Nothing Special   »   [go: up one dir, main page]

JP5417405B2 - Method for producing angiotensin converting enzyme inhibitory antihypertensive peptide composition - Google Patents

Method for producing angiotensin converting enzyme inhibitory antihypertensive peptide composition Download PDF

Info

Publication number
JP5417405B2
JP5417405B2 JP2011210463A JP2011210463A JP5417405B2 JP 5417405 B2 JP5417405 B2 JP 5417405B2 JP 2011210463 A JP2011210463 A JP 2011210463A JP 2011210463 A JP2011210463 A JP 2011210463A JP 5417405 B2 JP5417405 B2 JP 5417405B2
Authority
JP
Japan
Prior art keywords
bonito
trp
amino acid
peptide
dipeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011210463A
Other languages
Japanese (ja)
Other versions
JP2013071897A5 (en
JP2013071897A (en
Inventor
英治 関
仁 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaki Co Ltd
Original Assignee
Yamaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaki Co Ltd filed Critical Yamaki Co Ltd
Priority to JP2011210463A priority Critical patent/JP5417405B2/en
Publication of JP2013071897A publication Critical patent/JP2013071897A/en
Publication of JP2013071897A5 publication Critical patent/JP2013071897A5/ja
Application granted granted Critical
Publication of JP5417405B2 publication Critical patent/JP5417405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明はアンジオテンシン変換酵素(ACE)を阻害する活性をもち、このことにより、血圧降下作用を示す有用な5種類のジペプチドおよびそれを含有するペプチド組成物の製法に関するものである。本発明の新規な製法は、魚肉性タンパク質、特に鰹節を熱水抽出した時の残渣として残る不溶性タンパク質をプロチンNY100(天野エンザイム),サモアーゼPC10F(大和化成)酵素により加水分解して得られるジペプチドを疎水性樹脂に吸着させた後、含水アルコールにより脱着、さらに限外ろ過膜(分子量1000)に透過させること、その強いACE阻害活性画分は、アンジオテンシン変換酵素阻害剤及び血圧降下剤の有効成分として利用できる。本発明のジペプチドを含有するペプチド組成物は高血圧症の治療または予防に有用であると期待される。   The present invention relates to a method for producing five useful dipeptides having an activity to inhibit angiotensin converting enzyme (ACE) and thereby exhibiting a blood pressure lowering effect and a peptide composition containing the same. The novel production method of the present invention comprises dipeptides obtained by hydrolyzing fish protein, in particular, insoluble protein remaining as a residue when bonito is extracted with hot water with protin NY100 (Amano Enzyme) and Samoaase PC10F (Daiwa Kasei) enzymes. After adsorbing to a hydrophobic resin, desorption with water-containing alcohol and permeation through an ultrafiltration membrane (molecular weight 1000). Available. The peptide composition containing the dipeptide of the present invention is expected to be useful for the treatment or prevention of hypertension.

高血圧症は代表的な生活習慣病であり、その患者数は予備軍を含め、5490万人といわれている(厚生労働省:平成18年国民健康・栄養調査結果)。高血圧症は脳出血、クモ膜下出血、脳梗塞、心筋梗塞、狭心症、腎硬化症等種々の合併症を引き起こすことが知れており、高血圧症の発症メカニズムについて様々な研究が行われてきている。   Hypertension is a typical lifestyle-related disease, and the number of patients, including the reserve army, is said to be 54.9 million (Ministry of Health, Labor and Welfare: 2006 National Health and Nutrition Survey). Hypertension is known to cause various complications such as cerebral hemorrhage, subarachnoid hemorrhage, cerebral infarction, myocardial infarction, angina pectoris, nephrosclerosis, and various studies on the mechanism of hypertension have been conducted. Yes.

血圧の調節系として、昇圧に関与するレニン・アンジオテンシン系と降圧に関与するカリクレイン・キニン系が重要な役割を果たしている。レニン・アンジオテンシン系では肝臓から分泌されるアンジオシノーゲンが腎臓で生産されるレニンによってアンジオテンシンIとなり、更にアンジオテンシン変換酵素(ACE)によってアンジオテンシンIIに変換される。このアンジオテンシンIIは血管平滑筋を収縮させ、血圧を上昇させる。一方、降圧系のカリクレインはキニノーゲンに作用してブラジキニンを産生する。このブラジキニンには血管を拡張して血圧を下げる効果があるが、ACEにはこのブラジキニンを分解してしまう作用がある。このように、ACEは昇圧ペプチドであるアンジオテンシンIIの産生と降圧ペプチドであるブラジキニンの不活化という二つの作用によって血圧の上昇に関与していることが知られている。
従って、このACEの酵素活性を抑制することにより血圧の上昇を抑制することが可能となる。このACE阻害活性物質として開発されたプロリン誘導体であるカプトプリル(D−2−メチル−3−メルカプトプロパノイル−L−プロリン)やエナラプリル等は高血圧症の治療に広く用いられている。
The renin / angiotensin system involved in pressurization and the kallikrein / kinin system involved in hypotension play important roles in the regulation of blood pressure. In the renin-angiotensin system, angiosinogen secreted from the liver is converted into angiotensin I by renin produced in the kidney, and further converted into angiotensin II by angiotensin converting enzyme (ACE). This angiotensin II contracts vascular smooth muscles and increases blood pressure. On the other hand, antihypertensive kallikrein acts on kininogen to produce bradykinin. This bradykinin has the effect of dilating blood vessels and lowering blood pressure, while ACE has the action of degrading this bradykinin. Thus, it is known that ACE is involved in the increase of blood pressure by two actions of production of angiotensin II which is a pressor peptide and inactivation of bradykinin which is a hypotensive peptide.
Therefore, it is possible to suppress an increase in blood pressure by suppressing the enzyme activity of ACE. Captopril (D-2-methyl-3-mercaptopropanoyl-L-proline) and enalapril, which are proline derivatives developed as ACE inhibitory active substances, are widely used for the treatment of hypertension.

また、最近では食品素材タンパク質の酵素分解物であるペプチドにACE阻害活性のあることが報告されている。例えば、ゼラチンのコラーギナーゼ分解物(特許文献1)、カゼインのトリプシン分解物(特許文献2、特許文献3および特許文献4)、イワシ筋肉のペプシン分解物(特許文献5)、かつお節のサーモライシン分解物(特許文献6)、ゴマ蛋白のサーモライシン分解物(特許文献7)、κ−カゼインのペプシン等の分解物(特許文献8)等多数の報告がなされている。天然物由来のアンギオテンシン変換酵素阻害剤は食品あるいは食品原料から得られるので低毒性で安全性の高い降圧剤となることが期待されるからである。
微生物あるいは種々の食品中にもACE阻害物質が見い出され、降圧剤としての実用化が検討されている(非特許文献1)。
そしてACE阻害活性を有するペプチドの製造法についても、幾つかの報告が為されている(特許文献9、10、11、12、13、14、15)。
Recently, it has been reported that peptides that are enzymatic degradation products of food material proteins have ACE inhibitory activity. For example, a collagenase degradation product of gelatin (patent document 1), a trypsin degradation product of casein (patent document 2, patent document 3 and patent document 4), a pepsin degradation product of sardine muscle (patent document 5), and a thermolysin degradation product of bonito ( A number of reports have been made such as Patent Document 6), thermolysin degradation product of sesame protein (Patent Literature 7), degradation product of κ-casein such as pepsin (Patent Literature 8). This is because a natural product-derived angiotensin converting enzyme inhibitor is obtained from foods or food materials, and is expected to be a low-toxic and highly safe antihypertensive agent.
ACE inhibitors are also found in microorganisms and various foods, and their practical application as antihypertensive agents has been studied (Non-patent Document 1).
Several reports have been made on methods for producing peptides having ACE inhibitory activity (Patent Documents 9, 10, 11, 12, 13, 14, 15).

特開昭52−148631号公報Japanese Patent Laid-Open No. 52-148631 特開昭58−109425号公報JP 58-109425 A 特開昭61−36226号公報JP-A 61-36226 特開昭61−36227号公報JP-A-61-36227 特開平3−11097号公報Japanese Patent Laid-Open No. 3-11097 特開平4−144696号公報JP-A-4-144696 特開平8−231588号公報JP-A-8-231588 特開平8−269088号公報JP-A-8-269088 特開平6−7188号公報JP-A-6-7188 特許第2794094号公報Japanese Patent No. 2794094 特許第2873318号公報Japanese Patent No. 2873318 特開2006−347937号公報JP 2006-347937 A 特開2001−240600号公報JP 2001-240600 A 特開平6−298794号公報JP-A-6-298794 特開2010−155788号公報JP 2010-155788 A

末網邦男、発酵と工業、46巻(No.3)、179〜182頁(1988)Sueami Kunio, Fermentation and Industry, Volume 46 (No. 3), 179-182 (1988)

食品素材由来のACE阻害活性を有するペプチドは副作用、毒性等の安全性の点でも問題が少なく、通常の食品として摂取することが可能であることが大きな利点となっている。
しかし、上記の報告のペプチドの多くのものは、それの構成アミノ酸数が5以上のものである(特許文献1、2、3、4、5、8)。これらアミノ酸残基数の多いペプチドは摂取後にペプシン、トリプシン、キモトリプシン等の消化酵素により分解され易く、それらのACE阻害活性が生体中で消失したり、また、分解されない場合でもその分子構造が大きいために吸収され難いといわれている。
さらに、ACE阻害ペプチド組成物やその製法については、特許文献9では限外ろ過膜(分子量3000−10000)透過液から低分子成分の逆浸透膜により除去した画分の血圧降下作用を有するACE阻害ペプチド混合物を得ているが、塩、遊離アミノ酸の除去による阻害活性の上昇を目的としており、分画には至っておらず、逆浸透膜での具体的な成分ペプチドの追跡を明確にしていない。特許文献10ではいちじく由来の分子量10000以下の物質からカラムクロマトグラフィーにより分離精製、目的とするオリゴペプチドを得ることができるとしているが、合成で製造できること、その単離方法に終始しており、具体的に天然物から産業上有効な工業生産できるには至っておらず、限外ろ過膜10000の精製までしか示されていない。特許文献11ではゼインまたはグルテンミールのサーモライシン加水分解物であって、分子量が10000以下の画分の含有量が固形分基準で30%以上であるゲルろ過や限外ろ過により得る方法があるが、分子量10000透過液に含まれる分子量1000以下の含有量が95%であることの根拠が示されていない。特許文献12では畜肉タンパク質由来の血圧降下ペプチドであって、ミオシン、アクチンをアマノS等の酵素で加水分解したペプチド含有組成物を得ているが、精製については、ラボスケールに止まっており、単離ペプチドの合成が記載されている。その工業的大量生産は一般的な酵素調製方法を述べているに過ぎない。また、阻害ペプチドの精製に、樹脂を用いているが、構造決定をその目的としている。特許文献13ではタンパク質のACE阻害酵素分解物を平均細孔直径3nm以下の活性炭を用いて処理する方法が記載されており、ACE阻害活性を低下させることなく、苦みや臭いを除去することができたとしている。阻害活性の上昇を目的とはしていない。特許文献14では合成樹脂に接触させて非吸着画分に苦みペプチドを除去する方法を提案しており、非吸着画分に阻害活性が残存することと記載されている。一方、本発明では吸着画分に高ACE阻害活性が認められ、非吸着画分にはACE不阻害活性が示された。さらに限外ろ過の透過液により消化耐性に優れた低分子のACE阻害活性ペプチドを得ることができる製法に関する。
Peptides having ACE inhibitory activity derived from food materials have few problems in terms of safety such as side effects and toxicity, and it is a great advantage that they can be taken as normal foods.
However, many of the peptides reported above have 5 or more constituent amino acids (Patent Documents 1, 2, 3, 4, 5, 8). Since these peptides with a large number of amino acid residues are easily degraded by digestive enzymes such as pepsin, trypsin, chymotrypsin after ingestion, their ACE inhibitory activity disappears in the body, and even when they are not degraded, their molecular structure is large. It is said that it is difficult to absorb.
Furthermore, with respect to the ACE-inhibiting peptide composition and its production method, Patent Document 9 discloses ACE inhibition having a blood pressure lowering effect of a fraction removed from a permeate by ultrafiltration membrane (molecular weight 3000-10000) with a low-molecular-weight reverse osmosis membrane. Although a peptide mixture has been obtained, the purpose is to increase the inhibitory activity by removing salts and free amino acids, the fraction has not been reached, and the tracking of specific component peptides in the reverse osmosis membrane has not been clarified. In Patent Document 10, it is said that the target oligopeptide can be obtained by separation and purification by column chromatography from a substance having a molecular weight of 10,000 or less derived from figs. In particular, industrial production that is industrially effective from natural products has not been achieved, and only the purification of the ultrafiltration membrane 10000 has been shown. Patent Document 11 is a thermolysin hydrolyzate of zein or gluten meal, and there is a method obtained by gel filtration or ultrafiltration in which the content of a fraction having a molecular weight of 10,000 or less is 30% or more based on the solid content, There is no evidence that the molecular weight of 1000 or less contained in the permeated liquid having a molecular weight of 10,000 is 95%. In Patent Document 12, an antihypertensive peptide derived from livestock meat protein, which is a peptide-containing composition obtained by hydrolyzing myosin and actin with an enzyme such as Amano S, is obtained. However, purification is limited to a lab scale. The synthesis of isolated peptides has been described. Its industrial mass production only describes general enzyme preparation methods. In addition, a resin is used to purify the inhibitory peptide, but its purpose is to determine the structure. Patent Document 13 describes a method of treating a protein ACE-inhibiting enzyme degradation product with activated carbon having an average pore diameter of 3 nm or less, and can remove bitterness and odor without reducing ACE inhibitory activity. I'm trying. It is not aimed at increasing inhibitory activity. Patent Document 14 proposes a method of removing a bitter peptide from a non-adsorbed fraction by contacting with a synthetic resin, and describes that inhibitory activity remains in the non-adsorbed fraction. On the other hand, in the present invention, high ACE inhibitory activity was observed in the adsorbed fraction, and ACE non-inhibitory activity was shown in the non-adsorbed fraction. Furthermore, it is related with the manufacturing method which can obtain the low molecular ACE inhibitory activity peptide excellent in digestion tolerance with the permeate | transmission of ultrafiltration.

したがって、本発明の課題は、経口摂取したとき消化酵素により分解されにくく、体内でのACE阻害活性が失われにくい、そのままで小腸粘膜吸収可能な、ACE阻害活性を有するジペプチドを含有するペプチド組成物の製法を提供することである。
さらに、本発明は上記のジペプチドを一種以上含有してなるアンジオテンシン変換酵素阻害剤あるいは血圧降下剤あるいは飲食用組成物(飲食料)を提供する。
Accordingly, an object of the present invention is to provide a peptide composition containing a dipeptide having an ACE inhibitory activity, which is difficult to be degraded by digestive enzymes when taken orally, hardly loses the ACE inhibitory activity in the body, and can be absorbed as it is in the small intestinal mucosa. It is to provide a manufacturing method.
Furthermore, the present invention provides an angiotensin converting enzyme inhibitor, a blood pressure lowering agent, or a composition for eating and drinking (food and beverage) comprising one or more of the above-mentioned dipeptides.

上記のように、天然有機物および食品由来のアンジオテンシン変換酵素阻害物質は、人体に対する安全性をもつことから重要性が高く、生活習慣病予防のためにも大きな研究課題である。   As described above, natural organic substances and food-derived angiotensin converting enzyme inhibitors are highly important because of their safety to the human body, and are a major research subject for the prevention of lifestyle-related diseases.

本発明は、この課題を解決するためになされたものであって、アンジオテンシン変換酵素を有効に阻害することにより、血圧上昇を抑制する新規で安全な物質を、食品素材から見出し、その阻害物質の構造を明らかにするとともに、品質および価格面から適度な濃縮法を開発し、アンジオテンシン変換酵素阻害物質を含む食品素材を提供することを目的とする。   The present invention has been made to solve this problem, and by effectively inhibiting an angiotensin converting enzyme, a novel and safe substance that suppresses an increase in blood pressure is found from a food material. The purpose is to provide a food material containing an angiotensin converting enzyme inhibitory substance by clarifying the structure and developing an appropriate concentration method in terms of quality and price.

鰹節を熱水抽出した後に残渣として残る水不溶性タンパク質を、プロテアーゼであるプロチンNY100(天野エンザイム)で加水分解して得られた生成分解物中に、上記問題を解決するペプチドが存在するのではないかと考え、該生成分解物の中にアミノ酸数が2以下でACE阻害活性を有するペプチドが含有されるか、探索を行った。
その結果、下記のアミノ酸配列をもち且つACE阻害活性を有する5種のジペプチドを、鰹節熱水抽出残渣である水不溶性タンパク質のプロチンNY100(天野エンザイム)による加水分解生成物から中に見出し、それらジペプチドを単離することに成功して本発明を完成するに至った。
Peptides that solve the above problems are not present in the product degradation product obtained by hydrolyzing water-insoluble protein remaining as a residue after hot water extraction of bonito with protease Protin NY100 (Amano Enzyme). Therefore, a search was performed to determine whether the product degradation product contains a peptide having an amino acid number of 2 or less and having ACE inhibitory activity.
As a result, five dipeptides having the following amino acid sequences and having ACE inhibitory activity were found in the hydrolysis products of water-insoluble protein protin NY100 (Amano Enzyme), which is a residue extracted from hot water from bonito. The present invention was completed successfully.

第1の本発明では、Trp−Leu、Leu−Trp、Trp−Ile、Val−Tyr、Trp−Asnそれぞれ表されるアミノ酸配列を有するジペプチドであって、しかもアンジオテンシン変換酵素阻害活性を有するジペプチドを提供する。
また、本発明は上記ジペプチドを一種以上含有してなる飲食用組成物、アンジオテンシン変換酵素阻害剤および血圧降下剤を提供する。
The first aspect of the present invention provides a dipeptide having an amino acid sequence represented by Trp-Leu, Leu-Trp, Trp-Ile, Val-Tyr, or Trp-Asn and having angiotensin converting enzyme inhibitory activity. To do.
Moreover, this invention provides the composition for eating and drinking which comprises 1 or more types of the said dipeptide, an angiotensin converting enzyme inhibitor, and a blood pressure lowering agent.

本発明者らが種々研究を行い、その結果として、鰹タンパク質の中に、アンジオテンシン変換酵素阻害物質の存在が推測され、そして、この鰹節タンパク質中のアンジオテンシン変換酵素阻害物質が、逆相分配系樹脂に吸着される性質のものであることが判ってきた。さらに、限外ろ過(分子量1000)膜透過液に消化耐性な高活性画分が得られることも分かった。この阻害物質が、鰹節を原料とし熱水抽出により得られた不溶性タンパク質残渣を、プロテアーゼ、好ましくは、食品工業用のプロテアーゼ、特に、プロチンNY100(天野エンザイム),又はサモアーゼPC10F(大和化成)で分解して、疎水性吸着樹脂に吸着させ、含水有機溶媒により溶出させ、さらに、限外ろ過膜(分子量1000)処理によりACE阻害透過画分が高収量で得られ、かつ簡単に濃縮できること、そして、得られた阻害物質中の各成分について、UPLCクロマトグラフィーを用いて、ACE阻害活性の強い成分を単離し、その成分の阻害活性値(IC50値)の測定および構造解析を行ったところ、この成分で表されるアミノ酸配列をもち且つアンジオテンシン変換酵素阻害活性をもつジペプチドであることが判ってきたことによるものである。 The present inventors have conducted various studies, and as a result, the presence of an angiotensin converting enzyme inhibitor in the cocoon protein is presumed, and the angiotensin converting enzyme inhibitor in the bonito protein is a reverse phase partition resin. It has been found that it has a property of being adsorbed on the surface. Furthermore, it was also found that a highly active fraction resistant to digestion with an ultrafiltration (molecular weight 1000) membrane permeate was obtained. This inhibitor decomposes the insoluble protein residue obtained by hot water extraction from bonito with a protease, preferably a protease for the food industry, in particular, protin NY100 (Amano Enzyme) or Samoaase PC10F (Daiwa Kasei). The ACE inhibitory permeation fraction can be obtained in a high yield by the ultrafiltration membrane (molecular weight 1000) treatment, and can be easily concentrated, About each component in the obtained inhibitory substance, the component with strong ACE inhibitory activity was isolated using UPLC chromatography, the inhibitory activity value (IC 50 value) of the component was measured, and the structure analysis was performed. It was found to be a dipeptide having an amino acid sequence represented by components and having angiotensin converting enzyme inhibitory activity It is due to have.

上述の目的を達成するための手段として、Trp−Leu、Leu−Trp、Trp−Ile、Val−Tyr、Trp−Asnよりなるアンジオテンシン変換酵素阻害ペプチドを主とするアンジオテンシン変換酵素阻害物質を提供し、また、鰹節熱水抽出残渣タンパク質を、プロテアーゼ、例えば、プロチンNY100(天野エンザイム)、又はサモアーゼPC10F(大和化成)で分解後、直ちに疎水性吸着樹脂に吸着させ、含水有機溶媒で溶出し、限外ろ過膜(分子量1000)透過液に高いACE阻害活性を有することを特徴とするアンジオテンシン変換酵素阻害物質の製造法を提供するものである。一般に、限外ろ過膜処理は、数日間を要することから、その使用に関しては、腐敗の問題が解決されておらず、現在も食品での使用は例を見ない。課題として、温度を下げる、pHを下げることは、設備費用、ランニングコストの問題、塩酸の使用による品質の問題から明確な解決法は見あたらない。また、限外ろ過膜(分子量10000)と、逆浸透膜の併用があるが、本発明の様に正確な分子量分画はなされていない。本発明はこの点を改良し、疎水性樹脂処理の脱着を50%エタノール溶液で行うことにより、阻害活性のない画分と遊離アミノ酸を除去して精製1段階目のACE阻害活性を上昇させること、さらに、次にアルコール存在下による限外ろ過膜(分子量1000)処理工程による透過液に高活性成分が認められ、腐敗のない安定した製造工程により本発明は完結する。   As a means for achieving the above object, an angiotensin converting enzyme inhibitor mainly comprising an angiotensin converting enzyme inhibitory peptide comprising Trp-Leu, Leu-Trp, Trp-Ile, Val-Tyr, Trp-Asn is provided. In addition, the dried bonito hot water extraction residue protein is decomposed with a protease such as Protin NY100 (Amano Enzyme) or Samoaase PC10F (Daiwa Kasei), immediately adsorbed to a hydrophobic adsorption resin, and eluted with a water-containing organic solvent. The present invention provides a method for producing an angiotensin converting enzyme inhibitor, characterized by having a high ACE inhibitory activity in a filtrate (molecular weight 1000) permeate. In general, since ultrafiltration membrane treatment takes several days, the problem of spoilage has not been solved for its use, and there are no examples of its use in foods. As a problem, there is no clear solution for lowering the temperature and lowering the pH because of problems of equipment costs, running costs, and quality problems due to the use of hydrochloric acid. Further, although there is a combined use of an ultrafiltration membrane (molecular weight 10,000) and a reverse osmosis membrane, an accurate molecular weight fraction is not achieved as in the present invention. The present invention improves this point, and by performing desorption of hydrophobic resin treatment with a 50% ethanol solution, the fraction having no inhibitory activity and free amino acids are removed, and the ACE inhibitory activity in the first purification stage is increased. Furthermore, a highly active component is observed in the permeated solution obtained by the ultrafiltration membrane (molecular weight 1000) treatment step in the presence of alcohol, and the present invention is completed by a stable production step without decay.

疎水性吸着樹脂すなわち芳香族系修飾型樹脂(例えば、三菱化学製:セパビーズSP207)は、芳香環に臭素を化学的に導入した芳香族系(スチレン−ジビニルベンゼン系)合成吸着剤で、細孔表面の疎水吸着性が強いことから親水性の高い有機物(疎水性が低い物質)に対しても優れた吸着性能を発揮すると思われ、アミノ酸分離精製、タンパク質除去、天然抽出物精製、発酵液前処理等に用いられてよい。   Hydrophobic adsorption resin, that is, aromatic modified resin (for example, manufactured by Mitsubishi Chemical: Sepabead SP207) is an aromatic (styrene-divinylbenzene) synthetic adsorbent in which bromine is chemically introduced into an aromatic ring, and has a pore size. Since the surface has a strong hydrophobic adsorptivity, it is considered to exhibit excellent adsorption performance even for highly hydrophilic organic substances (substances with low hydrophobicity). Amino acid separation purification, protein removal, natural extract purification, before fermentation broth It may be used for processing or the like.

本発明で用いるジペプチドは鰹節熱水抽出残渣タンパク質の酵素分解法、有機化学的な合成方法によりアミノ酸を段階的に導入する方法、加水分解酵素の逆反応を利用したペプチド合成法、遺伝子工学的方法等によって製造することができる。   The dipeptide used in the present invention is an enzymatic degradation method of bonito hot water extraction residue protein, a method of introducing amino acids stepwise by an organic chemical synthesis method, a peptide synthesis method utilizing a reverse reaction of hydrolase, a genetic engineering method Etc. can be manufactured.

鰹節熱水抽出残渣である水不溶性タンパク質の酵素分解法により前記のジペプチドを製造する方法について説明する。原料の鰹節タンパク質として、それをさらに精製した熱水抽出不溶性画分を用いる場合について説明する。   A method for producing the above-mentioned dipeptide by an enzymatic decomposition method of water-insoluble protein, which is a residue of hot water extraction from bonito, will be described. The case where the hot water extraction insoluble fraction which refine | purified it further as a raw material koji protein is demonstrated.

作用酵素としては、好ましくは、食品工業用途のプロテアーゼを挙げることができる。例えば、プロチンNY100(天野エンザイム)、又はサモアーゼPC10F(大和化成)を挙げることができる。ここで、プロチンNY100(天野エンザイム)は、Bacillus amyloliquefaciens由来のもので、至適pHは7.0、至適温度は55℃である。また、サモアーゼPC10F(大和化成)は、Bacillus stearothermophilus由来のもので、至適pHは7.0〜8.5であり、至適温度は65〜70℃である。一方、基質濃度は反応時に攪拌混合ができる範囲内であればいずれでもよいが、攪拌が容易なタンパク質濃度2〜30%(w/v)の範囲で行うのが好ましい。添加量は力価により異なるが通常はタンパク質あたり0.01重量%以上、好ましくは0.1 〜10重量%が適当である。反応のpH、温度は至適pH、至適温度付近を用いればよく、pH5.0〜9.0、好ましくは6.0〜7.5、温度40〜60℃好ましくは45〜55℃が適当である。反応中のpHの調整は必要に応じ水酸化ナトリウム水溶液、塩酸等により行う。   Preferred examples of the working enzyme include protease for food industry. For example, protin NY100 (Amano Enzyme) or Samoaase PC10F (Daiwa Kasei) can be mentioned. Here, Protin NY100 (Amano Enzyme) is derived from Bacillus amyloliquefaciens, having an optimum pH of 7.0 and an optimum temperature of 55 ° C. Samoaase PC10F (Daiwa Kasei) is derived from Bacillus stearothermophilus, has an optimum pH of 7.0 to 8.5, and an optimum temperature of 65 to 70 ° C. On the other hand, the substrate concentration may be any as long as it is within the range where stirring and mixing can be performed during the reaction, but it is preferably performed within the range of protein concentration of 2 to 30% (w / v) where stirring is easy. The addition amount varies depending on the titer, but is usually 0.01% by weight or more, preferably 0.1 to 10% by weight per protein. The pH and temperature of the reaction may be the optimum pH and the vicinity of the optimum temperature. The pH is 5.0 to 9.0, preferably 6.0 to 7.5, and the temperature is 40 to 60 ° C, preferably 45 to 55 ° C. It is. The pH during the reaction is adjusted with an aqueous sodium hydroxide solution, hydrochloric acid, or the like, if necessary.

酵素反応時間は酵素の添加量、反応温度、反応pHによって異なるため一定ではないが、通常は1〜50時間程度である。   The enzyme reaction time varies depending on the amount of enzyme added, the reaction temperature, and the reaction pH, and is not constant, but is usually about 1 to 50 hours.

酵素分解反応の停止は、加水分解物の加熱、pHの変化による酵素の失活など公知の方法に従って行うことができる。ついで加水分解液を固液分離(例えば遠心分離、濾過等) し、分離液を限外濾過、ゲル濾過等により分別して例えば分子量が 10000以下の画分を含有する液を得る。この液中には本発明のジペプチドが含有されており、以下この液またはその濃縮物(例えばスプレードライ) をさらに分別して目的のジペプチドを得ることが出来る。   The enzymatic decomposition reaction can be stopped according to a known method such as heating of the hydrolyzate or deactivation of the enzyme due to a change in pH. Next, the hydrolyzed liquid is subjected to solid-liquid separation (for example, centrifugation, filtration, etc.), and the separated liquid is fractionated by ultrafiltration, gel filtration, or the like to obtain a liquid containing, for example, a fraction having a molecular weight of 10,000 or less. This liquid contains the dipeptide of the present invention, and the liquid or its concentrate (for example, spray dried) can be further fractionated to obtain the target dipeptide.

本ジペプチドの酸付加塩は常法により製造することができる。例えば本ジペプチド(塩基性アミノ酸残基を含むもの)とそれに対し1当量の適当な酸とを水中で反応させて凍結乾燥することにより得ることができる。   The acid addition salt of this dipeptide can be manufactured by a conventional method. For example, it can be obtained by reacting the present dipeptide (containing a basic amino acid residue) with 1 equivalent of an appropriate acid in water and freeze-drying.

本ジペプチドおよびその酸付加塩はACE阻害作用ひいては血圧降下作用を有しヒトをはじめとする哺乳動物の高血圧症の治療、予防に有効であると期待される。   This dipeptide and its acid addition salt have an ACE inhibitory action and thus a blood pressure lowering action, and are expected to be effective in the treatment and prevention of hypertension in mammals including humans.

本ジペプチドおよびその酸付加塩はそのまま、または通常少なくとも1つの製薬補助剤と製薬組成物にして使用する。   The present dipeptides and their acid addition salts are used as such or usually in at least one pharmaceutical adjuvant and pharmaceutical composition.

本ジペプチドおよびその酸付加塩は非経口的(すなわち、静脈注射、直腸投与等)または経口的に投与し、各投与方法に適した形態に製剤することができる。   The present dipeptide and acid addition salts thereof can be administered parenterally (that is, intravenous injection, rectal administration, etc.) or orally, and can be formulated into a form suitable for each administration method.

注射剤としての製剤形態は、通常滅菌水溶液を包含する。上記形態の製剤はまた緩衝剤pH調節剤(リン酸水素ナトリウム、クエン酸等)、等張化剤(塩化ナトリウム、グルコース等)、保存剤(パラオキシ安息香酸メチル、P−ヒドロキシ安息香酸プロピル等)等の水以外の他の製薬補助剤を含有することができる。該製剤は細菌保持フィルターを通す濾過、組成物への殺菌剤の混入、組成物の照射や加熱によって滅菌することができる。該製剤はまた殺菌固体組成物として製造し、用時滅菌水等に溶解して使用することもできる。   Formulation forms as injections usually include sterile aqueous solutions. The preparations in the above forms are also buffer pH adjusters (sodium hydrogen phosphate, citric acid, etc.), isotonic agents (sodium chloride, glucose, etc.), preservatives (methyl paraoxybenzoate, propyl P-hydroxybenzoate, etc.) And other pharmaceutical adjuvants other than water. The preparation can be sterilized by filtration through a bacteria-retaining filter, mixing of a bactericide into the composition, irradiation of the composition or heating. The preparation can also be produced as a sterilized solid composition and dissolved in sterilized water before use.

経口投与剤は胃腸器官による吸収に適した形に製剤する。錠剤、カプセル剤、顆粒剤、細粒剤、粉末剤は常用の製薬補助剤、例えば結合剤(シロップ、アラビアゴム、ゼラチン、ソルビット、トラガカント、ポリビニルピロリドン、ヒドロキシプロピルセルロース等)、賦形剤(ラクトース、シュガー、コーンスターチ、リン酸カルシウム、ソルビット、グリシン等)、滑沢剤(ステアリン酸マグネシウム、タルク、ポリエチレングリコール、シリカ等)、崩壊剤(ポテトスターチ、カルボキシメチルセルロース等)、湿潤剤(ラウリル硫酸ナトリウム等)を包含することができる。錠剤は常法によりコーティングすることができる。経口液剤は水溶液等に、ドライプロダクトにすることができる。そのような経口液剤は常用の添加剤例えば保存剤(p−ヒドロキシ安息香酸メチルもしくはプロピル、ソルビン酸等)を包含していてもよい。   Orally administered drugs are formulated in a form suitable for absorption by the gastrointestinal tract. Tablets, capsules, granules, fine granules, powders are conventional pharmaceutical adjuvants such as binders (syrup, gum arabic, gelatin, sorbit, tragacanth, polyvinylpyrrolidone, hydroxypropylcellulose, etc.), excipients (lactose Sugar, corn starch, calcium phosphate, sorbit, glycine, etc.), lubricants (magnesium stearate, talc, polyethylene glycol, silica, etc.), disintegrants (potato starch, carboxymethyl cellulose, etc.), wetting agents (sodium lauryl sulfate, etc.) Can be included. Tablets can be coated by conventional methods. The oral solution can be made into a dry product such as an aqueous solution. Such oral solutions may contain conventional additives such as preservatives (methyl or propyl p-hydroxybenzoate, sorbic acid, etc.).

本ACE阻害剤あるいは血圧降下剤中の本ジペプチドまたはその酸付加塩の量は種々かえることができるが、通常5〜10%(w/w) 、特に10〜60%(w/w)が適当である。本ACE阻害剤あるいは血圧降下剤の投与量はヒトに対して投与する場合、有効成分として0.01〜50mg/kg/日が適当である。   The amount of the present dipeptide or its acid addition salt in the present ACE inhibitor or antihypertensive agent can vary, but usually 5 to 10% (w / w), especially 10 to 60% (w / w) is appropriate. It is. The dosage of the present ACE inhibitor or antihypertensive agent is suitably 0.01 to 50 mg / kg / day as an active ingredient when administered to humans.

また、本ジペプチドは多量に摂取しても生体に悪影響を与えない利点を有することから、そのまま、または種々の栄養分等を加えて、もしくは飲食品中に含有させて血圧降下作用、高血圧予防の機能をもたせた機能性食品、健康食品として食してもよい。すなわち、例えば各種ビタミン類、ミネラル類等の栄養分を加えて、例えば栄養ドリンク、豆乳、スープ等の液状の食品や各種形状の固形食品、さらには粉末状としてそのままあるいは各種食品へ添加して用いることもできる。機能性食品、健康食品としての本ACE阻害剤あるいは血圧降下剤中の有効成分の含有量、摂取量はそれぞれ上記製薬における含有量、投与量と同様でよい。
前記のジペプチドの有機化学的合成法としては液相法、固相法の2種があり、いずれも常法、例えば泉屋信夫、加藤哲夫、青柳東彦及び脇道典著、「ペプチド合成の基礎と実験」、丸善株式会社、1985、に従って行うことができる。液相法では、例えば、本ジペプチドのC末端に位置すべきアミノ酸であってそのカルボキシル基をベンジル基(Bzl )、t−ブチル基(t−Bu )等で保護したアミノ酸と、該C末端アミノ酸の隣に位置すべきアミノ酸であってそのα−アミノ基をt−ブチルオキシカルボニル基 ( Boc )、ベンジルオキシカルボニル基(Z)等で保護したアミノ酸をジメチルホルムアミド(DMF)、ジメチルアセトアミド等に溶解し、それらをジシクロヘキシルカルボジイミド ( DCC )及び1−ヒドロキシベンゾトリアゾール( HOBT )の存在下通常室温で一夜反応させる。ついで生成物のアミノ保護基を常法によって除去した後のジペプチド誘導体を必要に応じ、アミノ基を保護した第3のアミノ酸と同様に反応させ、アミノ保護基を除去し、必要に応じ同じ手順を繰り返して本ジペプチド誘導体を得る。反応させるアミノ酸がヒドロキシル基、グアニジノ基またはイミダゾリル基を有する場合には、これらの基は一般に上記反応に先立って保護すべきである。アルコール性ヒドロキシル基の保護基はBzl、t−Bu等、フェノール性ヒドロキシル基の保護基はBzl等、グアニジノ基の保護基はトシル基 ( Tos)等、イミダゾリル基の保護基は Tos等を包含する。最終反応の終了後、すべての保護基を除去して本ジペプチドを得る。これらの保護基の導入及び除去は常法により行うことができる。
In addition, since this dipeptide has the advantage that it does not adversely affect the living body even if it is ingested in large amounts, it has the function of lowering blood pressure and preventing hypertension as it is, or with various nutrients added or contained in foods and drinks. It may be eaten as a functional food or health food. That is, for example, by adding nutrients such as various vitamins and minerals, for example, liquid foods such as energy drinks, soy milk and soup, solid foods of various shapes, and powders as they are or added to various foods. You can also. The content and intake of the active ingredient in the ACE inhibitor or antihypertensive agent as a functional food and a health food may be the same as the content and dose in the above-mentioned pharmaceutical product, respectively.
There are two kinds of organic chemical synthesis methods of the above-mentioned dipeptides, a liquid phase method and a solid phase method, both of which are conventional methods, for example, Nobuo Izumiya, Tetsuo Kato, Tohiko Aoyagi and Noriaki Wakimichi, Experiment ", Maruzen Co., Ltd., 1985. In the liquid phase method, for example, an amino acid that should be located at the C-terminus of the present dipeptide and whose carboxyl group is protected with a benzyl group (Bzl), t-butyl group (t-Bu) or the like, and the C-terminal amino acid An amino acid that should be located next to the amino acid and whose α-amino group is protected with t-butyloxycarbonyl group (Boc), benzyloxycarbonyl group (Z), etc. is dissolved in dimethylformamide (DMF), dimethylacetamide, etc. They are reacted in the presence of dicyclohexylcarbodiimide (DCC) and 1-hydroxybenzotriazole (HOBT), usually at room temperature overnight. Next, the dipeptide derivative after removal of the amino protecting group of the product by a conventional method is reacted in the same manner as the third amino acid with the amino group protected if necessary, the amino protecting group is removed, and the same procedure is performed as necessary. Repeat to obtain the dipeptide derivative. If the amino acid to be reacted has a hydroxyl group, a guanidino group or an imidazolyl group, these groups should generally be protected prior to the reaction. Protecting group for alcoholic hydroxyl group includes Bzl, t-Bu, etc., protecting group for phenolic hydroxyl group includes Bzl, etc., protecting group for guanidino group includes tosyl group (Tos), and protecting group for imidazolyl group includes Tos etc. . After completion of the final reaction, all protecting groups are removed to obtain the dipeptide. Introduction and removal of these protecting groups can be carried out by conventional methods.

他方、固相法に関してはペプチドシンセサイザーを用いる方法が近年広く用いられており、例えばアプライドバイオシステムズ社製の430A型ペプチドシンセサイザーを用いて本トリペプチドを製造することができる。すなわち、基本的には、本ジペプチドのC末端に位置するアミノ酸が結合したフェニルアセトアミドメチル(PAM )樹脂 L−Xaa−O−CH2−PAM (Xaa) はアミノ酸残基) ( アプライドバイオシステムズ社から入手し得る) のN側から、Bocでアミノ基を保護したα−アミノ酸(Boc−アミノ酸) をペプチド結合と Bocの除去の繰り返しによって段階的に延長する。Boc−アミノ酸は DCCの使用によるその対称的無水物を中間体として経由する延長反応に付す。上記 Boc−アミノ酸またはL−Xaa−O−CH2−PAMにおいて、反応に関与すべきでない反応性官能基がある場合には一般に適当な保護基によって保護すべきである。430A型ペプチドシンセサイザーを用いる合成系においてはアミノ酸原料に加え以下の試薬及び溶媒を用いる:N,N−ジイソプロピルエチルアミン( TFA中和剤 )、TFA ( Boc切断 )、MeOH(生成尿素系化合物の溶解及び除去) 、HOBT (0.5M HOBT/DMF)、DCC( 0.5M DCC/ジクロロメタン( DCM) 、DCM 及びDMF(溶媒) 、中和剤( 70%エタノールアミン、29.5% メタノール) ( 廃液の中和) 。アミノ酸原料及びこれらの試薬及び溶媒は所定の場所に装填する。これらの使用はペプチドシンセサイザーが自動的に行う。反応温度及び時間の調整も自動的に行われるが、反応温度は通常室温である。上記手順によってジペプチド中の反応性基が保護されたジペプチド−O−CH2−PAMが得られる。上記固相ペプチド合成の実際の操作はアプライドバイオシステムズ社による430A型ペプチドシンセサイザーユーザーズマニュアルによって行う。   On the other hand, regarding the solid phase method, a method using a peptide synthesizer has been widely used in recent years. For example, the present tripeptide can be produced using a 430A type peptide synthesizer manufactured by Applied Biosystems. That is, basically, phenylacetamidomethyl (PAM) resin L-Xaa-O-CH2-PAM (Xaa) to which an amino acid located at the C-terminus of this dipeptide is bonded is an amino acid residue) (obtained from Applied Biosystems) The α-amino acid (Boc-amino acid) whose amino group is protected with Boc is extended stepwise by repeated peptide bonds and removal of Boc. A Boc-amino acid is subjected to an extension reaction via its symmetrical anhydride as an intermediate by use of DCC. In the above Boc-amino acid or L-Xaa-O-CH2-PAM, if there is a reactive functional group that should not participate in the reaction, it should generally be protected by a suitable protecting group. In the synthesis system using the 430A type peptide synthesizer, in addition to the amino acid raw material, the following reagents and solvent are used: N, N-diisopropylethylamine (TFA neutralizer), TFA (Boc cleavage), MeOH (dissolution of the generated urea compound and Removal), HOBT (0.5M HOBT / DMF), DCC (0.5M DCC / dichloromethane (DCM), DCM and DMF (solvent), neutralizing agent (70% ethanolamine, 29.5% methanol) Neutralization) The amino acid raw material and these reagents and solvent are charged in place, and their use is automatically performed by the peptide synthesizer, and the reaction temperature and time are adjusted automatically, but the reaction temperature is usually The above procedure yields dipeptide-O-CH2-PAM in which the reactive group in the dipeptide is protected. The actual operation of the solid-phase peptide synthesis is carried out by Applied Biosystems according 430A peptide synthesizer User's Manual.

得られた、反応性官能基が保護されたジペプチド−O−CH2−PAMを常法、例えば前記「ペプチド合成の基礎と実験」または430A型ペプチドシンセサイザーユーザーズマニュアルに記載された方法、例えば、保護基の切断によって生成するカチオンを捕獲するスカベンジャーとしてチオアニソール及び/またはエタンジチオールの存在下TFAと共のトリフルオロメタンスルホン酸(TFMSA)(TFAはTFMSAの希釈剤) によって処理して、樹脂及び保護基を切断し、それによって目的とするジペプチドを得る。   The obtained reactive functional group-protected dipeptide-O—CH 2 -PAM was prepared by a conventional method, for example, the method described in “Peptide Synthesis Basics and Experiments” or the 430A type peptide synthesizer user's manual, for example, a protecting group. Treatment with trifluoromethanesulfonic acid (TFMSA) (TFASA is a diluent of TFMSA) in the presence of thioanisole and / or ethanedithiol as a scavenger to capture cations generated by cleavage of Cleavage to obtain the desired dipeptide.

本発明ジペプチドは、上記のとおり有機合成によって製造してもよい。けれども、経口摂取する飲食品または医薬品に添加してACE阻害活性を発揮させる目的のためには、鰹節等に由来するタンパク質をプロチンNY100(天野エンザイム),又はサモアーゼPC10F(大和化成)で分解し、さらには、単離精製して得られるところの、上記5種のジペプチドの少なくとも一種を含む経口摂取可能な組成物として製造することが好ましい。   The dipeptide of the present invention may be produced by organic synthesis as described above. However, for the purpose of exerting ACE inhibitory activity by adding to foods and drinks or drugs to be taken orally, proteins derived from bonito and the like are degraded with protin NY100 (Amano Enzyme) or Samoaase PC10F (Yamato Kasei), Furthermore, it is preferably produced as an orally ingestible composition containing at least one of the above five dipeptides obtained by isolation and purification.

原料としては、鰹、鰹荒節、鰹枯節、宗田鰹、宗田鰹節、鰯、鰯節、鯵、鯵節、鯖、鯖節、煮干他雑節等の魚肉、およびそれらの熱水抽出物残渣が使用できる。   As raw materials, fish meat such as salmon, salmon roar, salmon koji, soda salmon, soda salmon, salmon, salmon, salmon, salmon, salmon, salmon, salmon, other dried knots, etc., and hot water extract residues thereof Can be used.

プロチンNY100(天野エンザイム),又はサモアーゼPC10F(大和化成)による分解で、本発明のジペプチドを得る場合、原料となる鰹節タンパク質を、まず前処理として、加熱処理によるアミノ酸、水溶性タンパク質の除去を行うことが好ましい。また、プロチンNY100(天野エンザイム)、又はサモアーゼPC10F(大和化成)酵素分解を効率よくするために、原料となる素材は細かく粉砕してから水に攪拌・懸濁することが好ましい。また、得られたタンパク質は難溶性であるが、酵素反応の為に最適なpHになるように仮性ソーダを加え、均一に分散・懸濁・溶解させる。これにタンパク質100gあたり、0.1〜10重量%のプロチンNY100(天野エンザイム)、又はサモアーゼPC10F(大和化成)を加え、pH5.0〜9.0、温度40〜55℃で0.5〜30時間、攪拌操作を加えながらタンパク質分解を行った後、苛性ソーダでpH6〜7.5に調整する。および加熱処理(98℃、15分間)によって、酵素の活性を失活させる。分解液はバイブスクリーンで未分解タンパク質を除去後、デカンタ、デラバル、超高速遠心分離機(15000回転/分)や濾過処理(セライト濾過:Hyflo Super Celiteなど)等で未分解物、沈殿物を除き、得られた濾液を苛性ソーダもしくは塩酸を用いて中和後、濃縮する。このようにして得られた鰹節ペプチドにはTrp−Leu、Leu−Trp、Trp−Ile、Val−Tyr、Trp−Asnがそれぞれ0.0005重量%から0.5重量%含まれる。   When the dipeptide of the present invention is obtained by decomposition with protin NY100 (Amano Enzyme) or Samoaase PC10F (Daiwa Kasei), the koji protein used as a raw material is first subjected to heat treatment to remove amino acids and water-soluble proteins. It is preferable. Further, in order to efficiently decompose protin NY100 (Amano Enzyme) or Samoaase PC10F (Daiwa Kasei), it is preferable that the raw material is finely ground and then stirred and suspended in water. Moreover, although the obtained protein is hardly soluble, temporary soda is added so as to obtain an optimum pH for the enzyme reaction, and uniformly dispersed, suspended and dissolved. To this, 0.1 to 10% by weight of protin NY100 (Amano Enzyme) or Samoaase PC10F (Daiwa Kasei) is added per 100 g of protein, and the pH is 5.0 to 9.0, and the temperature is 40 to 55 ° C. and 0.5 to 30 Proteolysis is performed while stirring for a period of time, and the pH is adjusted to 6 to 7.5 with caustic soda. The enzyme activity is deactivated by heat treatment (98 ° C., 15 minutes). After removing undegraded protein with a vibe screen, remove the undegraded product and precipitate by decanter, DeLaval, ultra-high speed centrifuge (15000 rpm), filtration (Celite filtration: Hyflo Super Celite, etc.) The filtrate obtained is neutralized with caustic soda or hydrochloric acid and then concentrated. The bonito peptide thus obtained contains 0.0005 wt% to 0.5 wt% of Trp-Leu, Leu-Trp, Trp-Ile, Val-Tyr, and Trp-Asn, respectively.

本発明のジペプチドとして、上記の得られたプロチンNY100(天野エンザイム)、又はサモアーゼPC10F(大和化成)酵素分解物やこれをさらにハイポーラスポリマー樹脂(疎水性吸着樹脂)やイオン交換樹脂等で処理して高分子のタンパク質や、モノマーなアミノ酸、さらに塩類を除去し、限外ろ過に通して高分子ペプチドを除くことが出来、本発明のジペプチドを豊富に含有する粗精製品を得、これをそのまま用いることが出来る。以下、このような分解物および粗精製物を総称して、ジペプチドを豊富に含有する組成物と呼ぶ。   As the dipeptide of the present invention, the above-obtained protin NY100 (Amano Enzyme) or Samoaase PC10F (Daiwa Kasei) enzyme degradation product or this is further treated with a high porous polymer resin (hydrophobic adsorption resin), an ion exchange resin or the like. High molecular weight proteins, monomeric amino acids, and salts can be removed, and ultrafiltration can be performed to remove the high molecular peptides, resulting in a crude product rich in dipeptides of the present invention. Can be used. Hereinafter, such decomposed products and crude purified products are collectively referred to as a composition containing abundant dipeptides.

精製によって本発明のペプチドを得る場合には、上記濃縮物をゲル濾過カラムクロマトグラフィー、イオン交換樹脂やハイポーラスポリマー樹脂を用いたクロマトグラフィー、アフィニティークロマトグラフィー等で、ACE阻害活性を有する本発明のペプチド分画を集め、さらに、この活性画分をODSカラム等の逆相カラムを用いた高速液体クロマトグラフィー等を用いた通常のペプチド精製法で、ほぼ純粋な各ペプチドに精製することができる。なお、本発明のジペプチドは鰹節および鰹節熱水抽出残渣物に限らず、鰹、鰹熱水抽出残渣物、宗田鰹、宗田鰹節、宗田、宗田熱水抽出残渣物他、魚肉タンパク質からも上記に示した方法で得ることができる。ジペプチドまたはそれを豊富に含む組成物のACE阻害活性は、例えば試験例1に記載した方法で測定できる。   When the peptide of the present invention is obtained by purification, the above-mentioned concentrate is subjected to gel filtration column chromatography, chromatography using an ion exchange resin or high porous polymer resin, affinity chromatography, etc. The peptide fractions are collected, and the active fractions can be further purified to almost pure peptides by a normal peptide purification method using high performance liquid chromatography using a reverse phase column such as an ODS column. In addition, the dipeptide of the present invention is not limited to bonito and bonito hot water extraction residue, but also from fish meat protein, potato, bonito hot water extraction residue, Soda cocoon, Soda bonito, Soda, Soda hot water extraction residue, etc. It can be obtained by the method shown. The ACE inhibitory activity of a dipeptide or a composition rich in it can be measured, for example, by the method described in Test Example 1.

化学合成によって本発明のペプチドを得る場合には、通常のペプチド合成に用いられる固相法あるいは液相法のいずれの方法でも合成ができる。合成によって得られた本発明のペプチドは逆相高速液体クロマトグラフィー、イオン交換樹脂やハイポーラスポリマー樹脂を用いたクロマトグラフィー、アフィニティークロマトグラフィー等を用いた通常の精製法で精製することができる。さらに限外ろ過により高分子ペプチドを除去し、ACE阻害活性の上昇と消化耐性を有するペプチドを得ることが出来る。   When the peptide of the present invention is obtained by chemical synthesis, the peptide can be synthesized by either a solid phase method or a liquid phase method used for usual peptide synthesis. The peptide of the present invention obtained by synthesis can be purified by a conventional purification method using reverse phase high performance liquid chromatography, chromatography using ion exchange resin or high porous polymer resin, affinity chromatography or the like. Further, the polymer peptide can be removed by ultrafiltration to obtain a peptide having increased ACE inhibitory activity and resistance to digestion.

このようにして得られたジペプチドまたはそれを豊富に含む組成物のACE阻害作用の比活性は強いことから極めて有用なACE阻害剤として用いることができる。さらに胃腸管からの吸収もよく熱に対しても比較的安定であることから、各種飲食物の形態および医薬品製剤のいずれに応用することも可能である。   The specific activity of the ACE inhibitory action of the thus obtained dipeptide or a composition containing it abundantly can be used as a very useful ACE inhibitor. Furthermore, since it is well absorbed from the gastrointestinal tract and is relatively stable against heat, it can be applied to any form of food and drink and pharmaceutical preparation.

したがって、本発明では上記ジペプチドを一種以上添加配合してなるところの、アンジオテンシン変換酵素阻害作用の発揮を期待しうる飲食用組成物(飲食料)が提供される。また、および上記ジペプチドを一種以上含有してなるアンジオテンシン変換酵素阻害剤と血圧降下剤とを提供するものである。   Therefore, in this invention, the composition (food / beverage) which can anticipate the exhibit of the angiotensin converting enzyme inhibitory effect formed by adding one or more said dipeptides is provided. The present invention also provides an angiotensin converting enzyme inhibitor and an antihypertensive agent comprising one or more of the above-mentioned dipeptides.

本発明のジペプチドを飲食品、医薬品等に使用、配合する場合、鰹節熱水抽出残渣タンパク質のプロチンNY100(天野エンザイム)、又はサモアーゼPC10F(大和化成)酵素による分解物からジペプチドを十分に精製したものを用いても良く、あるいは化学合成により得られた合成品を用いても良い。しかし、本発明のペプチドは安定且つACE阻害活性が強いので、上記のとおり粗精製品あるいはプロチンNY100(天野エンザイム)、サモアーゼPC10F(大和化成)酵素分解物をそのままジペプチドを豊富に含む組成物として用いて十分なACE阻害活性を得ることが出来る。   When the dipeptide of the present invention is used and blended in foods and drinks, pharmaceuticals, etc., the dipeptide is sufficiently purified from a degradation product of prosthesis NY100 (Amano Enzyme) or Samoaase PC10F (Daiwa Kasei) enzyme of the residue protein extracted from hot water Alternatively, a synthetic product obtained by chemical synthesis may be used. However, since the peptide of the present invention is stable and has a strong ACE inhibitory activity, as described above, the crude product or the protin NY100 (Amano Enzyme) or Samoaase PC10F (Daiwa Kasei) enzyme degradation product is used as it is as a composition rich in dipeptides. And sufficient ACE inhibitory activity can be obtained.

本発明の飲食用組成物(飲食料)は、上記ジペプチドの一種以上を、1回の摂取量として0.001mg〜100mg、好ましくは0.01mg〜20mg添加して製造される。本発明のペプチド組成物は、取り扱いが容易で安定な固体ないし粉末であり、水への溶解性もよい。また、胃腸管からの吸収もよい。したがって、食品への添加の時期、及び方法に特別の制限はなく、粉末状、溶液状、懸濁液状等として、食品製造の原料段階、中間工程、最終工程に、食品分野で慣用の方法で添加することが可能である。本発明のジペプチドを含有する飲食用組成物を、一時的、断続的、継続的または日常的に摂取することにより、アンジオテンシン変換酵素を阻害し、例えば血圧降下作用が可能である。飲食品の形態としては、固形状、半流動状、流動状などを挙げることができる。固形状食品としては、シート状、タブレットやカプセルなどの錠剤、顆粒粉末などの形態の一般食品および健康食品が挙げられる。半流動状食品としては、ペースト状、ゼリー状、ゲル状などの、また、流動状食品としては、ジュース、清涼飲料、茶飲料、ドリンク剤などの形態の一般食品および健康食品が挙げられる。飲食物を栄養ドリンクや調味料として、本発明のジペプチドを継続して摂取することにより、血圧の上昇を抑制することも可能である。   The composition for eating and drinking of the present invention (food and beverage) is produced by adding 0.001 mg to 100 mg, preferably 0.01 mg to 20 mg of one or more of the above dipeptides as a single intake. The peptide composition of the present invention is a solid or powder that is easy to handle and stable, and has good solubility in water. Absorption from the gastrointestinal tract is also good. Therefore, there are no particular restrictions on the timing and method of addition to food, and it can be used as a powder, solution, suspension, etc., in the raw material stage, intermediate process, and final process of food production by a method commonly used in the food field. It is possible to add. By ingesting the food / drink composition containing the dipeptide of the present invention temporarily, intermittently, continuously or daily, an angiotensin converting enzyme is inhibited, and for example, a blood pressure lowering action is possible. Examples of the form of food and drink include solid, semi-fluid, and fluid. Examples of solid foods include sheet foods, tablets such as tablets and capsules, and general foods and health foods such as granular powders. Examples of the semi-fluid food include paste, jelly, and gel. Examples of the fluid food include general food and health food in the form of juice, soft drink, tea drink, and drink. It is also possible to suppress an increase in blood pressure by continuously ingesting the dipeptide of the present invention using food and drink as an energy drink or seasoning.

本発明によるACE阻害剤または降圧剤である形の医薬組成物は、本発明のジペプチドを、上記飲食用組成物と同様の量で含有する。本発明の医薬組成物は、患者のアンジオテンシン変換酵素を阻害し、例えば血圧降下作用を発揮させるために、高血圧症状の患者に一時的に投与してもよく、あるいは本発明の医薬組成物の有効成分は天然物由来であることから、継続して安全に使用することもできる。本発明の医薬組成物により高血圧を治療または予防することができる。医薬組成物の形態は、錠剤、カプセル剤、顆粒剤、シロップ等の経口投与剤が好ましい。非経口投与用の製剤としては、静脈、動脈、皮下、筋肉を通して投与するため、あるいは鼻腔から吸入するための、無菌の液剤が挙げられる。液剤は、用時溶解できる乾燥固体であってもよい。注射用製剤は有効成分のジペプチドを生理食塩水に溶解し、通常の無菌操作により注射用製剤に製造することができる。   The pharmaceutical composition in the form of an ACE inhibitor or an antihypertensive agent according to the present invention contains the dipeptide of the present invention in the same amount as the above-mentioned composition for eating and drinking. The pharmaceutical composition of the present invention may be temporarily administered to a patient with hypertension in order to inhibit the angiotensin converting enzyme of the patient and exert a hypotensive effect, for example, or the effectiveness of the pharmaceutical composition of the present invention Since the ingredients are derived from natural products, they can be used safely continuously. Hypertension can be treated or prevented by the pharmaceutical composition of the present invention. The form of the pharmaceutical composition is preferably an oral administration agent such as a tablet, capsule, granule or syrup. Formulations for parenteral administration include sterile solutions for administration through veins, arteries, subcutaneous, muscle, or for inhalation through the nasal passages. The liquid agent may be a dry solid that can be dissolved at the time of use. An injectable preparation can be produced as an injectable preparation by dissolving a dipeptide as an active ingredient in physiological saline and carrying out normal aseptic operation.

本発明手段においては、原料として鰹節を用い、その熱水抽出処理により、アミノ酸および水溶性タンパク質を除き、不溶性タンパク質残渣を得る。この鰹節熱水抽出残渣タンパク質をプロチンNY100(天野エンザイム)、サモアーゼPC10F(大和化成)酵素により酵素分解処理する。   In the means of the present invention, bonito is used as a raw material, and amino acid and water-soluble protein are removed by hot water extraction to obtain an insoluble protein residue. The bonito hot water extraction residue protein is subjected to an enzymatic degradation treatment with protin NY100 (Amano Enzyme) and Samoaase PC10F (Daiwa Kasei) enzymes.

次いで、この酵素分解後の液を、吸着能力を効率的にする上において有効である、バイブスクリーン、デラバル、シャープレス、セライトろ過処理を行った後に、疎水性吸着樹脂を充填したカラムに負荷し、そのカラム内を流過させることで吸着を行なう。   Next, this liquid after enzymatic decomposition is subjected to a vibe screen, DeLaval, sharp press, and celite filtration treatment, which is effective in increasing the adsorption capacity, and then loaded onto a column filled with a hydrophobic adsorption resin. Adsorption is carried out by passing through the column.

疎水性吸着樹脂に吸着したアンジオテンシン変換酵素阻害物質は、含水エタノール等の含水有機溶媒を用いて溶出させる。   The angiotensin converting enzyme inhibitor adsorbed on the hydrophobic adsorption resin is eluted using a water-containing organic solvent such as water-containing ethanol.

この溶媒により溶出を行なう際も、吸着させた前述の阻害物質の前記溶媒による溶出を効果的に行わせるために、その溶媒を供給する前に、水の供給により、水に溶解する物質を溶出させる処理を行なうことが有効である。すなわち、酵素分解物水溶液は、カラムの約2〜10倍容量が望ましく、カラムに負荷した後に、次に、水をカラムの約2〜10倍量を通過させる。非吸着画分を全て、溶出させる。さらに、エタノール50%濃度で脱着を行い、目的の吸着画分を得る。   Even when elution is performed with this solvent, the substance that dissolves in water is eluted by supplying water before supplying the solvent in order to effectively perform the elution by the solvent of the adsorbed inhibitory substance. It is effective to perform the processing. That is, the enzyme decomposition product aqueous solution is desirably about 2 to 10 times the volume of the column. After loading the column, water is then passed through about 2 to 10 times the amount of the column. All non-adsorbed fractions are eluted. Further, desorption is carried out at a 50% ethanol concentration to obtain the target adsorption fraction.

エタノール溶液により溶出したアンジオテンシン変換酵素阻害物質を含む画分は、その溶出液を、限外ろ過(分子量1000)に負荷し、高阻害活性透過液画分を減圧濃縮し、噴霧乾燥(スプレードライ)することで、粉剤の、アンジオテンシン変換酵素阻害ペプチドを主体とする食品素材の製品が粉末の形態で得られる。   For fractions containing angiotensin converting enzyme inhibitor eluted with ethanol solution, load the eluate to ultrafiltration (molecular weight 1000), concentrate the highly inhibitory permeate fraction under reduced pressure, and spray dry (spray dry) By doing so, a food material product mainly comprising an angiotensin converting enzyme-inhibiting peptide as a powder is obtained in the form of a powder.

このアンジオテンシン変換酵素阻害ペプチドを主とする食品素材は、前述の溶出液を、高速液体クロマトグラフィーを用いて成分の単離を行ない、アセトニトリル・トリフルオロ酢酸でイソクラティック溶出することにより、アンジオテンシン変換酵素阻害活性の強い成分に精製・単離された形態のものが得られる。   The food material mainly composed of this angiotensin converting enzyme inhibitory peptide can be converted to angiotensin by isolating the above eluate using high performance liquid chromatography and isocratic elution with acetonitrile / trifluoroacetic acid. A purified and isolated form of a component having strong enzyme inhibitory activity is obtained.

本発明によれば、長い食経験から安全性が立証されている食材である鰹節を原料として、プロチンNY100(天野エンザイム)、又はサモアーゼPC10F(大和化成)との反応により、アンジオテンシン変換酵素阻害活性をもつ5種類のジペプチドを得ることが出来た。また、酵素分解物を疎水性吸着樹脂に吸着させ、含水有機溶媒で溶出することにより高活性なペプチド画分を生産できることも判った。さらに、限外ろ過(分子量1000膜)に通液循環させ、消化耐性な高ACE阻害ペプチドを得ることも分かった。さらに、動物実験においても少量で降圧作用が発現することも分かった。本製法により得られるジペプチドを含む鰹節ペプチドは日常摂取する食品として安全で有効性の高い素材であることが明らかであり、今後の高齢化社会にとって非常に意義の有る食品素材であり、特定保健用食品、機能性食品等への利用が期待される。本製法は工業規模での機能性素材の生産に幅広く活用できる。   According to the present invention, an angiotensin converting enzyme inhibitory activity is obtained by reaction with protin NY100 (Amano Enzyme) or Samoaase PC10F (Daiwa Kasei) using bonito, which is a food that has been proven to be safe from a long dietary experience. Five kinds of dipeptides were obtained. It was also found that a highly active peptide fraction can be produced by adsorbing an enzymatic degradation product on a hydrophobic adsorption resin and eluting with a hydrous organic solvent. Furthermore, it was also found that a high ACE inhibitory peptide resistant to digestion was obtained by circulating through an ultrafiltration (molecular weight 1000 membrane). Furthermore, it was also found that an antihypertensive effect was expressed in a small amount in animal experiments. It is clear that bonito peptide containing dipeptide obtained by this production method is a safe and highly effective material for daily consumption, and is a food material that is very meaningful for the aging society in the future. Expected to be used for foods and functional foods. This production method can be widely used for the production of functional materials on an industrial scale.

実施例1の鰹節ペプチドのSHRに対する血圧降下作用を示すグラフである。It is a graph which shows the blood pressure lowering effect with respect to SHR of the koji peptide of Example 1. 図1の血圧降下作用を示すグラフを%変換した後のグラフである。FIG. 3 is a graph after% conversion of the graph showing the blood pressure lowering effect of FIG. 1.

試験例1
ACE阻害活性測定は次のように行った。すなわち、以上のようにして得た本トリペプチドのACE阻害活性は、Cheung and Cushmanの方法(Biochemical Pharamacology,20,1637(1971))の緩衝液をリン酸緩衝液からホウ酸緩衝液に変えた方法に準じて測定した。
すなわち、ラビットラングアセトンパウダー5gを0.1Mホウ酸ナトリウム緩衝液(pH 8.3 ) 50mlに溶かし、40000G 、40分の条件で遠心分離し、その上清液をさらにハイドロキシアパタイトで精製し、1unit/mgタンパク質のアンジオテンシン変換酵素液を得た。あるいは、ラビットラング由来精製ACE(Sigma社、0.25ユニット)を用いた。
Test example 1
The ACE inhibitory activity was measured as follows. That is, the ACE inhibitory activity of the present tripeptide obtained as described above was obtained by changing the buffer solution of Cheung and Cushman's method (Biochemical Pharmacology, 20, 1637 (1971)) from a phosphate buffer solution to a borate buffer solution. It measured according to the method.
That is, 5 g of rabbit Lang acetone powder was dissolved in 50 ml of 0.1M sodium borate buffer (pH 8.3), centrifuged at 40,000 G for 40 minutes, the supernatant was further purified with hydroxyapatite, and 1 unit. An angiotensin converting enzyme solution of / mg protein was obtained. Alternatively, rabbit lang-derived purified ACE (Sigma, 0.25 unit) was used.

本ジペプチドの各濃度の溶液をそれぞれ試験管に0.030ml入れ、次に上記アンジオテンシン変換酵素液 0.1mlを加え、37℃、5分間反応させる。次に、基質として、ヒプリルヒスチジルロイシン( ペプチド研究所、Bz−Gly−His−Leu・H2O、最終濃度5mM、NaCl300mM を含む) 0.25mlを添加し、37℃で30分間反応させた。その後、1N塩酸0.25mlを添加して反応を停止させた後、1.5 mlの酢酸エチルを加え、ボルテックスミキサーで20秒攪拌した後、遠心分離(3000回転、5分間)を行い、酢酸エチル層1mlを分取した。加熱105℃、30分間(アルミブロック)後、蒸留水3mlに溶解して、酢酸エチル中に抽出された馬尿酸の228nmでの吸収値を測定し、これを酵素活性とした。
阻害率を次の式より算出した。A:阻害剤を含まない場合の228nm吸収値 B:阻害剤添加の場合の228nm吸収値 また阻害率50%のときの本オトリペプチドの濃度をIC50値とした。阻害率=[1−(A−a)/(B−b) ] × 100
A:試料添加
a:試料添加、酵素のかわりに緩衝液添加
B:試料のかわりに蒸留水添加
b:試料のかわりに蒸留水添加、酵素のかわりに緩衝液添加
0.030 ml of each concentration of the dipeptide solution is placed in a test tube, and then 0.1 ml of the angiotensin converting enzyme solution is added, followed by reaction at 37 ° C. for 5 minutes. Next, 0.25 ml of hippuryl histidyl leucine (Peptide Institute, Bz-Gly-His-Leu.H 2 O, final concentration 5 mM, NaCl 300 mM included) is added as a substrate and reacted at 37 ° C. for 30 minutes. I let you. Thereafter, 0.25 ml of 1N hydrochloric acid was added to stop the reaction, 1.5 ml of ethyl acetate was added, and the mixture was stirred with a vortex mixer for 20 seconds, followed by centrifugation (3000 rpm, 5 minutes). 1 ml of the ethyl layer was collected. After heating at 105 ° C. for 30 minutes (aluminum block), the absorption value at 228 nm of hippuric acid dissolved in 3 ml of distilled water and extracted into ethyl acetate was measured, and this was defined as enzyme activity.
The inhibition rate was calculated from the following formula. A: Absorption value at 228 nm when no inhibitor is included B: Absorption value at 228 nm when inhibitor is added Further, the concentration of the present otripeptide at an inhibition rate of 50% was defined as an IC 50 value. Inhibition rate = [1- (A−a) / (B−b)] × 100
A: Sample added a: Sample added, buffer added instead of enzyme B: Distilled water added instead of sample b: Distilled water added instead of sample, buffer added instead of enzyme

鰹節熱水抽出残渣のプロチンNY100(天野エンザイム),サモアーゼPC10F(大和化成)酵素分解物中の単離した5ジペプチドのACE阻害活性値を表1に示す。

Figure 0005417405
Table 1 shows the ACE inhibitory activity values of the isolated 5 dipeptides in protein NY100 (Amano Enzyme) and Samoaase PC10F (Daiwa Kasei) enzyme degradation products from the dried bonito hot water residue.
Figure 0005417405

実施例1
(a) ACE阻害活性を有するペプチド組成物の工業生産
鰹節タンパク質1000kgに水10000Lを加え、加熱処理(95℃、35分間)後、アミノ酸、水溶性タンパク質を除き、得られた熱水抽出残渣1153kg(タンパク質576kg)に水2884Lを加え、6N苛性ソーダでpH 7に調整後、プロチンNY100(天野エンザイム)酵素1.0wt%(酵素量:タンパク質当り)を添加して、攪拌を行いながら、50℃、17時間反応させた。反応後に苛性ソーダを加えてpHを6.8に調整し、98℃、15分間加熱して酵素を失活させた。その後、未分解タンパク質をバイブスクリーン、デラバル、遠心分離機により除去し、上清をセライトでろ過し、ろ液(タンパク質200kg)を得た。ACE阻害活性IC50値は、0.136mg/ml(タンパク質)であった。
Example 1
(A) Industrial production of peptide composition having ACE inhibitory activity Add 10000 L of water to 1000 kg of bonito protein, heat treatment (95 ° C., 35 minutes), remove amino acids and water-soluble proteins, and obtain 1153 kg of hot water extraction residue 2884 L of water was added to (576 kg of protein), adjusted to pH 7 with 6N caustic soda, 1.0 wt% of protin NY100 (Amano Enzyme) enzyme (enzyme amount: per protein) was added, and the mixture was stirred at 50 ° C. The reaction was carried out for 17 hours. After the reaction, caustic soda was added to adjust the pH to 6.8, and the enzyme was inactivated by heating at 98 ° C. for 15 minutes. Thereafter, undegraded protein was removed with a vibe screen, DeLaval, and a centrifuge, and the supernatant was filtered through Celite to obtain a filtrate (200 kg of protein). The ACE inhibitory activity IC50 value was 0.136 mg / ml (protein).

このペプチド200kgを疎水性クロマトグラフィーに負荷した。
以下に疎水性クロマトグラフィの実施条件を記す。
カラム負荷量:50kg
カラム:SP−207(1000L容量カラム;日本練水)
溶出液:0,50%濃度のエタノール溶液
流速:2000L/時間
サイクル:4サイクル
200 kg of this peptide was loaded onto hydrophobic chromatography.
The conditions for performing hydrophobic chromatography are described below.
Column load: 50kg
Column: SP-207 (1000 L capacity column; Nippon Nitsui)
Eluent: 0.5% ethanol solution flow rate: 2000 L / hour cycle: 4 cycles

疎水性吸着樹脂を充填したカラムからの溶出は、アルコール濃度により2分画し、8000Lずつの2つの画分を分取した。各画分はACE阻害活性を試験例1の方法で測定した結果、0%または50%エタノール溶出画分のACE阻害活性値IC50はそれぞれ、検出せず、0.047 mg/mlであった。4サイクル繰り返し分取し、タンパク質量74.9kgを得た。 Elution from the column packed with the hydrophobic adsorption resin was divided into two fractions according to the alcohol concentration, and two fractions of 8000 L each were collected. As a result of measuring the ACE inhibitory activity of each fraction by the method of Test Example 1, the ACE inhibitory activity value IC 50 of the fraction eluted with 0% or 50% ethanol was not detected and was 0.047 mg / ml. . 4 cycles were repeatedly collected to obtain 74.9 kg of protein.

次に疎水性クロマトグラフィーで得られたACE阻害活性画分(50%エタノール溶出画分)を限外ろ過膜(GE社製モジュール7.9インチ×40インチ×2本、ろ過面積48.4m2;分子量1000、圧1.8MPa;型番GE8040F1002)に通液し、非透過液に20倍濃縮液を得た。非透過液と透過液のACE阻害活性を測定し、透過液に0.034mg/ml、非透過液に0.110mg/mlの値が得られた。   Next, the ACE inhibitory activity fraction (50% ethanol elution fraction) obtained by hydrophobic chromatography was subjected to ultrafiltration membrane (GE module 7.9 inch × 40 inch × 2, filtration area 48.4 m 2; Molecular weight 1000, pressure 1.8 MPa; Model No. GE8040F1002) was passed through to obtain a 20-fold concentrated solution as the non-permeate. The ACE inhibitory activity of the non-permeate and the permeate was measured, and values of 0.034 mg / ml for the permeate and 0.110 mg / ml for the non-permeate were obtained.

透過液を減圧濃縮し、噴霧乾燥して、タンパク質量47.6kgの粉末を大量生産した。収支を表2に表した。

Figure 0005417405
The permeate was concentrated under reduced pressure and spray-dried to mass-produce a powder with a protein amount of 47.6 kg. The balance is shown in Table 2.
Figure 0005417405

また、経口摂取した場合の生体内での消化酵素による分解の程度を確認するため、ペプシン、トリプシン、及びキモトリプシンにて、透過液及び非透過液について人工消化を行った(ペプシン、トリプシン、キモトリプシン4時間分解)。結果を表3に示した。

Figure 0005417405

透過液のACE阻害活性に高い値が示されたことより、消化酵素耐性の可能性が推定された。非透過液のACE阻害活性(IC50)に1.6倍の強い値が示されたが、透過液の値には及ばなかった。 In addition, in order to confirm the degree of degradation by digestive enzymes in vivo when ingested orally, artificial digestion was performed on permeate and non-permeate with pepsin, trypsin, and chymotrypsin (pepsin, trypsin, chymotrypsin 4). Time resolution). The results are shown in Table 3.
Figure 0005417405

The high value of the ACE inhibitory activity of the permeate showed the possibility of digestive enzyme resistance. The ACE inhibitory activity (IC 50 ) of the non-permeate was 1.6 times stronger, but not the permeate.

HPLC法による分子量の分析を下記の条件(表4)で行い、その結果を表5した。

Figure 0005417405

Figure 0005417405

その結果、ろ液と樹脂脱着非透過液の最大分子量はともに5000であった。
目的とする樹脂脱着透過液の最大分子量は1500で、うち分子量1000以下の割合は79.75%であった。 The molecular weight was analyzed by the HPLC method under the following conditions (Table 4), and the results are shown in Table 5.
Figure 0005417405

Figure 0005417405

As a result, the maximum molecular weight of the filtrate and the resin-desorbed non-permeate was both 5000.
The maximum molecular weight of the target resin desorption permeate was 1500, and the ratio of the molecular weight of 1000 or less was 79.75%.

ジペプチドの精製における回収率を下表6に示した。

Figure 0005417405

酵素ろ過液の樹脂処理により、タンパク質40%の収率で、Trp−Leu100%の回収率であった。
さらに、限外ろ過膜処理により、タンパク質63%の収率、濃縮液側1/20倍の液量で、Trp−Leuのロス率は10%であった。よって、精製タンパク質収率は25.2%、Trp−Leuの回収率は90%であった。 The recovery rates in dipeptide purification are shown in Table 6 below.
Figure 0005417405

By the resin treatment of the enzyme filtrate, the recovery rate of Trp-Leu was 100% at a protein yield of 40%.
Furthermore, by the ultrafiltration membrane treatment, the loss rate of Trp-Leu was 10% with a protein yield of 63% and a liquid volume 1/20 times that of the concentrate. Therefore, the purified protein yield was 25.2%, and the recovery rate of Trp-Leu was 90%.

鰹節ペプチドの大量生産の製造スケールを表7に示した。

Figure 0005417405

その結果、スケール1,2,3のいずれにおいても工業生産できることが分かった。 The production scale for mass production of bonito peptide is shown in Table 7.
Figure 0005417405

As a result, it was found that industrial production was possible on any of scales 1, 2, and 3.

(b)5つのジペプチドの単離
鰹節のプロチンNY100酵素分解液のカラム吸着後アルコール脱着画分の限外ろ過膜透過液(鰹節ペプチド)中のジペプチドの単離を行った。
カラム:Acquity UPLC BEH C18
(2.1mmID ×100mmL、1.7μm)
移動層:15%CH3CN in 0.1%TFA
流速:0.2ml/min
温度:40℃
検出:UV 200−300nm
(B) Isolation of 5 Dipeptides The dipeptides in the ultrafiltration membrane permeate (bonito peptide) of the alcohol desorbed fraction after column adsorption of the koji protin NY100 enzymatic degradation solution were isolated.
Column: Acquity UPLC BEH C18
(2.1mmID x 100mmL, 1.7μm)
Mobile layer: 15% CH 3 CN in 0.1% TFA
Flow rate: 0.2 ml / min
Temperature: 40 ° C
Detection: UV 200-300nm

上記条件で、30秒毎に1フラクションずつ分取した。各フラクションから、減圧下蒸発乾固後、ACE阻害活性測定用試料とし、上記の方法に従い、ACE阻害活性を測定した。その結果、ペプチドのフラクションに強いACE阻害活性が認められた。フラクションはそれぞれ凍結乾燥を行い、微量のペプチドが得られた。フラクションについて、アミノ酸分析およびTOF MS解析を行い、各フラクションのペプチドは、Trp−Leu、Leu−Trp、Trp−Ileのジペプチドであることが判明した。   Under the above conditions, one fraction was collected every 30 seconds. From each fraction, after evaporating to dryness under reduced pressure, the sample was used as an ACE inhibitory activity measurement sample, and the ACE inhibitory activity was measured according to the method described above. As a result, strong ACE inhibitory activity was observed in the peptide fraction. Each fraction was freeze-dried to obtain a trace amount of peptide. The fractions were subjected to amino acid analysis and TOF MS analysis, and the peptides in each fraction were found to be Trp-Leu, Leu-Trp, and Trp-Ile dipeptides.

鰹節のプロチンNY100酵素分解液のカラム吸着後アルコール脱着画分の限外ろ過膜透過液(鰹節ペプチド)中のジペプチドの単離を行った。
カラム:Acquity UPLC BEH C18
(2.1mmID ×100mmL、1.7μm)
移動層:5%CH3CN in 0.1%TFA
流速:0.2ml/min
温度:40℃
検出:UV 200−300nm
上記条件で、30秒毎に1フラクションずつ分取した。各フラクションから、減圧下蒸発乾固後、ACE阻害活性測定用試料とし、上記の方法に従い、ACE阻害活性を測定した。その結果、ペプチドのフラクションに強いACE阻害活性が認められた。フラクションはそれぞれ凍結乾燥を行い、微量のペプチドが得られた。フラクションについて、さらに、移動相1.25%CH3CN in 0.1%TFAのリクロマトを行い、フラクションのアミノ酸分析およびTOF MS解析を行い、フラクションのペプチドは、Val−Tyr、Trp−Asnジペプチドであることが判明した。
Isolation of dipeptides in the permeate of the ultrafiltration membrane (alcohol peptide) of the alcohol desorption fraction after column adsorption of the prosthetic NY100 enzymatic degradation solution of bonito was performed.
Column: Acquity UPLC BEH C18
(2.1mmID x 100mmL, 1.7μm)
Mobile layer: 5% CH 3 CN in 0.1% TFA
Flow rate: 0.2 ml / min
Temperature: 40 ° C
Detection: UV 200-300nm
Under the above conditions, one fraction was collected every 30 seconds. From each fraction, after evaporating to dryness under reduced pressure, the sample was used as an ACE inhibitory activity measurement sample, and the ACE inhibitory activity was measured according to the method described above. As a result, strong ACE inhibitory activity was observed in the peptide fraction. Each fraction was freeze-dried to obtain a trace amount of peptide. The fraction was further rechromatographed with a mobile phase of 1.25% CH 3 CN in 0.1% TFA, and amino acid analysis and TOF MS analysis of the fraction were performed. The peptides in the fraction were Val-Tyr and Trp-Asn dipeptides. It turned out to be.


(a)ACE阻害活性を有するペプチド組成物の工業生産
鰹節タンパク質1000kgに水10000Lを加え、加熱処理(95℃、35分間)後、アミノ酸、水溶性タンパク質を除き、得られた熱水抽出残渣1774kg(タンパク質886kg)に水4436Lを加え、6N苛性ソーダでpH7に調整後、サモアーゼPC10F(大和化成)酵素1.0wt%(酵素量:タンパク質当り)を添加して、攪拌を行いながら、50℃、17時間反応させた。反応後に苛性ソーダを加えてpHを6.8に調整し、98℃、15分間加熱して酵素を失活させた。その後、未分解タンパク質をバイブスクリーン、デラバル、遠心分離機により除去し、上清をセライトでろ過し、ろ液(タンパク質200kg)を得た。ACE阻害活性IC50値は、0.204mg/ml(タンパク質)であった。
Example (a) Industrial production of peptide composition having ACE inhibitory activity Add 10000 L of water to 1000 kg of bonito protein, heat treatment (95 ° C., 35 minutes), remove amino acid and water-soluble protein, and obtain hot water extraction residue After adding 4436L of water to 1774 kg (886 kg of protein) and adjusting to pH 7 with 6N caustic soda, 1.0 wt% of Samoaase PC10F (Daiwa Kasei) enzyme (enzyme amount: per protein) was added and stirred at 50 ° C, The reaction was carried out for 17 hours. After the reaction, caustic soda was added to adjust the pH to 6.8, and the enzyme was inactivated by heating at 98 ° C. for 15 minutes. Thereafter, undegraded protein was removed with a vibe screen, DeLaval, and a centrifuge, and the supernatant was filtered through Celite to obtain a filtrate (200 kg of protein). The ACE inhibitory activity IC50 value was 0.204 mg / ml (protein).

このペプチド200kgを疎水性クロマトグラフィーに負荷した。
以下に疎水性クロマトグラフィの実施条件を記す。
カラム負荷量:50kg
カラム:SP−207(1000L容量カラム;日本練水)
溶出液:0,50%濃度のエタノール溶液
流速:2000L/時間
サイクル:4サイクル
200 kg of this peptide was loaded onto hydrophobic chromatography.
The conditions for performing hydrophobic chromatography are described below.
Column load: 50kg
Column: SP-207 (1000 L capacity column; Nippon Netsusui)
Eluent: 0.5% ethanol solution flow rate: 2000 L / hour cycle: 4 cycles

疎水性吸着樹脂を充填したカラムからの溶出は、アルコール濃度により2分画し、8000Lずつの2つの画分を分取した。各画分はACE阻害活性を試験例1の方法で測定した結果、0%または50%エタノール溶出画分のACE阻害活性値IC50はそれぞれ、検出せず、0.071mg/mlであった。4サイクル繰り返し分取し、タンパク質量74.0kgを得た。 Elution from the column packed with the hydrophobic adsorption resin was divided into two fractions according to the alcohol concentration, and two fractions of 8000 L each were collected. As a result of measuring the ACE inhibitory activity of each fraction by the method of Test Example 1, the ACE inhibitory activity value IC 50 of the fraction eluted with 0% or 50% ethanol was not detected, and was 0.071 mg / ml. The fractionation was repeated 4 cycles to obtain a protein amount of 74.0 kg.

次に疎水性クロマトグラフィーで得られたACE阻害活性画分(50%エタノール溶出画分)を限外ろ過膜(GE社製モジュール7.9インチ×40インチ×2本、ろ過面積48.4m2;分子量1000、圧1.8MPa;型番GE8040F1002)に通液し、非透過液に20倍濃縮液を得た。非透過液と透過液のACE阻害活性を測定し、透過液に0.050mg/ml、非透過液に0.165mg/mlの値が得られた。   Next, an ACE inhibitory activity fraction (50% ethanol-eluted fraction) obtained by hydrophobic chromatography was subjected to ultrafiltration membrane (GE module 7.9 inch × 40 inch × 2, filtration area 48.4 m 2; Molecular weight 1000, pressure 1.8 MPa; Model No. GE8040F1002) was passed through to obtain a 20-fold concentrated solution as the non-permeate. The ACE inhibitory activity of the non-permeate and the permeate was measured, and values of 0.050 mg / ml for the permeate and 0.165 mg / ml for the non-permeate were obtained.

透過液を減圧濃縮し、噴霧乾燥して、タンパク質量71.4kgの粉末を大量生産した。収支を表8に表した。

Figure 0005417405
The permeate was concentrated under reduced pressure and spray-dried to mass-produce a powder having a protein amount of 71.4 kg. The balance is shown in Table 8.
Figure 0005417405

また、経口摂取した場合の生体内での消化酵素による分解の程度を確認するため、ペプシン、トリプシン、及びキモトリプシンにて、透過液及び非透過液について人工消化を行った(ペプシン、トリプシン、キモトリプシン4時間分解)。結果を表9に示した。

Figure 0005417405

透過液のACE阻害活性に高い値が示されたことより、消化酵素耐性の可能性が推定された。非透過液のACE阻害活性(IC50)に1.5倍の強い値が示されたが、透過液の値には及ばなかった。 In addition, in order to confirm the degree of degradation by digestive enzymes in vivo when ingested orally, pepsin, trypsin, and chymotrypsin were used to artificially digest permeate and non-permeate (pepsin, trypsin, chymotrypsin 4 Time resolution). The results are shown in Table 9.
Figure 0005417405

A high value for the ACE inhibitory activity of the permeate was considered to indicate the possibility of resistance to digestive enzymes. The ACE inhibitory activity (IC50) of the non-permeate was 1.5 times stronger, but not as high as the permeate.

HPLC法による分子量の分析を下記の条件(表10)で行い、その結果を表11した。

Figure 0005417405

Figure 0005417405

その結果、ろ液と樹脂脱着非透過液の最大分子量はともに5000であった。
目的とする樹脂脱着透過液の最大分子量は1500で、うち分子量1000以下の割合は79.8%であった。 The molecular weight analysis by the HPLC method was performed under the following conditions (Table 10), and the results are shown in Table 11.
Figure 0005417405

Figure 0005417405

As a result, the maximum molecular weight of the filtrate and the resin-desorbed non-permeate was both 5000.
The maximum molecular weight of the target resin desorption permeate was 1500, and the ratio of the molecular weight of 1000 or less was 79.8%.

ジペプチドの精製における回収率を下表12に示した。

Figure 0005417405

酵素ろ過液の樹脂処理により、タンパク質40%の収率で、Trp−Leu100%の回収率であった。
さらに、限外ろ過膜処理により、タンパク質65%の収率、濃縮液側1/20倍の液量で、Trp−Leuのロス率は10%であった。よって、精製タンパク質収率は26.0%、Trp−Leuの回収率は90%であった。 The recovery rates in dipeptide purification are shown in Table 12 below.
Figure 0005417405

By the resin treatment of the enzyme filtrate, the recovery rate of Trp-Leu was 100% at a protein yield of 40%.
Furthermore, by the ultrafiltration membrane treatment, the loss rate of Trp-Leu was 10% at a protein yield of 65% and a liquid volume 1/20 times the concentrated liquid side. Therefore, the purified protein yield was 26.0%, and the recovery rate of Trp-Leu was 90%.

鰹節ペプチドの大量生産の製造スケールを表13に示した。

Figure 0005417405

その結果、スケール1,2,3のいずれにおいても工業生産できることが分かった。 The production scale for mass production of bonito peptide is shown in Table 13.
Figure 0005417405

As a result, it was found that industrial production was possible on any of scales 1, 2, and 3.

(b)5つのジペプチドの単離
鰹節のサモアーゼPC10F(大和化成)酵素分解液のカラム吸着後アルコール脱着画分の限外ろ過膜透過液(鰹節ペプチド)中のジペプチドの単離を行った。
カラム:Acquity UPLC BEH C18
(2.1mmID ×100mmL、1.7μm)
移動層:15%CH3CN in 0.1%TFA
流速:0.2ml/min
温度:40℃
検出:UV 200−300nm
(B) Isolation of 5 Dipeptides The dipeptides in the permeate of the ultrafiltration membrane (bonito peptide) of the alcohol desorption fraction after column adsorption of the bonito samoyase PC10F (Daiwa Kasei) enzyme degradation solution were isolated.
Column: Acquity UPLC BEH C18
(2.1mmID x 100mmL, 1.7μm)
Mobile layer: 15% CH 3 CN in 0.1% TFA
Flow rate: 0.2 ml / min
Temperature: 40 ° C
Detection: UV 200-300nm

上記条件で、30秒毎に1フラクションずつ分取した。各フラクションから、減圧下蒸発乾固後、ACE阻害活性測定用試料とし、上記の方法に従い、ACE阻害活性を測定した。その結果、ペプチドのフラクションに強いACE阻害活性が認められた。フラクションはそれぞれ凍結乾燥を行い、微量のペプチドが得られた。フラクションについて、アミノ酸分析およびTOF MS解析を行い、各フラクションのペプチドは、Trp−Leu、Leu−Trp、Trp−Ileのジペプチドであることが判明した。   Under the above conditions, one fraction was collected every 30 seconds. From each fraction, after evaporating to dryness under reduced pressure, the sample was used as an ACE inhibitory activity measurement sample, and the ACE inhibitory activity was measured according to the method described above. As a result, strong ACE inhibitory activity was observed in the peptide fraction. Each fraction was freeze-dried to obtain a trace amount of peptide. The fractions were subjected to amino acid analysis and TOF MS analysis, and the peptides in each fraction were found to be Trp-Leu, Leu-Trp, and Trp-Ile dipeptides.

鰹節のサモアーゼPC10F(大和化成)酵素分解液のカラム吸着後アルコール脱着画分の限外ろ過膜透過液(鰹節ペプチド)中のジペプチドの単離を行った。
カラム:Acquity UPLC BEH C18
(2.1mmID ×100mmL、1.7μm)
移動層:5%CH3CN in 0.1%TFA
流速:0.2ml/min
温度:40℃
検出:UV 200−300nm
上記条件で、30秒毎に1フラクションずつ分取した。各フラクションから、減圧下蒸発乾固後、ACE阻害活性測定用試料とし、上記の方法に従い、ACE阻害活性を測定した。その結果、ペプチドのフラクションに強いACE阻害活性が認められた。フラクションはそれぞれ凍結乾燥を行い、微量のペプチドが得られた。フラクションについて、さらに、移動相1.25%CH3CN in 0.1%TFAのリクロマトを行い、フラクションのアミノ酸分析およびTOF MS解析を行い、フラクションのペプチドは、Val−Tyr、Trp−Asnジペプチドであることが判明した。
Isolation of dipeptide in the ultrafiltration membrane permeate (bonito peptide) of the alcohol desorption fraction after column adsorption of bonito samoyase PC10F (Daiwa Kasei) enzyme digestion solution was performed.
Column: Acquity UPLC BEH C18
(2.1mmID x 100mmL, 1.7μm)
Mobile layer: 5% CH 3 CN in 0.1% TFA
Flow rate: 0.2 ml / min
Temperature: 40 ° C
Detection: UV 200-300nm
Under the above conditions, one fraction was collected every 30 seconds. From each fraction, after evaporating to dryness under reduced pressure, the sample was used as an ACE inhibitory activity measurement sample, and the ACE inhibitory activity was measured according to the method described above. As a result, strong ACE inhibitory activity was observed in the peptide fraction. Each fraction was freeze-dried to obtain a trace amount of peptide. The fraction was further rechromatographed with a mobile phase of 1.25% CH 3 CN in 0.1% TFA, the fraction was subjected to amino acid analysis and TOF MS analysis, and the peptides of the fraction were Val-Tyr and Trp-Asn dipeptides. It turned out to be.

実施例3
合成法によるペプチドの合成:
アプライドバイオシステムズ社のペプチド自動合成機(ABI 430モデル)を使用し、プログラムに従ってC端より逐次BOC法によりペプチド鎖を延長し目的の保護ペプチド樹脂の合成を行った。
樹脂上へのペプチドの構築が終了した後、保護ペプチド樹脂を乾燥した。得られた保護ペプチドの脱保護基とペプチドの樹脂担体からの切り離しは無水フッ化水素処理(HF/p−Creso18:2 v/v,60分)によって行った。得られた粗ペプチドは90%酢酸によって抽出し、凍結乾燥により粉末固体として得た。さらに得られた粗ペプチドをODSカラムを用いた高速液体クロマトグラフに負荷し精製を行い、目的のペプチドを得た。
カラム:YMC−Pack ODS−A(30mmID × 250mmL、ワイエムシィ)
移動層:Buffer A:5%CH3CN、0.1%TFA
Bufer B :40%CH3CN、0.1%TFA
勾配:0〜10min:0% Buffer B
10〜90min:0〜100 % Buffer B
流速:20ml/min
検出:UV220nm
Example 3
Synthesis of peptides by synthetic methods:
Using an automatic peptide synthesizer (Applied Biosystems) (ABI 430 model), the peptide chain was sequentially extended from the C end by the BOC method according to the program to synthesize the target protected peptide resin.
After the construction of the peptide on the resin was completed, the protected peptide resin was dried. Cleavage of the obtained protected peptide from the deprotecting group and the peptide from the resin carrier was performed by anhydrous hydrogen fluoride treatment (HF / p-Creso18: 2 v / v, 60 minutes). The resulting crude peptide was extracted with 90% acetic acid and obtained as a powdered solid by lyophilization. Further, the obtained crude peptide was loaded onto a high performance liquid chromatograph using an ODS column and purified to obtain the target peptide.
Column: YMC-Pack ODS-A (30 mm ID × 250 mm L, YMC)
Mobile layer: Buffer A: 5% CH 3 CN, 0.1% TFA
Buffer B: 40% CH 3 CN, 0.1% TFA
Gradient: 0-10 min: 0% Buffer B
10 to 90 min: 0 to 100% Buffer B
Flow rate: 20 ml / min
Detection: UV220nm

精製ペプチドの純度はODSカラムを用いた高速液体クロマトグラフィーで検定した。
カラム:Zorbax 300SB−C18(4.6mmID × 150mmL、
Agilent Technologies)
移動層:Buffer A:1%CH3CN、0.1%TFA
Buffer B:60%CH3CN、0.1%TFA
勾配: 0〜25min:0〜100%Buffer B
流速:1ml/min
検出:UV220nm
The purity of the purified peptide was tested by high performance liquid chromatography using an ODS column.
Column: Zorbax 300SB-C18 (4.6 mm ID × 150 mm L,
(Agilent Technologies)
Mobile layer: Buffer A: 1% CH 3 CN, 0.1% TFA
Buffer B: 60% CH 3 CN, 0.1% TFA
Gradient: 0-25 min: 0-100% Buffer B
Flow rate: 1 ml / min
Detection: UV220nm

(a)Trp−Leuのジペプチドの合成:
出発アミノ酸樹脂担体はBoc−Leu (BrZ)樹脂(0.5mmol)を使用し、アミノ酸誘導体Boc−Trp2mMを用いてペプチド鎖を伸長した。上記の方法で精製を行い、Trp−Leu精製物を得た。上記の方法で精製物の純度を測定した結果、94.06%であった。
(A) Synthesis of Trp-Leu dipeptide:
Boc-Leu (BrZ) resin (0.5 mmol) was used as the starting amino acid resin carrier, and the peptide chain was elongated using the amino acid derivative Boc-Trp 2 mM. Purification was performed by the above method to obtain a purified product of Trp-Leu. As a result of measuring the purity of the purified product by the above method, it was 94.06%.

(b)Leu−Trpのジペプチドの合成:
出発アミノ酸樹脂担体はBoc−Trp(BrZ)樹脂(0.5mmol)を使用し、アミノ酸誘導体Boc−Leu2mMを用いてペプチド鎖を伸長した。上記の方法で精製を行い、Leu−Trpを精製物を得た。上記の方法で精製物の純度を測定した結果、88.84%であった。
(B) Synthesis of Leu-Trp dipeptide:
Boc-Trp (BrZ) resin (0.5 mmol) was used as the starting amino acid resin carrier, and the peptide chain was elongated using the amino acid derivative Boc-Leu 2 mM. Purification was performed by the above method to obtain a purified product of Leu-Trp. As a result of measuring the purity of the purified product by the above method, it was 88.84%.

(c)Trp−Ileのジペプチドの合成:
出発アミノ酸樹脂担体はBoc−Ile(BrZ)樹脂(0.5mmol)を使用し、アミノ酸誘導体Boc−Trp2mMを用いてペプチド鎖を伸長した。上記の方法で精製を行い、Trp−Ileの精製物を得た。上記の方法で精製物の純度を測定した結果、95.00%であった。
(C) Synthesis of Trp-Ile dipeptide:
Boc-Ile (BrZ) resin (0.5 mmol) was used as the starting amino acid resin carrier, and the peptide chain was elongated using the amino acid derivative Boc-Trp 2 mM. Purification was performed by the above method to obtain a purified product of Trp-Ile. As a result of measuring the purity of the purified product by the above method, it was 95.00%.

(d)Val−Tyrのジペプチドの合成:
出発アミノ酸樹脂担体はBoc−Tyr(BrZ)樹脂(0.5mmol)を使用し、アミノ酸誘導体Boc−Val2mMを用いてペプチド鎖を伸長した。上記の方法で精製を行い、Val−Tyrの精製物を得た。上記の方法で精製物の純度を測定した結果、95.00%であった。
(D) Synthesis of Val-Tyr dipeptide:
Boc-Tyr (BrZ) resin (0.5 mmol) was used as the starting amino acid resin carrier, and the peptide chain was elongated using the amino acid derivative Boc-Val 2 mM. Purification was performed by the above method to obtain a purified product of Val-Tyr. As a result of measuring the purity of the purified product by the above method, it was 95.00%.

(e)Trp−Asnジペプチドの合成:
出発アミノ酸樹脂担体はBoc−Asn(BrZ)樹脂(0.5mmol)を使用し、アミノ酸誘導体Boc−Trp2mMを用いてペプチド鎖を伸長した。上記の方法で精製を行い、Trp−Asnの精製物を得た。上記の方法で精製物の純度を測定した結果、95.00%であった。
(E) Synthesis of Trp-Asn dipeptide:
Boc-Asn (BrZ) resin (0.5 mmol) was used as the starting amino acid resin carrier, and the peptide chain was elongated using the amino acid derivative Boc-Trp2 mM. Purification was performed by the above method to obtain a purified product of Trp-Asn. As a result of measuring the purity of the purified product by the above method, it was 95.00%.

実施例4
実施例1で得たジペプチド合成品を用いて、下記の組成のだし飲料を製造した。
(a)素材および配合量:
鰹節熱水抽出液(めんつゆ)500mlと、実施例得られ、単離した5種類のペプチドの混合品(Trp−Leuのジペプチド43mg、Leu−Trpのジペプチドの30mg、Trp−Ileのジペプチド16mg、Val−Tyrのジペプチド36mg、Trp−Asnのジペプチド40mg)。
Example 4
Using the dipeptide synthetic product obtained in Example 1, a stock beverage having the following composition was produced.
(A) Material and blending amount:
And bonito hot water extract (noodle soup) 500 ml, obtained in Example 1, isolated five di peptide mixture products (Trp-Leu dipeptide 43 mg, dipeptides Leu-Trp 30 mg, dipeptide Trp-Ile 16 mg, Val-Tyr dipeptide 36 mg, Trp-Asn dipeptide 40 mg).

(b) 製造方法:
鰹節の熱水抽出(95℃、35分開)後、セライト濾過を行い、そのろ液を常温に冷却した。得られた冷却後の、抽出液に、上記5種のジペプチドの混合物を加えて攪拌、溶解させた。これによりだし飲料を製造した。
(B) Manufacturing method:
After hot water extraction of bonito (95 ° C., opened for 35 minutes), Celite filtration was performed, and the filtrate was cooled to room temperature. To the obtained cooled extract, a mixture of the above five dipeptides was added and stirred and dissolved. This produced a dashi drink.

実施例5
(a) 鰹節タンパク質熱水抽出残渣をプロチンNY100酵素で分解した反応混合物からのジペプチドの定量
鰹節タンパク質160gに水2000mlを加え、熱水抽出(95℃、35分間)を行った。得られた残渣(不溶性タンパク質)に10倍量加水後、pH7に調整、プロチンNY100(天野エンザイム)酵素分解後、pH6.8に調整し、加熱(98℃、15分間)後、バイブスクリーン、デカンタ、デラバル、シャープレス処理、セライトろ過を行い、減圧濃縮、スプレードライを行った。
Example 5
(A) Quantification of dipeptide from reaction mixture obtained by decomposing bonito protein hot water extraction residue with protin NY100 enzyme 2000 ml of water was added to 160 g of bonito protein and subjected to hot water extraction (95 ° C., 35 minutes). The resulting residue (insoluble protein) was hydrated 10 times, adjusted to pH 7, protein NY100 (Amano Enzyme) enzymatic degradation, adjusted to pH 6.8, heated (98 ° C., 15 minutes), vibe screen, decanter , DeLaval, sharp pressing, celite filtration, vacuum concentration, and spray drying.

上記の粉末を疎水性クロマトグラフに負荷し、水250ml溶出後、50%エタノール250ml溶出に高活性な画分を得る。さらに限外ろ過(分子量1000膜)の透過画分の減圧濃縮(固形40%)液後、スプレードライ(入口温度150〜200℃、出口温度50〜90℃)に掛けて、高活性な粉末品を500mg得る。   The above powder is loaded on a hydrophobic chromatograph, and after elution with 250 ml of water, a fraction highly active in elution with 250 ml of 50% ethanol is obtained. Furthermore, after the solution of ultrafiltration (molecular weight 1000 membrane) is concentrated under reduced pressure (solid 40%), it is spray-dried (inlet temperature 150 to 200 ° C, outlet temperature 50 to 90 ° C), and a highly active powder product. 500 mg is obtained.

上記粉末品を原料として用い、これの500mgを配合した機能性食品を得る。その加工食品は、飲料、錠剤、スープ等にも用いられる。   Using the powder product as a raw material, a functional food containing 500 mg of this is obtained. The processed food is also used for beverages, tablets, soups and the like.

実施例6
Trp−Leu、Leu−Trp、Trp−Ile、Val−Tyr、Trp−Asnの定量を次のように行った。すなわち、粉末品あるいは、その加工品から、本ジペプチドの定量を、以下のように実施した。
Example 6
Trp-Leu, Leu-Trp, Trp-Ile, Val-Tyr, and Trp-Asn were quantified as follows. That is, the quantification of the present dipeptide was performed from the powder product or the processed product as follows.

Sep−Pak C18前処理:
鰹節抽出残渣酵素分解物、およびその加工食品を、それぞれ、25mg、加工食品5g秤量し、Sep−Pak C18カートリッジに負荷し、水溶性画分を除去後、吸着画分を50%エタノール溶液で溶出した液を試料とする。
Sep-Pak C18 pretreatment:
Enzyme digestion residue from bonito extract and its processed food were weighed 25 mg and 5 g of processed food, respectively, loaded onto a Sep-Pak C18 cartridge, and after removing the water-soluble fraction, the adsorbed fraction was eluted with 50% ethanol solution. Use the solution as a sample.

Sep−Pak C18処理して上記のように得られた試料から回収されたACE阻害精製ペプチド8000μgを、100μlの精製水に溶解し、C−18カラムを用いた高速液体クロマトグラフに2000μg/25μl負荷し、ペプチドを分画した。以下に条件を記す。
カラム:Acquity UPLC BEH C18
(2.1mmID×100mmL、1.7μm)
移動層:15%CH3CN in 0.1%TFA
流速:0.2ml/min
温度:40℃
検出:UV 200−300nm
合成品のTrp−Leu、Leu−Trp、Trp−Ileを標品として1μg/μl負荷した。Trp−Leu、Leu−Trp、Trp−Ileの溶出時間は、それぞれ、28.61,20.65,20.32分であった。
8000 μg of ACE-inhibited purified peptide recovered from the sample obtained as described above after being treated with Sep-Pak C18 was dissolved in 100 μl of purified water, and a high-performance liquid chromatograph using a C-18 column was loaded with 2000 μg / 25 μl. The peptide was fractionated. The conditions are described below.
Column: Acquity UPLC BEH C18
(2.1mmID × 100mmL, 1.7μm)
Mobile layer: 15% CH 3 CN in 0.1% TFA
Flow rate: 0.2ml / min
Temperature: 40 ° C
Detection: UV 200-300nm
Synthetic products Trp-Leu, Leu-Trp, and Trp-Ile were loaded as standard samples at 1 μg / μl. The elution times of Trp-Leu, Leu-Trp, and Trp-Ile were 28.61, 20.65, 20.32 minutes, respectively.

定量した結果、Trp−Leu、Leu−Trp、Trp−Ileの含量は、鰹節ペプチド中にそれぞれ、43mg、30mg、16mg含まれていた。   As a result of quantification, the contents of Trp-Leu, Leu-Trp, and Trp-Ile were contained in the bonito peptide, 43 mg, 30 mg, and 16 mg, respectively.

合成品のVal−Tyr、Trp−Asnを標品として1μg/μlを下記のカラム条件で負荷した。
カラム:Acquity UPLC BEH C18
(2.1mmID×100mmL、1.7μm)
移動層:5%CH3CN in 0.1%TFA
流速:0.2ml/min
温度:40℃
検出:UV 200−300nm
Val−Tyr、Trp−Asnの溶出時間は、9.56分であった。さらに下記の条件でリクロマトを行った。
A synthetic product, Val-Tyr, Trp-Asn, was used as a standard, and 1 μg / μl was loaded under the following column conditions.
Column: Acquity UPLC BEH C18
(2.1mmID × 100mmL, 1.7μm)
Mobile layer: 5% CH 3 CN in 0.1% TFA
Flow rate: 0.2ml / min
Temperature: 40 ° C
Detection: UV 200-300nm
The elution time of Val-Tyr and Trp-Asn was 9.56 minutes. Further, rechromatography was performed under the following conditions.

カラム:Acquity UPLC BEH C18
(2.1mmID×100mmL、1.7μm)
移動層:1.25%CH3CN in 0.1%TFA
流速:0.2ml/min
温度:40℃
検出:UV 200−300nm
Val−Tyr、Trp−Asnの溶出時時間は、それぞれ、35.60分、28.92分であった。
鰹節ペプチドから単離したジペプチドと標品のピーク面積から定量値を算出した。
Column: Acquity UPLC BEH C18
(2.1mmID × 100mmL, 1.7μm)
Mobile layer: 1.25% CH 3 CN in 0.1% TFA
Flow rate: 0.2ml / min
Temperature: 40 ° C
Detection: UV 200-300nm
The elution times of Val-Tyr and Trp-Asn were 35.60 minutes and 28.92 minutes, respectively.
The quantitative value was calculated from the peak area of the dipeptide isolated from the bonito peptide and the sample.

定量した結果、Val−Tyr、Trp−Asnの含量は、鰹節ペプチド中に36mg、40mg含まれていた。 As a result of quantification, 36 mg and 40 mg of Val-Tyr and Trp-Asn were contained in the bonito peptide.

実施例7
ACE阻害ペプチドのプラント製造:
鰹節タンパク質21.9kgを95℃、35分間熱水抽出して、可溶性タンパク質5.5kgを出汁(めんつゆ)に使用する。副産物として得た鰹節熱水抽出残渣としての水不溶性タンパク質16.4kgを原料として用い、これをプロチンNY100(天野エンザイム)酵素により分解した。酵素分解反応混合物を、スクリーン(100メッシュ)、デラバル(3層連続排出遠心分離機)、シャープレス(超遠心分離機15000回転/分)、セライトろ過(ハイフロスーパーセライト:Hyflo Super Celite 0.4%)後、ろ過液を得た。このろ過液をスプレードライ(噴霧乾燥機、入口温度150〜200℃、出口温度90℃以下)することにより、粉末品(10kg)を得ることが出来た。また、この粉末品について、アンジオテンシン変換酵素阻害活性のIC50は136.25μg/mlであった。
Example 7
Plant production of ACE inhibitory peptides:
21.9 kg of bonito protein is extracted with hot water at 95 ° C. for 35 minutes, and 5.5 kg of soluble protein is used for the soup stock. Using 16.4 kg of water-insoluble protein as a by-product hot-boiled hot water extraction residue as a raw material, this was decomposed with protin NY100 (Amano Enzyme) enzyme. The enzymatic decomposition reaction mixture was screened (100 mesh), DeLaval (three-layer continuous discharge centrifuge), shear press (ultra-centrifugation 15000 rpm), celite filtration (Hyflo Super Celite: Hyflo Super Celite 0.4%) ) After that, a filtrate was obtained. The filtrate was spray-dried (spray dryer, inlet temperature 150 to 200 ° C., outlet temperature 90 ° C. or less) to obtain a powder product (10 kg). Moreover, this powdery product, IC 50 of the angiotensin converting enzyme inhibitory activity was 136.25μg / ml.

上記のろ過液(タンパク質10kg) を600リットルの水に溶解し、疎水性吸着樹脂(セパビーズSP−207、三菱化学)を充填して予め水で平衡化したカラム(φ45cm×150cm)に負荷し、吸着を行なわせ、次に600Lの水で溶出した後、50%エタノール液600Lにて溶出を行った。
ここで用いた疎水性吸着樹脂は、スチレン−ジビニルベンゼン系樹脂を用いたが、逆相分配系樹脂は、オクタデシルシリカ(株式会社ワイエムシー)他、何れの逆相分配系樹脂、疎水性吸着樹脂も使用できる。また、溶出にエタノールを用いたがこれにかぎるものではない。
更に、上記で得られた50%エタノール溶出画分を限外ろ過膜(GE社製モジュール2.4インチ×40インチ×2本、ろ過面積5m2;分子量1000膜;型番2540F1072)に通液し、透過液を減圧濃縮(固形量40%)、スプレードライ(噴霧乾燥機)して、鰹節ペプチドを得た。
The above filtrate (10 kg protein) was dissolved in 600 liters of water, loaded onto a column (φ45 cm × 150 cm) that was packed with a hydrophobic adsorption resin (Separbeads SP-207, Mitsubishi Chemical) and previously equilibrated with water, Adsorption was carried out, followed by elution with 600 L of water, followed by elution with 600 L of 50% ethanol solution.
The hydrophobic adsorption resin used here was a styrene-divinylbenzene resin, but the reverse phase distribution resin was octadecyl silica (YMC Co., Ltd.) or any other reverse phase distribution resin, hydrophobic adsorption resin. Can also be used. Moreover, although ethanol was used for elution, it is not limited to this.
Further, the 50% ethanol elution fraction obtained above was passed through an ultrafiltration membrane (GE module 2.4 inch × 40 inch × 2, filtration area 5 m 2; molecular weight 1000 membrane; model 2540F1072), The permeate was concentrated under reduced pressure (solid content 40%) and spray dried (spray dryer) to obtain bonito peptide.

50%エタノール溶出画分に高活性が認められたこと、このことからアンジオテンシン変換酵素阻害ペプチドは、疎水性吸着樹脂に吸着する性質を有していると思われる。また、限外ろ過分子量1000膜透過液に高い活性が認められたこと、非透過画分の人工消化液に活性の上昇が示されたことから、例分子ペプチドに活性の強いペプチドが存在することが推定された。上記のことを踏まえて、精製を行うことより、本発明において、効率的に、カラムクロマトと限外ろ過処理によりアンジオテンシン変換酵素阻害活性の高い物質を工業生産規模で高収量、得ることができた。   From the fact that high activity was observed in the 50% ethanol-eluted fraction, it seems that the angiotensin converting enzyme-inhibiting peptide has the property of adsorbing to the hydrophobic adsorption resin. In addition, a high activity was observed in the ultrafiltration molecular weight 1000 membrane permeate, and an increase in activity was shown in the artificial permeate of the non-permeate fraction. Was estimated. Based on the above, by carrying out purification, in the present invention, a substance having high angiotensin converting enzyme inhibitory activity could be obtained in a high yield on an industrial production scale by column chromatography and ultrafiltration. .

実施例8
鰹節ペプチドの動物実験静脈注射試験
ラット雄(SHR/Izm)をウレタン・α−クロラロース (1g/kg、50mg/kg) 混合液の腹腔内投与により麻酔し、背位に固定する。血圧は、右大腿動脈に挿入したカニューレに接続した圧トランスデューサー (P23XL、Spectramed社) および血圧アンプ (2238、日本電気三栄株式会社) を介して記録する。心拍数は血圧脈波より瞬時型計数ユニット (1321、日本電気三栄株式会社) を駆動させることにより測定する。これらのパラメータはペン書き記録計 (RECTI−HORIZ−8K、日本電気三栄株式会社) に記録する。日本薬局方生理食塩液(大塚製薬工場株式会社)を左大腿静脈より持続注入し、試験物質はその部位よりマイクロシリンジを用いて投与する。試験物質は、実施例7で得られた鰹節ペプチドを用いた。

Figure 0005417405
Example 8
Animal experiment intravenous injection test of phalanx peptide A rat male (SHR / Izm) is anesthetized by intraperitoneal administration of urethane / α-chloralose (1 g / kg, 50 mg / kg) mixed solution and fixed in the dorsal position. Blood pressure is recorded via a pressure transducer (P23XL, Spectrumed) and a blood pressure amplifier (2238, NEC Sanei) connected to a cannula inserted into the right femoral artery. The heart rate is measured by driving an instantaneous counting unit (1321, NEC Sanei Co., Ltd.) from the blood pressure pulse wave. These parameters are recorded on a pen writing recorder (RECTI-HORIZ-8K, NEC Sanei Co., Ltd.). A Japanese Pharmacopoeia physiological saline solution (Otsuka Pharmaceutical Factory Co., Ltd.) is continuously infused from the left femoral vein, and the test substance is administered from the site using a microsyringe. As the test substance, the koji peptide obtained in Example 7 was used.
Figure 0005417405

結果、鰹節ペプチド0.1、0.3、1.0mg/kgの静脈注射で、降圧降下が認められた(表15、表16、表17)。

Figure 0005417405

Figure 0005417405

Figure 0005417405
As a result, a hypotensive drop was observed by intravenous injection of bonito peptide 0.1, 0.3, 1.0 mg / kg (Table 15, Table 16, Table 17).
Figure 0005417405

Figure 0005417405

Figure 0005417405

鰹節ペプチドの動物実験経口投与試験
動物 :SHR/Izm
例数 :32匹
測定項目 :血圧 (収縮期血圧) および心拍数
測定時間 :投与前、投与後2、4、6、8および24時間に測定する。
測定方法:テイルカフ法 (ラット・マウス用血圧計、MK−2000、室町機械株式会社) により、非観血的に測定する。毎回5回の計測を行い、血圧はそのうちの最低および最高値を除いた3回の平均値を採用する。心拍数は採用された血圧測定時の心拍数の平均値を採用する。
測定時、ラットが暴れるなどして異常値が測定された場合はその測定データは測定回数に含めず、追加測定する。

Figure 0005417405
Animal experiment oral administration test of bonito peptide Animal: SHR / Izm
Number of cases: 32 Measurement items: Blood pressure (systolic blood pressure) and heart rate Measurement time: Measured before administration and at 2, 4, 6, 8, and 24 hours after administration.
Measuring method: Measured non-invasively by tail cuff method (blood pressure monitor for rats and mice, MK-2000, Muromachi Kikai Co., Ltd.). The measurement is performed 5 times each time, and the average value of 3 times excluding the lowest and highest values is adopted as the blood pressure. For the heart rate, the average value of the heart rate at the time of blood pressure measurement is adopted.
During measurement, if abnormal values are measured due to rat violence, the measurement data is not included in the number of measurements, and additional measurements are taken.
Figure 0005417405

結果、実施例7の鰹節ペプチド(試料C)1、3、10mg/kgの投与で、降圧作用が認められた(図1、図2)。   As a result, an antihypertensive effect was observed after administration of koji peptide (sample C) 1, 3, 10 mg / kg of Example 7 (FIGS. 1 and 2).

比較例
本発明の製造方法に対する比較例を記載した。
酵素は、プロチンNY100(天野エンザイム)を用い、実施例1の製造方法により得られた酵素分解物と、さらに本発明の疎水性樹脂吸着画分の限外ろ過膜(分子量1000)透過画分(鰹節ペプチド)のSHRに対する単回投与試験結果を表19に示した。

Figure 0005417405

上記の結果から、in vitro試験であるACE阻害活性値からは、本発明の製法で得られた鰹節ペプチドの値は、酵素分解物の約4倍の強さを有している。さらに、in vivo試験であるSHRの単回投与試験結果からは、本発明品(鰹節ペプチド)は酵素分解物に対して500倍の力価が認められた。本発明の製法により得られた鰹節ペプチドの降圧作用に必要な投与量は、酵素分解物のACE阻害活性値からのみ換算しても約100mg(500mg/kg/4≒100mg/kg)であるが、実際に効果が認めれらる量はその約100分の1(1mg/kg)の値であったことより、本発明の製法は、降圧ペプチドを得るためには有効な精製法であると推定した。 Comparative example A comparative example for the production method of the present invention was described.
The enzyme used was Protin NY100 (Amano Enzyme), the enzyme degradation product obtained by the production method of Example 1, and the ultrafiltration membrane (molecular weight 1000) permeate fraction of the hydrophobic resin-adsorbed fraction of the present invention ( Table 19 shows the results of a single-dose test for SHR.
Figure 0005417405

From the above results, from the ACE inhibitory activity value, which is an in vitro test, the value of the koji peptide obtained by the production method of the present invention is about four times as strong as that of the enzymatic degradation product. Furthermore, from the results of a single dose test of SHR, which is an in vivo test, the product of the present invention (bonito peptide) was found to have a titer 500 times that of the enzymatic degradation product. The dose required for the antihypertensive action of the koji peptide obtained by the production method of the present invention is about 100 mg (500 mg / kg / 4≈100 mg / kg) even when converted only from the ACE inhibitory activity value of the enzyme degradation product. From the fact that the amount in which the effect was actually recognized was about 1/100 (1 mg / kg), the production method of the present invention was estimated to be an effective purification method for obtaining the antihypertensive peptide. did.

Claims (5)

鰹、鰹荒節、鰹枯節、宗田鰹、宗田鰹節、鰯、鰯節、鯵、鯵節、鯖、鯖節、煮干またはその他雑節の魚肉性タンパク質の熱水抽出後に残留する水不溶性タンパク質を酵素プロチンNY−100を用いて加水分解し、得られた加水分解物を、疎水性樹脂及びその後の分子量1000の限外濾過に負荷することにより得られる、アンジオテンシン変換酵素阻害活性を有するジペプチドを含有する組成物であって、前記組成物中、
Trp−Leuのアミノ酸配列から成るジペプチドを少なくとも0.043質量%
Leu−Trpのアミノ酸配列から成るジペプチドを少なくとも0.030質量%
Trp−Ileのアミノ酸配列から成るジペプチドを少なくとも0.016質量%
Val−Tyrのアミノ酸配列から成るジペプチドを少なくとも0.036質量%及び
Trp−Asnのアミノ酸配列から成るジペプチドを少なくとも0.040質量%及び/又は
それらの酸付加塩
を含有する組成物。
Water-insoluble protein remaining after hot-water extraction of fish-like protein from bonito, bonito bonito, bonito bonito, soda bonito, mulberry bonito, bonito, bonito, bonito, bonito, bonito, bonito, dried boiled or other miscellaneous knots Contains a dipeptide having an angiotensin converting enzyme inhibitory activity obtained by hydrolyzing with the enzyme protin NY-100 and loading the resulting hydrolyzate on a hydrophobic resin and subsequent ultrafiltration with a molecular weight of 1000 A composition comprising:
At least 0.043% by mass of a dipeptide consisting of the amino acid sequence of Trp-Leu,
At least 0.030% by mass of a dipeptide consisting of the amino acid sequence of Leu-Trp,
At least 0.016% by mass of a dipeptide consisting of the amino acid sequence of Trp-Ile,
A composition comprising at least 0.036% by mass of a dipeptide consisting of an amino acid sequence of Val-Tyr and at least 0.040% by mass of a dipeptide consisting of an amino acid sequence of Trp-Asn and / or an acid addition salt thereof.
請求項1に記載の組成物を含有する加工食品又は特定保健用食品。   Processed food or food for specified health use containing the composition according to claim 1. Trp−Leuのアミノ酸配列から成るジペプチドを少なくとも0.043質量%、Leu−Trpのアミノ酸配列から成るジペプチドを少なくとも0.030質量%、Trp−Ileのアミノ酸配列から成るジペプチドを少なくとも0.016質量%、Val−Tyrのアミノ酸配列から成るジペプチドを少なくとも0.036質量%及びTrp−Asnのアミノ酸配列から成るジペプチドを少なくとも0.040質量%及び/又はそれらの酸付加塩を含有する組成物の製造方法であって、
1)鰹、鰹荒節、鰹枯節、宗田鰹、宗田鰹節、鰯、鰯節、鯵、鯵節、鯖、鯖節、煮干またはその他雑節の魚肉性タンパク質を熱水で抽出し、
2)その熱水抽出後に残留する水不溶性タンパク質を粉砕し、得られた粉砕物を水分に分散して該水不溶性タンパク質の水分散液を作り、該水分散液中で、分散された水不溶性タンパク質の粒子に、プロチンNY−100をpH5.0〜9.0の至適条件下に40〜60℃の温度で反応させ、これにより該水不溶性タンパク質の酵素的加水分解を行い、その後、酵素反応を停止させ、そして得られた含水の加水分解反応混合物から水不溶性の粒子を除去し、これにより、疎水性・親水性高分子・低分子プチドおよび水溶性アミノ酸を含む水溶液を収得し、
3)該水溶液から疎水性樹脂カラム法により得られた吸着画分をさらに分子量1000の限外ろに負荷し透過画分の組成物を分離し、さらにその後、前記透過画分の組成物をスプレードライすることから成る、製造方法
At least 0.043% by mass of a dipeptide consisting of the amino acid sequence of Trp-Leu, at least 0.030% by mass of a dipeptide consisting of the amino acid sequence of Leu-Trp, and at least 0.016% by mass of a dipeptide consisting of the amino acid sequence of Trp-Ile A method for producing a composition containing at least 0.036% by mass of a dipeptide consisting of an amino acid sequence of Val-Tyr and at least 0.040% by mass of a dipeptide consisting of an amino acid sequence of Trp-Asn and / or an acid addition salt thereof Because
1) Extract fish-like protein from bonito, bonito, bonito, soda, soda, bonito, bonito, bonito, bonito, bonito, bonito, boiled or other miscellaneous fish with hot water,
2) The water-insoluble protein remaining after the hot water extraction is pulverized, and the obtained pulverized product is dispersed in moisture to form an aqueous dispersion of the water-insoluble protein. The protein particles are reacted with protin NY-100 at a temperature of 40-60 ° C. under the optimum conditions of pH 5.0-9.0, whereby enzymatic hydrolysis of the water-insoluble protein is carried out. The reaction was stopped, and water-insoluble particles were removed from the resulting hydrous hydrolysis reaction mixture, thereby obtaining an aqueous solution containing a hydrophobic / hydrophilic polymer / low molecular peptide and a water-soluble amino acid,
3) Load from the aqueous solution to over-ultrafiltrate further molecular weight 1000 adsorbed fraction obtained by a hydrophobic resin column method to separate the transmission fraction of the composition, Thereafter, the transmission fraction of the composition A manufacturing method comprising spray drying .
経口単回投与実験で1単位中0.0001mg〜1mg/kgの投与量で請求項1に記載の組成物を含むアンジオテンシン変換酵素阻害剤と血圧降下剤。   An angiotensin converting enzyme inhibitor and an antihypertensive agent comprising the composition according to claim 1 at a dose of 0.0001 mg to 1 mg / kg per unit in a single oral administration experiment. 請求項1に記載される組成物を配合してあることを特徴とする、飲食料。   A food and drink comprising the composition according to claim 1.
JP2011210463A 2011-09-27 2011-09-27 Method for producing angiotensin converting enzyme inhibitory antihypertensive peptide composition Active JP5417405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011210463A JP5417405B2 (en) 2011-09-27 2011-09-27 Method for producing angiotensin converting enzyme inhibitory antihypertensive peptide composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011210463A JP5417405B2 (en) 2011-09-27 2011-09-27 Method for producing angiotensin converting enzyme inhibitory antihypertensive peptide composition

Publications (3)

Publication Number Publication Date
JP2013071897A JP2013071897A (en) 2013-04-22
JP2013071897A5 JP2013071897A5 (en) 2013-05-30
JP5417405B2 true JP5417405B2 (en) 2014-02-12

Family

ID=48476668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011210463A Active JP5417405B2 (en) 2011-09-27 2011-09-27 Method for producing angiotensin converting enzyme inhibitory antihypertensive peptide composition

Country Status (1)

Country Link
JP (1) JP5417405B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104583227A (en) * 2012-06-26 2015-04-29 雅妈喜股份有限公司 Angiotensin-converting-enzyme inhibiting dipeptide
WO2019006951A1 (en) * 2017-07-07 2019-01-10 广州世优生物科技有限公司 Application of nonpolar dipeptide for preparing antihypertensive drug or health care product
CN113929734B (en) * 2021-09-22 2023-09-05 湖北泓肽生物科技有限公司 Synthesis method of dipeptide-2
CN113912673B (en) * 2021-11-09 2024-02-09 河南省农业科学院 Sesame-derived low-bitter ACE (angiotensin converting enzyme) inhibitory peptide as well as preparation method and application thereof
CN115197309B (en) * 2022-07-15 2024-06-18 广东南兴天虹果仁制品有限公司 ACE (angiotensin converting enzyme) inhibitory peptide derived from badam protein as well as preparation method and application thereof
CN117384239B (en) * 2023-12-12 2024-02-09 深圳保时健生物工程有限公司 Anti-aging salmon roe tripeptide as well as preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3592593B2 (en) * 1999-10-15 2004-11-24 日本合成化学工業株式会社 Angiotensin converting enzyme inhibitor
EP2161029A1 (en) * 2008-09-09 2010-03-10 Unilever N.V. Composition comprising peptides
JP5416964B2 (en) * 2008-12-26 2014-02-12 ヤマキ株式会社 Novel tripeptides, methods for producing these tripeptides, and methods for producing angiotensin converting enzyme inhibitors

Also Published As

Publication number Publication date
JP2013071897A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP4369985B2 (en) Angiotensin converting enzyme inhibitory peptide
JP5417405B2 (en) Method for producing angiotensin converting enzyme inhibitory antihypertensive peptide composition
US20110171690A1 (en) Angiotensin converting enzyme inhibitory peptide
WO2009035169A1 (en) Peptide having anti-hypertensive activity
JP5416964B2 (en) Novel tripeptides, methods for producing these tripeptides, and methods for producing angiotensin converting enzyme inhibitors
WO2014002571A1 (en) Angiotensin-converting-enzyme inhibiting dipeptide
JP5456100B2 (en) Angiotensin converting enzyme inhibitory dipeptide
JP5456144B1 (en) Angiotensin converting enzyme inhibitory dipeptide
JPH04275298A (en) Peptide and angiotensinase inhibitor containing the peptide as active component
JP3186781B2 (en) New oligopeptide
JP2001106699A (en) New hexapeptide and angiotensin-converting enzyme inhibitor
JP3726106B2 (en) Angiotensin converting enzyme inhibitor and antihypertensive agent
JP6826726B2 (en) Oral composition for promoting sugar uptake
JP2001106698A (en) New tetrapeptide and angiotensin-converting enzyme inhibitor
JP3108920B1 (en) Novel tetrapeptide and angiotensin converting enzyme inhibitors
KR0150798B1 (en) Novel oligopeptides, pharmaceutical composition and food containing the same, and use of oligopeptides
JP2001122802A (en) Inhibitor of angiotensin converting enzyme and hypotensive agent
JP2001106700A (en) New pentapeptide and angiotensin-converting enzyme inhibitor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130411

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Ref document number: 5417405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250