JP5425449B2 - Non-contact power supply system for railway vehicles - Google Patents
Non-contact power supply system for railway vehicles Download PDFInfo
- Publication number
- JP5425449B2 JP5425449B2 JP2008302386A JP2008302386A JP5425449B2 JP 5425449 B2 JP5425449 B2 JP 5425449B2 JP 2008302386 A JP2008302386 A JP 2008302386A JP 2008302386 A JP2008302386 A JP 2008302386A JP 5425449 B2 JP5425449 B2 JP 5425449B2
- Authority
- JP
- Japan
- Prior art keywords
- coil
- power supply
- rail
- vehicle
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 9
- 229910001416 lithium ion Inorganic materials 0.000 claims description 9
- 238000003860 storage Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 description 35
- 238000010586 diagram Methods 0.000 description 11
- 230000004907 flux Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 6
- 230000020169 heat generation Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 241001669679 Eleotris Species 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011021 lapis lazuli Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005312 nonlinear dynamic Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Landscapes
- Current-Collector Devices For Electrically Propelled Vehicles (AREA)
Description
本発明は、鉄道車両用非接触給電システムに係り、特に、鉄道レール側に給電コイルを配置し、鉄道車両側の集電コイルにより集電する鉄道車両用非接触給電システムに関するものである。 The present invention relates to a railway vehicle non-contact power feeding system, and more particularly to a railway vehicle non-contact power feeding system in which a power feeding coil is arranged on a rail rail side and current is collected by a power collecting coil on the rail car side.
近年、感電の心配や摩耗がなく、移動体や回転体にエネルギー供給の可能な非接触集電技術を用いた電池バスや工場内搬送装置の実用化が進んでいる(下記非特許文献1,2,3参照)。これらの背景には、地球温暖化に対する省エネルギー効果、安全性、保守性への期待がある。
一方、最近の半導体の高速スイッチングにみられるようなパワーエレクトロニクスの発達、電磁界解析技術の高度化、磁性材料の進歩など、非接触集電技術に欠かせない要素も発達してきている。
In recent years, battery buses and factory transport devices using non-contact current collection technology that can supply energy to moving bodies and rotating bodies without worrying about electric shock and wear have been put into practical use (the following Non-Patent Documents 1 and 2). 2 and 3). In these backgrounds, there are expectations for energy-saving effects, safety and maintainability against global warming.
On the other hand, indispensable elements for non-contact current collection technology have been developed, such as the development of power electronics as seen in recent high-speed switching of semiconductors, the advancement of electromagnetic field analysis technology, and the advancement of magnetic materials.
非接触給電システムを原理的に分類すると、
(a)電磁誘導を用いたリニア変圧器方式
(b)走行体の運動エネルギーを用いたリニア発電機方式
(c)電磁波を用いたマイクロ波方式
(d)その他(下記非特許文献4参照)
に分けることができる。
In principle, contactless power supply systems are classified as follows:
(A) Linear transformer system using electromagnetic induction (b) Linear generator system using kinetic energy of traveling body (c) Microwave system using electromagnetic waves (d) Others (see Non-Patent Document 4 below)
Can be divided into
上述の電池バスや搬送装置では、(a)方式すなわちリニア変圧器方式が採用されている。これは、(b)方式は磁気浮上式車両のような地上1次システムでしか実現できない(下記非特許文献5参照)ことや、(c)方式はエネルギー密度が極端に小さい等の理由からと考えられる。
もっとも、(a)のリニア変圧器方式も高周波電流を使用するため渦電流損が大きい、ギャップ変動の影響が大きい等の克服しなければならない問題もある。
In the above-described battery bus and transfer device, the (a) method, that is, the linear transformer method is adopted. This is because (b) method can be realized only by a primary system such as a magnetically levitated vehicle (see Non-Patent Document 5 below), and (c) method has an extremely low energy density. Conceivable.
However, since the linear transformer system (a) also uses a high frequency current, there are problems such as large eddy current loss and large influence of gap fluctuation.
ところで、鉄道車両の非接触給電システムとして、リニア変圧器による給電(集電)方式を適用することが考えられている(下記非特許文献6〜8参照)。この場合、運転時のエネルギー供給の他、デッドセクションや保守基地での電力供給などへの利用が考えられる。しかしながら、在来鉄道では、互換性や相互乗り入れが重要視されるため、現状の設備や車両を大幅に変更することは難しい。このため、現在の車両限界や建築限界内に給電コイル等を配置しなければならない。
上記したように、鉄道では従来との互換性や相互乗り入れが重視されるため、現状の設備や車両を大きく変更して非接触給電を行うことは難しい。
また、リニア変圧器方式の非接触型給電システムを鉄道車両に適用する場合、金属である鉄道レールへの渦電流による発熱が問題となる。そのため、鉄道レールを有する鉄道車両への非接触型給電システムへの適用は、いまだになされていないのが現状である。
As described above, since compatibility with conventional railways and mutual entry are emphasized in railways, it is difficult to perform non-contact power supply by greatly changing existing facilities and vehicles.
In addition, when a linear transformer type non-contact power supply system is applied to a railway vehicle, heat generation due to eddy current to the railway rail, which is a metal, becomes a problem. Therefore, the present situation is that the application to the non-contact-type electric power feeding system to the railway vehicle which has a rail is not made yet.
本発明は、上記状況に鑑みて、地上の鉄道レール側に給電コイル、車上側に集電コイルを設置するという簡単な構成により従来の地上に鉄道レールを有する鉄道の設備を変えずに非接触給電を行い、しかも鉄道レールの発熱量を低減できる鉄道車両への非接触給電システムを提供することを目的とする。 In view of the above situation, the present invention provides a simple configuration in which a power supply coil is installed on the railroad rail side on the ground and a current collecting coil is installed on the vehicle upper side without changing the conventional railroad equipment having the rail on the ground. It performs power feeding, yet an object to provide a non-contact Sawakyu collector system to a railway vehicle capable of reducing the heating value of the railway rails.
本発明は、上記目的を達成するために、
〔1〕軌道上に敷設される鉄道レール間に配置される8の字コイルからなる給電コイルと、この給電コイルに給電する高周波電源と、前記鉄道レールを走行する車両の底部に配置され、走行時に前記給電コイルに対向するように配置される8の字コイルからなる集電コイルと、この集電コイルに接続されるコンバータと、このコンバータに接続されるリチウムイオン蓄電池とを備え、前記給電コイルに対する前記集電コイルの相対的移動による前記集電コイルからの出力を前記リチウムイオン蓄電池に充電するようにした鉄道車両用非接触給電システムであって、前記給電コイルの背面には絶縁支持板を、前記集電コイルの背面と前記車両の底部間には背面磁性体板を配置し、前記鉄道レールの発熱量を低減できるように構成したことを特徴とする。
In order to achieve the above object, the present invention provides
[1] A power supply coil composed of an 8-shaped coil disposed between railroad rails laid on a track, a high-frequency power source for supplying power to the power supply coil, and a bottom portion of a vehicle traveling on the railroad rail. A current collector coil consisting of an 8-shaped coil, sometimes disposed so as to face the power supply coil, a converter connected to the current collector coil, and a lithium ion storage battery connected to the converter; the output from the collector coil due to the relative movement of the collector coil a railway contactless power supply system for a vehicle so as to charge the lithium ion蓄 batteries for the insulating support plate on the back of the feeding coil and characterized in that the inter bottom of the the back of the collector coil vehicle arranged rear magnetic plate, and configured to reduce the heating value of the railway rail To.
〔2〕上記〔1〕記載の鉄道車両用非接触給電システムにおいて、前記高周波電源は20kHzオーダーの高周波電源であることを特徴とする。 [ 2 ] The railway vehicle non-contact power feeding system according to [1], wherein the high-frequency power source is a high-frequency power source on the order of 20 kHz.
本発明によれば、地上側の鉄道レール間に給電コイル、車上側に集電コイルを設置する簡単な構成により、従来の鉄道レールを有する鉄道の設備を変えずに非接触給電を行い、しかも鉄道レールの発熱量を低減できる鉄道車両用非接触型給電システムを構築することができる。 According to the present invention, a simple configuration in which a power supply coil is installed between the railroad rails on the ground side, and a current collecting coil is installed on the upper side of the vehicle, the contactless power supply is performed without changing the facilities of the conventional railroad rail. It is possible to construct a non-contact power supply system for a railway vehicle that can reduce the amount of heat generated by the railway rail.
本発明の鉄道車両用非接触給電システムは、軌道上に敷設される鉄道レール間に配置される8の字コイルからなる給電コイルと、この給電コイルに給電する高周波電源と、前記鉄道レールを走行する車両の底部に配置され、走行時に前記給電コイルに対向するように配置される8の字コイルからなる集電コイルと、この集電コイルに接続されるコンバータと、このコンバータに接続されるリチウムイオン蓄電池とを備え、前記給電コイルに対する前記集電コイルの相対的移動による前記集電コイルからの出力を前記リチウムイオン蓄電電池に充電するようにした鉄道車両用非接触給電システムであって、前記給電コイルの背面には絶縁支持板を、前記集電コイルの背面と前記車両の底部間には背面磁性体板を配置し、前記鉄道レールの発熱量を低減できるように構成した。 A non-contact power supply system for a railway vehicle according to the present invention includes a power supply coil composed of an 8-shaped coil disposed between railroad rails laid on a track, a high-frequency power source for supplying power to the power supply coil, and traveling on the railroad rail. Current collector coil, which is disposed at the bottom of the vehicle and is disposed so as to face the power feeding coil when traveling, a converter connected to the current collector coil, and lithium connected to the converter A non-contact power supply system for a railway vehicle, wherein the lithium ion storage battery is charged with an output from the current collecting coil by relative movement of the current collecting coil with respect to the power feeding coil. an insulating support plate on the back of the power supply coil, between the bottom of the the back of the collector coil vehicle arranged rear magnetic plate, the heating value of the railway rail It was constructed so that it can be reduced.
以下、本発明の実施の形態について詳細に説明する。
鉄道車両への非接触給電システムの適用としては次の2つの方式が想定される。
(i)レール方式:地上側に給電コイルまたはループを連続して設置し、常時車上に給電を行い走行する。
(ii) ステーション方式:駅や給電ポイントに給電コイルを設置し、蓄電池等に充電を行って走行する。
Hereinafter, embodiments of the present invention will be described in detail.
The following two methods are assumed as the application of the non-contact power supply system to the railway vehicle.
(I) Rail system: A power supply coil or loop is continuously installed on the ground side, and power is supplied to the vehicle at all times to travel.
(Ii) Station system: A power supply coil is installed at a station or a power supply point, and a battery is charged to travel.
考え方としては、レール方式は非接触給電を使った電化であり、ステーション方式は、非電化区間の排ガスレス化と捉えられる。力行時の電力補助や回生電力吸収を考えると、レール方式・ステーション方式共に蓄電池等の車載は必須となる。
図1は本発明の実施例を示す鉄道車両用非接触給電システムの模式図、図2はその側面図、図3はその要部断面図である。
The idea is that the rail system is electrification using non-contact power feeding, and the station system is regarded as exhaust gas reduction in the non-electrified section. Considering power assistance during power running and absorption of regenerative power, it is indispensable to install a storage battery or the like in both the rail system and the station system.
FIG. 1 is a schematic diagram of a railway vehicle non-contact power feeding system according to an embodiment of the present invention, FIG. 2 is a side view thereof, and FIG.
これらの図において、Aは軌道(地上配置)、1は高周波電源、2,2′は軌道Aに敷設される鉄道レール、3は鉄道レール2と2′間に配置される一回巻きの地上側の給電コイル(1次コイル:8の字コイル)、Bは地上側の給電コイル3の絶縁支持体、4は鉄道車両、5は鉄道車両4の車輪、6は鉄道車両4の底面に配置される車両側集電コイル(2次コイル:8の字コイル)、Cは車両側の集電コイル6の背面(車体底面と車両側の集電コイル6との間)に配置される背面磁性板(フェライト板)、7は車両側の集電コイル6に接続されるコンバータ、8はコンバータ7に接続されるリチウムイオン蓄電池である。 In these drawings, A is a track (arranged on the ground), 1 is a high-frequency power source, 2 and 2 'are railway rails laid on the track A, and 3 is a one-turn ground disposed between the rails 2 and 2'. Side feed coil (primary coil: figure 8 coil), B is an insulating support for the ground side feed coil 3, 4 is a rail vehicle, 5 is a wheel of the rail vehicle 4, and 6 is placed on the bottom of the rail vehicle 4 Vehicle-side current collecting coil (secondary coil: figure 8 coil), C is a rear magnetism disposed on the rear surface of the vehicle-side current collecting coil 6 (between the bottom of the vehicle body and the vehicle-side current collecting coil 6). plate (ferrite plate), 7 converter connected to the current collector coil 6 of the vehicle side, and 8 is a lapis lithium ion electric storage batteries are connected to the converter 7.
なお、背面磁性板Cは鉄道車両4の底面に配置される種々の部材に対する磁気シールドとしてコイル回路を担保するために重要である。
また、地上側の給電コイル3の絶縁支持体Bは軌道からの絶縁を確保するために重要である。
これらの図に示すように、本発明では、レール方式の非接触給電システムとした。鉄道車両4は在来線狭軌の通勤近郊型電車を想定している。この鉄道車両4の電源構成は、リチウムイオン蓄電池8を搭載した試験車両の仕様を参考とした。すなわち、レール方式の非接触給電システムにより常時給電された電力を、力行時にはリチウムイオン蓄電池8から補助し、減速時にはそのリチウムイオン蓄電池8に回生して走行する。
The back magnetic plate C is important for securing a coil circuit as a magnetic shield for various members arranged on the bottom surface of the railway vehicle 4.
Further, the insulating support B of the ground-side feeding coil 3 is important for ensuring insulation from the track.
As shown in these drawings, the present invention is a rail-type non-contact power feeding system. The railway vehicle 4 is assumed to be a conventional commuter suburban train with narrow gauge. The power supply configuration of the railway vehicle 4 was based on the specifications of the test vehicle equipped with the lithium ion storage battery 8. That is, the power supplied constantly by the rail-type non-contact power supply system is assisted by the lithium ion storage battery 8 during power running, and regenerated and travels to the lithium ion storage battery 8 during deceleration.
非接触給電システムの諸元としては、機械的な部分は在来線の車両限界を基準に算定し、電気的な部分はドイツのトランスラピッドの給電装置を参考とした。
表1に非接触給電システムの概念設計例を示す。
As the specifications of the non-contact power supply system, the mechanical part was calculated based on the vehicle limit of the conventional line, and the electrical part was referred to the German Transrapid power supply device.
Table 1 shows a conceptual design example of a non-contact power feeding system.
より詳細に説明すると、列車は2車両を1セットとしている。給電コイルの出力電力は20kW/1コイル、地上側の給電コイル3と車上側の集電コイル6との間の間隔は75mm、給電コイルへの印加周波数は20kHz、コイル幅は600mmである。また、給電コイルの電流は200A, 巻回数は1回であり、一方、集電コイルの電流は60A、巻回数は20回である。なお、給電コイルへの印加周波数は、電波法に準拠して10kHz以下としても、出力は若干低減するが、システムとしては問題なく適用することができる。 More specifically, the train has two vehicles as one set. The output power of the feeding coil is 20 kW / 1 coil, the distance between the ground-side feeding coil 3 and the vehicle-side current collecting coil 6 is 75 mm, the frequency applied to the feeding coil is 20 kHz, and the coil width is 600 mm. Further, the current of the feeding coil is 200 A and the number of turns is 1, while the current of the current collecting coil is 60 A and the number of turns is 20. Even if the frequency applied to the feeding coil is 10 kHz or less in accordance with the Radio Law, the output is slightly reduced, but the system can be applied without any problem.
次に、問題となる鉄道レールの渦電流について説明する。
ここでは、非線形動磁場解析の問題となる。レール進行方向については一様で無限長と見てよいため、2次元にて近似可能である。さらに、枕木方向については、車両−地上間で相対運動はなく、運動非連成である。
解析コードには、A−φ法を用いた有限要素法であるフォトン社のEddyを使用した(上記非特許文献11参照)。
Next, the eddy current of the railway rail which becomes a problem is demonstrated.
Here, it becomes a problem of nonlinear dynamic magnetic field analysis. Since the rail traveling direction is uniform and may be viewed as infinite, it can be approximated in two dimensions. Furthermore, in the sleeper direction, there is no relative movement between the vehicle and the ground, and the movement is not coupled.
For the analysis code, Eddy of Photon, which is a finite element method using the A-φ method, was used (see Non-Patent Document 11 above).
図4は本発明の比較例を示す鉄道車両用非接触給電システムの模式図、図5は給電コイル及び集電コイルが8の字コイルである場合の解析モデル、図6は給電コイル及び集電コイルが矩形コイルである場合の解析モデルである。
図4において、Aは軌道(地上配置)、11は高周波電源、12,12′は軌道Aに敷設される鉄道レール、13は鉄道レール12と12′間に配置される一回巻きの地上側の給電コイル(1次コイル:矩形コイル)、Bは地上側の給電コイル13の絶縁支持体、14は鉄道車両、15は鉄道車両14の車輪、16は鉄道車両14の底面に配置される車両側の集電コイル(2次コイル:矩形コイル)、Cは車両側の集電コイル16の背面(車体底面と車両側の集電コイル16との間)に配置される背面磁性板(フェライト板)、17は車両側の集電コイル16に接続されるコンバータ、18はコンバータ17に接続されるリチウムイオン蓄電池である。
4 is a schematic diagram of a railway vehicle non-contact power feeding system showing a comparative example of the present invention, FIG. 5 is an analysis model when the power feeding coil and the current collecting coil are 8-shaped coils, and FIG. 6 is a power feeding coil and a current collector. It is an analysis model in case a coil is a rectangular coil.
In FIG. 4, A is a track (arranged on the ground), 11 is a high-frequency power source, 12, 12 'are railway rails laid on the track A, and 13 is a one-turn ground side disposed between the rails 12 and 12'. B is an insulating support for the ground-side power supply coil 13, 14 is a railway vehicle, 15 is a wheel of the railway vehicle 14, and 16 is a vehicle disposed on the bottom surface of the railway vehicle 14. Current collecting coil (secondary coil: rectangular coil), C is a rear magnetic plate (ferrite plate) disposed on the rear surface of the vehicle current collecting coil 16 (between the bottom of the vehicle body and the vehicle current collecting coil 16) ), 17 converter connected to the collector coil 16 of the vehicle 18 is azure lithium ion electric storage batteries are connected to the converter 17.
図5において、21は軌道の中心線、22は鉄道レール、23は給電コイル(1次コイル:8の字コイル)、24は背面磁性板(フェライト)、25は背面磁性板24に取付けられる集電コイル(2次コイル:8の字コイル)である。
図6において、31は軌道の中心線、32は鉄道レール、33は給電コイル(1次コイル:矩形コイル)、34は背面磁性板、35は背面磁性板34に取付けられる集電コイル(2次コイル:矩形コイル)である。
In FIG. 5, 21 is a track center line, 22 is a railroad rail, 23 is a feeding coil (primary coil: 8-shaped coil), 24 is a back magnetic plate (ferrite), and 25 is a collection attached to the back magnetic plate 24. It is an electric coil (secondary coil: figure 8 coil).
In FIG. 6, 31 is a track center line, 32 is a railroad rail, 33 is a feeding coil (primary coil: rectangular coil), 34 is a back magnetic plate, and 35 is a current collecting coil (secondary) attached to the back magnetic plate 34. Coil: rectangular coil).
漏れ磁束の影響を検討するため、8の字コイル(Null−flux mode)(図5)と矩形コイル(Normal−flux mode)(図6)のモデルを作成した。この解析では、x方向を枕木方向、y方向を天上方向、z方向をレール進行方向とした。
モデルは対象性を考慮して、yz面に反対称境界条件(ベクトルポテンシャルの接線方向が0)、x,y方向の遠方に対称境界条件(ベクトルポテンシャルの法線方向が0)を指定した。
In order to examine the influence of the leakage magnetic flux, models of an 8-shaped coil (Null-flux mode) (FIG. 5) and a rectangular coil (Normal-flux mode) (FIG. 6) were created. In this analysis, the x direction is the sleeper direction, the y direction is the top direction, and the z direction is the rail traveling direction.
In consideration of objectivity, the model specified an antisymmetric boundary condition on the yz plane (the tangential direction of the vector potential is 0), and a symmetric boundary condition (the normal direction of the vector potential is 0) far in the x and y directions.
扱う周波数が高いため、渦電流の流れる鉄道レール22,32の表面部分は、表皮厚以下になるように細かく要素分割を行った。
図7は解析のため非線形計算に使用したB−Hカーブを示す図であり、□は鉄、○はフェライトを示している。
以下解析結果を順を追って示す。解析結果の横軸は電流値であり、表1に示した定格電流を1とした。鉄道レールへの電磁的な影響ということで、単位長さ当たりの発熱量を評価対象とした。
Since the frequency to be handled is high, the surface portions of the rails 22 and 32 through which eddy currents flow are finely divided so that the thickness is less than the skin thickness.
FIG. 7 is a diagram showing a BH curve used for nonlinear calculation for analysis, where □ indicates iron and ◯ indicates ferrite.
The analysis results are shown below in order. The horizontal axis of the analysis result is the current value, and the rated current shown in Table 1 is 1. The amount of heat generated per unit length was evaluated as an electromagnetic influence on railway rails.
まず、線形解析にて近似可能であれば、計算時間を大幅に短縮できるため、非線形解析との比較を行った。
図8は線形解析と非線形解析での計算結果を示す図である。ここで、□は線形解析、○は非線形解析を示している。
図8を見ると、電流の大きな領域で線形解析と非線形解析との計算結果に大きな乖離が生じることがわかる。また、鉄道レール、背面磁性板ともに定格値付近でも飽和領域に達しており、非線形解析が必要であることがわかった。
First, if it can be approximated by linear analysis, the calculation time can be greatly reduced, so we compared it with nonlinear analysis.
FIG. 8 is a diagram showing calculation results in linear analysis and nonlinear analysis. Here, □ indicates linear analysis, and ◯ indicates non-linear analysis.
As can be seen from FIG. 8, there is a large divergence between the calculation results of the linear analysis and the nonlinear analysis in a region where the current is large. In addition, it was found that both the rail and the back magnetic plate reached the saturation region near the rated value, and nonlinear analysis was necessary.
図9は給電コイル及び集電コイルが8の字コイルの場合の定格電流時の磁束密度分布を示す図、図10は給電コイル及び集電コイルが矩形コイルの場合の定格電流時の磁束密度分布を示す図である。
図9においては、集電(2次)コイル25の背面磁性板24と、鉄道レール22の表面に磁束が集中している様子がわかる。表面の渦電流により磁界が遮蔽されて、鉄道レール22内部には磁束が侵入していないことも読み取れる。
FIG. 9 is a diagram showing the magnetic flux density distribution at the rated current when the feeding coil and the collecting coil are 8-shaped coils, and FIG. 10 is the magnetic flux density distribution at the rated current when the feeding coil and the collecting coil are rectangular coils. FIG.
In FIG. 9, it can be seen that the magnetic flux is concentrated on the rear magnetic plate 24 of the current collecting (secondary) coil 25 and the surface of the railway rail 22. It can also be seen that the magnetic field is shielded by the eddy current on the surface, and the magnetic flux does not enter the rail 22.
一般的に、図4に示した矩形コイル同士よりも、図1に示した8の字コイル同士の方が周囲への漏れ磁束が小さい構成が可能である。そのため、鉄道車両への非接触給電システムにおいて、8の字コイルの方が過電流を低減し、鉄道レールの発熱を抑えることができる。
そこで、鉄道レールの発熱を抑える試みとして、給電コイル及び集電コイルが矩形コイルと8の字コイルの場合の比較を行った。
Generally, a configuration in which the leakage flux to the surroundings is smaller between the 8-shaped coils shown in FIG. 1 than the rectangular coils shown in FIG. 4 is possible. Therefore, in the non-contact power supply system to the railway vehicle, the 8-shaped coil can reduce the overcurrent and suppress the heat generation of the railway rail.
Therefore, as an attempt to suppress the heat generation of the railroad rail, a comparison was made between the case where the feeding coil and the collecting coil were a rectangular coil and an 8-shaped coil.
図11は矩形コイルと8の字コイルの場合の数値解析の結果を示す図であり、横軸に給電(1次)コイル電流(規格化)、縦軸に発熱量〔W/m〕が示され、また、◇は矩形コイル、○は8の字コイルの結果を示している。
8の字コイルの方が鉄道レールの発熱量は小さかった。現状の車両限界や建築限界を想定すると、8の字コイルにより鉄道レールへの影響をより小さく抑えることができる。
FIG. 11 is a diagram showing the results of numerical analysis in the case of a rectangular coil and an 8-shaped coil, where the horizontal axis shows the power supply (primary) coil current (normalized) and the vertical axis shows the heat generation [W / m]. In addition, ◇ indicates the result of the rectangular coil, and ○ indicates the result of the 8-shaped coil.
The figure 8 coil produced less heat on the rail. Assuming current vehicle limits and building limits, the figure-shaped coil can further reduce the influence on the rail.
図12は給電(1次)コイル電流のみ、集電(2次)コイル電流のみ通電した場合の解析結果を示す図である。ここで、◇は集電(2次)コイル電流、○は給電(1次)コイル電流を示している。
給電(1次)コイルの方が、幾何学的には鉄道レールに近接しているため、鉄道レールに与える影響が大きいと考えられた。しかし、今回の諸元では、集電(2次)コイル電流のアンペアターンが大きいため、集電(2次)コイル電流の影響が大きいことがわかった。発熱量で比較すると、電流値の自乗に比例するため、このような結果となったと考えられる。
FIG. 12 is a diagram showing an analysis result when only the power feeding (primary) coil current and only the current collecting (secondary) coil current are applied. Here, ◇ indicates a current collecting (secondary) coil current, and ◯ indicates a power feeding (primary) coil current.
Since the feeding (primary) coil is geometrically closer to the rail, it is considered to have a larger influence on the rail. However, it was found that the current (secondary) coil current has a large ampere turn in this specification, so that the influence of the current collection (secondary) coil current is large. When comparing by calorific value, it is considered to be such a result because it is proportional to the square of the current value.
図13は鉄道レールの導電率を変化させた場合の解析結果を示す図である。
一般的な鉄の導電率である1×106 〜1×107 〔S/m〕の範囲内を解析したところ、1桁変化させても発熱量は4割程度の違いしか発生しなかった。
図14は給電(1次)コイル電流の位相と集電(2次)コイル電流の位相を変化させた場合の解析結果を示す図である。
FIG. 13 is a diagram illustrating an analysis result when the conductivity of the rail is changed.
Analysis of the general iron conductivity range of 1 × 10 6 to 1 × 10 7 [S / m] revealed that the calorific value only changed by about 40% even if it was changed by one digit. .
FIG. 14 is a diagram showing an analysis result when the phase of the feeding (primary) coil current and the phase of the current collecting (secondary) coil current are changed.
給電(1次)コイル電流と集電(2次)コイル電流の位相差を変化させると劇的に変化するような点がある。一方、実際の非接触給電では共振現象を利用するため、大きな位相差変化はない。そのため、図14では位相差を5deg.変化させた場合の結果のみを示した。この程度の範囲内では、大きな変化が見られないことがわかる。
以上の解析結果から次のことがわかった。
There is a point that changes dramatically when the phase difference between the feeding (primary) coil current and the collecting (secondary) coil current is changed. On the other hand, the actual non-contact power feeding uses a resonance phenomenon, so there is no large phase difference change. Therefore, in FIG. 14, the phase difference is 5 deg. Only the results when changed are shown. It can be seen that there is no significant change within this range.
The following results were found from the above analysis results.
(1)数10kW級の電力を得るためには、電流値が大きくなるため、磁性体の飽和領域となり、非線形解析が必要となる。
(2)給電(1次)コイルの周波数が20kHzと高いため、漏れ磁束による渦電流は鉄道レール表面部に集中する。
(3矩形コイルと8の字コイルでは、8の字コイルの方が鉄道レールへの影響は小さい。
(1) In order to obtain electric power of several tens of kW class, the current value becomes large, so that it becomes a saturation region of the magnetic material, and nonlinear analysis is necessary.
(2) Since the frequency of the feeding (primary) coil is as high as 20 kHz, the eddy current due to the leakage magnetic flux is concentrated on the rail surface.
(In the case of the three rectangular coils and the 8-shaped coil, the 8-shaped coil has a smaller influence on the rail.
(4) 集電(2次)コイルのアンペアターンが大きいため、鉄道レールへの影響は給電(1次)コイルより集電(2次)コイルの影響の方が大きい。
(5)鉄道レールの導電率や給電(1次)コイルと集電(2次)コイルの電流の位相差の変化では、鉄道レールへの影響には大きな違いが見られなかった。
このように、本発明では、地上側に給電コイル、車上側に集電コイルを設置することにより、鉄道車両への非接触給電を行うようにした。このとき鉄道では従来車両や設備との互換性が重視されるため、土木設備の大幅な変更は考えられない。
(4) Since the ampere turn of the current collecting (secondary) coil is large, the influence on the railroad rail is larger than that of the power feeding (primary) coil.
(5) There was no significant difference in the effect on the railroad rail in the change in the electrical conductivity of the railroad rail or the phase difference between the currents of the feeding (primary) coil and the current collecting (secondary) coil.
As described above, in the present invention, the power supply coil is installed on the ground side and the current collecting coil is installed on the vehicle upper side, so that non-contact power supply to the railway vehicle is performed. At this time, since railways place importance on compatibility with conventional vehicles and equipment, drastic changes in civil engineering equipment cannot be considered.
ここでは、その鉄道レールへの電磁的な影響を抑えるため、鉄道レールの発熱量を評価対象として、コイル構成や物性値等を変化させ、有限要素法による電磁場解析により計算を行った。
その結果、コイル構成を8の字形状にすることにより漏れ磁束による鉄道レール発熱が低減できることがわかった。
Here, in order to suppress the electromagnetic influence on the railroad rail, the amount of heat generated on the railroad rail was evaluated, and the coil configuration, physical property values, etc. were changed, and the calculation was performed by electromagnetic field analysis by the finite element method.
As a result, it was found that railway rail heat generation due to leakage magnetic flux can be reduced by making the coil configuration into a figure eight shape.
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。 In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.
本発明の鉄道車両用非接触給電システムは、従来の設備や車両を変更することなく適用できる鉄道車両用非接触給電システムとして利用することができる。 The non-contact power supply system for railway vehicles of the present invention can be used as a non-contact power supply system for railway vehicles that can be applied without changing conventional facilities and vehicles.
A 軌道
1,11 高周波電源
2,2′,12,12′,22,32 鉄道レール
B 絶縁支持体
3,23 給電コイル(1次コイル:8の字コイル)
C,24,34 背面磁性体板
4,14 鉄道車両
5,15 鉄道車両の車輪
6,25 集電コイル(2次コイル:8の字コイル)
7,17 コンバータ
8,18 リチウムイオン蓄電池
13,33 給電コイル(1次コイル:矩形コイル)
16,35 集電コイル(2次コイル:矩形コイル)
21,31 軌道の中心線
A Track 1,11 High-frequency power source 2,2 ', 12,12', 22,32 Railroad rail B Insulation support 3,23 Feed coil (primary coil: 8-shaped coil)
C, 24, 34 Rear magnetic plate 4,14 Rail vehicle 5,15 Rail vehicle wheel 6,25 Current collecting coil (secondary coil: 8-shaped coil)
7, 17 converter 8 and 18 lithium-ion energy storage battery
13, 33 Feed coil (primary coil: rectangular coil)
16, 35 Current collecting coil (secondary coil: rectangular coil)
21,31 orbit centerline
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008302386A JP5425449B2 (en) | 2008-11-27 | 2008-11-27 | Non-contact power supply system for railway vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008302386A JP5425449B2 (en) | 2008-11-27 | 2008-11-27 | Non-contact power supply system for railway vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010125974A JP2010125974A (en) | 2010-06-10 |
JP5425449B2 true JP5425449B2 (en) | 2014-02-26 |
Family
ID=42326654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008302386A Expired - Fee Related JP5425449B2 (en) | 2008-11-27 | 2008-11-27 | Non-contact power supply system for railway vehicles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5425449B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016175583A (en) * | 2015-03-20 | 2016-10-06 | 公益財団法人鉄道総合技術研究所 | Non-contact power supply device, non-contact power supply system, control method and program |
US12065178B1 (en) | 2020-11-19 | 2024-08-20 | Peter Cacioppo | Kinetic energy conversion system |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2965758B1 (en) * | 2010-10-07 | 2014-12-26 | Alstom Transport Sa | GROUND FEEDING SYSTEM FOR TRANSPORT VEHICLE AND ASSOCIATED METHODS. |
JP5957976B2 (en) * | 2012-03-08 | 2016-07-27 | 日産自動車株式会社 | Contactless power supply |
JP6232958B2 (en) * | 2013-11-18 | 2017-11-22 | 株式会社Ihi | Contactless power supply system |
KR101559806B1 (en) | 2014-04-11 | 2015-10-15 | 한국과학기술원 | power supply and pickup for tracked vehicle with inwheel pick-up coil |
US11005295B2 (en) | 2015-09-18 | 2021-05-11 | Fuji Corporation | Non-contact power feeding device |
JP6776040B2 (en) * | 2016-07-22 | 2020-10-28 | キヤノン株式会社 | Wireless power transfer systems, control methods and programs |
CN109383303A (en) * | 2017-08-08 | 2019-02-26 | 大连奇想科技有限公司 | Electronic guiding permanent magnetic levitation train rail system |
JP6873212B2 (en) * | 2019-11-07 | 2021-05-19 | 株式会社Fuji | Board production line |
JP7504576B2 (en) * | 2019-11-08 | 2024-06-24 | 株式会社今仙電機製作所 | Wireless power supply system and control method for wireless power supply system |
JP6968391B1 (en) * | 2021-02-24 | 2021-11-17 | 株式会社ジーエスエレテック | Contactless power supply coil unit and contactless power supply system |
CN114528611A (en) * | 2022-03-11 | 2022-05-24 | 中车长春轨道客车股份有限公司 | Method and device for generating coil model |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS637112A (en) * | 1986-06-26 | 1988-01-13 | Mitsubishi Electric Corp | Linear motor type conveying apparatus |
JP3194470B2 (en) * | 1995-11-09 | 2001-07-30 | 財団法人鉄道総合技術研究所 | Non-contact induction current collector |
JP2002118018A (en) * | 2000-10-06 | 2002-04-19 | Hitachi Ltd | Ground coil for magnetically levitated railway |
JP2006121791A (en) * | 2004-10-20 | 2006-05-11 | Chugoku Electric Power Co Inc:The | Noncontact power feeder for vehicle |
-
2008
- 2008-11-27 JP JP2008302386A patent/JP5425449B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016175583A (en) * | 2015-03-20 | 2016-10-06 | 公益財団法人鉄道総合技術研究所 | Non-contact power supply device, non-contact power supply system, control method and program |
US12065178B1 (en) | 2020-11-19 | 2024-08-20 | Peter Cacioppo | Kinetic energy conversion system |
Also Published As
Publication number | Publication date |
---|---|
JP2010125974A (en) | 2010-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5425449B2 (en) | Non-contact power supply system for railway vehicles | |
Li et al. | Wireless power transfer by electric field resonance and its application in dynamic charging | |
Mude | Battery charging method for electric vehicles: From wired to on-road wireless charging | |
Li et al. | Wireless power transfer for electric vehicle applications | |
Ahmad et al. | A comprehensive review of wireless charging technologies for electric vehicles | |
Covic et al. | Modern trends in inductive power transfer for transportation applications | |
Xiang et al. | A crossed DD geometry and its double-coil excitation method for electric vehicle dynamic wireless charging systems | |
Bi et al. | A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility | |
Huh et al. | Narrow-width inductive power transfer system for online electrical vehicles | |
Suh et al. | Electric vehicle on-road dynamic charging system with wireless power transfer technology | |
Lukic et al. | Cutting the cord: Static and dynamic inductive wireless charging of electric vehicles | |
Chen et al. | A promoted design for primary coil in roadway-powered system | |
Choi et al. | Generalized models on self-decoupled dual pick-up coils for large lateral tolerance | |
Sathik Mohamed Ali et al. | A comprehensive review of the on-road wireless charging system for E-mobility applications | |
Kusaka et al. | Development trends of inductive power transfer systems utilizing electromagnetic induction with focus on transmission frequency and transmission power | |
Jiang et al. | Designing an M-shape magnetic coupler for the wireless charging system in railway applications | |
Chowdhury et al. | Design and performance evaluation for a new power pad in electric vehicles wireless charging systems | |
Shimode et al. | A study of structure of inductive power transfer coil for railway vehicles | |
Scudiere et al. | Wireless power transfer for electric vehicles | |
Liao et al. | Simulation-assisted design of a bidirectional wireless power transfer with circular sandwich coils for E-bike sharing system | |
Vuddanti et al. | Design of a one kilowatt wireless charging system for electric vehicle in line with Bharath EV standards | |
Feliziani et al. | Wireless Power Transfer for E-Mobility: Fundamentals and Design Guidelines for Wireless Charging of Electric Vehicles | |
Chakibanda et al. | Optimization in magnetic coupler design for inductively coupled wireless charging of electric vehicle: a review | |
Ghazizadeh et al. | Performance evaluation of coil design in inductive power transfer for electric vehicles | |
Wu et al. | Overview of wireless power supply technology for electric vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121210 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130625 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130711 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20130826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131127 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5425449 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |