JP5426936B2 - Copper alloy manufacturing method and copper alloy - Google Patents
Copper alloy manufacturing method and copper alloy Download PDFInfo
- Publication number
- JP5426936B2 JP5426936B2 JP2009144937A JP2009144937A JP5426936B2 JP 5426936 B2 JP5426936 B2 JP 5426936B2 JP 2009144937 A JP2009144937 A JP 2009144937A JP 2009144937 A JP2009144937 A JP 2009144937A JP 5426936 B2 JP5426936 B2 JP 5426936B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- less
- copper
- heat treatment
- plate material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
Description
本発明は、銅合金の製造方法及び銅合金に関する。特に、本発明は、電気・電子部品に用いられる銅合金の製造方法及び銅合金に関する。 The present invention relates to a copper alloy manufacturing method and a copper alloy. In particular, the present invention relates to a method for producing a copper alloy used for electric / electronic parts and a copper alloy.
コネクタ、リレー、スイッチ等の電気・電子部品に用いられる材料には、ばね材として高い接触圧を得るために要する十分な強度、高温下での長期の使用後でも接触圧を維持できる耐応力緩和性、通電時のジュール熱の発生を抑制すると共に発生した熱を放散しやすくするために要する高導電性、複雑な曲げ加工を施しても割れが生じない曲げ加工性等の特性が要求される。近年、電気・電子機器の小型化、薄型化、及び軽量化に伴い、電気・電子機器に用いられる部品も小型化している。このような部品の小型化により、各種部品に用いられる電極等における電流密度は増大しており、従来より導電性の良い材料を用いることに対する要求が強まっている。また、車載向けの部品においては、より高温環境における使用に耐えることが要求されるので、耐応力緩和性の高い材料への要求が強まっている。このような高導電性及び耐応力緩和性の要求に対応し得る材料として、Cu−Cr−Zr系合金材料等が提案されている。 Materials used for electrical and electronic parts such as connectors, relays, switches, etc. have sufficient strength to obtain high contact pressure as a spring material, and stress relaxation that can maintain contact pressure even after long-term use at high temperatures Characteristics, such as high conductivity necessary to suppress the generation of Joule heat during energization and make it easy to dissipate the generated heat, and bending workability that does not cause cracking even if complicated bending work is required. . In recent years, as electric / electronic devices have become smaller, thinner, and lighter, components used in electric / electronic devices have also been reduced in size. Due to the miniaturization of such parts, the current density in electrodes and the like used for various parts is increasing, and there is an increasing demand for using a material having better conductivity than before. In addition, in-vehicle components are required to withstand use in a higher temperature environment, so there is an increasing demand for materials having high stress relaxation resistance. Cu-Cr-Zr alloy materials and the like have been proposed as materials that can meet such demands for high conductivity and stress relaxation resistance.
従来、Cu−Cr−Zr系合金材料として、0.05〜0.40%のCrと、0.03〜0.25%のZrと、0.10〜1.80%のFeと、0.10〜0.80%のTiとを含有しており、0.10%≦Ti≦0.60%の範囲においてFe/Ti重量比が0.66〜2.6であり、0.60%<Ti≦0.80%の範囲においてFe/Ti重量比が1.1〜2.6であり、残部がCu及び不可避的不純物からなると共に、950℃未満の温度での溶体化処理と、50〜90%の加工度での冷間加工と、300〜580℃の温度での時効処理と、16〜83%の加工度での冷間加工と、350〜700℃の温度での焼鈍とをこの順に実施して製造される銅合金の製造方法が知られている(例えば、特許文献1参照)。 Conventionally, as a Cu—Cr—Zr alloy material, 0.05 to 0.40% Cr, 0.03 to 0.25% Zr, 0.10 to 1.80% Fe, 10 to 0.80% Ti, Fe / Ti weight ratio is 0.66 to 2.6 in the range of 0.10% ≦ Ti ≦ 0.60%, and 0.60% < In the range of Ti ≦ 0.80%, the Fe / Ti weight ratio is 1.1 to 2.6, the balance is made of Cu and inevitable impurities, and the solution treatment at a temperature of less than 950 ° C. This includes cold working at a working degree of 90%, aging treatment at a temperature of 300 to 580 ° C., cold working at a working degree of 16 to 83%, and annealing at a temperature of 350 to 700 ° C. A manufacturing method of a copper alloy manufactured by sequentially performing manufacturing is known (see, for example, Patent Document 1).
特許文献1に記載の銅合金の製造方法は、上記構成を備えるので、引張強度、伸び、及び電気伝導性等の特性に優れた銅合金を提供することができる。 Since the manufacturing method of the copper alloy described in Patent Document 1 includes the above-described configuration, a copper alloy having excellent properties such as tensile strength, elongation, and electrical conductivity can be provided.
しかし、特許文献1に記載の銅合金の製造方法は、高温での溶体化処理を実施しているので、母相の金属組織が粗大化する場合があり、金属組織の粗大化が発生した場合、銅合金の部分的な軟化と、曲げ加工性の悪化とが発生する場合がある。 However, since the copper alloy manufacturing method described in Patent Document 1 performs solution treatment at a high temperature, the metal structure of the parent phase may be coarsened, and the coarsening of the metal structure occurs. In some cases, partial softening of the copper alloy and deterioration of bending workability may occur.
したがって、本発明の目的は、Cu−Cr−Zr系銅合金の導電率及び耐応力緩和性を維持しつつ、強度及び曲げ加工性に優れた銅合金を製造できる銅合金の製造方法及び銅合金を提供することにある。 Accordingly, an object of the present invention is to provide a copper alloy manufacturing method and a copper alloy capable of manufacturing a copper alloy excellent in strength and bending workability while maintaining the electrical conductivity and stress relaxation resistance of the Cu-Cr-Zr-based copper alloy. Is to provide.
本発明は、上記目的を達成するため、銅(Cu)と、銅に添加されるクロム(Cr)と、ジルコニウム(Zr)と、スズ(Sn)とを溶製して銅合金素材を鋳造する溶製工程と、銅合金素材に熱間加工を施して圧延組織を有する板材を形成する熱間加工工程と、板材に熱処理を施す熱処理工程と、熱処理が施された板材に80%以上90%未満の加工度の冷間圧延を施して中間板材を形成する中間圧延工程と、中間板材に時効処理を施す時効処理工程と、時効処理を施した中間板材に20%以上40%以下の加工度の冷間圧延を施す仕上げ圧延工程と、冷間圧延が施された中間板材に加熱処理を施す歪取焼鈍工程とを備える銅合金の製造方法が提供される。 In order to achieve the above object, the present invention casts a copper alloy material by melting copper (Cu), chromium (Cr) added to copper, zirconium (Zr), and tin (Sn). 80% or more and 90% of the melting process, the hot working process for forming a plate material having a rolled structure by hot working the copper alloy material, the heat treatment process for heat treating the plate material, and the heat treated plate material. An intermediate rolling process in which an intermediate plate is formed by cold rolling with a working degree of less than, an aging treatment process in which the intermediate plate is subjected to an aging treatment, and a workability of 20% to 40% in the intermediate plate having been subjected to the aging treatment There is provided a method for producing a copper alloy comprising a finish rolling step for performing cold rolling and a strain relief annealing step for subjecting the intermediate plate subjected to cold rolling to a heat treatment.
また、上記銅合金の製造方法は、熱処理工程は、板材中の結晶の結晶粒径の粗大化を抑制しつつ、圧延組織中に再結晶を発生させることにより圧延組織を減少させる温度の熱処理を板材に施すことができる。 Further, in the above copper alloy manufacturing method, the heat treatment step is a heat treatment at a temperature that reduces the rolling structure by generating recrystallization in the rolling structure while suppressing the coarsening of the crystal grain size of the crystals in the plate material. It can be applied to the plate material.
また、上記銅合金の製造方法は、熱処理工程は、銅合金中に含まれる銅合金の結晶粒径が50μm以下になる温度の熱処理を板材に施すことができる。 In the copper alloy manufacturing method, in the heat treatment step, the plate material may be subjected to heat treatment at a temperature at which the crystal grain size of the copper alloy contained in the copper alloy is 50 μm or less.
また、上記銅合金の製造方法は、熱処理の温度は、700℃以上950℃未満であることが好ましい。 Moreover, it is preferable that the temperature of the heat processing is 700 degreeC or more and less than 950 degreeC in the manufacturing method of the said copper alloy.
また、上記銅合金の製造方法は、時効処理工程は、390℃以上450℃以下の温度の時効処理を中間板材に施すことができる。 Moreover, the manufacturing method of the said copper alloy can perform an aging treatment process at the temperature of 390 degreeC or more and 450 degrees C or less to an intermediate board material.
また、上記銅合金の製造方法は、歪取焼鈍工程は、400℃以上600℃以下の温度の加熱処理を中間板材に施すことができる。 Moreover, the manufacturing method of the said copper alloy can perform the heat processing of the temperature of 400 degreeC or more and 600 degrees C or less to an intermediate | middle board | plate material at a strain relief annealing process.
また、上記銅合金の製造方法は、溶製工程は、0.1重量%以上0.4重量%以下のCrと、0.02重量%以上0.2重量%以下のZrと、0.01重量%以上0.3重量%以下のSnとを含有する銅合金素材を鋳造することが好ましい。 Further, in the method for producing the copper alloy, in the melting step, 0.1 wt% or more and 0.4 wt% or less of Cr, 0.02 wt% or more and 0.2 wt% or less of Zr, It is preferable to cast a copper alloy material containing not less than 0.3% and not more than 0.3% by weight of Sn.
また、上記銅合金の製造方法は、板材に冷間圧延を施す粗圧延工程を更に備え、熱処理工程は、粗圧延工程を経た板材に熱処理を施すことができる。 Moreover, the manufacturing method of the said copper alloy is further equipped with the rough rolling process which cold-rolls to a board | plate material, and the heat processing process can heat-process the board | plate material which passed through the rough rolling process.
また、上記銅合金の製造方法は、熱処理工程は、銅合金中に含まれる銅合金の結晶粒径が30μm以下になる温度の熱処理を板材に施すことができる。 In the method for producing a copper alloy, in the heat treatment step, the plate material may be subjected to a heat treatment at a temperature at which the crystal grain size of the copper alloy contained in the copper alloy is 30 μm or less.
また、上記銅合金の製造方法は、熱処理の温度は、700℃以上850℃未満であることが好ましい。 Moreover, it is preferable that the temperature of the heat processing is 700 degreeC or more and less than 850 degreeC in the manufacturing method of the said copper alloy.
また、本発明は、上記目的を達成するため、0.1重量%以上0.4重量%以下のクロム(Cr)と、0.02重量%以上0.2重量%以下のジルコニウム(Zr)と、0.01重量%以上0.3重量%以下のスズ(Sn)とを含有し、残部が銅(Cu)と不可避的不純物とからなる銅合金が提供される。 In order to achieve the above object, the present invention provides chromium (Cr) of 0.1 wt% or more and 0.4 wt% or less, and zirconium (Zr) of 0.02 wt% or more and 0.2 wt% or less. A copper alloy containing 0.01 wt% or more and 0.3 wt% or less of tin (Sn), with the balance being copper (Cu) and unavoidable impurities is provided.
また、上記銅合金は、80%IACS以上の導電率と550MPa以上の強度とを有することが好ましい。 The copper alloy preferably has a conductivity of 80% IACS or higher and a strength of 550 MPa or higher.
本発明に係る銅合金の製造方法及び銅合金によれば、Cu−Cr−Zr系銅合金の導電率及び耐応力緩和性を維持しつつ、強度及び曲げ加工性に優れた銅合金を製造できる銅合金の製造方法及び銅合金を提供できる。 According to the copper alloy manufacturing method and copper alloy according to the present invention, a copper alloy excellent in strength and bending workability can be manufactured while maintaining the electrical conductivity and stress relaxation resistance of the Cu-Cr-Zr copper alloy. A method for producing a copper alloy and a copper alloy can be provided.
[実施の形態]
(銅合金)
本発明の実施の形態に係る銅合金は、一例として、コネクタ等の電気・電子部品に用いられる銅合金である。具体的に、本実施の形態に係る銅合金は、0.1重量%以上0.4重量%以下のクロム(Cr)と、0.02重量%以上0.2重量%以下のジルコニウム(Zr)と、0.01重量%以上0.3重量%以下のスズ(Sn)とを含有し、残部が銅(Cu)と不可避的不純物とからなる銅合金である。
[Embodiment]
(Copper alloy)
The copper alloy which concerns on embodiment of this invention is a copper alloy used for electrical / electronic components, such as a connector, as an example. Specifically, the copper alloy according to the present embodiment includes 0.1 wt% or more and 0.4 wt% or less of chromium (Cr) and 0.02 wt% or more and 0.2 wt% or less of zirconium (Zr). And 0.01 wt% or more and 0.3 wt% or less of tin (Sn), with the balance being copper (Cu) and inevitable impurities.
Crは、Cr単独で銅合金の母相中に析出した状態で存在することにより、銅合金の強度及び耐熱性を向上させる機能を有する。また、Zrは、Cuとの間で化合物を生成する。そして、当該化合物は、銅合金の母相中に析出した状態で存在することにより、銅合金の強度及び耐熱性を向上させる機能を有する。更に、Snは、銅合金の強度を向上させる機能を有しており、Cr及びZrと共に銅に添加することにより、銅合金の強度を更に向上させる。 Cr has a function of improving the strength and heat resistance of the copper alloy by being present in a state where Cr alone precipitates in the parent phase of the copper alloy. Zr forms a compound with Cu. And the said compound has the function to improve the intensity | strength and heat resistance of a copper alloy by existing in the state which precipitated in the parent phase of a copper alloy. Further, Sn has a function of improving the strength of the copper alloy, and when added to copper together with Cr and Zr, the strength of the copper alloy is further improved.
そして、本実施の形態に係る銅合金は、80%IACS以上の導電率と550MPa以上の強度とを有する。 And the copper alloy which concerns on this Embodiment has the electrical conductivity of 80% IACS or more, and the intensity | strength of 550 Mpa or more.
(銅合金の製造方法)
図1は、本発明の実施の形態に係る銅合金の製造の流れの一例を示す。
(Copper alloy manufacturing method)
FIG. 1 shows an example of the flow of manufacturing a copper alloy according to an embodiment of the present invention.
まず、銅と、銅に添加される所定量のCrと、所定量のZrと、所定量のSnとを低周波溶解炉を用いて溶製して銅合金素材としてのインゴットを鋳造する(溶製工程:ステップ10、以下、ステップを「S」と称する)。具体的に溶製工程は、0.1重量%以上0.4重量%以下のCrと、0.02重量%以上0.2重量%以下のZrと、0.01重量%以上0.3重量%以下のSnとを含有する銅合金素材を鋳造する。なお、銅としては、無酸素銅を用いることができる。 First, copper, a predetermined amount of Cr added to copper, a predetermined amount of Zr, and a predetermined amount of Sn are melted using a low-frequency melting furnace to cast an ingot as a copper alloy material (melting). Manufacturing process: Step 10, hereinafter, the step is referred to as “S”). Specifically, the melting step includes 0.1 wt% or more and 0.4 wt% or less of Cr, 0.02 wt% or more and 0.2 wt% or less of Zr, and 0.01 wt% or more and 0.3 wt% or less. A copper alloy material containing Sn or less of Sn is cast. As copper, oxygen-free copper can be used.
次に、インゴットに900℃程度の温度で熱間加工(例えば、熱間圧延)を施して圧延組織を有する板材を形成する(熱間加工工程:S20)。ここで、熱間加工工程における加工は、溶製工程で得られたインゴット中のCr及びZrの析出物を一度、母相中に固溶させる溶体化の機能を有する。この熱間加工工程における溶体化の機能により、後述する時効処理工程において生成されるCr及びZrの析出物の銅合金中における分布状態をより均一にすることができると共に、析出物を微細な状態にすることができる。 Next, the ingot is subjected to hot working (for example, hot rolling) at a temperature of about 900 ° C. to form a plate material having a rolled structure (hot working step: S20). Here, the processing in the hot working step has a solutioning function in which the precipitates of Cr and Zr in the ingot obtained in the melting step are once dissolved in the matrix. The solution forming function in this hot working process makes it possible to make the distribution state of the Cr and Zr precipitates produced in the aging treatment process, which will be described later, in the copper alloy more uniform, and the precipitates to be in a fine state. Can be.
次に、板材に冷間圧延を施す(粗圧延工程:S30)。続いて、冷間圧延が施された板材に熱処理としての焼鈍処理を施す(熱処理工程:S40)。熱処理工程は、板材中の結晶の結晶粒径の粗大化を抑制しつつ、圧延組織中に再結晶を発生させることにより圧延組織を減少させる温度の熱処理を板材に施した後、急冷する工程を含む。具体的に、熱処理工程は、銅合金中に含まれる銅合金の結晶粒径が50μm以下、好ましくは30μm以下になる温度の熱処理を板材に施した後、急冷する。なお、結晶粒径の値は熱処理後、急冷した後の値である。熱処理工程における熱処理により、熱間加工工程において生成した歪みを解消することができ、曲げ加工性を向上させることができる。 Next, the plate material is cold-rolled (rough rolling step: S30). Subsequently, an annealing treatment as a heat treatment is performed on the cold-rolled plate material (heat treatment step: S40). The heat treatment step is a step of rapidly cooling the plate material after subjecting the plate material to a heat treatment at a temperature that reduces the rolled structure by generating recrystallization in the rolled structure while suppressing the coarsening of the crystal grain size of the crystals in the plate material. Including. Specifically, in the heat treatment step, the plate material is subjected to heat treatment at a temperature at which the crystal grain size of the copper alloy contained in the copper alloy is 50 μm or less, preferably 30 μm or less, and then rapidly cooled. The value of the crystal grain size is a value after quenching after heat treatment. By the heat treatment in the heat treatment step, the distortion generated in the hot working step can be eliminated and the bending workability can be improved.
なお、熱処理工程により、銅合金中の結晶粒径を微細化させることができ、製造される銅合金の強度を向上させることもできる。ここで、熱処理工程における熱処理は、700℃以上950℃未満の温度範囲、好ましくは700℃以上850℃未満の温度範囲において実施する。この温度範囲において熱処理を実施することにより再結晶が起こり、上述したように熱間加工工程において生成した圧延組織はなくなり、銅合金の結晶粒径を50μm以下(すなわち、熱処理の温度が700℃以上950℃未満の場合)、好ましくは30μm以下(すなわち、熱処理の温度が700℃以上850℃未満の場合)にすることができる。これにより、製造される銅合金に曲げ加工を施した場合に、曲げ部分の肌荒れを抑制できる。 In addition, the crystal grain diameter in a copper alloy can be refined | miniaturized by a heat treatment process, and the intensity | strength of the copper alloy manufactured can also be improved. Here, the heat treatment in the heat treatment step is performed in a temperature range of 700 ° C. or higher and lower than 950 ° C., preferably 700 ° C. or higher and lower than 850 ° C. By performing heat treatment in this temperature range, recrystallization occurs, and as described above, the rolled structure generated in the hot working process disappears, and the crystal grain size of the copper alloy is 50 μm or less (that is, the heat treatment temperature is 700 ° C. or more). (When it is lower than 950 ° C.), preferably 30 μm or less (that is, when the temperature of the heat treatment is 700 ° C. or higher and lower than 850 ° C.). Thereby, when bending is performed on the copper alloy to be manufactured, rough skin at the bent portion can be suppressed.
続いて、熱処理が施された板材に80%以上90%未満の加工度の冷間圧延を施して中間板材を形成する(中間圧延工程:S50)。更に、中間板材に390℃以上450℃以下の温度で所定の時間、時効処理を施した後、徐冷する(時効処理工程:S60)。これにより、加工硬化と析出硬化とを組み合わせることができ、製造される銅合金の強度、導電率等の特性を向上させることができる。ここで、中間圧延工程において加工度を80%以上に制御することにより、中間板材は加工硬化して強度が向上する。また、中間圧延工程における冷間圧延により、中間板材中に多数の格子欠陥が導入される。これらの格子欠陥は、時効処理工程における析出硬化において数nm程度のサイズの析出物(例えば、CrとCuとの化合物、ZrとCuとの化合物)の析出の起点として機能するので、時効処理工程は、析出物(すなわち、CrとCuとの化合物、ZrとCuとの化合物等の析出物)を中間板材中に均一に分散させることを促進する機能を有する。 Subsequently, the heat-treated plate material is cold-rolled with a working degree of 80% or more and less than 90% to form an intermediate plate material (intermediate rolling step: S50). Further, the intermediate plate material is subjected to an aging treatment at a temperature of 390 ° C. or more and 450 ° C. or less for a predetermined time, and then slowly cooled (aging treatment step: S60). Thereby, work hardening and precipitation hardening can be combined and characteristics, such as intensity | strength of a copper alloy manufactured and electrical conductivity, can be improved. Here, by controlling the workability to 80% or more in the intermediate rolling process, the intermediate plate material is work-hardened and the strength is improved. Further, a large number of lattice defects are introduced into the intermediate plate by cold rolling in the intermediate rolling process. These lattice defects function as a starting point for precipitation of precipitates having a size of several nanometers (for example, a compound of Cr and Cu, a compound of Zr and Cu) in the precipitation hardening in the aging treatment step. Has a function of promoting the uniform dispersion of precipitates (that is, precipitates of a compound of Cr and Cu, a compound of Zr and Cu, etc.) in the intermediate plate.
また、中間圧延工程における冷間加工においては中間板材の延性が低下するが、時効処理工程は低下した延性を回復させることもできる。ここで、時効処理の温度は、析出物を十分に中間板材中に析出させることを目的として、390℃以上で実施する。また、時効処理の温度は、中間板材の軟化による強度の低下を抑制することを目的として、450℃以下の温度で実施する。なお、時効処理工程において析出物は、所定の温度に保持している間に中間材中に析出する。そして、時効処理工程により微細な析出物を中間材中に析出させることで、製造される銅合金の強度、及び導電率が向上させることができる。 Further, in the cold working in the intermediate rolling process, the ductility of the intermediate plate material is lowered, but the aging treatment process can recover the lowered ductility. Here, the temperature of the aging treatment is carried out at 390 ° C. or more for the purpose of sufficiently depositing the precipitate in the intermediate plate. Moreover, the temperature of an aging treatment is implemented at the temperature of 450 degrees C or less for the purpose of suppressing the fall of the intensity | strength by softening of an intermediate board material. In the aging treatment step, precipitates precipitate in the intermediate material while being maintained at a predetermined temperature. And the intensity | strength of the copper alloy manufactured and electrical conductivity can be improved by depositing a fine precipitate in an intermediate material by an aging treatment process.
次に、時効処理を施した中間板材に20%以上40%以下の加工度の冷間圧延を施す(仕上げ圧延工程:S70)。仕上げ圧延工程は、得られる銅合金の強度を十分な強度にすることを目的として、加工硬化を十分にすることができる20%以上の加工度で実施する。また、仕上げ圧延工程は、製造される銅合金の導電率の低下、延性の低下、及び曲げ加工性の低下を抑制することを目的として、40%以下の加工度で実施する。仕上げ圧延工程により、時効処理が施された中間板材が加工硬化して強度が向上する。 Next, cold rolling with a working degree of 20% or more and 40% or less is performed on the intermediate plate subjected to the aging treatment (finish rolling step: S70). The finish rolling step is carried out at a workability of 20% or more that can make work hardening sufficiently for the purpose of making the obtained copper alloy have a sufficient strength. In addition, the finish rolling step is performed at a workability of 40% or less for the purpose of suppressing a decrease in conductivity, a decrease in ductility, and a decrease in bending workability of the manufactured copper alloy. Through the finish rolling process, the intermediate plate subjected to the aging treatment is work-hardened to improve the strength.
続いて、冷間圧延が施された中間板材に400℃以上600℃以下の温度の加熱処理を短時間(例えば、1分間程度)、施す(歪取焼鈍工程:S80)。歪取焼鈍工程は、製造される銅合金に十分なばね性及び延性を備えさせることを目的として、400℃以上の温度の加熱処理を実施する。また、歪取焼鈍工程は、析出物の銅合金中への再固溶が発生することに起因して製造される銅合金の強度の低下を防止することを目的として、600℃以下の温度の加熱処理を実施する。歪取焼鈍工程により、ばね性が向上すると共に仕上げ圧延工程により低下した延性が回復された本実施の形態に係る銅合金が得られる。以上の各工程を経ることにより、本実施の形態に係る銅合金が製造される。 Subsequently, a heat treatment at a temperature of 400 ° C. or higher and 600 ° C. or lower is performed for a short time (for example, about 1 minute) on the intermediate plate that has been cold-rolled (distortion annealing step: S80). In the strain relief annealing process, a heat treatment at a temperature of 400 ° C. or higher is performed for the purpose of providing the produced copper alloy with sufficient springiness and ductility. In addition, the strain relief annealing step is performed at a temperature of 600 ° C. or lower for the purpose of preventing a decrease in strength of the copper alloy produced due to re-dissolution of precipitates in the copper alloy. Heat treatment is performed. The copper alloy according to the present embodiment in which the spring property is improved and the ductility reduced by the finish rolling process is recovered by the strain relief annealing process is obtained. Through the above steps, the copper alloy according to the present embodiment is manufactured.
(実施の形態の効果)
本発明の実施の形態に係る銅合金は、上記各工程を経て製造されると共に、700℃以上950℃未満の熱処理により圧延組織が消滅して、結晶粒径が50μm以下の結晶組織を有するようになるので、導電性、強度、曲げ加工性、耐応力緩和性に優れると共に、これらの特性をバランスよく備えているので、電気・電子部品の小型化、高集積化に資する銅合金を提供することができる。
(Effect of embodiment)
The copper alloy according to the embodiment of the present invention is manufactured through the above steps, and the rolled structure disappears by a heat treatment at 700 ° C. or more and less than 950 ° C., so that the crystal grain size has a crystal structure of 50 μm or less. Therefore, it has excellent conductivity, strength, bending workability, stress relaxation resistance, and well-balanced characteristics. Therefore, it provides a copper alloy that contributes to miniaturization and high integration of electrical and electronic parts. be able to.
実施の形態に基づいて製造した実施例1〜3に係る銅合金と、比較例1〜4に係る銅合金とについて説明する。表1には、実施例1〜3、及び比較例1〜2に係る銅合金の熱処理工程における処理条件と、製造して得られた銅合金の各特性とを示し、表2には、実施例1に係る銅合金と、比較例3〜4に係る銅合金との中間圧延工程における条件と、製造して得られた銅合金の各特性とを示す。 The copper alloys according to Examples 1 to 3 manufactured based on the embodiment and the copper alloys according to Comparative Examples 1 to 4 will be described. Table 1 shows the processing conditions in the heat treatment process of the copper alloys according to Examples 1 to 3 and Comparative Examples 1 and 2, and the characteristics of the copper alloy obtained by manufacturing. The conditions in the intermediate rolling process of the copper alloy which concerns on Example 1, and the copper alloy which concerns on Comparative Examples 3-4, and each characteristic of the copper alloy obtained by manufacture are shown.
無酸素銅を母材にして0.25質量%のCrと、0.1質量%のZrと、0.15質量%のSnとを含有した銅合金を低周波溶解炉にて溶製してインゴットに鋳造した(溶製工程)。次に、当該インゴットを厚さ8mmまで熱間加工(熱間加工工程)した後、2.5mmまで冷間圧延(粗圧延工程)した。次に、冷間圧延を施した合金材について700℃の焼鈍処理を実施した(熱処理工程)。そして、加工度83%の冷間圧延(中間圧延工程)を実施した後、430℃、2時間の加熱による時効処理を実施した(時効処理工程)。時効処理後、加工度40%の冷間圧延(仕上げ圧延工程)と、450℃、60秒間の加熱による歪取焼鈍(歪取り焼鈍工程)とを実施することにより実施例1に係る銅合金を製造した。 A copper alloy containing 0.25% by mass of Cr, 0.1% by mass of Zr, and 0.15% by mass of Sn is melted in a low frequency melting furnace using oxygen-free copper as a base material. Cast into ingot (melting process). Next, the ingot was hot-worked (hot work process) to a thickness of 8 mm, and then cold-rolled (rough rolling process) to 2.5 mm. Next, an annealing treatment at 700 ° C. was performed on the cold-rolled alloy material (heat treatment step). And after implementing cold rolling (intermediate rolling process) with a workability of 83%, aging treatment was performed by heating at 430 ° C. for 2 hours (aging treatment process). After the aging treatment, the copper alloy according to Example 1 was subjected to cold rolling (finish rolling process) with a workability of 40% and strain relief annealing (strain relief annealing process) by heating at 450 ° C. for 60 seconds. Manufactured.
実施例1と同一組成の材料を溶製して、熱処理工程における熱処理条件だけを変えて、実施例1と同様の工程を経て実施例2及び実施例3、並びに、比較例1〜2に係る銅合金を製造した。 A material having the same composition as in Example 1 is melted, and only the heat treatment conditions in the heat treatment process are changed, and the same process as in Example 1 is performed, and Example 2 and Example 3, and Comparative Examples 1 and 2 are involved. A copper alloy was produced.
また、実施例1と同一組成の材料を溶製して、中間圧延工程における加工度と仕上げ圧延工程における加工度とを変えて、実施例1と同様の工程を経て比較例3及び比較例4に係る銅合金を製造した。 Moreover, the material of the same composition as Example 1 is melted, the working degree in the intermediate rolling process and the working degree in the finish rolling process are changed, and the same process as that in Example 1 is followed through Comparative Example 3 and Comparative Example 4 The copper alloy which concerns on was manufactured.
次に、実施例1〜3、及び比較例1〜2に係る銅合金について、歪取焼鈍直後の銅合金の一部をサンプリングして試験片とした。そして、試験片の圧延方向に垂直な断面を研磨、エッチングした。このようにして得られた試験片を用いて、圧延組織の有無を観察すると共に、圧延組織が観察されなかった試験片については板幅方向の結晶粒の平均値を算出して、平均結晶粒径とした。 Next, about the copper alloys which concern on Examples 1-3 and Comparative Examples 1-2, a part of copper alloy immediately after strain relief annealing was sampled, and it was set as the test piece. And the cross section perpendicular | vertical to the rolling direction of a test piece was grind | polished and etched. Using the test piece thus obtained, the presence or absence of a rolled structure was observed, and for the test piece where the rolled structure was not observed, the average value of the crystal grains in the plate width direction was calculated, and the average crystal grain was calculated. The diameter.
更に、実施例1〜3、及び比較例1〜4に係る銅合金について引張試験を実施した。引張試験は、JIS Z 2201に準拠して、圧延方向に平行な方向の引張強さと伸びとを測定した。また、JIS H 3130に準拠して、Bad Way(曲げ軸が圧延方向と同一の方向)のW曲げ試験を実施して、割れの発生しない最小曲げ半径(MBR)の板厚(t)に対する比であるMBR/t値を算出した。以上の各特性の結果を表1及び表2に示した。 Furthermore, the tensile test was implemented about the copper alloy which concerns on Examples 1-3 and Comparative Examples 1-4. In the tensile test, tensile strength and elongation in a direction parallel to the rolling direction were measured according to JIS Z 2201. Further, in accordance with JIS H 3130, a Bad Way (bending axis is the same direction as the rolling direction) was subjected to a W bending test, and the ratio of the minimum bending radius (MBR) to the plate thickness (t) at which no cracks occurred. The MBR / t value was calculated. The results of the above characteristics are shown in Tables 1 and 2.
表1及び表2を参照すると、実施例1〜3に係る銅合金においては、82%IACS以上の導電率を有すると共に、550MPa程度の高い強度を有していた。更に、実施例1〜3に係る銅合金は、W曲げ試験で割れが発生せず、良好な曲げ加工性を有することが示された。 Referring to Tables 1 and 2, the copper alloys according to Examples 1 to 3 had a conductivity of 82% IACS or higher and a high strength of about 550 MPa. Furthermore, it was shown that the copper alloys according to Examples 1 to 3 did not generate cracks in the W bending test and had good bending workability.
一方、比較例1に係る銅合金は、実施例1〜3における熱処理工程の熱処理条件より低い温度の熱処理工程を経て製造された銅合金である。比較例1に係る銅合金は、内部に圧延組織が残存していることが観察され、冷間圧延で増大した加工歪に起因して十分な曲げ加工性が得られないことが示された。また、比較例2に係る銅合金は、実施例1〜3における熱処理工程の熱処理条件より高い温度の熱処理工程を経て製造された銅合金である。比較例2に係る銅合金は、熱処理後の平均結晶粒径が粗大化していることが観察され、十分な引張強さ、曲げ加工性が得られないことが示された。 On the other hand, the copper alloy which concerns on the comparative example 1 is a copper alloy manufactured through the heat treatment process of temperature lower than the heat treatment conditions of the heat treatment process in Examples 1-3. The copper alloy according to Comparative Example 1 was observed to have a rolled structure remaining therein, indicating that sufficient bending workability could not be obtained due to work strain increased by cold rolling. Moreover, the copper alloy which concerns on the comparative example 2 is a copper alloy manufactured through the heat processing process of temperature higher than the heat processing conditions of the heat processing process in Examples 1-3. In the copper alloy according to Comparative Example 2, it was observed that the average crystal grain size after the heat treatment was coarsened, indicating that sufficient tensile strength and bending workability could not be obtained.
比較例3に係る銅合金は、時効処理前の冷間圧延の加工度が実施例1〜3に係る銅合金の製造における加工度よりも大きい加工度で製造された銅合金である。比較例3に係る銅合金は、引張強さが小さく、曲げ加工性が良好ではないことが示された。 The copper alloy which concerns on the comparative example 3 is a copper alloy manufactured by the degree of workability of the cold rolling before an aging treatment larger than the degree of work in manufacture of the copper alloy which concerns on Examples 1-3. The copper alloy according to Comparative Example 3 was found to have a low tensile strength and poor bending workability.
比較例4に係る銅合金は、時効処理前の冷間圧延の加工度が実施例1〜3に係る銅合金の製造における加工度よりも小さい加工度で製造された銅合金である。比較例4に係る銅合金は、時効処理前の冷間圧延による転位の導入不足に起因して、時効処理の効果が十分には聞いておらず、導電率、引張強さが小さいと共に、曲げ加工性も良好ではないことが示された。 The copper alloy which concerns on the comparative example 4 is a copper alloy manufactured by the workability of the cold rolling before an aging treatment with the workability smaller than the workability in manufacture of the copper alloy which concerns on Examples 1-3. In the copper alloy according to Comparative Example 4, the effect of the aging treatment is not sufficiently heard due to insufficient introduction of dislocations by cold rolling before the aging treatment, and the conductivity and tensile strength are small, and the bending It was shown that the processability is not good.
以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 While the embodiments and examples of the present invention have been described above, the embodiments and examples described above do not limit the invention according to the claims. It should be noted that not all combinations of features described in the embodiments and examples are necessarily essential to the means for solving the problems of the invention.
Claims (10)
前記銅合金素材に熱間加工を施して圧延組織を有する板材を形成する熱間加工工程と、
前記板材に温度が700℃以上950℃未満である熱処理を施す熱処理工程と、
前記熱処理が施された前記板材に80%以上90%未満の加工度の冷間圧延を施して中間板材を形成する中間圧延工程と、
前記中間板材に時効処理を施す時効処理工程と、
前記時効処理を施した前記中間板材に20%以上40%以下の加工度の冷間圧延を施す仕上げ圧延工程と、
前記冷間圧延が施された前記中間板材に加熱処理を施す歪取焼鈍工程と
を備える銅合金の製造方法。 Copper (Cu), chromium (Cr) added to the copper, zirconium (Zr), and tin (Sn) are melted , and 0.1 wt% or more and 0.4 wt% or less of chromium ( Cr), 0.02 wt% or more and 0.2 wt% or less of zirconium (Zr), and 0.01 wt% or more and 0.3 wt% or less of tin (Sn), with the balance being copper (Cu ) And an inevitable impurity, a melting process for casting a copper alloy material,
A hot working step of forming a plate material having a rolled structure by hot working the copper alloy material;
A heat treatment step of subjecting the plate material to a heat treatment at a temperature of 700 ° C. or higher and lower than 950 ° C . ;
An intermediate rolling step of forming an intermediate plate by subjecting the plate subjected to the heat treatment to cold rolling with a working degree of 80% or more and less than 90%;
An aging treatment step of applying an aging treatment to the intermediate plate;
A finish rolling step of subjecting the intermediate plate subjected to the aging treatment to cold rolling with a working degree of 20% or more and 40% or less;
The manufacturing method of a copper alloy provided with the distortion removal annealing process which heat-processes the said intermediate plate material in which the said cold rolling was given.
を更に備え、
前記熱処理工程は、前記粗圧延工程を経た前記板材に前記熱処理を施す請求項5に記載の銅合金の製造方法。 It further comprises a rough rolling step for cold rolling the plate material,
The said heat processing process is a manufacturing method of the copper alloy of Claim 5 which performs the said heat processing to the said board | plate material which passed through the said rough rolling process.
前記銅合金素材に熱間加工を施して圧延組織を有する板材を形成する熱間加工工程と、
前記板材に温度が700℃以上950℃未満である熱処理を施す熱処理工程と、
前記熱処理が施された前記板材に80%以上90%未満の加工度の冷間圧延を施して中間板材を形成する中間圧延工程と、
前記中間板材に時効処理を施す時効処理工程と、
前記時効処理を施した前記中間板材に20%以上40%以下の加工度の冷間圧延を施す仕上げ圧延工程と、
前記冷間圧延が施された前記中間板材に加熱処理を施す歪取焼鈍工程と
を備える銅合金の製造方法で製造された、
0.1重量%以上0.4重量%以下のクロム(Cr)と、0.02重量%以上0.2重量%以下のジルコニウム(Zr)と、0.01重量%以上0.3重量%以下のスズ(Sn)とを含有し、残部が銅(Cu)と不可避的不純物とからなる銅合金。 Copper (Cu), chromium (Cr) added to the copper, zirconium (Zr), and tin (Sn) are melted, and 0.1 wt% or more and 0.4 wt% or less of chromium ( Cr), 0.02 wt% or more and 0.2 wt% or less of zirconium (Zr), and 0.01 wt% or more and 0.3 wt% or less of tin (Sn), with the balance being copper (Cu ) And an inevitable impurity, a melting process for casting a copper alloy material,
A hot working step of forming a plate material having a rolled structure by hot working the copper alloy material;
A heat treatment step of subjecting the plate material to a heat treatment at a temperature of 700 ° C. or higher and lower than 950 ° C .;
An intermediate rolling step of forming an intermediate plate by subjecting the plate subjected to the heat treatment to cold rolling with a working degree of 80% or more and less than 90%;
An aging treatment step of applying an aging treatment to the intermediate plate;
A finish rolling step of subjecting the intermediate plate subjected to the aging treatment to cold rolling with a working degree of 20% or more and 40% or less;
A strain relief annealing step of performing a heat treatment on the intermediate plate subjected to the cold rolling;
Manufactured by a copper alloy manufacturing method comprising:
0.1 wt% to 0.4 wt% chromium (Cr), 0.02 wt% to 0.2 wt% zirconium (Zr), 0.01 wt% to 0.3 wt% A copper alloy containing tin (Sn) and the balance being copper (Cu) and inevitable impurities.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009144937A JP5426936B2 (en) | 2009-06-18 | 2009-06-18 | Copper alloy manufacturing method and copper alloy |
US12/801,278 US20100319818A1 (en) | 2009-06-18 | 2010-06-01 | Method for fabricating a copper alloy and copper alloy fabricated by the same |
CN201010200210.7A CN101928846B (en) | 2009-06-18 | 2010-06-08 | Method for fabricating a copper alloy and copper alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009144937A JP5426936B2 (en) | 2009-06-18 | 2009-06-18 | Copper alloy manufacturing method and copper alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011001593A JP2011001593A (en) | 2011-01-06 |
JP5426936B2 true JP5426936B2 (en) | 2014-02-26 |
Family
ID=43353255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009144937A Active JP5426936B2 (en) | 2009-06-18 | 2009-06-18 | Copper alloy manufacturing method and copper alloy |
Country Status (3)
Country | Link |
---|---|
US (1) | US20100319818A1 (en) |
JP (1) | JP5426936B2 (en) |
CN (1) | CN101928846B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5590990B2 (en) * | 2010-06-30 | 2014-09-17 | 株式会社Shカッパープロダクツ | Copper alloy |
CN102358923B (en) * | 2011-10-09 | 2012-12-12 | 无锡隆达金属材料有限公司 | Vacuum semi-continuous method for casting copper chromium zirconium alloy |
JP6088741B2 (en) * | 2012-03-16 | 2017-03-01 | 古河電気工業株式会社 | Copper alloy material excellent in mold wear resistance during pressing and manufacturing method thereof |
CN103352137B (en) * | 2013-07-22 | 2015-11-18 | 陕西斯瑞工业有限责任公司 | For the copper alloy with high strength and high conductivity and preparation method thereof of power switch spring contact |
JP6488951B2 (en) * | 2014-09-25 | 2019-03-27 | 三菱マテリアル株式会社 | Mold material for casting and Cu-Cr-Zr alloy material |
JP2017057476A (en) * | 2015-09-18 | 2017-03-23 | Dowaメタルテック株式会社 | Copper alloy sheet material and manufacturing method therefor |
JPWO2018180920A1 (en) * | 2017-03-30 | 2019-12-12 | Jx金属株式会社 | Rolled copper foil |
CN107267799B (en) * | 2017-06-22 | 2019-03-08 | 安徽晋源铜业有限公司 | A kind of chrome zirconium copper alloy material and preparation method thereof |
CN111187917B (en) * | 2020-02-26 | 2021-09-14 | 烟台大学 | Removing agent and removing method for low-content impurity element tin in copper melt |
JP6869397B2 (en) * | 2020-04-17 | 2021-05-12 | Dowaメタルテック株式会社 | Copper alloy plate material and its manufacturing method |
CN113913642B (en) * | 2021-09-26 | 2022-07-05 | 宁波博威合金板带有限公司 | Copper alloy strip and preparation method thereof |
CN114606409B (en) * | 2022-03-31 | 2023-06-23 | 江苏恒盈电子科技有限公司 | Heat-resistant semiconductor lead frame for signal amplifier and preparation method thereof |
CN116083739B (en) * | 2022-12-08 | 2024-08-13 | 陕西斯瑞新材料股份有限公司 | Preparation method of high-purity low-pressure environment-friendly copper-chromium contact |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60114558A (en) * | 1983-11-22 | 1985-06-21 | Ngk Insulators Ltd | Production of elongated material consisting of age hardenable titanium-copper alloy |
JP2732355B2 (en) * | 1994-03-22 | 1998-03-30 | 日鉱金属株式会社 | Manufacturing method of high strength and high conductivity copper alloy material for electronic equipment |
JP3521511B2 (en) * | 1994-11-28 | 2004-04-19 | 財団法人鉄道総合技術研究所 | Trolley wire |
JP3479470B2 (en) * | 1999-03-31 | 2003-12-15 | 日鉱金属株式会社 | Copper alloy foil for hard disk drive suspension and method of manufacturing the same |
JP3699701B2 (en) * | 2002-10-31 | 2005-09-28 | 日鉱金属加工株式会社 | Easy-to-process high-strength, high-conductivity copper alloy |
JP2005133185A (en) * | 2003-10-31 | 2005-05-26 | Nippon Mining & Metals Co Ltd | Deposition type copper alloy heat treatment method, deposition type copper alloy, and raw material thereof |
JP4210239B2 (en) * | 2004-06-01 | 2009-01-14 | 日鉱金属株式会社 | Titanium copper excellent in strength, conductivity and bending workability, and its manufacturing method |
JP2006097113A (en) * | 2004-09-30 | 2006-04-13 | Nippon Mining & Metals Co Ltd | Method for manufacturing precipitation-hardening type copper alloy, precipitation-hardening type copper alloy, and elongated copper product |
JP4171735B2 (en) * | 2005-03-31 | 2008-10-29 | 日鉱金属株式会社 | Chromium-containing copper alloy manufacturing method, chromium-containing copper alloy and copper products |
US9034123B2 (en) * | 2007-02-13 | 2015-05-19 | Dowa Metaltech Co., Ltd. | Cu—Ni—Si-based copper alloy sheet material and method of manufacturing same |
-
2009
- 2009-06-18 JP JP2009144937A patent/JP5426936B2/en active Active
-
2010
- 2010-06-01 US US12/801,278 patent/US20100319818A1/en not_active Abandoned
- 2010-06-08 CN CN201010200210.7A patent/CN101928846B/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011001593A (en) | 2011-01-06 |
US20100319818A1 (en) | 2010-12-23 |
CN101928846B (en) | 2015-03-25 |
CN101928846A (en) | 2010-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5426936B2 (en) | Copper alloy manufacturing method and copper alloy | |
JP5590990B2 (en) | Copper alloy | |
JP5320642B2 (en) | Copper alloy manufacturing method and copper alloy | |
EP2728025B1 (en) | Cu-ni-co-si based copper alloy sheet material and method for producing the same | |
JP6263333B2 (en) | Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component | |
JP5214701B2 (en) | Titanium copper excellent in strength, electrical conductivity and bending workability and its manufacturing method | |
TWI422692B (en) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
JP5490439B2 (en) | Manufacturing method of titanium copper for electronic parts | |
JP5319590B2 (en) | Copper alloy, copper alloy manufacturing method and electronic component manufacturing method | |
JP5611773B2 (en) | Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy | |
TWI429768B (en) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
JP2004149874A (en) | Easily-workable high-strength high-electric conductive copper alloy | |
JP2013047360A (en) | Cu-Ni-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME | |
JP5461467B2 (en) | Titanium copper excellent in strength, electrical conductivity and bending workability and its manufacturing method | |
JP2012097308A (en) | Copper alloy, copper rolled product, electronic component and connector | |
JP6080823B2 (en) | Titanium copper for electronic parts | |
KR20130059412A (en) | Copper-cobalt-silicon alloy for electrode material | |
JP2013095976A (en) | Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME | |
JP6214126B2 (en) | Titanium copper and method for producing the same, as well as copper products and electronic device parts using titanium copper | |
JP6080822B2 (en) | Titanium copper for electronic parts and manufacturing method thereof | |
JP2016176105A (en) | ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY | |
JP2024538740A (en) | Manufacturing method of copper alloy sheet material for automobiles or electric/electronic parts having excellent strength, electrical conductivity and bending workability, and copper alloy sheet material manufactured therefrom | |
JP6246173B2 (en) | Cu-Co-Ni-Si alloy for electronic parts | |
JP4721067B2 (en) | Manufacturing method of copper alloy material for electric and electronic parts | |
JP6629400B1 (en) | Titanium copper plate before aging treatment, pressed product and method for producing pressed product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130528 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20130628 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131129 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5426936 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |