JP5428391B2 - Method for producing polyarylene sulfide resin composition in which metal element-containing nanoparticles are dispersed - Google Patents
Method for producing polyarylene sulfide resin composition in which metal element-containing nanoparticles are dispersed Download PDFInfo
- Publication number
- JP5428391B2 JP5428391B2 JP2009045811A JP2009045811A JP5428391B2 JP 5428391 B2 JP5428391 B2 JP 5428391B2 JP 2009045811 A JP2009045811 A JP 2009045811A JP 2009045811 A JP2009045811 A JP 2009045811A JP 5428391 B2 JP5428391 B2 JP 5428391B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- pas
- dispersed
- pas resin
- polyarylene sulfide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
Description
本発明は金属元素含有ナノ粒子が分散されたポリアリーレンスルフィド樹脂組成物の製造方法に関する。 The present invention relates to a method for producing a polyarylene sulfide resin composition in which metal element-containing nanoparticles are dispersed.
ポリアリーレンスルフィド樹脂(以下PAS樹脂と略す)は優れた耐熱性、耐薬品性、難燃性、剛性、機械的特性を有しており、いわゆるエンジニアリングプラスチックとして、電気・電子部品、自動車部品、機械部品、構造部品等に広く使用されている。PAS樹脂はこれら優れた特性を持つ一方で、靭性特に延性に乏しく脆弱であるという欠点があるため、これを補う目的でガラスファイバー等の各種無機フィラーを強化剤として添加して利用される例が多い。しかしながら、これらの無機フィラーは通常μmオーダーでマトリクス樹脂との接触面積が大きくないため脆性を改良するためには30〜50質量%と多量を添加する必要がある。一方、フィラーを多量に添加しなくとも良いように、ナノサイズの無機フィラーを直接溶融混練する方法も考えられるが、一般にナノフィラーは表面エネルギーが高いために自己凝集性が強く単純な溶融混練では2次凝集を分散させることが出来ない。そのため、ナノフィラーを用いることによる効果が十分に発現しない問題があった。また溶融混練時により良好なフィラー分散状態を得るためには一般に強いせん断力を加える必要がある。その場合剪断発熱や空気酸化によるPASの劣化、異常架橋や主鎖切断の恐れがあり、溶融混練温度、剪断速度等をコントロールしなければならないといった問題もあった。 Polyarylene sulfide resin (hereinafter abbreviated as PAS resin) has excellent heat resistance, chemical resistance, flame resistance, rigidity, and mechanical properties. As so-called engineering plastics, electrical and electronic parts, automobile parts, machinery Widely used in parts and structural parts. While the PAS resin has these excellent properties, it has a defect that it is brittle with poor toughness, especially ductility, and there are examples in which various inorganic fillers such as glass fibers are added as reinforcing agents in order to compensate for this. Many. However, since these inorganic fillers are usually on the order of μm and the contact area with the matrix resin is not large, it is necessary to add a large amount of 30 to 50% by mass in order to improve brittleness. On the other hand, there is a method of directly melt-kneading nano-sized inorganic filler so that a large amount of filler does not need to be added. Secondary aggregation cannot be dispersed. Therefore, there has been a problem that the effect of using the nanofiller is not sufficiently exhibited. In order to obtain a better filler dispersion state during melt kneading, it is generally necessary to apply a strong shearing force. In this case, there is a risk of deterioration of PAS due to shearing heat generation or air oxidation, abnormal cross-linking or main chain breakage, and there is a problem that the melt kneading temperature, shear rate, etc. must be controlled.
これに対し、無機金属塩(金属塩化物、硫化物等)をこれらが可能な溶媒に溶解させ、本溶液をPAS樹脂と混合したのち溶媒を除去し、得られた材料を溶融混練することで、金属化合物中の金属を還元したPAS樹脂と単体金属との複合体についての製造方法が開示されている(例えば特許文献1参照)。この方法により、PAS樹脂95〜99.99重量%、及び、元素周期表VIII族及びIb族から選ばれる少なくとも一種類の金属0.01〜5重量%からなり、該金属がPASマトリックス中に平均粒径0.5〜30nmの大きさで均一に分散している複合体が得られるとある。 In contrast, by dissolving inorganic metal salts (metal chloride, sulfide, etc.) in a solvent capable of these, mixing this solution with PAS resin, removing the solvent, and melt-kneading the obtained material. A manufacturing method for a composite of a PAS resin obtained by reducing a metal in a metal compound and a single metal is disclosed (for example, see Patent Document 1). According to this method, the PAS resin is composed of 95 to 99.99% by weight and at least one metal selected from Group VIII and Group Ib of 0.01 to 5% by weight, and the metal is averaged in the PAS matrix. A composite having a particle size of 0.5 to 30 nm and uniformly dispersed is obtained.
しかしながら特許文献1に記載の方法は金属原料の分散を目的として溶媒に金属塩を溶解させているが、溶融混練を円滑に行うためには溶媒を溶融混練前に除去する必要がある。PAS樹脂は常温下では各種溶媒には溶解しない。従って、本溶媒除去操作に伴い溶解していた金属塩はPAS樹脂表面において再度溶解前と同様に凝集してしまう。従って、金属良分散化に対する添加原料を溶媒溶解−溶媒除去操作の効果は限定的であり、詳細に複合材料全般を観察した場合には溶融混練後でも粗大粒子が残存する恐れがある。
また、実質的に溶融混練の工程を経るために、溶融混練にかかる前記問題も解決なされていない。
However, in the method described in Patent Document 1, a metal salt is dissolved in a solvent for the purpose of dispersing the metal raw material. However, in order to perform melt kneading smoothly, it is necessary to remove the solvent before melt kneading. PAS resin does not dissolve in various solvents at room temperature. Therefore, the metal salt dissolved with the present solvent removal operation again aggregates on the PAS resin surface as before the dissolution. Therefore, the effect of the solvent dissolution-solvent removal operation on the additive raw material for good metal dispersion is limited, and when the entire composite material is observed in detail, coarse particles may remain even after melt-kneading.
In addition, since the melt-kneading step is substantially performed, the above-described problem relating to melt-kneading has not been solved.
本発明の課題は、溶融混練を行うことなく金属元素含有ナノ粒子が分散されたPAS樹脂組成物を製造する方法を提供することにある。 An object of the present invention is to provide a method for producing a PAS resin composition in which metal element-containing nanoparticles are dispersed without performing melt kneading.
本発明者は、PAS樹脂を溶解可能な有機溶剤に、PAS樹脂と無機金属化合物とを溶解させた後、析出させることで、溶融混練をすることなく、容易に金属元素含有ナノ粒子が分散されたPAS樹脂組成物が得られることを見出した。
PAS樹脂と無機金属化合物の両方を一端有機溶媒に溶解させた後、両方をほぼ同時に析出させるので、PAS樹脂中に無機金属化合物由来の金属元素含有ナノ粒子が均一に分散した組成物を得ることができる。
該方法は、無機金属化合物を一端溶解し再析出させるために、得られる金属元素含有粒子がナノサイズ化しやすい。更に無機金属化合物中の金属が還元されやすい種類(貴金属系)である場合には、溶解析出といった工程中にPAS樹脂に還元され単体金属のナノ粒子の分散物が期待でき、あるいは使用する無機金属化合物がそのままの形で析出される場合には、無機金属化合物のナノ粒子の分散物が期待できる。
更に、マトリックスとなるPAS樹脂が溶媒に溶解しており、溶融混練時よりもポリアリーレンスルフィド分子鎖間が拡大しているために、析出した金属元素含有ナノ粒子がより均一分散化しやすい。そのため、極めて小粒径の金属元素含有粒子が分散されたPAS樹脂組成物を得ることが可能である。
The present inventor disperses the PAS resin and the inorganic metal compound in an organic solvent capable of dissolving the PAS resin, and then deposits the metal element-containing nanoparticles easily without melting and kneading. It was found that a PAS resin composition was obtained.
Since both the PAS resin and the inorganic metal compound are dissolved in the organic solvent at one end, and both are precipitated almost simultaneously, a composition in which the metal element-containing nanoparticles derived from the inorganic metal compound are uniformly dispersed in the PAS resin is obtained. Can do.
In this method, since the inorganic metal compound is once dissolved and reprecipitated, the obtained metal element-containing particles are easily nanosized. Furthermore, when the metal in the inorganic metal compound is of a type that can be easily reduced (noble metal type), it can be expected that a dispersion of single metal nanoparticles can be expected or reduced to a PAS resin during a process such as dissolution and precipitation. When the compound is deposited as it is, a dispersion of inorganic metal compound nanoparticles can be expected.
Furthermore, since the PAS resin used as the matrix is dissolved in the solvent and the polyarylene sulfide molecular chain is expanded more than during melt kneading, the precipitated metal element-containing nanoparticles are more easily dispersed uniformly. Therefore, it is possible to obtain a PAS resin composition in which metal element-containing particles having an extremely small particle size are dispersed.
即ち本発明は、PAS樹脂を溶解可能な有機溶剤に、PAS樹脂と無機金属化合物とを溶解させた後、析出させることを特徴とする、金属元素含有ナノ粒子が分散されたPAS樹脂組成物の製造方法を提供する。 That is, the present invention relates to a PAS resin composition in which metal element-containing nanoparticles are dispersed, wherein the PAS resin and the inorganic metal compound are dissolved in an organic solvent capable of dissolving the PAS resin and then precipitated. A manufacturing method is provided.
本発明により、溶融混練を行うことなく金属元素含有ナノ粒子が分散されたPAS樹脂組成物を製造することができる。溶融混練を行わないので、PAS樹脂に溶融混練時の剪断力がかかることがなく、樹脂の酸化劣化や主鎖切断の恐れもない。
また、マトリックスとなるPAS樹脂を溶媒させるため、溶融混練時よりも拡大したポリアリーレンスルフィド分子鎖間に析出した金属元素含有ナノ粒子がより均一分散化しやすく、ミクロンメートルオーダーの粗大粒子を含まない、極めて小粒径の金属元素含有粒子が分散されたPAS樹脂組成物を得ることが可能である。
According to the present invention, a PAS resin composition in which metal element-containing nanoparticles are dispersed can be produced without performing melt kneading. Since melt kneading is not performed, there is no shearing force applied to the PAS resin during melt kneading, and there is no risk of oxidative deterioration of the resin or main chain breakage.
In addition, since the PAS resin as a matrix is used as a solvent, the metal element-containing nanoparticles precipitated between the polyarylene sulfide molecular chains expanded than during melt kneading are more easily dispersed and do not include coarse particles on the order of micrometers. It is possible to obtain a PAS resin composition in which metal element-containing particles having an extremely small particle size are dispersed.
(言葉の定義「金属元素含有ナノ粒子」)
本発明の製造方法により得られる組成物中に含まれる「金属元素含有ナノ粒子」とは、金属元素含有化合物のナノ粒子である。これは、後述の、使用する金属化合物をPAS樹脂と共に有機溶媒に溶解し再析出されて得た粒子であり、使用する金属化合物の金属種や溶解析出する条件により、析出された粒子は、溶解前の金属化合物そのものであるほかに、金属イオン種や還元された金属単体や、共存成分(残存水分、原料金属化合物由来の酸素)により酸化された金属酸化物を含むと推定される。本発明においては得られる組成物中に含まれるナノ粒子が金属元素を含むことが証明されているために、このような表現とした。
(Definition of words “metal element-containing nanoparticles”)
The “metal element-containing nanoparticles” contained in the composition obtained by the production method of the present invention are nanoparticles of metal element-containing compounds. This is a particle obtained by dissolving and reprecipitating the metal compound to be used, which will be described later, in an organic solvent together with the PAS resin. Depending on the metal species of the metal compound to be used and the conditions for dissolution and precipitation, the precipitated particles are dissolved. In addition to the previous metal compound itself, it is presumed to include a metal ion species, a reduced metal simple substance, and a metal oxide oxidized by a coexisting component (residual moisture, oxygen derived from the raw metal compound). In the present invention, since it was proved that the nanoparticles contained in the obtained composition contain a metal element, such an expression is used.
(PAS樹脂)
本発明で使用するPAS樹脂としては、特に限定されず、公知のPAS樹脂が使用できる。例えば置換基を有してもよい芳香族環と硫黄原子が結合した構造の繰り返し単位を含むランダム共重合体、ブロック共重合体、およびそれらの混合物あるいは単独重合体との混合物等が挙げられる。
これらのPAS樹脂の代表的なものとしては、ポリフェニレンスルフィド(以下、PPS樹脂という)が挙げられる。該PPS樹脂の中でも、上記繰り返し単位の芳香環への結合がパラ位である構造を有するものが耐熱性や結晶性の面で好ましい。
(PAS resin)
The PAS resin used in the present invention is not particularly limited, and a known PAS resin can be used. Examples thereof include a random copolymer containing a repeating unit having a structure in which an aromatic ring which may have a substituent and a sulfur atom are bonded, a block copolymer, a mixture thereof or a mixture with a homopolymer.
Typical examples of these PAS resins include polyphenylene sulfide (hereinafter referred to as PPS resin). Among the PPS resins, those having a structure in which the bond of the repeating unit to the aromatic ring is in the para position are preferable in terms of heat resistance and crystallinity.
(結合種)
また、PAS樹脂には、メタ結合、エーテル結合、スルホン結合、スルフィドケトン結合、ビフェニル結合、フェニルスルフィド結合、ナフチル結合を10モル%未満を上限とし(但し3官能以上の結合を含む成分を共重合させる場合は5モル%を上限として)含有させても良い。本発明では後述の通りスルフィド(−S−)が金属含有材料の分散に寄与していると考えられるため、これらの密度が共重合により大幅に低下したPAS樹脂を用いることは適さない。
(Bonded species)
The PAS resin has a meta bond, an ether bond, a sulfone bond, a sulfide ketone bond, a biphenyl bond, a phenyl sulfide bond, and a naphthyl bond with an upper limit of less than 10 mol% (however, a component containing a tri- or higher functional bond is copolymerized). When it is made to be contained, the upper limit may be 5 mol%). In the present invention, as described later, it is considered that sulfide (-S-) contributes to the dispersion of the metal-containing material. Therefore, it is not suitable to use a PAS resin whose density is greatly reduced by copolymerization.
(分子量)
本発明に使用するPAS樹脂の分子量分布については特に制限はないが複合化操作の際でのポリフェニレンスルフィドの溶媒への溶解が容易である観点より、一定以下の分子量であることが好ましい。好ましくは1−クロロナフタレンを溶媒とするゲル浸透クロマトグラフィーにより求められる分子量分布のピーク分子量が5万以下、更に好ましくは4.5万以下である。
(Molecular weight)
Although there is no restriction | limiting in particular about the molecular weight distribution of PAS resin used for this invention, It is preferable that it is below a fixed molecular weight from a viewpoint that the melt | dissolution to the solvent of polyphenylene sulfide in the case of composite operation is easy. Preferably, the peak molecular weight of the molecular weight distribution determined by gel permeation chromatography using 1-chloronaphthalene as a solvent is 50,000 or less, more preferably 45,000 or less.
なお本発明におけるピーク分子量は、後記実施例のゲル浸透クロマトグラフ測定において、標準物質としてポリスチレンを用いて、ポリスチレン換算量として求められる数値に基づくものである。数平均分子量や質量平均分子量が、ゲル浸透クロマトグラフィーの分子量分布曲線のベースラインの取り方次第で値が変化するのに対し、ピーク分子量は、値が分子量分布曲線のベースラインの取り方に左右されないものである。 In addition, the peak molecular weight in this invention is based on the numerical value calculated | required as a polystyrene conversion amount, using polystyrene as a standard substance in the gel permeation chromatograph measurement of a postscript Example. While the number average molecular weight and mass average molecular weight change depending on how the baseline of the molecular weight distribution curve of gel permeation chromatography is taken, the peak molecular weight depends on how the baseline of the molecular weight distribution curve is taken. Is not.
本発明に使用するPAS樹脂の溶融粘度は特に制限されず、キャビラリーレオメーターを用いて測定した、300℃、せん断速度500sec−1での粘度が20〜1000Pa・sであれば良い。 The melt viscosity of the PAS resin used in the present invention is not particularly limited as long as the viscosity at 300 ° C. and a shear rate of 500 sec −1 is 20 to 1000 Pa · s as measured using a cavity rheometer.
(PAS樹脂の製造方法)
PAS樹脂の製造方法としては、特に限定されないが、例えば1)ジハロゲノ芳香族化合物と、更に必要ならばその他の共重合モノマーとを、硫黄と炭酸ソーダの存在下で重合させる方法、2)ジハロゲノ芳香族化合物と、更に必要ならばその他の共重合モノマーとを、極性溶媒中でスルフィド化剤等の存在下に、重合させる方法、3)p−クロルチオフェノールと、更に必要ならばその他の共重合モノマーとを自己縮合させる方法、4)有機極性溶媒中で、スルフィド化剤とジハロゲノ芳香族化合物と、更に必要ならばその他の共重合モノマーとを反応させる方法等が挙げられる。
これらの方法のなかでも、4)の方法が汎用的であり好ましい。反応の際に、重合度を調節するためにカルボン酸やスルホン酸のアルカリ金属塩を添加したり、水酸化アルカリを添加しても良い。
上記4)方法のなかでも、加熱した有機極性溶媒とジハロゲノ芳香族化合物を含む混合物に含水スルフィド化剤を水が反応混合物から除去され得る速度で導入し、有機極性溶媒中でジハロゲノ芳香族化合物とスルフィド化剤とを反応させること、及び反応系内の水分量を該有機極性溶媒1モルに対して0.02〜0.5モルの範囲にコントロールすることによりPAS樹脂を製造する方法(特開平07−228699号公報参照。)で得られるものが特に好ましい。
(Method for producing PAS resin)
The method for producing the PAS resin is not particularly limited. For example, 1) a method in which a dihalogenoaromatic compound and, if necessary, another copolymerization monomer are polymerized in the presence of sulfur and sodium carbonate, and 2) a dihalogenoaromatic. A method of polymerizing a group compound and, if necessary, other copolymerization monomers in the presence of a sulfidizing agent in a polar solvent, 3) p-chlorothiophenol, and, if necessary, other copolymerizations Examples thereof include a method of self-condensing a monomer and 4) a method of reacting a sulfidizing agent, a dihalogenoaromatic compound, and, if necessary, another copolymerization monomer in an organic polar solvent.
Among these methods, the method 4) is versatile and preferable. In the reaction, an alkali metal salt of carboxylic acid or sulfonic acid or an alkali hydroxide may be added to adjust the degree of polymerization.
Among the above methods 4), a hydrous sulfiding agent is introduced into a mixture containing a heated organic polar solvent and a dihalogenoaromatic compound at a rate at which water can be removed from the reaction mixture, and the dihalogenoaromatic compound and A method for producing a PAS resin by reacting with a sulfidizing agent and controlling the amount of water in the reaction system in the range of 0.02 to 0.5 mol relative to 1 mol of the organic polar solvent (See JP-A No. 07-228699).
(有機溶剤)
本発明では、PAS樹脂は有機溶剤に溶解することが必須であるため、使用する有機溶剤はPAS樹脂を一定条件下で溶解できる必要がある。PAS樹脂を溶解させる条件は常温でも加温下でも良いが、現在知られている溶媒では一定以上の分子量のPAS樹脂を溶解させるためには一定温度への加温が必要である。PAS樹脂を溶解させることができる溶媒としては、アミド系溶媒としてN−メチル−2−ピロリドン(NMP)、ヘキサメチルリン酸トリアミド、N−シクロヘキシルピロリドン、N−メチルカプロラクタム、テトラメチル尿素、ジメチルホルムアミド、ジメチルアセトアミド等が、スルホキシド系溶媒としてテトラメチレンスルホキシド、ジメチルスルホキシド等が、その他の溶媒としてはポリエチレンジアルキルエーテルや1-クロロナフタレン、ジフェニルスルフィドが例示できる。このなかでも特に、アミド系溶媒は各種の無機金属化合物を容易に溶解性させることができ、複合化成分を広く選択できる点、複合化成分含有率を多くできるため特に好ましく用いられる。中でもNMPが特に好ましい。
(Organic solvent)
In the present invention, since it is essential that the PAS resin is dissolved in an organic solvent, the organic solvent to be used needs to be able to dissolve the PAS resin under a certain condition. The conditions for dissolving the PAS resin may be normal temperature or under heating, but in a currently known solvent, heating to a certain temperature is necessary in order to dissolve the PAS resin having a certain molecular weight or more. As a solvent capable of dissolving the PAS resin, N-methyl-2-pyrrolidone (NMP), hexamethylphosphoric triamide, N-cyclohexylpyrrolidone, N-methylcaprolactam, tetramethylurea, dimethylformamide, Examples thereof include dimethylacetamide, tetramethylene sulfoxide, dimethyl sulfoxide, and the like as sulfoxide solvents, and polyethylene dialkyl ether, 1-chloronaphthalene, and diphenyl sulfide as other solvents. Among these, amide solvents are particularly preferably used because various inorganic metal compounds can be easily dissolved, the composite component can be widely selected, and the composite component content can be increased. Of these, NMP is particularly preferable.
(無機金属化合物)
本発明で使用する無機金属化合物は、有機溶剤にPAS樹脂が溶解する条件下(主に加温下)において有機溶媒に大部分が溶解すればよい。使用できる無機金属化合物としては金属塩化物、金属臭化物、金属ヨウ化物等のハロゲン化金属、過塩素酸金属、塩素酸金属、金属硝酸塩、オキシハロゲン化物、が比較的有機溶媒に対して溶解性が高いため好ましい。これら以外の材料でも前記の有機溶剤への溶解条件さえ満たせば、金属酸化物、金属硫酸塩、金属亜硫酸塩、金属ホウ酸塩、金属リン酸塩、金属硫化物も用いることができる。またこれらは水和物を用いても良い。
(Inorganic metal compound)
The inorganic metal compound used in the present invention may be mostly dissolved in the organic solvent under the condition that the PAS resin is dissolved in the organic solvent (mainly under heating). Inorganic metal compounds that can be used are metal halides such as metal chloride, metal bromide, metal iodide, metal perchlorate, metal chlorate, metal nitrate, and oxyhalide, which are relatively soluble in organic solvents. It is preferable because it is high. Metal oxides, metal sulfates, metal sulfites, metal borates, metal phosphates, and metal sulfides can also be used as long as the materials other than these satisfy the conditions for dissolution in the organic solvent. These may be hydrates.
(金属化合物;金属種)
前記有機または無機金属化合物中に用いられる金属種は特に限定はないが典型金属、遷移金属が好ましく用いられる。典型金属としてはアルミニウム、亜鉛、インジウム、スズ、鉛、アンチモン等、遷移金属としてはチタン、ジルコニウム、ハフニウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、レニウム、鉄、コバルト、ニッケル、パラジウム、白金、銅、銀、金、セリウム等の各種金属を例示することが出来るが、これらに限定されない。またこれらの金属化合物は必要に応じ複数種用いても良い。
(Metal compound; metal species)
The metal species used in the organic or inorganic metal compound is not particularly limited, but typical metals and transition metals are preferably used. Typical metals are aluminum, zinc, indium, tin, lead, antimony, etc. Transition metals are titanium, zirconium, hafnium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, rhenium, iron, cobalt, nickel, palladium, platinum Various metals such as copper, silver, gold, and cerium can be exemplified, but are not limited thereto. Moreover, you may use multiple types of these metal compounds as needed.
(製造方法)
前記有機溶剤に、前記PAS樹脂と前記無機金属化合物とを溶解させた後、析出させる。PAS樹脂は常温下では各種溶媒に不溶と言われておりPAS樹脂を溶解させるためには実質的には加温が必要となるため、具体的には、高温下においてPAS樹脂を溶解可能な有機溶剤にPAS樹脂と無機金属化合物とを溶解させた後、冷却して析出させる。そのため、本発明の製造方法に使用する製造装置としては、PAS樹脂と無機金属化合物とを有機溶剤に溶解させることができる溶解槽を持つ装置であり、加温設備が必要となる。さらに加温に要する温度が使用する有機溶剤の沸点付近や、沸点を超える場合には加温を有効に行うために耐圧容器が必要となる。加温可能な耐圧容器としてはオートクレーブを例示することができる。通常、PAS樹脂(特にPPS)の合成設備は加温可能な耐圧容器を備えているため好ましく用いることができる。
他の方法としてはPAS樹脂溶液を水、アルコール等の貧溶媒に注入し、析出させることによっても良い。
(Production method)
The PAS resin and the inorganic metal compound are dissolved in the organic solvent and then precipitated. PAS resin is said to be insoluble in various solvents at room temperature, and in order to dissolve the PAS resin, heating is substantially required. Specifically, an organic material that can dissolve the PAS resin at a high temperature is used. The PAS resin and the inorganic metal compound are dissolved in a solvent, and then cooled and precipitated. Therefore, as a manufacturing apparatus used for the manufacturing method of this invention, it is an apparatus with a dissolution tank which can dissolve a PAS resin and an inorganic metal compound in an organic solvent, and a heating facility is required. Furthermore, when the temperature required for heating is near the boiling point of the organic solvent to be used or exceeds the boiling point, a pressure resistant container is required to effectively perform the heating. An autoclave can be illustrated as a pressure-resistant container which can be heated. Usually, a PAS resin (especially PPS) synthesis facility can be preferably used because it includes a pressure-resistant container that can be heated.
As another method, the PAS resin solution may be poured into a poor solvent such as water or alcohol and precipitated.
本発明の製造方法により析出される樹脂は溶解前のPAS樹脂であるが、ナノ粒子は、前述の通り、使用する無機金属化合物種や溶解析出条件により、構造が異なる可能性がある。
本発明におけるナノ粒子の構造、あるいはPAS樹脂との複合化状態は完全には明らかとなっていないが、概ね下記の4種類の状態と推定している。
(1)単体金属:PAS樹脂はスルフィド部位がスルフォキシド、スルフォンと酸化される上、高温下ではベンゼン環部位が酸化することも知られている。従って共存する無機金属化合物を還元する能力を持つ。複合化の原料として用いられる無機金属化合物中の金属が還元されやすい種類(貴金属系)である場合には単体金属として複合化される可能性がある。
(2)金属酸化物:原料として使用する無機金属化合物中の金属が還元されにくい卑金属の場合にはPAS樹脂により還元されることはない。この場合、金属化合物としては一般に金属酸化物が最も安定であるためPAS樹脂や有機溶媒中の水分、無機金属化合物中に含まれる酸素により酸化される可能性が考えられる。
(3)金属イオン:PAS樹脂の基本構成である芳香環やスルフィド部位は電子供与性があるため金属イオンが配位結合的に複合化できる場合があると考えられる。溶解析出時に、PAS樹脂のスルフィド部位や芳香環からの電子供与により金属含有材料がPAS分子鎖に捕捉されていると仮定すると、前記金属種としては高い酸化数や高い配位数を取りうる材料が好ましい。
(4)無機金属化合物:原料として使用する無機金属化合物の安定性が非常に高く、溶媒溶解や加熱により分解されない場合は原料から変化せずに無機金属化合物微粒子として複合化される場合も考えられる。
The resin deposited by the production method of the present invention is a PAS resin before dissolution, but the nanoparticles may have different structures depending on the type of inorganic metal compound used and dissolution deposition conditions as described above.
The structure of the nanoparticles in the present invention or the complexed state with the PAS resin has not been fully clarified, but the following four types of states are presumed.
(1) Single metal: It is known that the PAS resin oxidizes sulfide sites with sulfoxide and sulfone, and oxidizes benzene ring sites at high temperatures. Therefore, it has the ability to reduce the coexisting inorganic metal compound. When the metal in the inorganic metal compound used as the raw material for the composite is of a type that can be easily reduced (noble metal), it may be composited as a single metal.
(2) Metal oxide: When the metal in the inorganic metal compound used as a raw material is a base metal that is difficult to be reduced, it is not reduced by the PAS resin. In this case, since a metal oxide is generally the most stable as the metal compound, there is a possibility that it is oxidized by moisture contained in the PAS resin, the organic solvent, or oxygen contained in the inorganic metal compound.
(3) Metal ions: Since aromatic rings and sulfide sites, which are the basic components of PAS resins, have electron donating properties, metal ions may be able to be complexed in a coordinate bond. Assuming that the metal-containing material is trapped in the PAS molecular chain by electron donation from the sulfide site or aromatic ring of the PAS resin during dissolution and precipitation, the metal species can have a high oxidation number and a high coordination number. Is preferred.
(4) Inorganic metal compound: The stability of the inorganic metal compound used as a raw material is very high, and when it is not decomposed by solvent dissolution or heating, it may be combined as inorganic metal compound fine particles without changing from the raw material. .
また析出したナノ粒子とPAS樹脂との複合化状態は、マトリックスとなるPAS樹脂が溶媒に溶解しており、溶融混練時よりもポリアリーレンスルフィド分子鎖間が拡大していると推定されることから、析出した金属元素含有ナノ粒子がより均一分散化すく、極めて小粒径の金属元素含有粒子が分散されたPAS樹脂組成物を得ることができたと推定される。 The composite state of the precipitated nanoparticles and the PAS resin is presumed that the PAS resin as the matrix is dissolved in the solvent and that the polyarylene sulfide molecular chain is expanded more than during melt kneading. It is estimated that the precipitated metal element-containing nanoparticles were more uniformly dispersed, and a PAS resin composition in which metal element-containing particles having an extremely small particle size were dispersed could be obtained.
(金属元素含有ナノ粒子の平均粒径)
本発明の製造方法で得られる組成物中の金属元素含有ナノ粒子の平均粒径は、微粒子の粒径が小さいと粒子質量あたりの粒子表面積が大きくなることで少量の添加で添加効果を発揮できることから、平均粒径が1μm以下であることが好ましく、さらに好ましくは500nm以下、最も好ましくは100nm以下である。
前記金属元素含有ナノ粒子の平均粒径測定方法としては、樹脂組成物中での粒径を直接見る必要があることより走査型電子顕微鏡、透過型電子顕微鏡等の観察結果より算出する方法が例示できる。その他、金属元素含有ナノ粒子の粒径分布や形状は、本発明で得られた組成物の用途先により最適な形状になるように設計されれば良いため特に制限はない。
(Average particle size of metal element-containing nanoparticles)
The average particle size of the metal element-containing nanoparticles in the composition obtained by the production method of the present invention is such that when the particle size of the fine particles is small, the particle surface area per particle mass increases, so that the addition effect can be exhibited with a small amount of addition. Therefore, the average particle size is preferably 1 μm or less, more preferably 500 nm or less, and most preferably 100 nm or less.
Examples of the method for measuring the average particle size of the metal element-containing nanoparticles include a method of calculating from observation results of a scanning electron microscope, a transmission electron microscope, etc., because it is necessary to directly observe the particle size in the resin composition. it can. In addition, the particle size distribution and shape of the metal element-containing nanoparticles are not particularly limited as long as they are designed so as to have an optimum shape depending on the application destination of the composition obtained in the present invention.
(金属元素含有ナノ粒子の含有率)
本発明の製造方法で得られる組成物中の金属元素含有ナノ粒子の含有率は特に制限がない。しかし、本手法では極めて少粒径で複合化を行うことができるため、通常の溶融混練法よりも少ない含有率例えば0.01質量%以上の含有率でも、樹脂の強化材、改質剤としての役割を発現しうる。一方含有率の上限は、金属元素含有ナノ粒子の微粒径を保てなくなる可能性あるので、具体的には0.01質量%〜20質量%が好ましい。
(Content of metal element-containing nanoparticles)
The content of the metal element-containing nanoparticles in the composition obtained by the production method of the present invention is not particularly limited. However, in this method, since it can be combined with an extremely small particle size, even when the content is lower than that of a normal melt-kneading method, for example, a content of 0.01% by mass or more, as a resin reinforcing material or modifier. The role of can be expressed. On the other hand, the upper limit of the content is preferably 0.01% by mass to 20% by mass because the fine particle size of the metal element-containing nanoparticles may not be maintained.
(PAS樹脂の高分子量化)
PAS樹脂の溶解条件はPAS樹脂の合成条件と概ね一致する。従って、PAS樹脂に残存する末端官能基を用いて、より高分子量化する操作を同時に行うことでPAS樹脂組成物の特性をさらに向上させることもできる。本方法はポストコンデンセーション(後重合)として知られている。具体例としてはジハロゲノ芳香族化合物を原料として合成したPAS樹脂に残存しているハロゲン末端を、該残存末端と適量のスルフィド化剤とを反応させる操作を無機金属化合物の複合化と同時に行うことが例示できる。この操作によりPAS樹脂の低ハロゲン化をすすめることもできる。
(High molecular weight PAS resin)
The PAS resin dissolution conditions generally coincide with the PAS resin synthesis conditions. Therefore, the properties of the PAS resin composition can be further improved by simultaneously performing an operation for increasing the molecular weight using the terminal functional group remaining in the PAS resin. This process is known as postcondensation. As a specific example, the halogen terminal remaining in the PAS resin synthesized using a dihalogenoaromatic compound as a raw material may be reacted with the inorganic metal compound simultaneously with the reaction of the remaining terminal with an appropriate amount of a sulfidizing agent. It can be illustrated. By this operation, the halogenation of the PAS resin can be promoted.
加えて、有機溶剤に溶解はしないが良分散性の無機材料や、有機溶剤に溶解性の高分子等の有機材料を併用してPAS樹脂と無機金属化合物の複合化操作を行うことで第3成分を添加する操作をおこなっても良い。 In addition, by combining a PAS resin and an inorganic metal compound in combination with an inorganic material that is not dissolved in an organic solvent but is well dispersible, or an organic material that is soluble in an organic solvent, a third operation is performed. You may perform operation which adds a component.
(組成物の精製操作)
得られた組成物の精製操作としては、組成物の製造後に該組成物中に含有される有機溶剤や、副生成物(たとえば、無機金属化合物の熱分解物)を除去できる操作であれば特に限定されない。有機溶剤を除去する方法としては水洗、蒸気洗、溶媒洗や、蒸留処理、フラッシュ操作による脱溶剤等が例示される。
(Purification operation of the composition)
As a purification operation of the obtained composition, an organic solvent and a by-product (for example, a thermal decomposition product of an inorganic metal compound) contained in the composition after the production of the composition can be removed. It is not limited. Examples of the method for removing the organic solvent include water washing, steam washing, solvent washing, distillation treatment, solvent removal by flash operation, and the like.
(後加工、及び併用材料)
本発明により得られた金属元素含有ナノ粒子が分散されたPAS樹脂組成物は、これを直接材料として用い所望の形状に加工しても良いし、これをPAS樹脂や他の熱可塑性樹脂に更に複合化して用いてもよい。また、公知慣用の無機フィラー類や熱可塑性エラストマー類と併用しても差し支えない。
(Post-processing and combined materials)
The PAS resin composition in which the metal element-containing nanoparticles obtained by the present invention are dispersed may be processed directly into a desired shape using this as a material, and this may be further applied to a PAS resin or other thermoplastic resin. You may combine and use. Further, it may be used in combination with known and commonly used inorganic fillers and thermoplastic elastomers.
以下に具体例をもって本発明を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described with specific examples, but the present invention is not limited thereto.
<合成例1 PAS樹脂(PPS−1)の合成>
温度センサー、冷却塔、滴下槽、滴下ポンプ、留出物分離槽を連結した攪拌翼付チタン製反応釜にパラジクロロベンゼン(p−DCB)1838kg(12.5キロモル)、N−メチル−2−ピロリドン(NMP)4958kg(50キロモル)、水 90kg(5.0キロモル)を室温で仕込み、攪拌しながら窒素雰囲気下で100℃まで20分かけて昇温し、系を閉じ、更に220℃まで40分かけて昇温し、その温度で内圧を0.22MPaにコントロールして、Na2S・xH2O 1500kg、NaSH・yH2O 225kg、水425kgの混合液(Na2S:11.4キロモル、NaSH:3.2キロモル、水分50.3質量%)を3時間かけて滴下した。滴下中は同時に脱水操作を行い、水は系外に除去し、水と共に留出するp−DCBは連続的にオートクレーブに戻した。なお、脱水操作とp−DCBを戻す操作は240℃昇温完了まで行い、昇温完了時に系を密閉した。
<Synthesis Example 1 Synthesis of PAS Resin (PPS-1)>
A titanium reaction vessel equipped with a stirring blade connected with a temperature sensor, cooling tower, dropping tank, dropping pump, distillate separation tank, paradichlorobenzene (p-DCB) 1838 kg (12.5 kgol), N-methyl-2-pyrrolidone (NMP) 4958 kg (50 kgol) and 90 kg (5.0 kgol) of water were charged at room temperature, and the temperature was raised to 100 ° C. over 20 minutes under stirring in a nitrogen atmosphere, the system was closed, and further to 220 ° C. for 40 minutes. The internal pressure was controlled at 0.22 MPa at that temperature, and a mixture of Na 2 S · xH 2 O 1500 kg, NaSH · yH 2 O 225 kg, water 425 kg (Na 2 S: 11.4 kgol, NaSH: 3.2 kgol, water 50.3 mass%) was added dropwise over 3 hours. During the dropping, dehydration was performed simultaneously, water was removed from the system, and p-DCB distilled together with water was continuously returned to the autoclave. The dehydration operation and the operation for returning the p-DCB were performed until the temperature increase at 240 ° C. was completed, and the system was sealed when the temperature increase was completed.
その後、そのままの温度圧力で1時間保持した後、1時間かけて、内圧を0.17MPaに下げながら、内温を240℃まで昇温し、その温度で1時間保持して反応を終了し、室温まで冷却した。
留出液の分析結果によると、反応終了時の反応系内の水分量は全使用スルフィド化剤に対して0.17(モル/モル)であった。
得られた反応スラリーを減圧下(−0.08MPa)、120℃に加熱することにより反応溶媒を留去し、残査に水を注いで80℃で1時間攪拌した後、濾過した。このケーキを再び湯で1時間攪拌、洗浄した後、濾過した。この操作を3回繰り返し、更に水を加え、200℃で1時間攪拌後、濾過し、熱風乾燥機で120℃−10時間乾燥して白色粉末状のポリマーを得た。このポリマーを以後PPS−1という。このPPS−1のピーク分子量は、43,700、溶融粘度は240Pa・sであった。
Then, after maintaining for 1 hour at the same temperature and pressure, the internal temperature was raised to 240 ° C. while reducing the internal pressure to 0.17 MPa over 1 hour, and the reaction was terminated by maintaining the temperature for 1 hour. Cooled to room temperature.
According to the analysis result of the distillate, the amount of water in the reaction system at the end of the reaction was 0.17 (mol / mol) with respect to the total sulfidizing agent used.
The obtained reaction slurry was heated to 120 ° C. under reduced pressure (−0.08 MPa), the reaction solvent was distilled off, water was poured into the residue, and the mixture was stirred at 80 ° C. for 1 hour, followed by filtration. The cake was stirred again with hot water for 1 hour, washed, and then filtered. This operation was repeated three times, water was further added, the mixture was stirred at 200 ° C. for 1 hour, filtered, and dried with a hot air dryer at 120 ° C. for 10 hours to obtain a white powdery polymer. This polymer is hereinafter referred to as PPS-1. The peak molecular weight of this PPS-1 was 43,700, and the melt viscosity was 240 Pa · s.
(実施例1:塩化銅(II)二水和物を用いた金属元素含有ナノ粒子が分散されたPAS樹脂組成物(以下ナノ粒子分散PAS組成物と略す)の製造方法)
2Lビーカー中に有機溶剤としてN−メチル−2−ピロリドン(NMP)800gに、無機金属化合物として金属塩化物である塩化銅(II)二水和物10.0gを仕込み室温下で30分間攪拌し完全に溶解させることで濃緑色のNMP溶液を得た。
温度センサー及び、窒素ガスライン(入口、出口各1)を連結した内容積2Lの攪拌翼付チタン製反応釜中に、先に調製したNMP溶液を入れた後、PAS樹脂として合成例1で作製したPPS−1を200gを仕込み、完全に密閉した。その後、窒素ガス用の入口、出口を開け、窒素ガスを1L/分の流量で10分間流通させることで容器中の空気を置換したのち窒素ガス用の入口、出口を閉じた。300min−1の回転速度で槽内を攪拌しつつ4℃/分で昇温し250℃に到達したあと30分間保持した。
その後、攪拌を維持しつつ槽内を4℃/分で降温させ70℃に到達したところで攪拌を停止し釜を開放した。内部は均一茶色の塊状物があり、加温前のNMP溶液と樹脂との2相物とは完全に異なる状態となっていた。該塊状物を2Lのイオン交換水中にいれ室温下で30分間攪拌することで分散洗浄を行い、この分散スラリーを90mmφのヌッチェに桐山ロート5B濾紙を敷いた上から注ぎ減圧濾過を行った。濾紙上の樹脂組成物を2Lのイオン交換水で分散洗浄する操作をもう2回繰り返すことで洗浄濾過液が透明になった。ここで回収した濾紙上の樹脂組成物を金属バット上に広げ、120℃で14時間熱風乾燥することでナノ粒子分散PAS組成物を得た。
(Example 1: Manufacturing method of PAS resin composition in which metal element-containing nanoparticles are dispersed using copper (II) chloride dihydrate (hereinafter abbreviated as nanoparticle-dispersed PAS composition)
In a 2 L beaker, N-methyl-2-pyrrolidone (NMP) 800 g as an organic solvent and 10.0 g of copper chloride (II) chloride dihydrate as a metal chloride as an inorganic metal compound were charged and stirred at room temperature for 30 minutes. A dark green NMP solution was obtained by complete dissolution.
Prepared in Synthesis Example 1 as a PAS resin after putting the previously prepared NMP solution into a titanium reaction kettle with a stirring blade with an internal volume of 2 L connected to a temperature sensor and a nitrogen gas line (inlet and outlet 1 each) 200 g of the prepared PPS-1 was charged and completely sealed. Thereafter, the nitrogen gas inlet and outlet were opened, and the nitrogen gas was circulated at a flow rate of 1 L / min for 10 minutes to replace the air in the container, and then the nitrogen gas inlet and outlet were closed. While stirring the inside of the tank at a rotation speed of 300 min −1, the temperature was increased at 4 ° C./min, and after reaching 250 ° C., the temperature was maintained for 30 minutes.
Thereafter, the temperature in the tank was lowered at 4 ° C./min while maintaining stirring, and when the temperature reached 70 ° C., stirring was stopped and the kettle was opened. There was a uniform brown lump inside, and the two-phase product of the NMP solution and the resin before heating was completely different. The lump was placed in 2 L of ion-exchanged water and stirred at room temperature for 30 minutes for dispersion washing, and this dispersion slurry was poured onto 90 mmφ Nutsche from a Kiriyama funnel 5B filter paper and filtered under reduced pressure. The washing filtrate became transparent by repeating the operation of dispersing and washing the resin composition on the filter paper with 2 L of ion exchange water twice. The resin composition on the filter paper collected here was spread on a metal vat and dried with hot air at 120 ° C. for 14 hours to obtain a nanoparticle-dispersed PAS composition.
(実施例2:塩化鉄(III)を用いたナノ粒子分散PAS組成物の製造方法)
実施例1で用いた塩化銅(II)二水和物の代わりに塩化鉄(III)20.0gをNMP中に室温下で完全に溶解させて得た茶褐色のNMP溶液を用いた以外は実施例1と同様な複合化、洗浄、乾燥操作を行うことでナノ粒子分散PAS組成物を得た。
(Example 2: Production method of nanoparticle-dispersed PAS composition using iron (III) chloride)
Instead of the copper (II) chloride dihydrate used in Example 1, 20.0 g of iron (III) chloride was completely dissolved in NMP at room temperature, except that a brown NMP solution was used. The nanoparticle-dispersed PAS composition was obtained by performing the same composite, washing, and drying operations as in Example 1.
(実施例3:オキシ塩化ジルコニウム八水和物を用いたナノ粒子分散PAS組成物の製造方法)
実施例1で用いた塩化銅(II)二水和物の代わりにオキシ塩化ジルコニウム八水和物10.0gをNMP中に室温下で完全に溶解させて得た無色透明のNMP溶液を用いた以外は実施例1と同様な複合化、洗浄、乾燥操作を行うことでナノ粒子分散PAS組成物を得た。
(Example 3: Method for producing nanoparticle-dispersed PAS composition using zirconium oxychloride octahydrate)
Instead of the copper (II) chloride dihydrate used in Example 1, a colorless and transparent NMP solution obtained by completely dissolving 10.0 g of zirconium oxychloride octahydrate in NMP at room temperature was used. A nanoparticle-dispersed PAS composition was obtained by performing the same composite, washing and drying operations as in Example 1 except for the above.
(実施例4:臭化ニッケル(II)三水和物を用いたナノ粒子分散PAS組成物の製造方法)
実施例1で用いた塩化銅(II)二水和物の代わりに臭化ニッケル(II)三水和物5.0gをNMP中に室温下で完全に溶解させて得た緑色のNMP溶液を用いた以外は実施例1と同様な複合化、洗浄、乾燥操作を行うことでナノ粒子分散PAS組成物を得た。
(Example 4: Production method of nanoparticle-dispersed PAS composition using nickel (II) bromide trihydrate)
Instead of the copper (II) chloride dihydrate used in Example 1, 5.0 g of nickel (II) bromide trihydrate was completely dissolved in NMP at room temperature to obtain a green NMP solution. A nanoparticle-dispersed PAS composition was obtained by performing the same compositing, washing, and drying operations as in Example 1 except that they were used.
(実施例5:硝酸コバルト(II)六水和物を用いたナノ粒子分散PAS組成物の製造方法)
実施例1で用いた塩化銅(II)二水和物の代わりに硝酸コバルト(II)六水和物3.0gをNMP中に室温下で完全に溶解させて得た青色のNMP溶液を用いた以外は実施例1と同様な複合化、洗浄、乾燥操作を行うことでナノ粒子分散PAS組成物を得た。
(Example 5: Production method of nanoparticle-dispersed PAS composition using cobalt nitrate (II) hexahydrate)
Instead of the copper (II) chloride dihydrate used in Example 1, a blue NMP solution obtained by completely dissolving 3.0 g of cobalt (II) nitrate hexahydrate in NMP at room temperature was used. A nanoparticle-dispersed PAS composition was obtained by performing the same compositing, washing and drying operations as in Example 1 except for the above.
(実施例7:ヨウ化亜鉛を用いたナノ粒子分散PAS組成物の製造方法)
実施例1で用いた塩化銅(II)二水和物の代わりにヨウ化亜鉛25.0gをNMP中に室温下で完全に溶解させて得た淡黄色のNMP溶液を用いた以外は実施例1と同様な複合化、洗浄、乾燥操作を行うことでナノ粒子分散PAS組成物を得た。
(Example 7: Method for producing nanoparticle-dispersed PAS composition using zinc iodide)
Instead of the copper (II) chloride dihydrate used in Example 1, 25.0 g of zinc iodide was completely dissolved in NMP at room temperature, except that a pale yellow NMP solution was used. The nanoparticle-dispersed PAS composition was obtained by performing the same composite, washing and drying operations as in Example 1.
(比較例1:溶融混練法による複合体の作製、実施例1の比較に相当)
樹脂溶融混練装置である、ラボプラストミルCタイプ、KF−6((株)東洋精機製作所社製)を用いて以下の条件で溶融混練法によりPAS樹脂と無機金属化合物とを混練する試験を行った。本比較例は実施例1の比較試験に相当する組成である。加熱温度320℃に加熱した混練室にミキサー回転数10rpmで混練刃を回転させつつ、ドライブレンドしたPPS−1樹脂粉末5.0gと塩化銅(II)二水和物0.25g粉末とを導入した。混練室に粉末を完全に導入したのち、ミキサー回転数を300rpmに高め10分間溶融混練処理を行った。本操作では混練時間が6分を経過時点より、著しいトルク上昇が認められ最終時の混練トルクは混練回転数を300rpmに高めた直後の2倍に達しPASの酸化架橋(即ち樹脂成分の劣化)が生じていることが推定された。得られた粒子分散PAS組成物を回収した。
(Comparative Example 1: Preparation of composite by melt kneading method, equivalent to comparison of Example 1)
A test for kneading a PAS resin and an inorganic metal compound by a melt kneading method under the following conditions using a resin melt kneading apparatus, Laboplast mill C type, KF-6 (manufactured by Toyo Seiki Seisakusho Co., Ltd.) It was. This comparative example has a composition corresponding to the comparative test of Example 1. Introducing 5.0 g of dry blended PPS-1 resin powder and 0.25 g of copper (II) chloride dihydrate powder while rotating the kneading blade at a mixer rotation speed of 10 rpm into the kneading chamber heated to a heating temperature of 320 ° C. did. After the powder was completely introduced into the kneading chamber, the mixer rotation speed was increased to 300 rpm and melt kneading treatment was performed for 10 minutes. In this operation, a significant torque increase was observed from the time when the kneading time passed 6 minutes, and the final kneading torque reached twice that immediately after the kneading rotation speed was increased to 300 rpm, resulting in oxidation crosslinking of PAS (that is, deterioration of the resin component). It was estimated that The obtained particle-dispersed PAS composition was recovered.
(比較例2:溶融混練法による複合体の作製、実施例2の比較に相当)
比較例1中の塩化銅(II)二水和物粉末の代わりに塩化鉄(III)粉末0.50gに変更した以外は比較例1と同様な操作を行なった。本操作では混練操作中に軽い塩素臭が発生した。また混練時間が5分を経過時点より著しいトルク上昇が認められ最終時の混練トルクは混練回転数を300rpmに高めた直後の3倍に達しPASの酸化架橋(即ち樹脂成分の劣化)が生じていることが推定された。得られた粒子分散PAS組成物を回収した。
(Comparative Example 2: Preparation of composite by melt kneading method, equivalent to comparison of Example 2)
The same operation as in Comparative Example 1 was performed except that instead of the copper (II) chloride dihydrate powder in Comparative Example 1, the iron (III) powder was changed to 0.50 g. In this operation, a light chlorine odor was generated during the kneading operation. In addition, a significant torque increase was observed from the time when the kneading time was 5 minutes, and the final kneading torque reached three times that immediately after the kneading rotation speed was increased to 300 rpm, resulting in PAS oxidation crosslinking (that is, deterioration of the resin component). It was estimated that The obtained particle-dispersed PAS composition was recovered.
(比較例3:溶融混練法によるPAS組成物の作製、特許文献1;実施例7に相当)
塩化パラジウム(II)0.66gを水:メタノール1:1混合溶液100mlに溶解させた液とPPS−1樹脂粉末100gとを混合したのち、減圧乾燥により溶媒を除去しPPS−1と塩化パラジウム(II)の混合体を得た。この混合体の5.6gを採取し、比較例1と同様な操作方法で溶融混練を行った。本混練操作によっても混練工程でのトルク上昇が認められ、最終時の混練トルクは混練回転数を高めた直後の2.5倍に達した。得られた粒子分散PAS組成物を回収した。
(Comparative Example 3: Preparation of PAS composition by melt kneading method, Patent Document 1: equivalent to Example 7)
A solution prepared by dissolving 0.66 g of palladium (II) chloride in 100 ml of a water / methanol 1: 1 mixed solution and 100 g of PPS-1 resin powder was mixed, and then the solvent was removed by drying under reduced pressure to remove PPS-1 and palladium chloride ( A mixture of II) was obtained. 5.6 g of this mixture was sampled and melt kneaded by the same operation method as in Comparative Example 1. Even in this kneading operation, an increase in torque in the kneading process was observed, and the kneading torque at the final time reached 2.5 times that immediately after the kneading rotation speed was increased. The obtained particle-dispersed PAS composition was recovered.
(比較例4:溶融混練法によるPAS組成物の作製、特許文献1;実施例13に相当)
塩化パラジウム(II)の代わりに塩化鉄(III)0.28gを用いた以外は比較例3と同様な手法により粒子分散PAS組成物を得た。本操作中では混練装置より軽い塩素臭が発生した。また比較例1〜3同様に混練トルク上昇が見られ最終時の混練トルクは回転数を高めた直後の2倍に達した。
(Comparative Example 4: Preparation of PAS composition by melt kneading method, Patent Document 1: equivalent to Example 13)
A particle-dispersed PAS composition was obtained in the same manner as in Comparative Example 3 except that 0.28 g of iron (III) chloride was used instead of palladium (II) chloride. During this operation, a light chlorine odor was generated from the kneader. Further, as in Comparative Examples 1 to 3, an increase in the kneading torque was observed, and the kneading torque at the final time reached twice that immediately after the rotation speed was increased.
上記各実施例、比較例で得られたナノ粒子分散PAS組成物について下記の方法によりシート状の測定用サンプルを作製した後、以下の項目の測定、試験を行なった。 About the nanoparticle dispersion | distribution PAS composition obtained by each said Example and comparative example, after producing the sheet-like measurement sample by the following method, the measurement and test of the following items were performed.
(板状樹脂組成物(測定用サンプル)の作製)
各実施例、比較例で得た樹脂組成物、及び複合化処理をしてないPAS-1の1.0gを用い6cm角の開口部を持つ200μm厚の銅板を型として、6cm角で厚さ200μmの板状樹脂組成物を得た。本板状サンプルを以降の測定に用いた。
(Preparation of plate-shaped resin composition (sample for measurement))
Using a resin composition obtained in each example and comparative example, and 1.0 g of PAS-1 which has not been subjected to a composite treatment, a 200 μm thick copper plate having a 6 cm square opening is used as a mold, and the thickness is 6 cm square. A 200 μm plate-shaped resin composition was obtained. This plate sample was used for the subsequent measurements.
(測定1)蛍光X線での測定による無機成分の検証及び、含有率の測定
前記方法で作製した各種の板状樹脂組成物を3cm角に切断したのち重量を測定し、この組成物の密度を測定した。これを開口部が直径20mmの測定用ホルダ−にセットした。該試料を理化学電気工業株式会社製蛍光X線分析装置「ZSX100e」を用いて全元素分析を行った。PPS-1より得たシートでは合成原料に含まれる極僅かのNa以外の金属元素は含まれなかった。
得られた全元素分析の結果を用い、測定用試料の試料データ(与えたデータは、試料形状;フィルム、補正成分;PPS、実測した試料の面積当たりの質量値)を装置に与えることにより、FP法(Fundamental Parameter法;試料の均一性、表面平滑性を仮定し装置内の定数を用いて補正を行い成分の定量を行う方法)にて各々得られたナノ粒子分散PAS組成物に含まれる金属元素割合(質量%)を算出した。
また、上記方法で得られた金属元素割合(検出値、質量%と、無機金属化合物中の金属元素が100%複合化されたときの存在割合(金属元素仕込み割合、質量%)とを用いて複合化収率(%)を下式により算出した。
(Measurement 1) Verification of inorganic component by measurement with fluorescent X-ray and measurement of content rate After cutting various plate-shaped resin compositions prepared by the above method into 3 cm square, the weight is measured, and the density of this composition Was measured. This was set in a measuring holder having an opening of 20 mm in diameter. The sample was subjected to total elemental analysis using a fluorescent X-ray analyzer “ZSX100e” manufactured by RIKEN ELECTRIC CO., LTD. The sheet obtained from PPS-1 contained no metal elements other than a very small amount of Na contained in the synthetic raw material.
By using the obtained results of the total elemental analysis, the sample data of the measurement sample (the given data is sample shape; film, correction component: PPS, mass value per area of the actually measured sample) is given to the apparatus. Included in each nanoparticle-dispersed PAS composition obtained by the FP method (Fundamental Parameter method; a method in which the uniformity of the sample and surface smoothness are assumed and correction is performed using constants in the apparatus and the components are quantified) The metal element ratio (mass%) was calculated.
Also, using the metal element ratio (detected value, mass%) obtained by the above method and the existing ratio (metal element charge ratio, mass%) when the metal element in the inorganic metal compound is compounded 100%. The composite yield (%) was calculated by the following formula.
(測定2)走査型電子顕微鏡(SEM)観察による無機平均粒径の算出
板状樹脂組成物を剃刀により切り出し、断面が上面になるようにSEM用ホルダーにセットした。これに1nmのPtを蒸着しSEM観察用サンプルを作製した。走査型電子顕微鏡S−3400N((株)日立ハイテクノロジー製)での反射電子検出器を用いて断面での無機微粒子の分散状態を500〜20000倍にて観察した。本測定では周囲のPAS樹脂よりも質量が重い無機金属化合物は明るい領域として観察される。この観察条件では最小40nmの粒子が観察可能である。本方法で観察された100個の粒径を測定し、その平均値を平均粒径とした。また、平均粒径とは別に、1μm以上の粗大粒子が500倍での任意の観察領域中に1つでも見られた場合は粗大粒子有り、見られなかった場合は粗大粒子無しと判定した。
(Measurement 2) Calculation of Inorganic Average Particle Size by Observation with Scanning Electron Microscope (SEM) The plate-like resin composition was cut out with a razor and set in a SEM holder so that the cross-section became the upper surface. A sample for SEM observation was prepared by depositing 1 nm of Pt thereon. Using a backscattered electron detector in a scanning electron microscope S-3400N (manufactured by Hitachi High-Technology Corporation), the dispersion state of the inorganic fine particles in the cross section was observed at 500 to 20000 times. In this measurement, an inorganic metal compound having a mass heavier than that of the surrounding PAS resin is observed as a bright region. Under this observation condition, particles of a minimum of 40 nm can be observed. 100 particle diameters observed by this method were measured, and the average value was defined as the average particle diameter. In addition, apart from the average particle diameter, when even one coarse particle of 1 μm or more was seen in an arbitrary observation region at 500 times, it was judged that there was a coarse particle, and when it was not seen, there was no coarse particle.
(測定3)PAS組成物の溶融粘度の測定
各実施例及び比較例で得られたPAS組成物の溶融粘度(Pa・s)特性をキャビラリーレオメーターキャピログラフ1D PMD−C((株)東洋精機製作所製)を用いて測定した。測定条件は、測定温度300℃、使用キャピラリーφ1×10mm、せん断速度500sec−1である。
(Measurement 3) Measurement of Melt Viscosity of PAS Composition The melt viscosity (Pa · s) characteristics of the PAS compositions obtained in each of the Examples and Comparative Examples were calculated as follows: Cavity Rheometer Capillograph 1D PMD-C (Corporation) Measured using Toyo Seiki Seisakusho. The measurement conditions are a measurement temperature of 300 ° C., a used capillary φ1 × 10 mm, and a shear rate of 500 sec −1 .
以下、表1に各実施例及び比較例の結果をまとめた。 Table 1 below summarizes the results of each example and comparative example.
表1の各実施例で見られるように、本発明ではPAS樹脂を溶解可能な有機溶剤に無機金属化合物を溶解させた後、析出させることにより、金属成分を含有するナノ粒子分散PAS組成物を得ることができた。更に、金属の添加量に対する収率も57%以上と比較的高く複合化が効率よく生じていることが明らかとなった。これは、本方法がPAS樹脂と無機金属化合物とを有機溶媒中に溶解させ複合化させるため、無機金属化合物の金属成分が、最小ではイオン状態にまで微粒化された状態で、溶媒により膨潤したPAS分子鎖間に入りこみボトムアップ型で複合化され、さらに複合化が溶媒中且つ密閉下で行われるため、金属成分の損失が生じにくいためと考えられる。
加えて、ミクロンオーダーの粗大粒子が全く観察されず均質な組成物であることが確認できた。また、溶融粘度も原料PASから無機複合化操作により殆ど上昇しなかた。
As can be seen in each example of Table 1, in the present invention, an inorganic metal compound is dissolved in an organic solvent capable of dissolving a PAS resin, and then precipitated, whereby a nanoparticle-dispersed PAS composition containing a metal component is obtained. I was able to get it. Furthermore, the yield with respect to the amount of metal added was relatively high at 57% or more, and it was revealed that complexation occurred efficiently. This is because the PAS resin and the inorganic metal compound are dissolved and compounded in an organic solvent, so that the metal component of the inorganic metal compound is swollen by the solvent in a state of being atomized to a minimum in an ionic state. It is considered that the metal components are not lost easily because they enter between the PAS molecular chains and are combined in a bottom-up manner, and further, the combination is performed in a solvent and sealed.
In addition, no coarse particles of micron order were observed and it was confirmed that the composition was homogeneous. Also, the melt viscosity hardly increased from the raw material PAS by the inorganic composite operation.
一方、無機金属化合物を直接溶融混練した比較例1,2では金属成分は300nm以上の粒径で凝集する結果となった。また、ミクロンオーダーの粒子も散見された。これは無機金属化合物がドライブレンドのような不完全な分散状態から複合化されるため微粒化できないためと考えられる。比較例1の塩化銅(II)のように分解温度が高い化合物を用いた場合は複合化収率が高いものの、比較例2のように分解温度が溶融混練温度を下回る化合物では溶融混練操作により複合化される前に昇華、蒸発などの理由により系外にでることにより収率が低くなった。このことより溶融混練では複合化材料の熱特性により材料によっては複合化が困難であることが明らかとなった。
また、比較例3,4に示した金属塩化物を溶媒に溶解させPASに混合した後に溶媒を除去し引き続き溶融混練を行った方法(特許文献1の実施例に準拠)では、平均粒径は小さいもののミクロンオーダーの粒子も散見された。これは溶媒除去中に金属塩化物が再凝集した部分がありこれが分散しきれずに粗大粒子を形成したと推定される。さらに比較例4では比較例2同様に混練温度が塩化鉄(III)の沸点以上のため収率が低い結果となった。
いずれの比較例でも、強いせん断力を与えての混練を行ったため、PAS樹脂が酸化架橋、劣化したと推定される溶融粘度の上昇を伴った。溶融混練法による複合化においてはこうした強いせん断下にも係らず粗大粒子が少量混在する問題を持つ事が明らかとなった。こうした粗大粒子は構造材料中では破壊の起点になりうるため、少量の存在でも好ましくない。本発明ではこうした粗大粒子が存在しない利点を持つ。
On the other hand, in Comparative Examples 1 and 2 in which the inorganic metal compound was directly melt-kneaded, the metal components were aggregated with a particle size of 300 nm or more. In addition, micron-order particles were also found. This is thought to be because the inorganic metal compound is compounded from an incompletely dispersed state such as dry blending and cannot be atomized. When a compound having a high decomposition temperature such as copper chloride (II) of Comparative Example 1 is used, the compounding yield is high. However, a compound having a decomposition temperature lower than the melt kneading temperature as in Comparative Example 2 is obtained by a melt kneading operation. The yield was lowered by going out of the system due to sublimation and evaporation before being combined. From this, it became clear that it is difficult to make a composite by melt kneading depending on the material due to the thermal characteristics of the composite material.
Moreover, in the method (based on the Example of Patent Document 1) in which the metal chlorides shown in Comparative Examples 3 and 4 were dissolved in a solvent and mixed with PAS and then the solvent was removed and melt kneading was performed (in accordance with the example of Patent Document 1), the average particle size was Small particles of micron order were also found. This is presumed that there was a portion in which the metal chloride was re-agglomerated during the solvent removal, which did not disperse and formed coarse particles. Further, in Comparative Example 4, as in Comparative Example 2, the yield was low because the kneading temperature was higher than the boiling point of iron (III) chloride.
In any of the comparative examples, since kneading was performed with a strong shear force, the PAS resin was accompanied by an increase in melt viscosity presumed to be oxidized and crosslinked. It has been clarified that the compounding by the melt kneading method has a problem that a small amount of coarse particles are mixed in spite of such strong shearing. Since these coarse particles can be a starting point of destruction in the structural material, even a small amount is not preferable. The present invention has the advantage that such coarse particles do not exist.
Claims (4)
前記金属化合物の金属成分が銅、ジルコニウム、ニッケル、コバルトおよび亜鉛からなる群から選ばれる少なくとも1種であることを特徴とする、金属元素含有ナノ粒子が分散されたポリアリーレンスルフィド樹脂組成物の製造方法。 A method for producing a polyarylene sulfide resin composition , in which a polyarylene sulfide resin and an inorganic metal compound are dissolved in an organic solvent capable of dissolving the polyarylene sulfide resin, and then metal element-containing nanoparticles to be deposited are dispersed. ,
The metal component of the metal compound is at least one selected from the group consisting of copper, zirconium, nickel, cobalt and zinc, and the production of the polyarylene sulfide resin composition in which the metal element-containing nanoparticles are dispersed Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009045811A JP5428391B2 (en) | 2009-02-27 | 2009-02-27 | Method for producing polyarylene sulfide resin composition in which metal element-containing nanoparticles are dispersed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009045811A JP5428391B2 (en) | 2009-02-27 | 2009-02-27 | Method for producing polyarylene sulfide resin composition in which metal element-containing nanoparticles are dispersed |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010196018A JP2010196018A (en) | 2010-09-09 |
JP5428391B2 true JP5428391B2 (en) | 2014-02-26 |
Family
ID=42821057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009045811A Expired - Fee Related JP5428391B2 (en) | 2009-02-27 | 2009-02-27 | Method for producing polyarylene sulfide resin composition in which metal element-containing nanoparticles are dispersed |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5428391B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201100568D0 (en) * | 2011-01-13 | 2011-03-02 | Cytec Engineered Materials Ltd | Particle reinforced polymer composition |
JP5644782B2 (en) * | 2011-01-14 | 2014-12-24 | 東レ株式会社 | Prepreg and fiber reinforced composites |
CN103314041B (en) * | 2011-01-14 | 2015-11-25 | 东丽株式会社 | The manufacture method of formed material, prepreg, fiber reinforced composite and fiber reinforced composite multilayer body and fiber strengthening molded substrate |
JP5644781B2 (en) * | 2011-01-14 | 2014-12-24 | 東レ株式会社 | Molding material and manufacturing method thereof |
JP5644780B2 (en) * | 2011-01-14 | 2014-12-24 | 東レ株式会社 | Molding material and method for producing molded article using the same |
JP5644783B2 (en) * | 2011-01-14 | 2014-12-24 | 東レ株式会社 | Method for producing fiber-reinforced molded substrate |
JP7491486B1 (en) | 2022-11-29 | 2024-05-28 | Dic株式会社 | Polyarylene sulfide resin composition and method for producing molded article |
JP7485254B1 (en) | 2022-11-29 | 2024-05-16 | Dic株式会社 | Polyarylene sulfide resin composition and method for producing molded article |
WO2024116564A1 (en) * | 2022-11-29 | 2024-06-06 | Dic株式会社 | Polyarylene sulfide resin composition and method for producing molded article |
WO2024116563A1 (en) * | 2022-11-29 | 2024-06-06 | Dic株式会社 | Method for producing polyarylene sulfide resin composition and molded article |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4415729A (en) * | 1982-06-04 | 1983-11-15 | Phillips Petroleum Company | Recovering granular poly(arylene sulfide) particles from a poly(arylene sulfide) reaction mixture |
JPS6236425A (en) * | 1985-08-12 | 1987-02-17 | Matsushita Electric Works Ltd | Purification of polyphenylene sulfide resin |
JPS63264665A (en) * | 1987-04-22 | 1988-11-01 | Agency Of Ind Science & Technol | Electroconductive polymer solution |
JP3061145B2 (en) * | 1990-12-27 | 2000-07-10 | 東ソー株式会社 | Method for reducing corrosiveness of polyarylene sulfide resin |
JPH09194726A (en) * | 1996-01-11 | 1997-07-29 | Tonen Chem Corp | Polyarylene sulfide resin composition |
JP5369645B2 (en) * | 2007-12-27 | 2013-12-18 | 東レ株式会社 | Polyphenylene sulfide fine particles, dispersion thereof, and production method thereof |
-
2009
- 2009-02-27 JP JP2009045811A patent/JP5428391B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010196018A (en) | 2010-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5428391B2 (en) | Method for producing polyarylene sulfide resin composition in which metal element-containing nanoparticles are dispersed | |
JP5316540B2 (en) | Process for producing polyarylene sulfide | |
DE69926515T2 (en) | BROMATED POLYSTYRENE RESINS CONTAINING POLYESTER MIXTURES | |
KR101826247B1 (en) | Reinforced thermoplastic molding compounds based on polyarylene ethers | |
JP2010275464A (en) | Method for producing composite of polyarylene sulfide resin with inorganic fine particle | |
JP2011174033A (en) | Powder coating comprising cyclic polyarylene sulfide and powder coating method | |
JPH0853621A (en) | Polyphenylene sulfide resin and molded product thereof | |
JP5821213B2 (en) | Method for producing polyphenylene sulfide resin fine particle dispersion | |
JP5365987B2 (en) | Method for producing polyarylene sulfide resin composition in which metal element-containing nanoparticles are dispersed | |
JP3453893B2 (en) | Polyarylene sulfide composite material and method for producing the same | |
JP5796438B2 (en) | Process for producing polyarylene sulfide | |
EP2694577A1 (en) | Thermoplastic moulding composition made of polyarylene ethers and polyphenylene sulphide with improved processing stability | |
JP2018188610A (en) | Method for producing polyarylene sulfide resin composition | |
JP2014005409A (en) | Coagulation method of polyphenylene sulfide resin fine particle dispersion | |
JP5892253B2 (en) | Polyarylene sulfide resin composition and method for producing the same | |
WO2015147090A1 (en) | Heat-treated finely powdered polyarylene sulfide and method for producing heat-treated finely powdered polyarylene sulfide | |
JP6634684B2 (en) | Method for producing polyarylene sulfide and polyarylene sulfide resin composition | |
WO2015111546A1 (en) | Polyphenylene sulphide resin microparticles, production method therefor, and dispersion liquid | |
JP2008179711A (en) | Method for producing organic-inorganic composite material and organic-inorganic composite material | |
WO2017022524A1 (en) | Polyphenylene sulfide resin composition and method for manufacturing same | |
JP2019077846A (en) | Method for producing poly(arylene sulfide) resin composition | |
JP2006160903A (en) | Organic/inorganic composite and production process of the same | |
JP2005068311A (en) | Method for producing hybrid of organic polymer with metallic compound and hybrid | |
JP2019094470A (en) | Method for producing polyarylene sulfide | |
JP2017095563A (en) | Composite particle dispersed body made of polyarylene sulfide and wholly aromatic linear polymer, powder particle, and method for producing them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130819 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131118 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |