic polymer on the outer surface is Co [wt%]. When
(A) 1 [wt%] ≦ Ca ≦ 10 [wt%] and (b) Ca ≦ Ci and Ca ≦ Co and (c) Co ≦ Ci
The polymer porous hollow fiber membrane according to any one of claims 1 to 4, wherein
中空糸膜を60〜100℃の熱水へ30〜120分浸漬させる加熱処理工程を備えるA heat treatment step of immersing the hollow fiber membrane in hot water at 60 to 100 ° C. for 30 to 120 minutes is provided.
ことを特徴とする高分子多孔質中空糸膜の製造方法。A method for producing a polymeric porous hollow fiber membrane.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006122042A JP5433921B2 (en) | 2006-04-26 | 2006-04-26 | Polymer porous hollow fiber membrane |
PCT/JP2007/058919 WO2007125943A1 (en) | 2006-04-26 | 2007-04-25 | Polymeric porous hollow fiber membrane |
EP07742354.9A EP2022555B1 (en) | 2006-04-26 | 2007-04-25 | Polymeric porous hollow fiber membrane |
US12/298,456 US8881915B2 (en) | 2006-04-26 | 2007-04-25 | Polymeric porous hollow fiber membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006122042A JP5433921B2 (en) | 2006-04-26 | 2006-04-26 | Polymer porous hollow fiber membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007289886A JP2007289886A (en) | 2007-11-08 |
JP5433921B2 true JP5433921B2 (en) | 2014-03-05 |
Family
ID=38761022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006122042A Active JP5433921B2 (en) | 2006-04-26 | 2006-04-26 | Polymer porous hollow fiber membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5433921B2 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5609116B2 (en) * | 2008-02-21 | 2014-10-22 | 東洋紡株式会社 | Hollow fiber ultrafiltration membrane with excellent fouling resistance |
WO2010032808A1 (en) | 2008-09-19 | 2010-03-25 | 東レ株式会社 | Separation membrane, and method for producing same |
MX340894B (en) | 2008-09-26 | 2016-07-29 | Asahi Kasei Chemicals Corp | Porous membrane, process for producing porous membrane, process for producing clarified liquid, and porous-membrane module. |
JP2011020071A (en) * | 2009-07-17 | 2011-02-03 | Toyobo Co Ltd | Method for manufacturing polysulfone-based hollow fiber membrane |
KR101657307B1 (en) * | 2009-09-25 | 2016-09-19 | 엘지전자 주식회사 | Fluorinated hollow fiber membrane and method for preparing the same |
JP5705445B2 (en) * | 2010-03-26 | 2015-04-22 | 旭化成ケミカルズ株式会社 | Method for producing purified collagen hydrolyzate |
JP5835659B2 (en) * | 2011-09-29 | 2015-12-24 | 東洋紡株式会社 | Porous hollow fiber membrane for protein-containing liquid treatment |
US9005496B2 (en) * | 2012-02-01 | 2015-04-14 | Pall Corporation | Asymmetric membranes |
TWI549744B (en) * | 2012-03-28 | 2016-09-21 | 東麗股份有限公司 | Hollow fiber membrane of polysulfone and hollow fiber membrane module for purification of blood product |
JP2014036938A (en) * | 2012-08-20 | 2014-02-27 | Sekisui Chem Co Ltd | Method for producing polymer water processing film |
JP6201553B2 (en) * | 2012-09-11 | 2017-09-27 | 東レ株式会社 | Porous membrane, water purifier incorporating porous membrane, and method for producing porous membrane |
WO2014156644A1 (en) * | 2013-03-28 | 2014-10-02 | 東レ株式会社 | Porous membrane and water purifier |
KR102140264B1 (en) * | 2013-12-20 | 2020-07-31 | 주식회사 엘지화학 | Hollow fiber membrane |
CN108602024B (en) * | 2016-01-29 | 2021-06-22 | 东丽株式会社 | Separation membrane |
US11596922B2 (en) * | 2016-04-27 | 2023-03-07 | Toray Industries. Inc. | Porous fiber, adsorbent material, and purification column |
US20200289991A1 (en) | 2017-09-28 | 2020-09-17 | Toray Industries, Inc. | Porous hollow fiber membrane and method for producing same |
JP7351822B2 (en) * | 2020-10-02 | 2023-09-27 | 株式会社クラレ | Hollow fiber membrane and method for manufacturing hollow fiber membrane |
JP7569866B2 (en) * | 2020-11-19 | 2024-10-18 | 旭化成株式会社 | Porous membrane |
CN114452844B (en) * | 2022-01-29 | 2023-12-29 | 杭州科百特过滤器材有限公司 | PES hollow fiber membrane for purifying biomacromolecule, and preparation method and application thereof |
CN114452823A (en) * | 2022-01-29 | 2022-05-10 | 杭州科百特过滤器材有限公司 | Hollow fiber membrane module for biomacromolecule tangential flow filtration and application thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960004612B1 (en) * | 1988-09-29 | 1996-04-09 | 도레이 가부시키가이샤 | Porous membrane and the manufacturing process thereof |
JP4437509B2 (en) * | 1999-04-27 | 2010-03-24 | 東洋紡績株式会社 | Blood purification membrane with improved antithrombotic properties |
US6890435B2 (en) * | 2002-01-28 | 2005-05-10 | Koch Membrane Systems | Hollow fiber microfiltration membranes and a method of making these membranes |
-
2006
- 2006-04-26 JP JP2006122042A patent/JP5433921B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007289886A (en) | 2007-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5433921B2 (en) | Polymer porous hollow fiber membrane | |
JP5504560B2 (en) | Hollow fiber membrane for liquid processing | |
US8881915B2 (en) | Polymeric porous hollow fiber membrane | |
EP0121911B1 (en) | Hollow fiber filter medium and process for preparing the same | |
US10188991B2 (en) | Permselective asymmetric membranes | |
JP5609116B2 (en) | Hollow fiber ultrafiltration membrane with excellent fouling resistance | |
JP2004525755A (en) | Asymmetric hollow fiber membrane | |
WO1997022405A1 (en) | Hollow fiber type filtration membrane | |
WO2016117565A1 (en) | Porous hollow fiber filtration membrane | |
JP2006088148A (en) | Hollow fiber membrane having excellent water permeability | |
JP2008284471A (en) | Polymeric porous hollow fiber membrane | |
JP6367977B2 (en) | Porous hollow fiber membrane | |
JP2024515027A (en) | Hollow fiber membrane and method for producing same | |
JP4556150B2 (en) | Polymer porous membrane | |
WO2016182015A1 (en) | Porous hollow fiber membrane and manufacturing method therefor | |
EP0824960A1 (en) | Hollow-fiber membrane of polysulfone polymer and process for the production thereof | |
JPH11309355A (en) | Polysulfone hollow fiber type blood purifying membrane and its production | |
WO1998058728A1 (en) | Polyacrylonitrile-base hollow-fiber filtration membrane | |
JP3805634B2 (en) | Porous hollow fiber membrane and method for producing the same | |
JP6699751B2 (en) | Cellulose acetate hollow fiber membrane | |
JP2008194647A (en) | Hollow fiber membrane | |
JP2009006230A (en) | Polymeric porous hollow fiber membrane | |
JP2004098027A (en) | High-performance precision filtration film | |
JP5423326B2 (en) | Method for producing hollow fiber membrane | |
JP2004121922A (en) | Hollow fiber membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120626 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120824 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130521 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130710 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131125 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5433921 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |