Nothing Special   »   [go: up one dir, main page]

JP5427441B2 - 磁気記録媒体の製造方法 - Google Patents

磁気記録媒体の製造方法 Download PDF

Info

Publication number
JP5427441B2
JP5427441B2 JP2009058116A JP2009058116A JP5427441B2 JP 5427441 B2 JP5427441 B2 JP 5427441B2 JP 2009058116 A JP2009058116 A JP 2009058116A JP 2009058116 A JP2009058116 A JP 2009058116A JP 5427441 B2 JP5427441 B2 JP 5427441B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetic recording
recording medium
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009058116A
Other languages
English (en)
Other versions
JP2010211879A (ja
Inventor
信一 石橋
明 山根
正人 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2009058116A priority Critical patent/JP5427441B2/ja
Priority to PCT/JP2010/001611 priority patent/WO2010103785A1/ja
Priority to CN201080011288.2A priority patent/CN102349103B/zh
Priority to US13/255,450 priority patent/US20120044596A1/en
Publication of JP2010211879A publication Critical patent/JP2010211879A/ja
Application granted granted Critical
Publication of JP5427441B2 publication Critical patent/JP5427441B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Drying Of Semiconductors (AREA)
  • Magnetic Record Carriers (AREA)

Description

本発明は、ハードディスク装置等の磁気記録再生装置に用いられる磁気記録媒体の製造方法に関するものである。
近年、磁気ディスク装置、フレキシブルディスク装置、磁気テープ装置等の磁気記録装置の適用範囲は著しく増大されその重要性が増すと共に、これらの装置に用いられる磁気記録媒体について、その記録密度の著しい向上が図られつつある。特に、MRヘッドおよびPRML技術の導入以来面記録密度の上昇はさらに激しさを増し、近年ではさらにGMRヘッド、TMRヘッドなども導入され1年に約50%ものペースで増加を続けている。
これらの磁気記録媒体については、今後更に高記録密度を達成することが要求されており、そのために磁性層の高保磁力化と高信号対雑音比(SNR)、高分解能を達成することが要求されている。
また、近年では線記録密度の向上と同時にトラック密度の増加によって面記録密度を上昇させようとする努力も続けられている。特に、最新の磁気記録装置においてはトラック密度が110kTPIにも達している。
しかし、トラック密度を上げていくと、隣接するトラック間の磁気記録情報が互いに干渉し合い、その境界領域の磁化遷移領域がノイズ源となりSNRを損なうという問題が生じやすくなる。このことはそのままBit Error rateの悪化につながるため記録密度の向上に対して障害となっている。
また、面記録密度を上昇させるためには、磁気記録媒体上の各記録ビットのサイズをより微細なものとし、各記録ビットに可能な限り大きな飽和磁化と磁性膜厚を確保する必要がある。しかし、記録ビットを微細化していくと、1ビット当たりの磁化最小体積が小さくなり、熱揺らぎによる磁化反転で記録データが消失するという問題が生じる。
また、トラック間距離が近づくために、磁気記録装置は極めて高精度のトラックサーボ技術を要求されると同時に、記録は幅広く実行し、再生は隣接トラックからの影響をできるだけ排除するために記録時よりも狭く実行する方法が一般的に用いられている。この方法ではトラック間の影響を最小限に抑えることができる反面、再生出力を十分得ることが困難であり、そのために十分なSNRを確保することがむずかしいという問題がある。
このような熱揺らぎの問題やSNRの確保、あるいは十分な出力の確保を達成する方法の一つとして、記録媒体表面にトラックに沿った凹凸を形成し、記録トラック同士を物理的に分離することによってトラック密度を上げようとする試みがなされている。このような技術を以下にディスクリートトラック法、それによって製造された磁気記録媒体をディスクリートトラック媒体と呼ぶ。
また、同一トラック内のデータ領域を更に分割した、いわゆるパターンドメディアを製造しようとする試みもある。
ディスクリートトラック媒体の一例として、表面に凹凸パターンを形成した非磁性基板に磁気記録媒体を形成して、物理的に分離した磁気記録トラック及びサーボ信号パターンを形成してなる磁気記録媒体が知られている(例えば、特許文献1参照。)。
この磁気記録媒体は、表面に複数の凹凸のある基板の表面に軟磁性層を介して強磁性層が形成されており、その表面に保護膜を形成したものである。この磁気記録媒体では、凸部領域に周囲と物理的に分断された磁気記録領域が形成されている。
この磁気記録媒体によれば、軟磁性層での磁壁発生を抑制できるため熱揺らぎの影響が出にくく、隣接する信号間の干渉もないので、ノイズの少ない高密度磁気記録媒体を形成できるとされている。
ディスクリートトラック法には、何層かの薄膜からなる磁気記録媒体を形成した後にトラックを形成する方法と、あらかじめ基板表面に直接、あるいはトラック形成のための薄膜層に凹凸パターンを形成した後に、磁気記録媒体の薄膜形成を行う方法がある(例えば、特許文献2,特許文献3参照。)。
また、ディスクリートトラック媒体の磁気トラック間領域を、あらかじめ形成した磁性層に窒素、酸素等のイオンを注入し、または、レーザを照射することにより、その部分の磁気的な特性を変化させて形成する方法が開示されている(特許文献4〜6参照)。
以上のように、磁気的に分離した磁気記録パターンを有する、いわゆる、ディスクリートトラックメディアやパターンドメディアの製造に際し磁気記録パターンを形成する方法を大別すると、(1)酸素やハロゲンを用いた反応性プラズマもしくは反応性イオンを磁性層の一部に晒すことにより磁性膜の磁気特性を改質し磁気記録パターンを形成する方法と、(2)磁性層の一部をイオンミリングにより加工して磁気記録パターンを形成し加工箇所に非磁性材料を充填して表面を平滑化する方法がある。
なお、イオンミリングを行う際に用いられるイオンガンの構造について、プラズマ発生室に3つの電極を用いたものが開示されている(特許文献7参照)
特開2004−164692号公報 特開2004−178793号公報 特開2004−178794号公報 特開平5−205257号公報 特開2006−209952号公報 特開2006−309841号公報 特開2005−116865号公報
ところで、(1)の製造方法は磁性層を物理的に加工する必要がないためダストの発生が少なく清浄で平滑な表面を得やすい利点があるが、磁性層の表面が酸化またはハロゲン化するという欠点がある。そして、この酸化またはハロゲン化した部位を起点として、磁気記録媒体の腐食(磁性層に含まれるコバルト等の磁性粒子のマイグレーション)が発生する問題がある。
また、(2)の製造方法では、磁性層を物理的に加工するためダストが発生し磁気記録媒体の表面が汚染されるという問題がある。加えて、加工時のダストが表面に付着し、これが原因で磁気記録媒体の表面の平滑性が低下するという問題もある。更に、磁性層の加工箇所に非磁性材料を充填する必要があり製造工程が複雑となるという問題点もある。
このような背景の下、磁性層の表面を酸化またはハロンゲン化させることなく、かつ、ダストによって表面が汚染されず、製造工程が複雑にならない磁気的に分離した磁気記録パターンが形成された磁気記録媒体の製造方法が要望されていたが、有効適切なものが提供されていないのが実情である。
本発明は、このような事情を考慮してなされたもので、その目的は、磁性層の表面を酸化またはハロゲン化させることなく、かつ、ダストによって表面が汚染されず、製造工程が複雑にならない磁気的に分離した磁気記録パターンが形成された磁気記録媒体の製造方法を提供することである。
上記の目的を達成するために、本は発明は以下の手段を提供している。
(1)磁気的に分離した磁気記録パターンを有する磁気記録媒体の製造方法であって、
非磁性基板上に磁性層を形成する工程と、磁性層の上に磁気記録パターンを形成するためのマスク層を形成する工程と、磁性層のマスク層に覆われていない部位にイオンビームを照射し、該部位の磁性層の上層部を除去すると共に、下層部の磁気特性を改質する工程をこの順で有し、イオンビームには、質量の異なる2種以上の正イオンを使用し、イオンビームを形成するイオンガンが、イオン源からの正イオンを基板側に押し出す正電極と、正イオンを基板側に加速させる負電極を有することを特徴とする磁気記録媒体の製造方法。
(2)質量の異なる2種以上の前記正イオンが、窒素と水素またはネオンを含むイオンであることを特徴とする(1)に記載の磁気記録媒体の製造方法。
(3)前記イオンガンが、前記イオン源からの前記正イオンのエネルギー分布を安定させる接地電極を有し、前記イオンガンの電極が、前記イオン源から前記基板側に、正電極、負電極、接地電極の順で設けられていることを特徴とする(1)または(2)に記載の磁気記録媒体の製造方法。
(4)前記正電極への印加電圧が、+500V以上+1500V以下の範囲内であり、前記負電極への印加電圧が、−2000V以上−1000V以下の範囲内であることを特徴とする(1)ないし(3)の何れかに記載の磁気記録媒体の製造方法。
(5)前記イオンガンの電極が、網目状電極であることを特徴とする(1)ないし(4)の何れかに記載の磁気記録媒体の製造方法
本発明では、磁性層のマスク層に覆われていない部位にイオンビームを照射し、該部位の上層部を除去すると共に、下層部の磁気特性を改質する工程を採用した。これにより、イオンビームは磁性層の上層部のみを加工するので加工量が少なく、ダストの発生を抑制することができ、その結果、表面が清浄で平滑な磁気記録媒体が得られる。
また、イオンビームを形成するイオンガンが、イオン源からの正イオンを基板側に押し出す正電極と、正イオンを基板側に加速する負電極とを有している。これにより、層部の除去及び下層部の磁気特性の改質を行うという目的に適合したイオンビームを照射することができ、精度良く磁性層の上層部の除去及び下層部の磁気特性の改質を行うことができる。
また、本発明では、イオンビームに使用される正イオンとして、窒素と水素を混合したイオン、または、窒素とネオンを混合したイオンを用いるので、磁性層の上層部の除去と下層部の磁気特性を改質する工程とを同時に進行させることができ、また、高い効率で行うことができる。また、イオンビームがハロゲンを含まないので、ハロゲン化物が生成することがなく、これにより、大気と触れることでハロゲン化物が基点となって腐食するということもなくなった。
また、本発明では、イオンビームを形成するイオンガンが、イオン源からの正イオンのエネルギー分布を安定させる接地電極を有し、イオンガンの電極が、イオン源から基板側に向かって、正電極、負電極、接地電極の順に設けられることで、イオンビームの照射量が、被照射部位において均一化し、磁性層の上層部の除去と下層部の磁気特性の改質を精度良く行うことができる。
また、本発明では、正電極への印加電圧が、+500V以上+1500V以下の範囲内にあり、負電極への印加電圧が、−2000V以上−1000V以下の範囲内にあることで、磁性層の上層部の除去及び下層部の磁気特性の改質を行うという目的に精度良く適合したイオンビームを照射することができる。
また、本発明では、イオンガンの電極が、網目状電極であるので、イオンビームの照射量が、被照射部位において均一化し、磁性層の上層部の除去と下層部の磁気特性の改質を精度良く行うことができる。
図1は、本発明の磁気記録媒体の製造方法を示す断面工程図である。 図2(a)は、本発明の磁気記録媒体を製造する際に用いられるイオンガンを示す断面図で、図2(b)は、図2(a)のイオンガンを拡大して示す断面図である。 図3は、本発明の製造方法によって製造された磁器記録媒体が適用された磁気記録再生装置の一例を示す概略構成図である。 図4は、正電極の電圧を変化させた際のエッチングの深さと保磁力(Hc)との関係を示すグラフである。 図5は、正電極の電圧を変化させた際のエッチングの深さと飽和磁化(Ms)との関係を示すグラフである。 図6は、正電極の電圧を変化させた際のエッチングの深さと保磁力(Hc)との関係を示すグラフである。 図7は、正電極の電圧を変化させた際のエッチングの深さと飽和磁化(Ms)との関係を示すグラフである。
以下、本発明の実施形態である磁気記録媒体の製造方法について、図面を参照して詳細に説明する。
なお、本実施形態の磁気記録媒体は、非磁性基板の表面に軟磁性層、中間層、磁気パターンが形成された磁性層、保護膜を積層した構造を有し、さらに表面には潤滑膜が形成されている。もっとも、非磁性基板及び磁性層以外は適宜設けて構わない。
本実施形態の磁気記録媒体の製造方法は、図1に示すように、非磁性基板1に磁性層2を形成する工程Aと、磁性層2の上にマスク層3を形成する工程Bと、マスク層3の上にレジスト層4を形成する工程Cと、レジスト層4に磁気記録パターンのネガパターンを、スタンプ5を用いて転写する工程Dと、マスク層3で磁気記録パターンのネガパターンに対応する部位6を除去する工程Eと、レジスト層4側表面から磁性層2のマスク層3に覆われていない部位7にイオンビームを照射し、部位7の磁性層の上層部を除去すると共に、下層部8の磁気特性を改質する工程Fと、レジスト層4及びマスク層3をドライエッチングで除去する工程Gと、磁性層2の表面を保護膜9で覆う工程Hとを、この順で有している。以下これらの工程について詳細に説明する。
まず、非磁性基板1に磁性層2を形成する(工程A)。
通常、磁性層2を形成する方法としてはスパッタ法を用いるが、適宜の方法で構わない。
本実施形態で使用する非磁性基板1としては、Alを主成分とした例えばAl−Mg合金等のAl合金基板や、通常のソーダガラス、アルミノシリケート系ガラス、結晶化ガラス類、シリコン、チタン、セラミックス、各種樹脂からなる基板など、非磁性基板であれば任意のものを用いることができる。中でもAl合金基板や結晶化ガラス等のガラス製基板又はシリコン基板を用いることが好ましい。
また、これら基板の平均表面粗さ(Ra)は、1nm以下であることが好ましく、0.5nm以下であることがより好ましく、0.1nm以下であることが最も好ましい。
また、本実施形態で非磁性基板1に形成される磁性層2は、面内磁性層でも垂直磁性層でもかまわないが、より高い記録密度を実現するためには垂直磁性層が好ましい。これら磁性層2は主としてCoを主成分とする合金から形成するのが好ましい。
面内磁気記録媒体用の磁性層2としては、例えば、非磁性のCrMo下地層と強磁性のCoCrPtTa磁性層からなる積層構造が利用できる。
垂直磁気記録媒体用の磁性層2としては、例えば、軟磁性のFeCo合金(FeCoB、FeCoSiB、FeCoZr、FeCoZrB、FeCoZrBCuなど)、FeTa合金(FeTaN、FeTaCなど)、Co合金(CoTaZr、CoZrNB、CoBなど)等からなる裏打ち層と、Pt、Pd、NiCr、NiFeCrなどの配向制御膜と、必要によりRu等の中間膜、及び60Co−15Cr−15Pt合金や70Co−5Cr−15Pt−10SiO合金からなる記録磁性層を積層したものを利用することがきる。
磁性層2の厚さの範囲は、下限が3nmであることが好ましく、5nmであることがより好ましく、上限が20nmであることが好ましく、15nmであることがより好ましい。
また、磁性層2は使用する磁性合金の種類と積層構造に合わせて、十分なヘッド出入力が得られるように形成すればよい。
磁性層2の膜厚は、再生の際に一定以上の出力を得るためにはある程度以上の厚さであることが必要であり、一方で記録再生特性を表す諸パラメーターは出力の上昇とともに劣化するのが通例であるため、最適な膜厚に設定する必要がある。
次に、磁性層2の上にマスク層3を形成する(工程B)。
磁性層2の上に形成するマスク層3は、C、Ta、W、Cr、CrTi、Ta窒化物、W窒化物、Si、SiO、Ta、Re、Mo、Ti、V、Nb、Sn、Ga、Ge、As、Niからなる群から選ばれた何れか一種以上を含む材料で形成するのが好ましい。特に、As、Ge、Sn、Gaを用いるのが好ましく、Ni、Ti、V、Nbを用いるのがより好ましく、Cr、C、Mo、Ta、Wを用いるのが最も好ましい。
このような材料を用いることにより、マスク層3のミリングイオンに対する遮蔽性を向上させ、また、マスク層3による磁気記録パターン形成特性を向上させることができる。さらに、これらの物質は、反応性ガスを用いたドライエッチングが容易であるため、ドライエッチングした際(工程G)の、残留物を減らし、磁気記録媒体表面の汚染を減少させることができる。
マスク層3を形成した後、マスク層3の上にレジスト層4を形成し(工程C)、レジスト層4に磁気記録パターンのネガパターンを、スタンプ5を用いて転写する(工程D)。
この際、レジスト層4に磁気記録パターンのネガパターンを転写した後の、レジスト層4のネガパターンに対応する部位11の厚さlを、0〜10nmの範囲内とするのが好ましい。
レジスト層4の部位11の厚さlをこの範囲とすることにより、マスク層3のエッチング工程(工程E)において、マスク層3のエッジの部分のダレを無くし、マスク層3のミリングイオンに対する遮蔽性を向上させ、また、マスク層3による磁気記録パターン形成特性を向上させることができる。
また、レジスト層4に用いる材料を放射線照射により硬化性を有する材料とし、レジスト層4にスタンプ5を用いてパターンを転写する工程に際して、又は、パターン転写工程の後に、レジスト層4に放射線を照射するのが好ましい。
ここでいう放射線とは、熱線、可視光線、紫外線、X線、ガンマ線等の広い概念の電磁波である。また、放射線照射により硬化性を有する材料とは、例えば、熱線に対しては熱硬化樹脂、紫外線に対しては紫外線硬化樹脂である。
このような製造方法を用いることにより、レジスト層4に、スタンプ5の形状を精度良く転写することが可能となり、マスク層3のエッチング工程(工程E)において、マスク層3のエッジの部分のダレを無くし、マスク層3のミリングイオンに対する遮蔽性を向上させ、また、マスク層3による磁気記録パターン形成特性を向上させることができる。
特に、レジスト層4の流動性が高い状態でレジスト層4にスタンプ5を押圧し、その押圧した状態で放射線を照射することでレジスト層4を硬化させ、その後、スタンプ5をレジスト層4から離すことにより、スタンプ5の形状を精度良くレジスト層4に転写することが可能となる。
レジスト層4にスタンプ5を押圧した状態でレジスト層4に放射線を照射する方法としては、スタンプ5の反対側すなわち非磁性基板1側から放射線を照射する方法、スタンプ5の材料として放射線を透過できる物質を選択し、スタンプ5側から放射線を照射する方法、スタンプ5の側面から放射線を照射する方法、熱線のように固体に対して伝導性の高い放射線を用いて、スタンプ5材料または非磁性基板1からの熱伝導により放射線を照射する方法を用いることができる。
また、レジスト層4の材料としてノボラック系樹脂、アクリル酸エステル類、脂環式エポキシ類等の紫外線硬化樹脂を用い、スタンプ5の材料として紫外線に対して透過性の高いガラスもしくは樹脂を用いるのが好ましい。
また、スタンプ5は、金属プレートに電子線描画などの方法を用いて微細なトラックパターンを形成したものが使用でき、材料としてはプロセスに耐えうる硬度、耐久性が要求される。例えば、Niなどが使用できるが、前述の目的に合致するものであれば材料は問わない。スタンプ5には、通常のデータを記録するトラックの他にバーストパターン、グレイコードパターン、プリアンブルパターンといったサーボ信号のパターンも形成できる。
レジスト層4に磁気記録パターンのネガパターンを転写した後は、レジスト層4のネガパターンに対応する部位11とマスク層3のネガパターンに対応する部位6とを、エッチングによって除去する(工程E)。
その後、レジスト層4側表面から磁性層2のマスク層3に覆われていない部位7にイオンビーム10を照射し、部位7の磁性層2の上層部を除去すると共に、下層部8の磁気特性を改質する(工程F)。
この際、除去する磁性層2の上層部の深さmの範囲としては、下限が0.1nmが好ましく、1nmがより好ましく、上限が15nmが好ましく、10nmがより好ましい。
除去する深さmが0.1nmより少ない場合は、磁性層2の下層部8の改質効果が現れず、また、除去する深さが15nmより大きくなると、磁気記録媒体の表面平滑性が悪化し、磁気記録再生装置を製造した際の磁気ヘッドの浮上特性が悪くなる。
イオンビーム10は、窒素ガス又は質量の異なる2種以上の正イオンからなる混合ガスを使用して発生させる。混合ガスの具体例としては、窒素と水素の混合ガス、窒素とネオンの混合ガス、又は、窒素と水素とネオンの混合ガスが挙げられる。
ガスの流量の範囲としては、反応容器の大きさにもよるが、一般的な大きさの反応容器では、下限が、10sccmが好ましく、13sccmがより好ましく、15sccmが最も好ましく、上限が、100sccmが好ましく、50sccmがより好ましく、35sccmが最も好ましい。
10sccmより少ないと、放電が不安定となって不都合があり、100sccmより多いと、エッチングレートが低下することとなって不都合がある。
また、窒素と水素の混合ガスを用いた場合、混合ガス全体に占める窒素の割合は、63パーセント以下であることが好ましく、60パーセント以下であることがより好ましく、55パーセント以下であることが最も好ましい。最も効果があるのは50パーセントであった。
窒素の割合が、35パーセントより少ないと、エッチングレートが低下することとなり、不都合がある。また、90パーセントより多いと、下層部8の磁気特性の改質が不十分となり、不都合がある。
また、窒素とネオンの混合ガスを用いた場合、混合ガス全体に占める窒素の割合は、80パーセント以下であることが好ましく、70パーセント以下であることがより好ましく、60パーセント以下であることが最も好ましい。最も効果があるのは50パーセントであった。
窒素の割合が、20パーセントより少ないと、エッチングレートが低下することとなり、不都合がある。また、80パーセントより多いと、下層部8の磁気特性の改質が不十分となり、不都合がある。
また、窒素と水素とネオンの混合ガスを用いた場合は、混合ガス全体に占める窒素の割合は、90パーセント以下であることが好ましく、80パーセント以下であることがより好ましく、70パーセント以下であることが最も好ましく、水素の割合は、50パーセント以下であることが好ましく、40パーセント以下であることがより好ましく、30パーセント以下であることが最も好ましい。
窒素の割合が、20パーセントより少ないと、エッチングレートが低下することとなり、不都合がある。また、90パーセントより多いと、下層部8の磁気特性の改質が不十分となり、不都合がある。
また、単位面積あたりのイオンの照射量の範囲としては、下限が、3.0×1015原子/cm2が好ましく、4.0×1015原子/cm2がより好ましく、4.8×1015原子/cm2が最も好ましく、上限が、1.2×1016原子/cm2が好ましく、1.0×1016原子/cm2がより好ましく、8.0×1015原子/cm2が最も好ましい。
3.0×1015原子/cm2より少ないと、エッチングレートが低下することとなり、不都合がある。また、1.2×1016原子/cm2より多いと、マスク層3のダメージが大きくなり、磁性層2の改質させる必要のない部位まで磁気特性が劣化する恐れがあり、不都合となる。
また、エッチング速度の範囲としては、下限が、0.05nm/秒が好ましく、0.07nm/秒がより好ましく、0.08nm/秒が最も好ましく、上限が、2.5nm/秒が好ましく、1.8nm/秒がより好ましく、1.0nm/秒が最も好ましい。
0.05nm/秒より遅いと、エッチングが遅くなり、生産性が低下することとなる。また、2.5nm/秒より早いと、エッチングが短時間で行われることとなり、制御するのが難しくなる。
また、図2(a)、(b)に示すように、イオンビーム10を形成するイオンガン15は、プラズマ発生室13と、図示略の電源と接続されている電極14とから構成されている。
電極14は、正電極18、負電極19、接地電極20から構成されており、イオン源となるプラズマ発生室13から、イオンビーム10を照射させる被照射基板16である磁性層2、マスク層3、レジスト層4が積層された非磁性基板1側に向かって、正電極18、負電極19、接地電極20の順で設けられている。
正電極18、負電極19、接地電極20は、いずれも網目状に開口部18a、19a、20aが設けられた網目状電極である。
なお、図2(a)(b)では、被照射基板16を省略して示しているが、実際には、図1(E)に示す非磁性基板1に磁性層2、マスク層3、レジスト層4が積層された構成をしており、レジスト層4側がイオンガン15に対向するように配置されている。また、図2(a)では、被照射基板16を2枚配置し、それぞれ左右のイオンガン15によってイオンビーム10が照射される場合について示しているが、1枚ずつ照射しても構わない。また、図2(b)では、開口部18a、19a、20aがそれぞれ1つずつ設けられているが、実際には、網目状に複数設けられている。
正電極18は、イオン源であるプラズマ発生室13で発生したイオンを、被照射基板16に向かって押し出す役割を担っており、正電極18への印加電圧は、+500V以上+1500V以下の範囲内に設定されている。
また、負電極19は、正電極18によって押し出されたイオンを、被照射基板16側に向かって加速させる役割を担っており、負電極19への印加電圧は、−2000V以上−1000V以下の範囲内に設定されている。
接地電極20は、イオン源であるプラズマ発生室13で発生し、正電極18によって押し出され、負電極19によって加速されたイオンを、被照射基板16側に向かって照射させる際に、エネルギー分布を安定させるために設けられている。
以上のような構成をしたイオンガン15によって、イオンビーム10は、図2(b)の矢印で示すように、正電極18の開口部18aから押し出され、負電極19の開口部19aを通って加速され、接地電極20の開口部20aを通ることでエネルギー分布が均一化して、被照射基板16に照射される。そして、イオンビーム10により、磁性層2の上層部が除去されると共に、下層部8の磁気特性が改質される。
なお、ここでいう磁性層2の改質とは、磁性層2をパターン化するために、磁性層2の保磁力、飽和磁化、残留磁化等を部分的に変化させることを指し、その変化とは、保磁力を下げ、飽和磁化を下げ、残留磁化を下げることを指す。
そして、磁気特性の改質としては、イオンビーム10を照射した部位7の磁性層2の飽和磁化Msを当初(未処理)の75%以下、より好ましくは50%以下、保磁力Hcを当初の50%以下、より好ましくは20%以下とする方法を採用するのが好ましい。
以上の工程により、磁気的に分離した磁気記録パターンを有する磁性層2が形成される。そして、磁気的に分離した磁気記録パターンが形成されたことで、磁気記録媒体に磁気記録を行う際の書きにじみをなくし、高い面記録密度の磁気記録媒体を提供することが可能となる。
なお、図4及び図5は、厚さ16nmで成膜したCoCrPt系磁性層に対して、窒素と水素の混合ガス(体積比1:1)で発生させたイオンビーム10を用いて、負電極19の電圧を−1500Vに固定し、正電極18の電圧を+500V、+1000V、+1500Vと変化させた際の磁性層2のエッチング量(エッチングの深さ)と磁性層2の保磁力(Hc)及び飽和磁化(Ms)の変化を調べたグラフである。また、図6及び図7は、比較として、窒素と水素の混合ガスの代わりにアルゴンガスで発生させたイオンビーム10を用いた際のグラフである。
なお、図4ないし図7の実験に用いた基板は、後述する実施例で使用するガラス基板上に60nm厚のFeCoBからなる軟磁性層と、10nm厚のRu中間層と、12nm厚のCo−Cr−Pt−SiO2合金からなる層と4nm厚のCoCrPt層とが積層された16nm厚の磁性層とを積層し、更に実施例と同様にしてマスク層及びレジスト層が形成され、磁気記録パターンのネガパターンが転写されたものである。
図4及び図5が示すように、正電極18の電圧が+500Vの場合は、磁性層2のエッチングの深さと磁性層2の保磁力及び飽和磁化の変化は、略直線状で表され、保磁力及び飽和磁化の変化はそれほど認められない。
これに対し、正電極18の電圧が+1500Vの場合は、エッチングの深さを10nmとした際(残りの磁性層は5nm)、保磁力(Hc)は略0となり、飽和磁化(Ms)は3分の1程度となっていることが分かる。
なお、図6及び図7が示すように、アルゴンガスで発生させたイオンビーム10を用いた場合には、正電極18の電圧を変化させても、エッチングの深さが変化しても磁気特性の改質がほとんど認められない。
また、図4及び図5では、負電極19の電圧を固定した場合について示したが、正電極18の電圧を+1500Vに固定し、負電極19の電圧を−1000V、−1500V、−2000Vと変化させた場合も同様なことが認められる。すなわち、−1000Vの場合は、保磁力及び飽和磁化の変化はそれほど認められないが、−2000Vの場合には、保磁力及び飽和磁化が十分に変化する。
なお、正電極18の電圧を+1500Vより高めた場合や、負電極19の電圧を−2000Vよりも下げた場合は、イオンの注入深さが深くなりすぎ、例えば垂直磁気記録媒体用の磁性層2の場合では、軟磁性の裏打ち層までイオンが到達することとなる。その結果、裏打ち層等の磁気特性が悪化し、磁気記録媒体にスパイクノイズが発生することとなり、好ましくない。
磁性層2を形成した後は、レジスト層4及びマスク層3をドライエッチングで除去し(工程G)、必要に応じて凹部に非磁性材を埋め込んだ後、磁性層2の表面を保護膜9で覆う(工程H)。
なお、本実施形態では、レジスト層4及びマスク層3の除去としてドライエッチングを用いたが、反応性イオンエッチング、イオンミリング、湿式エッチング等の手法を用いても構わない。
また、保護膜9の形成は、一般的にはDiamond Like Carbonの薄膜をP−CVDなどを用いて成膜する方法が行われるが特に限定されるものではない。
保護膜9としては、炭素(C)、水素化炭素(HxC)、窒素化炭素(CN)、アルモファスカーボン、炭化珪素(SiC)等の炭素質層やSiO2、Zr23、TiNなど、通常用いられる保護膜材料を用いることができる。
また、保護膜9が2層以上の層から構成されていてもよい。
ただし、保護膜9の膜厚は10nm未満とする必要がある。保護膜9の膜厚が10nmを越えるとヘッドと磁性層2との距離が大きくなり、十分な出入力信号の強さが得られなくなるからである。
本実施形態では、保護膜9の上には潤滑層を形成することが好ましい。潤滑層に用いる潤滑剤としては、フッ素系潤滑剤、炭化水素系潤滑剤及びこれらの混合物等が挙げられ、通常1〜4nmの厚さで潤滑層を形成する。
以上の工程により、磁気的に分離した磁気記録パターンが形成された磁気記録媒体が得られる。
なお、本実施形態でいう磁気的に分離した磁気記録パターンとは、磁気記録媒体を表面側から見た場合、磁性層2が改質(非磁性化または弱磁性化)した領域12により分離された状態を指す。すなわち、磁性層2が表面側から見て磁気特性の改質により分離されていれば、磁性層2の底部において分離されていなくともよく、磁気的に分離した磁気記録パターンの概念に含まれる。
また、本実施形態でいう磁気記録パターンは、改質した領域12が完全に非磁性である必要はない。すなわち、領域12が僅かに保磁力や飽和磁化を有している場合であっても、磁気ヘッドが磁気記録パターン部に読み書きを行うことが可能であれば磁気的に分離した磁気記録パターンとすることができる。
また、本実施形態でいう磁気記録パターンとは、磁気記録パターンが1ビットごとに一定の規則性をもって配置された、いわゆるパターンドメディアや、磁気記録パターンが、トラック状に配置されたメディアや、その他、サーボ信号パターン等を含んでいる。
この中で特に、磁気的に分離した磁気記録パターンが、磁気記録トラック及びサーボ信号パターンである、いわゆる、ディスクリート型磁気記録媒体に適用するのが、その製造における簡便性から好ましい。
本実施形態では、磁性層2のマスク層3に覆われていない部位7にイオンビーム10を照射し、部位7の上層部を除去すると共に、下層部8の磁気特性を改質する工程を採用した。これにより、イオンビーム10は磁性層2の上層部のみを加工するので加工量が少なく、ダストの発生を抑制することができ、その結果、表面が清浄で平滑な磁気記録媒体が得られる。
また、イオンビーム10として窒素と水素またはネオンを混合したイオンを用いるので、磁性層2の上層部の除去と下層部8の磁気特性を改質する工程とを同時に進行させることができ、また、高い効率で行うことができる。また、イオンビーム10がハロゲンを含まないので、ハロゲン化物が生成することがなく、これにより、大気と触れることでハロゲン化物が基点となって腐食するということもなくなった。
また、イオンビーム10を形成するイオンガン15が、イオン源であるプラズマ発生室13からのイオンのエネルギー分布を安定させる接地電極20を有し、イオンガン15の電極14が、プラズマ発生室13から被照射基板16側に向かって、正電極18、負電極19、接地電極20の順に設けられている。これにより、イオンビーム10の照射量が、被照射部位において均一化し、磁性層2の上層部の除去と下層部8の磁気特性の改質を精度良く行うことができる。
また、正電極18の電圧が、+500V以上+1500V以下の範囲内にあり、負電極19の電圧が、−2000V以上−1000V以下の範囲内にあることで、磁性層2の上層部の除去及び下層部8の磁気特性の改質を行うという目的に精度良く適合したイオンビーム10を照射することができる。
また、正電極18、負電極19及び接地電極20が、いずれも網目状電極であるので、イオンビーム10の照射量が、被照射部位において均一化し、磁性層2の上層部の除去と下層部8の磁気特性の改質を精度良く行うことができる。
図2は、上述した磁気記録媒体を用いた磁気記録再生装置の一例を示すものである。
図2に示す磁気記録再生装置は、上述した磁気記録媒体21と、これを記録方向に駆動する媒体駆動部22と、記録部と再生部からなる磁気ヘッド23と、磁気ヘッド23を磁気記録媒体21に対して相対運動させるヘッド駆動部24と、磁気ヘッド23への信号入力と磁気ヘッド23からの出力信号再生を行うための記録再生信号処理手段を組み合わせた記録再生信号系25とを具備して構成されている。
このような構成を採用したことにより、記録密度の高い磁気記録装置を得ることが可能となる。
磁気記録媒体21の記録トラックを磁気的に不連続に加工したことによって、従来はトラックエッジ部の磁化遷移領域の影響を排除するために再生ヘッド幅を記録ヘッド幅よりも狭くして対応していたものを、両者をほぼ同じ幅にして動作させることができる。これにより十分な再生出力と高いSNRを得ることができるようになる。
さらに磁気ヘッド23の再生部をGMRヘッドあるいはTMRヘッドで構成することにより、高記録密度においても十分な信号強度を得ることができ、高記録密度を持った磁気記録装置を実現することができる。
また、この磁気ヘッド23の浮上量を0.005μm〜0.020μmと従来より低い高さで浮上させると、出力が向上して高い装置SNRが得られ、大容量で高信頼性の磁気記録装置を提供することができる。更に、最尤復号法による信号処理回路を組み合わせるとさらに記録密度を向上でき、例えば、トラック密度100kトラック/インチ以上、線記録密度1000kビット/インチ以上、1平方インチ当たり100Gビット以上の記録密度で記録・再生する場合にも十分なSNRが得られる。
以下、実施例を示し、本発明を具体的に説明する。
[実施例]
HD用ガラス基板をセットした真空チャンバをあらかじめ1.0×10-5Pa以下に真空排気した。ここで使用したガラス基板はLi2Si25、Al23−K2O、Al23−K2O、MgO−P25、Sb23−ZnOを構成成分とする結晶化ガラスを材質とし、外径65mm、内径20mm、平均表面粗さ(Ra)は2オングストロームである。
このガラス基板にDCスパッタリング法を用いて、軟磁性層としてFeCoB、中間層としてRu、磁性層として70Co−5Cr−15Pt−10SiO2合金の順に薄膜を積層した。それぞれの層の膜厚は、FeCoB軟磁性層は60nm、Ru中間層は10nm、磁性層は15nmとした。
その上に、スパッタ法を用いてマスク層を形成した、マスク層にはCを用いて膜厚は20nmとした。
その上に、レジスト層をスピンコート法により塗布した。レジスト層には、紫外線硬化樹脂であるノボラック系樹脂を用いた。また膜厚は60nmとした。
その上に、磁気記録パターンのネガパターンを有するガラス製のスタンプを用いて、スタンプを1MPa(約8.8kgf/cm2)の圧力で、レジスト層に押圧した。その状態で、波長250nmの紫外線を、紫外線の透過率が95%以上であるガラス製のスタンプの上部から10秒間照射し、レジストを硬化させた。その後、スタンプをレジスト層から分離し、磁気記録パターンを転写した。レジスト層に転写した磁気記録パターンは、レジスト層の凸部が幅64nmの円周状、レジスト層の凹部(ネガパターンに対応する部位)が幅30nmの円周状であり、レジスト層の凸部の厚さは65nm、レジスト層の凹部の厚さは約15nmであった。また、レジスト層の凹部の基板面に対する角度は、ほぼ90度であった。
その後、レジスト層及びマスク層のネガパターンに対応する部位をドライエッチングで除去した。ドライエッチング条件は、レジストのエッチングに関しては、O2ガスを40sccm、圧力0.3Pa,高周波プラズマ電力300W、DCバイアス30W、エッチング時間10秒とし、C層のエッチングに関しては、O2ガスを50sccm、圧力0.6Pa、高周波プラズマ電力500W、DCバイアス60W、エッチング時間30秒とした。
その後、磁性層でマスク層に覆われていない箇所について、その表面にイオンビームを照射した。イオンビームは、窒素ガス40sccm、水素ガス20sccm、ネオン20sccmの混合ガスを用いて発生させた。イオンの量は、5.5×1015原子/cm2、エッチング速度は0.1nm/秒とし、正電極の電圧を+1500V、負電極の電圧を−1500Vとし、エッチング時間を84秒、磁性層の加工深さを8nmとした。
その後、レジスト層及びマスク層をドライエッチングにより除去し、その表面にCVD法にてカーボン保護膜を4nm成膜し、その後、潤滑剤を1.5nm塗布して磁気記録媒体を製造した。
以上の方法で製造した磁気記録媒体の電磁変換特性(SNRおよび3T−squash)、ヘッド浮上高さ(グライドアバランチ)を測定した。電磁変換特性の評価はスピンスタンドを用いて実施した。このとき評価用のヘッドには、記録には垂直記録ヘッド、読み込みにはTuMRヘッドを用いたて、750kFCIの信号を記録したときのSNR値および3T−squashを測定した。
製造された磁気記録媒体は、SNRが13.7dB、3T−squashが86%でありRW特性に優れ、また、ヘッド浮上特性も安定していた。すなわち、磁気記録媒体表面の平滑性が高く、磁性層のトラック間の非磁性部による分離特性が優れていた。
本発明は、磁気記録媒体を製造する製造業において幅広く利用することができる。
1・・・非磁性基板、2・・・磁性層、3・・・マスク層、4・・・レジスト層、5・・・スタンプ、6・・・マスク層のネガパターンに対応する部位、7・・・磁性層のマスク層に覆われていない部位、8・・・下層部、10・・・イオンビーム、11・・・レジスト層のネガパターンに対応する部位、12・・・磁性層のネガパターンに対応する部位、13・・・プラズマ発生室、14・・・電極、15・・・イオンガン、18・・・正電極、19・・・負電極、20・・・接地電極、21・・・磁気記録媒体

Claims (5)

  1. 磁気的に分離した磁気記録パターンを有する磁気記録媒体の製造方法であって、
    非磁性基板上に磁性層を形成する工程と、
    磁性層の上に磁気記録パターンを形成するためのマスク層を形成する工程と、
    磁性層のマスク層に覆われていない部位にイオンビームを照射し、該部位の磁性層の上層部を除去すると共に、下層部の磁気特性を改質する工程をこの順で有し、
    イオンビームには、質量の異なる2種以上の正イオンを使用し、
    イオンビームを形成するイオンガンが、混合ガスを用いた単独のイオン源からの正イオンを基板側に押し出す正電極と、正イオンを基板側に加速させる負電極を有することを特徴とする磁気記録媒体の製造方法。
  2. 質量の異なる2種以上の前記正イオンが、窒素と水素またはネオンを含むイオンであることを特徴とする請求項1に記載の磁気記録媒体の製造方法。
  3. 前記イオンガンが、前記イオン源からの前記正イオンのエネルギー分布を安定させる接地電極を有し、
    前記イオンガンの電極が、前記イオン源から前記基板側に、正電極、負電極、接地電極の順で設けられていることを特徴とする請求項1または請求項2に記載の磁気記録媒体の製造方法。
  4. 前記正電極への印加電圧が、+500V以上+1500V以下の範囲内であり、
    前記負電極への印加電圧が、−2000V以上−1000V以下の範囲内であることを特徴とする請求項1ないし請求項3の何れか1項に記載の磁気記録媒体の製造方法。
  5. 前記イオンガンの電極が、網目状電極であることを特徴とする請求項1ないし請求項4の何れか1項に記載の磁気記録媒体の製造方法。
JP2009058116A 2009-03-11 2009-03-11 磁気記録媒体の製造方法 Active JP5427441B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009058116A JP5427441B2 (ja) 2009-03-11 2009-03-11 磁気記録媒体の製造方法
PCT/JP2010/001611 WO2010103785A1 (ja) 2009-03-11 2010-03-08 磁気記録媒体の製造方法、および磁気記録再生装置
CN201080011288.2A CN102349103B (zh) 2009-03-11 2010-03-08 磁记录介质的制造方法和磁记录再生装置
US13/255,450 US20120044596A1 (en) 2009-03-11 2010-03-08 Method of producing magnetic recording medium and magnetic recording and reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009058116A JP5427441B2 (ja) 2009-03-11 2009-03-11 磁気記録媒体の製造方法

Publications (2)

Publication Number Publication Date
JP2010211879A JP2010211879A (ja) 2010-09-24
JP5427441B2 true JP5427441B2 (ja) 2014-02-26

Family

ID=42728081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009058116A Active JP5427441B2 (ja) 2009-03-11 2009-03-11 磁気記録媒体の製造方法

Country Status (4)

Country Link
US (1) US20120044596A1 (ja)
JP (1) JP5427441B2 (ja)
CN (1) CN102349103B (ja)
WO (1) WO2010103785A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10202684B2 (en) 2010-08-23 2019-02-12 Exogenesis Corporation Method for neutral beam processing based on gas cluster ion beam technology and articles produced thereby
JP5698952B2 (ja) * 2010-10-22 2015-04-08 昭和電工株式会社 磁気記録媒体の製造方法及び磁気記録再生装置
CN114899096A (zh) * 2015-10-14 2022-08-12 艾克索乔纳斯公司 使用基于气体团簇离子束技术的中性射束处理的超浅蚀刻方法以及由此产生的物品

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904505A (en) * 1970-03-20 1975-09-09 Space Sciences Inc Apparatus for film deposition
JPH11161947A (ja) * 1997-11-27 1999-06-18 Kao Corp 磁気記録媒体の製造方法
US6864042B1 (en) * 2000-07-25 2005-03-08 Seagate Technology Llc Patterning longitudinal magnetic recording media with ion implantation
US20030099069A1 (en) * 2001-10-10 2003-05-29 Tdk Corporation Magnetic head, method of manufacturing same, and head suspension assembly
JP2004164692A (ja) * 2002-11-08 2004-06-10 Toshiba Corp 磁気記録媒体及びその製造方法
US7230795B2 (en) * 2003-03-27 2007-06-12 Tdk Corporation Recording medium having reduced surface roughness
US6975073B2 (en) * 2003-05-19 2005-12-13 George Wakalopulos Ion plasma beam generating device
JP2008117753A (ja) * 2006-10-12 2008-05-22 Tdk Corp イオンガン、イオンビームエッチング装置、イオンビームエッチング設備、エッチング方法及び磁気記録媒体の製造方法
JP4703604B2 (ja) * 2007-05-23 2011-06-15 株式会社東芝 磁気記録媒体およびその製造方法
JP4309944B2 (ja) * 2008-01-11 2009-08-05 株式会社東芝 磁気記録媒体の製造方法
JP4357570B2 (ja) * 2008-01-31 2009-11-04 株式会社東芝 磁気記録媒体の製造方法
JP4489132B2 (ja) * 2008-08-22 2010-06-23 株式会社東芝 磁気記録媒体の製造方法

Also Published As

Publication number Publication date
US20120044596A1 (en) 2012-02-23
CN102349103B (zh) 2014-09-17
CN102349103A (zh) 2012-02-08
JP2010211879A (ja) 2010-09-24
WO2010103785A1 (ja) 2010-09-16

Similar Documents

Publication Publication Date Title
JP4597933B2 (ja) 磁気記録媒体の製造方法、並びに磁気記録再生装置
JP4881908B2 (ja) 磁気記録媒体の製造方法及び磁気記録再生装置
JP2008135092A (ja) 磁気記録媒体の製造方法、及び磁気記録再生装置
JP2008052860A (ja) 磁気記録媒体の製造方法、及び磁気記録再生装置
JP2007226862A (ja) 磁気記録媒体、その製造方法、及び磁気記録再生装置
JP5478251B2 (ja) 磁気記録媒体の製造方法
JP4843825B2 (ja) 磁気記録媒体の製造方法及び磁気記録再生装置
JP5398163B2 (ja) 磁気記録媒体及びその製造方法、並びに磁気記録再生装置
JP4634354B2 (ja) 磁気記録媒体の製造方法
JP5244380B2 (ja) 磁気記録媒体の製造方法及び磁気記録再生装置
JP2010140544A (ja) 磁気記録媒体の製造方法及び磁気記録媒体、並びに磁気記録再生装置
JP5186345B2 (ja) 磁気記録媒体の製造方法
JP5431678B2 (ja) 磁気記録媒体の製造方法、磁気記録媒体、及び磁気記録再生装置
JP5427441B2 (ja) 磁気記録媒体の製造方法
JP5334865B2 (ja) 磁気記録媒体の製造方法および磁気記録再生装置
JP5383050B2 (ja) 磁気記録媒体の製造方法及び磁気記録再生装置
WO2010058548A1 (ja) 磁気記録媒体の製造方法及び磁気記録再生装置
JP2010140541A (ja) 磁気記録媒体の製造方法及び磁気記録媒体、並びに磁気記録再生装置
JP5698952B2 (ja) 磁気記録媒体の製造方法及び磁気記録再生装置
JP2011023081A (ja) 磁気記録媒体の製造方法及び磁気記録再生装置
JP2010152978A (ja) 磁気記録媒体及びその製造方法、並びに磁気記録再生装置
JP2011129227A (ja) 磁気記録媒体の製造方法及び磁気記録再生装置
WO2011087078A1 (ja) 磁気記録媒体の製造方法及び磁気記録再生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5427441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350