Nothing Special   »   [go: up one dir, main page]

JP5416012B2 - Gas processing equipment - Google Patents

Gas processing equipment Download PDF

Info

Publication number
JP5416012B2
JP5416012B2 JP2010077610A JP2010077610A JP5416012B2 JP 5416012 B2 JP5416012 B2 JP 5416012B2 JP 2010077610 A JP2010077610 A JP 2010077610A JP 2010077610 A JP2010077610 A JP 2010077610A JP 5416012 B2 JP5416012 B2 JP 5416012B2
Authority
JP
Japan
Prior art keywords
gas
honeycomb structure
honeycomb
electrode
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010077610A
Other languages
Japanese (ja)
Other versions
JP2011206705A (en
Inventor
康裕 大矢
昌之 岩田
俊丸 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2010077610A priority Critical patent/JP5416012B2/en
Publication of JP2011206705A publication Critical patent/JP2011206705A/en
Application granted granted Critical
Publication of JP5416012B2 publication Critical patent/JP5416012B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Fuel Cell (AREA)
  • Chimneys And Flues (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)

Description

この発明は、処理対象ガスに含まれる有害ガスを浄化するガス処理装置に関するものである。   The present invention relates to a gas processing apparatus that purifies harmful gas contained in a gas to be processed.

従来より、排気ガス中で高電圧放電を行ってプラズマ状態を作ることで、排気ガスに含まれる有害ガスの浄化を行う技術が知られている。近年、この技術は、脱臭を目的として、工場の排気を浄化する浄化装置や室内の空気を浄化する空気清浄機に応用されつつある。   2. Description of the Related Art Conventionally, a technique for purifying harmful gas contained in exhaust gas by creating a plasma state by performing high voltage discharge in the exhaust gas is known. In recent years, this technology is being applied to a purification device for purifying factory exhaust and an air purifier for purifying indoor air for the purpose of deodorization.

熱的に非平衡な状態、つまり気体の温度やイオン温度に比べ、電子温度が非常に高い状態のプラズマ(非平衡プラズマ(以下、単にプラズマと言う))は、電子衝突でつくられるイオンやラジカルが常温では起こらない化学反応を促進させるので、有害ガスを効率的に除去あるいは分解することが可能な媒体として有害ガス処理において有用であると考えられている。実用化で肝心なことは、処理時のエネルギーの効率の向上と、プラズマで処理した後に完全に安全な生成物質へと変換されることである。   Plasma that is in a thermally non-equilibrium state, that is, in which the electron temperature is much higher than the temperature of the gas or ion (non-equilibrium plasma (hereinafter simply referred to as plasma)) is the ion or radical produced by electron collision. Promotes a chemical reaction that does not occur at room temperature, and is considered useful in hazardous gas treatment as a medium that can efficiently remove or decompose harmful gases. The key to practical use is to improve the energy efficiency during processing and to convert it into a completely safe product after processing with plasma.

一般に、大気圧でのプラズマは気体放電や電子ビームなどによって生成される。現在において、適用が考えられているものに、窒素酸化物(NOx)、硫黄酸化物(SOx)、フロン、CO2 ,揮発性有機溶剤(VOC)などがある。中でもNOxは車の排ガスなどに含まれているので早急な実用化が必要となっている。 In general, plasma at atmospheric pressure is generated by gas discharge or electron beam. There are nitrogen oxides (NOx), sulfur oxides (SOx), chlorofluorocarbons, CO 2 , volatile organic solvents (VOC), etc. that are currently being considered for application. Above all, NOx is contained in the exhaust gas of a car, so that it needs to be put into practical use immediately.

NOx除去における放電プラズマ(気体放電によって生成されたプラズマ)内の現象は、電子衝突によって1次的に生成されたイオンやラジカルが最初の反応を起こし、その後の反応を通してN2 ,H2 O,NH4 NO3 などの各粒子に変換されて行くものと考えられている。 The phenomenon in discharge plasma (plasma generated by gas discharge) in NOx removal is that ions and radicals generated primarily by electron collision cause an initial reaction, and N 2 , H 2 O, It is thought that it is converted into each particle such as NH 4 NO 3 .

また、有害ガスを例えばアセトアルデヒドやホルムアルデヒドとした場合、この有害ガスをプラズマを通すことによって、CO2 とH2 Oに変換される。この場合、副生成物として、オゾン(O3 )が発生する。 Further, when the harmful gas is, for example, acetaldehyde or formaldehyde, the harmful gas is converted into CO 2 and H 2 O by passing plasma. In this case, ozone (O 3 ) is generated as a by-product.

図4に放電プラズマを利用した従来のガス処理装置の要部を例示する(例えば、特許文献1参照)。同図において、1は処理対象ガス(有害ガスを含む空気)GSが流れるダクト(通風路)であり、ダクト1内には、処理対象ガスGSの通過方向に沿って放電電極2とグランド電極3とが交互に配置され、これら電極2,3間にセルと呼ばれる多数の貫通孔4aを有するハニカム構造体4が配設されている。5は高電圧電源である。なお、ハニカム構造体4はセラミックス等の絶縁体で形成されており、特許文献2にもその使用例がある。   FIG. 4 illustrates a main part of a conventional gas processing apparatus using discharge plasma (for example, see Patent Document 1). In the figure, reference numeral 1 denotes a duct (ventilation path) through which a processing target gas (air containing toxic gas) GS flows. Inside the duct 1, a discharge electrode 2 and a ground electrode 3 are arranged along the direction in which the processing target gas GS passes. Are disposed alternately, and a honeycomb structure 4 having a large number of through-holes 4a called cells is disposed between the electrodes 2 and 3. Reference numeral 5 denotes a high voltage power source. The honeycomb structure 4 is formed of an insulator such as ceramics, and Patent Document 2 also has an example of its use.

放電電極2は、金属製メッシュ、極細ワイヤ、または針状体等で形成されている。各放電電極2は、導線6によって高電圧電源5の+極に接続されている。グランド電極3は、金属性メッシュ等で形成されている。各グランド電極3は、導線7によって高電圧電源5の−極に接続されている。   The discharge electrode 2 is formed of a metal mesh, a fine wire, a needle-like body, or the like. Each discharge electrode 2 is connected to the + pole of the high voltage power supply 5 by a conducting wire 6. The ground electrode 3 is formed of a metallic mesh or the like. Each ground electrode 3 is connected to the negative pole of the high voltage power supply 5 by a conducting wire 7.

このガス処理装置では、処理対象ガスGSをダクト1に流し、放電電極2とグランド電極3との間に高電圧電源5からの高電圧(数kV〜数10kV)を印加する。これにより、各ハニカム構造体4の貫通孔4a内にプラズマが発生し、このプラズマ中に生成されるイオンやラジカルによって、処理対象ガスGSに含まれる有害ガスが無害な物質に分解される。   In this gas processing apparatus, the gas GS to be processed is caused to flow through the duct 1, and a high voltage (several kV to several tens kV) from the high voltage power supply 5 is applied between the discharge electrode 2 and the ground electrode 3. Thereby, plasma is generated in the through-holes 4a of the honeycomb structures 4, and harmful gases contained in the processing target gas GS are decomposed into harmless substances by ions and radicals generated in the plasma.

しかしながら、このような構成のガス処理装置では、次のような問題点を有する。
(1)多数のハニカム構造体4を有するが、ばらつきなく均一なプラズマを発生させる技術が確立されておらず、ハニカム構造体4の性能にばらつきが出てしまう。例えば、同じハニカム構造体4同士でもインピータンス値が異なることがあり、また1つのハニカム構造体4内でも例えばその上下でインピーダンス値が異なるというようなこともあり、全体として均一なプラズマが発生せず、ガス処理能力が不安定となる。また、貫通孔4aだけでのプラズマ発生なので、プラズマの発生量が少なく、ガス処理能力が低い。
However, the gas processing apparatus having such a configuration has the following problems.
(1) Although a large number of honeycomb structures 4 are provided, a technique for generating uniform plasma without variations has not been established, and variations in the performance of the honeycomb structures 4 occur. For example, impedance values may be different even in the same honeycomb structure 4, and impedance values may be different in one honeycomb structure 4, for example, at the top and bottom thereof, so that uniform plasma can be generated as a whole. Therefore, the gas processing capacity becomes unstable. Further, since plasma is generated only through the through holes 4a, the amount of plasma generated is small and the gas processing capacity is low.

(2)ハニカム構造体4は吸湿すると低インピーダンスに、乾燥すると高インピーダンスになる特性を持っており、ハニカム構造体4が低インピーダンスになると、流れる電流が増大し放電電極2とグランド電極3との間に印加される高電圧値が低下し、ハニカム構造体4が高インピーダンスになると、流れる電流が減少し放電電極2とグランド電極3との間に印加される高電圧値が上昇する。このような高電圧値の変化に対し、所望のプラズマの発生量を確保し得る高電圧値を得ることのできる高電圧電源5は、その設計に要する工数も含めて非常に高価となる。   (2) The honeycomb structure 4 has a characteristic of low impedance when moisture is absorbed and high impedance when dried. When the honeycomb structure 4 becomes low impedance, the flowing current increases and the discharge electrode 2 and the ground electrode 3 When the high voltage value applied between them decreases and the honeycomb structure 4 becomes high impedance, the flowing current decreases and the high voltage value applied between the discharge electrode 2 and the ground electrode 3 increases. The high voltage power supply 5 that can obtain a high voltage value that can secure a desired plasma generation amount with respect to such a change in the high voltage value is very expensive including the man-hours required for its design.

(3)ハニカム構造体4のそれぞれに対して放電電極2とグランド電極3を設けているため、部品点数が多く、構造も複雑となり、高価となる。
(4)処理対象ガスGSの通過方向(ダクト1の入口から出口への方向)に沿ってハニカム構造体4がダクト1内に配置されているため、ハニカム構造体4のガス流と直交する方向の寸法が長く、これに対してガス流と平行な方向の寸法が短くなっている。このため、ガス流の流速が速いと、処理対象ガスGSがハニカム構造体4の内部でプラズマに晒される時間が短く、ガス処理能力が落ちる。
(3) Since the discharge electrode 2 and the ground electrode 3 are provided for each of the honeycomb structures 4, the number of parts is large, the structure is complicated, and the cost is high.
(4) Since the honeycomb structure 4 is disposed in the duct 1 along the passing direction of the gas GS to be treated (direction from the inlet to the outlet of the duct 1), the direction orthogonal to the gas flow of the honeycomb structure 4 The dimension of is longer and the dimension parallel to the gas flow is shorter. For this reason, when the flow rate of the gas flow is high, the time during which the gas GS to be processed is exposed to the plasma inside the honeycomb structure 4 is short, and the gas processing capacity is reduced.

(5)ハニカム構造体4でプラズマ放電が発生する際にはハニカム構造体4内の水分が消費されるので、更にプラズマ放電が活発に行われるにはダクト1内の処理対象ガスGS内の水分がハニカム構造体4内に供給される構造であることが望ましい。しかしながら、電極間に位置するハニカム構造体4の放電面では放電により直ぐに水分が消費されてしまうので、ハニカム構造体4の放電の起こらない面であるハニカム構造体4の側面から水分が供給されねばならないが、ハニカム構造体4の側面は処理対象ガスGSの流れ方向と平行であるので、この側面からは処理対象ガスGSの水分が吸入しずらく、結果としてハニカム構造体4に水分を補給し難く、ガス処理能力を高められない。 (5) Since the moisture in the honeycomb structure 4 is consumed when the plasma discharge is generated in the honeycomb structure 4, the moisture in the gas GS to be processed in the duct 1 is used in order to further perform the plasma discharge. Is preferably supplied into the honeycomb structure 4. However, since moisture is immediately consumed by the discharge at the discharge surface of the honeycomb structure 4 located between the electrodes, it is necessary to supply moisture from the side surface of the honeycomb structure 4 where the discharge of the honeycomb structure 4 does not occur. However, since the side surface of the honeycomb structure 4 is parallel to the flow direction of the processing target gas GS, the moisture of the processing target gas GS is difficult to be sucked from this side surface. As a result, the honeycomb structure 4 is replenished with water. Difficult to increase gas processing capacity.

そこで、本出願人は、上述した従来のガス処理装置の問題点を解決するものとして、図5に示すような構造のガス処理装置を提案した(特許文献3参照)。このガス処理装置では、ダクト1の入口から出口への処理対象ガスGSの通過方向に対し直交する方向に沿って間隔G(G1〜G3)を設けて、多数の貫通孔(丸孔)4aを有する複数のハニカム構造体4(4−1〜4−4)を配置している。   Therefore, the present applicant has proposed a gas processing apparatus having a structure as shown in FIG. 5 as a solution to the problems of the conventional gas processing apparatus described above (see Patent Document 3). In this gas processing apparatus, intervals G (G1 to G3) are provided along a direction orthogonal to the passing direction of the processing target gas GS from the inlet to the outlet of the duct 1, and a large number of through holes (round holes) 4a are formed. A plurality of honeycomb structures 4 (4-1 to 4-4) are arranged.

なお、8はハニカム構造体4−1〜4−4のうち処理対象ガスGSの通過方向に対し直交する方向の一端に位置するハニカム構造体4−1の外側に配置された第1の電極、9はハニカム構造体4−1〜4−4のうち処理対象ガスGSの通過方向に対し直交する方向の他端に位置するハニカム構造体4−4の外側に配置された第2の電極であり、第1の電極8と第2の電極9との間には高電圧電源(高電圧源)5からの高電圧が印加される。この高電圧の印加により、ハニカム構造体4の貫通孔4aおよびハニカム構造体4間の空間10(10−1〜10−3)にプラズマが発生し、このプラズマ中に生成されるイオンやラジカルによって、処理対象ガスGSに含まれる有害ガスが無害な物質に分解される。   Reference numeral 8 denotes a first electrode disposed outside the honeycomb structure 4-1 located at one end in a direction orthogonal to the passing direction of the processing target gas GS among the honeycomb structures 4-1 to 4-4. Reference numeral 9 denotes a second electrode disposed outside the honeycomb structure 4-4 located at the other end of the honeycomb structures 4-1 to 4-4 in the direction orthogonal to the passing direction of the processing target gas GS. A high voltage from a high voltage power source (high voltage source) 5 is applied between the first electrode 8 and the second electrode 9. By applying this high voltage, plasma is generated in the through-holes 4a of the honeycomb structure 4 and the space 10 (10-1 to 10-3) between the honeycomb structures 4, and the ions and radicals generated in the plasma The harmful gas contained in the processing target gas GS is decomposed into harmless substances.

このガス処理装置では、処理対象ガスGSが各ハニカム構造体4の貫通孔4aやハニカム構造体4間の空間10でプラズマに晒される時間を長くでき、ガス分解が行われる機会が多くなる。また、各ハニカム構造体4の処理対象ガスGSの通過方向に面する上流側の面(最上流の面)4bでは、プラズマが発生せず、処理対象ガスGSの流れに接すると共に、処理対象ガスGSの通過方向への流体圧を受けることから、この面(以下、この面をガス流対向面と呼ぶ)4bより処理対象ガスGS中の水分がハニカム構造体4内に入り込み、ハニカム構造体4でのプラズマ発生を活性化させる。これにより、処理能力が向上し、高速流におけるガス処理能力の低下を防ぐことができる。   In this gas processing apparatus, the time during which the gas GS to be processed is exposed to plasma in the through holes 4a of the honeycomb structures 4 and the spaces 10 between the honeycomb structures 4 can be increased, and the opportunity for gas decomposition is increased. In addition, plasma is not generated on the upstream surface (uppermost surface) 4b of each honeycomb structure 4 facing in the passage direction of the processing target gas GS, and the process target gas GS is in contact with the flow of the processing target gas GS. Since the fluid pressure in the GS passage direction is received, moisture in the processing target gas GS enters the honeycomb structure 4 from this surface (hereinafter, this surface is referred to as a gas flow facing surface) 4b, and the honeycomb structure 4 Activates plasma generation in Thereby, a processing capability improves and it can prevent the fall of the gas processing capability in a high-speed flow.

特開2000−140562号公報JP 2000-140562 A 特開2001−276561号公報JP 2001-276561 A 特開2008−194669号公報JP 2008-194669 A 特開2004−089708号公報JP 2004-089708 A

しかしながら、この特許文献3に示されたガス処理装置は、上述したような優れた効果を有してはいるが、ハニカム構造体4には処理対象ガスGSの水分をハニカム構造体4内に補給するガス流対向面4bが一面しかなく、このガス流対向面4bの面積は限られているので、それ以上のガス流対向面4bからの水分の補給はできず、更なるガス処理能力の向上が望めない。   However, although the gas processing apparatus disclosed in Patent Document 3 has the excellent effects as described above, the honeycomb structure 4 is replenished with moisture of the gas GS to be processed into the honeycomb structure 4. Since there is only one gas flow facing surface 4b to be used and the area of the gas flow facing surface 4b is limited, no more water can be replenished from the gas flow facing surface 4b. I can't hope.

なお、特許文献4には、金属電極とハニカム電極との間の空間へ加湿装置によって水分を送り込むことにより、処理対象ガス中の水分濃度を高め、プラズマ放電を活性化させてガス浄化能力を高めるようにしたガス浄化装置が示されている。しかしながら、この特許文献4に示された技術を図5に示したガス処理装置に適用した場合、ハニカム構造体4間の空間10ではプラズマ放電によって水分が消費されてしまうので、連続して水分を送り込む必要があり、加湿装置を稼働し続けるために多くの電力を消費してしまう。   In Patent Document 4, moisture is fed into the space between the metal electrode and the honeycomb electrode by a humidifier, thereby increasing the moisture concentration in the gas to be treated and activating the plasma discharge to increase the gas purification capability. A gas purification apparatus is shown. However, when the technique shown in Patent Document 4 is applied to the gas processing apparatus shown in FIG. 5, moisture is consumed by plasma discharge in the space 10 between the honeycomb structures 4. It needs to be fed in and consumes a lot of power to keep the humidifier running.

本発明は、このような課題を解決するためになされたもので、その目的とするところは、ハニカム構造体に直接水分を補給して、更なるガス処理能力の向上を図ることができるガス処理装置を提供することにある。   The present invention has been made in order to solve such problems, and the object of the present invention is to provide a gas treatment capable of further improving the gas treatment capacity by directly supplying moisture to the honeycomb structure. To provide an apparatus.

このような目的を達成するために本発明は、ハニカム構造体の少なくとも1つを水分補給のための対象ハニカム構造体とし、この対象ハニカム構造体の処理対象ガスの通過方向(通風路の入口から出口へ向かう方向)への流れに対向する上流側のガス流対向面に接して、その対象ハニカム構造体の内部に水分を補給する水分補給手段を設けたものである。 In order to achieve such an object, according to the present invention, at least one of the honeycomb structures is a target honeycomb structure for water replenishment, and the processing target gas passage direction of the target honeycomb structure (from the inlet of the ventilation path) A water supply means for supplying water to the inside of the target honeycomb structure is provided in contact with the upstream gas flow facing surface facing the flow in the direction toward the outlet .

例えば、本発明では、水分補給手段を、貯水槽と、該貯水槽と対象ハニカム構造体のガス流対向面との間に配置される細管とから構成する。この場合、細管は毛細管現象又は送風ファンの負圧現象により貯水槽内の水分を対象ハニカム構造体の内部に補給する。このような細管を用いると、加湿器のように電力を供給しなくても水分を補給することができ、省エネルギーとなる。また、プラズマ放電によって水分が消費されると、その消費分に応じて水分が補給されるものとなる。   For example, in the present invention, the water replenishing means includes a water storage tank and a thin tube disposed between the water storage tank and the gas flow facing surface of the target honeycomb structure. In this case, the capillaries replenish moisture in the water storage tank into the target honeycomb structure by a capillary phenomenon or a negative pressure phenomenon of the blower fan. When such a thin tube is used, moisture can be replenished without supplying electric power as in a humidifier, thus saving energy. Further, when water is consumed by plasma discharge, water is replenished according to the consumed amount.

本発明において、ハニカム構造体が処理対象ガスの通過方向に対し直交する方向に間隔を設けて配置されているものとすれば、全てのハニカム構造体に対して、プラズマ放電の生じない通風路の上流側からガス流対向面に向けて安定して水分を補給でき、ガスの流れにのってハニカム構造体内を伝わって、ハニカム構造体の下流側まで水分が補給されるものとなる。   In the present invention, if the honeycomb structures are arranged at intervals in a direction orthogonal to the direction in which the gas to be processed passes, the ventilation paths that do not cause plasma discharge are generated for all honeycomb structures. Moisture can be replenished stably from the upstream side toward the gas flow facing surface, and the water is replenished to the downstream side of the honeycomb structure along the gas flow through the honeycomb structure.

本発明では、ハニカム構造体に直接水分が補給され、そこからハニカム構造体の内部を水分が伝達されるので、ハニカム構造体間の空間のプラズマ放電によって水分が簡単に消費され難くなる。   In the present invention, moisture is replenished directly to the honeycomb structure, and moisture is transmitted from there to the inside of the honeycomb structure, so that it is difficult for the moisture to be easily consumed by plasma discharge in the space between the honeycomb structures.

本発明によれば、ハニカム構造体の少なくとも1つを水分補給のための対象ハニカム構造体とし、この対象ハニカム構造体の処理対象ガスの流れに対向するガス流対向面に接して、その対象ハニカム構造体の内部に水分を補給する水分補給手段を設けるようにしたので、ハニカム構造体に直接水分が補給されるものとなり、ハニカム構造体間の空間のプラズマ放電によって水分が簡単に消費され難くなり、更なるガス処理能力の向上を図ることができるようになる。   According to the present invention, at least one of the honeycomb structures is a target honeycomb structure for water replenishment, and the target honeycomb structure is in contact with the gas flow facing surface facing the processing target gas flow. Since a moisture replenishing means for replenishing moisture is provided inside the structure, moisture is directly replenished to the honeycomb structure, and moisture is not easily consumed by plasma discharge in the space between the honeycomb structures. As a result, the gas processing capacity can be further improved.

本発明に係るガス処理装置の一実施の形態(実施の形態1)の要部を示す図である。It is a figure which shows the principal part of one Embodiment (Embodiment 1) of the gas processing apparatus which concerns on this invention. 本発明に係るガス処理装置の他の実施の形態(実施の形態2)の要部を示す図である。It is a figure which shows the principal part of other embodiment (Embodiment 2) of the gas processing apparatus which concerns on this invention. 本発明に係るガス処理装置の別の実施の形態(実施の形態3)の要部を示す図である。It is a figure which shows the principal part of another embodiment (Embodiment 3) of the gas processing apparatus which concerns on this invention. 放電プラズマを利用した従来のガス処理装置の要部を例示する図である。It is a figure which illustrates the principal part of the conventional gas processing apparatus using discharge plasma. 特許文献3に示されたガス処理装置の要部を示す図である。It is a figure which shows the principal part of the gas processing apparatus shown by patent document 3. FIG.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〔実施の形態1〕
図1はこの発明に係るガス処理装置の一実施の形態(実施の形態1)の要部を示す図である。同図において、図5と同一符号は図5を参照して説明した構成要素と同一或いは同等構成要素を示し、その説明は省略する。
[Embodiment 1]
FIG. 1 is a diagram showing a main part of an embodiment (Embodiment 1) of a gas processing apparatus according to the present invention. 5, the same reference numerals as those in FIG. 5 denote the same or equivalent components as those described with reference to FIG. 5, and the description thereof will be omitted.

この実施の形態においても、図5に示したガス処理装置と同様に、処理対象ガスGSの通過方向(ダクト1の入口から出口へ向かう方向)に対し直交する方向に沿って、複数のハニカム構造体4を間隔を設けてダクト1内に配置している。 Also in this embodiment, similarly to the gas processing apparatus shown in FIG. 5, along a direction orthogonal to the passage direction of the untreated gas GS (direction from the inlet of the duct 1 to the outlet), a plurality of honeycomb structures The body 4 is arranged in the duct 1 with a gap.

この例では、ハニカム構造体4−1と4−2との間に間隔G1を設けて、ハニカム構造体4−3と4−4との間に間隔G2を設けて、ハニカム構造体4−1〜4−4をダクト1内に配置している。   In this example, a gap G1 is provided between the honeycomb structures 4-1 and 4-2, and a gap G2 is provided between the honeycomb structures 4-3 and 4-4. ˜4-4 are arranged in the duct 1.

また、ダクト1内の複数のハニカム構造体4のうち隣り合うハニカム構造体4−1と4−2を第1のハニカム構造体群とし、この第1のハニカム構造体群の両端に位置するハニカム構造体4−1および4−2の外側に、第1の電極として電極8を、第2の電極として電極9を配置している。   In addition, adjacent honeycomb structures 4-1 and 4-2 among the plurality of honeycomb structures 4 in the duct 1 serve as a first honeycomb structure group, and honeycombs positioned at both ends of the first honeycomb structure group. Outside the structures 4-1 and 4-2, an electrode 8 is arranged as a first electrode, and an electrode 9 is arranged as a second electrode.

同様にして、ダクト1内の複数のハニカム構造体4のうち隣り合うハニカム構造体4−3と4−4を第2のハニカム構造体群とし、この第2のハニカム構造体群の両端に位置するハニカム構造体4−3および4−4の外側に、第1の電極として電極9を、第2の電極として電極11を配置している。   Similarly, adjacent honeycomb structures 4-3 and 4-4 among the plurality of honeycomb structures 4 in the duct 1 are set as the second honeycomb structure group, and are positioned at both ends of the second honeycomb structure group. Outside the honeycomb structures 4-3 and 4-4, the electrode 9 as the first electrode and the electrode 11 as the second electrode are arranged.

なお、本実施の形態において、電極9は第1のハニカム構造体群の第2の電極と第2のハニカム構造体群の第1の電極とを兼ねた共通電極とされているが、第1のハニカム構造体群の第2の電極と第2のハニカム構造体群の第1の電極とを独立した電極とするようにしてもよい。   In the present embodiment, the electrode 9 is a common electrode that serves as both the second electrode of the first honeycomb structure group and the first electrode of the second honeycomb structure group. The second electrode of the honeycomb structure group and the first electrode of the second honeycomb structure group may be independent electrodes.

また、本実施の形態において、高電圧電源(高電圧源)5は、第1のハニカム構造体群の電極8と9との間および第2のハニカム構造体群の電極9と11との間に個別に高電圧を印加する単一の電源とされ、電極8および11が導線12によって高電圧電源5の+極に接続され、電極9が導線13によって高電圧電源5の−極に接続されている。   In the present embodiment, the high voltage power source (high voltage source) 5 is provided between the electrodes 8 and 9 of the first honeycomb structure group and between the electrodes 9 and 11 of the second honeycomb structure group. The electrodes 8 and 11 are connected to the positive pole of the high voltage power supply 5 by the conductive wire 12, and the electrode 9 is connected to the negative pole of the high voltage power supply 5 by the conductive wire 13. ing.

ハニカム構造体4は、セラミックス等の絶縁体で形成されており、処理対象ガスGSが通過する多数の貫通孔(セル)4aを有している。各ハニカム構造体4の単位面積当たりの貫通孔4aの数は等しくされている。また、各ハニカム構造体4の形状は等しくされており、電極8,9,11は処理対象ガスGSが通過するように金属メッシュとされている。   The honeycomb structure 4 is formed of an insulator such as ceramics, and has a large number of through holes (cells) 4a through which the processing target gas GS passes. The number of through holes 4a per unit area of each honeycomb structure 4 is made equal. Moreover, the shape of each honeycomb structure 4 is made equal, and the electrodes 8, 9, and 11 are made into a metal mesh so that the gas GS to be processed passes.

また、本実施の形態において、ハニカム構造体4−1〜4−4は全て水分補給のための対象ハニカム構造体とされ、ハニカム構造体4−1および4−4のガス流対向面(上流側のガス流対向面)4bに細管14の給水口14−1および14−2が接して設けられ、ハニカム構造体4−2および4−3のガス流対向面(上流側のガス流対向面)4bに細管15の給水口15−1および15−2が接して設けられている。細管14の導水口14−3は第1のタンク(貯水槽)16内に貯えられた水に浸されている。細管15の導水口15−3は第2のタンク(貯水槽)17内に貯えられた水に浸されている。 In the present embodiment, the honeycomb structures 4-1 to 4-4 are all the target honeycomb structures for water replenishment, and the gas flow facing surfaces (upstream side) of the honeycomb structures 4-1 and 4-4 Gas flow facing surface) 4b is provided with water supply ports 14-1 and 14-2 of the narrow tube 14 in contact with each other, and the gas flow facing surfaces of the honeycomb structures 4-2 and 4-3 (upstream gas flow facing surfaces). Water supply ports 15-1 and 15-2 of the thin tube 15 are provided in contact with 4b. The water inlet 14-3 of the narrow tube 14 is immersed in the water stored in the first tank (water tank) 16. The water inlet 15-3 of the thin tube 15 is immersed in the water stored in the second tank (water tank) 17.

このガス処理装置では、処理対象ガスGSをダクト1内に流し、電極8と9との間および電極9と11との間に高電圧電源5からの高電圧を印加する。これにより、ハニカム構造体4の貫通孔4aおよびハニカム構造体4間の空間10(10−1,10−2)にプラズマが発生し、このプラズマ中に生成されるイオンやラジカルによって、処理対象ガスGSに含まれる有害ガスが無害な物質に分解される。   In this gas processing apparatus, the gas GS to be processed is caused to flow into the duct 1, and a high voltage from the high voltage power supply 5 is applied between the electrodes 8 and 9 and between the electrodes 9 and 11. As a result, plasma is generated in the through holes 4a of the honeycomb structure 4 and the space 10 (10-1, 10-2) between the honeycomb structures 4, and the gas to be processed is generated by the ions and radicals generated in the plasma. The harmful gas contained in GS is decomposed into harmless substances.

本実施の形態において、プラズマはハニカム構造体4の貫通孔4aだけではなく、ハニカム構造体4間の空間10にも発生する。このため、貫通孔4a内での有害ガスの分子分解効果に加え、ハニカム構造体4間の空間10での有害ガスの分子分解効果が加わり、さらにこの貫通孔4a内での分子分解効果とハニカム構造体4間の空間10での分子分解効果との相乗効果により、有害ガスの無害な物質への分解が促進され、ガス処理能力が高まる。また、ハニカム構造体4間の空間10には、対向する貫通孔4aの縁面から電界が広がって、均一なプラズマが大量に発生する。   In the present embodiment, plasma is generated not only in the through holes 4 a of the honeycomb structure 4 but also in the space 10 between the honeycomb structures 4. For this reason, in addition to the molecular decomposition effect of the harmful gas in the through hole 4a, the molecular decomposition effect of the harmful gas in the space 10 between the honeycomb structures 4 is added, and further, the molecular decomposition effect in the through hole 4a and the honeycomb Due to the synergistic effect with the molecular decomposition effect in the space 10 between the structures 4, decomposition of harmful gases into harmless substances is promoted, and gas processing capacity is increased. Further, in the space 10 between the honeycomb structures 4, an electric field spreads from the edge surface of the opposing through-hole 4a, and a large amount of uniform plasma is generated.

また、この実施の形態では、各ハニカム構造体4が処理対象ガスGSの通過方向に対し直交する方向に沿って間隔を設けて配置されているので、処理対象ガスGSの通過方向に沿って配置される場合よりも、処理対象ガスGSが各ハニカム構造体4の貫通孔4aやハニカム構造体4間の空間10でプラズマに晒される時間が長くなる。これにより、ガス分解が行われる機会が多くなり、ガス処理能力が向上し、高速流におけるガス処理能力の低下を防ぐことが可能となる。   In this embodiment, since the honeycomb structures 4 are arranged at intervals along the direction orthogonal to the passing direction of the processing target gas GS, they are arranged along the passing direction of the processing target gas GS. Compared to the case, the time during which the processing target gas GS is exposed to plasma in the through holes 4a of the honeycomb structures 4 and the spaces 10 between the honeycomb structures 4 becomes longer. As a result, the opportunity for gas decomposition is increased, the gas processing capacity is improved, and it is possible to prevent the gas processing capacity from being lowered in a high-speed flow.

また、この実施の形態では、第1のハニカム構造体群の電極8と9との間および第2のハニカム構造体群の電極9と11との間に高電圧電源5からの高電圧を個別に印加しているので、空間10−1,10−2での電位を安定的に高電界状態に保ち、プラズマを安定して発生させることが可能となる。   In this embodiment, a high voltage from the high-voltage power source 5 is individually applied between the electrodes 8 and 9 of the first honeycomb structure group and between the electrodes 9 and 11 of the second honeycomb structure group. Therefore, the potentials in the spaces 10-1 and 10-2 can be stably maintained in a high electric field state, and plasma can be stably generated.

さらに、この実施の形態では、処理対象ガスGSをダクト1内に流してのガス処理中、タンク16およびタンク17内の水分がハニカム構造体4−1〜4−4の内部に直接補給される。すなわち、毛細管現象又は処理対象ガスGSを送り込む送風ファン(図示せず)の負圧現象により、細管14を通してタンク16内の水分が吸い上げられ、ハニカム構造体4−1および4−4のガス流対向面4bへ至り、このガス流対向面4bよりハニカム構造体4−1および4−4の内部に補給される。また、細管15を通してタンク17内の水分が吸い上げられ、ハニカム構造体4−2および4−3のガス流対向面4bへ至り、このガス流対向面4bよりハニカム構造体4−2および4−3の内部に補給される。   Furthermore, in this embodiment, during the gas treatment in which the gas to be treated GS flows in the duct 1, the moisture in the tank 16 and the tank 17 is directly supplied into the honeycomb structures 4-1 to 4-4. . That is, moisture in the tank 16 is sucked up through the thin tube 14 due to a capillary phenomenon or a negative pressure phenomenon of a blower fan (not shown) that feeds the processing target gas GS, and the honeycomb structures 4-1 and 4-4 face each other. It reaches the surface 4b and is replenished into the honeycomb structures 4-1 and 4-4 from the gas flow facing surface 4b. Further, the moisture in the tank 17 is sucked up through the thin tubes 15 and reaches the gas flow facing surface 4b of the honeycomb structures 4-2 and 4-3, and the honeycomb structures 4-2 and 4-3 from the gas flow facing surface 4b. It is replenished inside.

この場合、ハニカム構造体4−1〜4−4は処理対象ガスGSの通過方向に対し直交する方向に間隔を設けて配置されているので、ハニカム構造体4−1〜4−4の内部に補給された水分がガスの流れにのってハニカム構造体4−1〜4−4内を伝わって、ハニカム構造体4−1〜4−4の下流側まで水分が補給されるものとなる。また、ハニカム構造体4−1〜4−4に直接水分が補給され、そこからハニカム構造体4−1〜4−4の内部を水分が伝達されるので、ハニカム構造体4間の空間10のプラズマ放電によって水分が簡単に消費され難くなる。これにより、ガス処理能力の向上が図られる。   In this case, since the honeycomb structures 4-1 to 4-4 are arranged at intervals in a direction orthogonal to the passage direction of the processing target gas GS, the honeycomb structures 4-1 to 4-4 are disposed inside the honeycomb structures 4-1 to 4-4. The replenished moisture travels along the gas flow, travels through the honeycomb structures 4-1 to 4-4, and is replenished to the downstream side of the honeycomb structures 4-1 to 4-4. Further, moisture is directly supplied to the honeycomb structures 4-1 to 4-4, and moisture is transmitted from the honeycomb structures 4-1 to 4-4 to the honeycomb structures 4-1 to 4-4. Moisture is not easily consumed by plasma discharge. Thereby, the improvement of gas processing capacity is achieved.

また、本実施の形態では、毛細管現象又は送風ファンの負圧現象により、ハニカム構造体4−1〜4−4の内部への水分の補給が細管14および15を通して行われるので、加湿器のように電力を供給しなくても水分を補給することができ、省エネルギーとなる。また、プラズマ放電によって水分が消費されると、その消費分に応じて水分が補給されるものとなり、プラズマ放電の安定化に必要な水分を効率よく供給することができる。また、風量が大きくなるにつれて、ガス処理装置内が負圧になるため、タンク16および17からの水分供給量も多くなり、ガス処理の効率の向上に寄与する。   Further, in the present embodiment, the water supply to the honeycomb structures 4-1 to 4-4 is performed through the thin tubes 14 and 15 due to the capillary phenomenon or the negative pressure phenomenon of the blower fan. Water can be replenished without supplying power to the battery, which saves energy. Further, when moisture is consumed by plasma discharge, moisture is replenished according to the consumed amount, and moisture necessary for stabilizing plasma discharge can be efficiently supplied. Further, as the air volume increases, the inside of the gas processing apparatus becomes negative pressure, so that the amount of water supplied from the tanks 16 and 17 also increases, contributing to the improvement of gas processing efficiency.

〔実施の形態2〕
実施の形態1では、処理対象ガスGSの通過方向に対し直交する方向に沿って間隔を設けて配置された複数のハニカム構造体4のうち隣り合うハニカム構造体4−1と4−2を第1のハニカム構造体群とし、隣り合うハニカム構造体4−3と4−4を第2のハニカム構造体群とし、この第1および第2のハニカム構造体群に個別に高電圧を印加するようにしたが、図2に示すように、ダクト1内にハニカム構造体群を1群のみ配置した構成としてもよい。
[Embodiment 2]
In Embodiment 1, the adjacent honeycomb structures 4-1 and 4-2 among the plurality of honeycomb structures 4 arranged at intervals along the direction orthogonal to the passing direction of the processing target gas GS One honeycomb structure group, and the adjacent honeycomb structures 4-3 and 4-4 as second honeycomb structure groups, so that a high voltage is individually applied to the first and second honeycomb structure groups. However, as shown in FIG. 2, only one group of honeycomb structures may be arranged in the duct 1.

図2に示した例では、処理対象ガスGSの通過方向に対し直交する方向に沿って間隔を設けてハニカム構造体4−1,4−2,4−3,4−4をダクト1内に配置し、このハニカム構造体4−1〜4−4のうち一端に配置されるハニカム構造体4−1の外側に第1の電極8を配置し、他端に配置されるハニカム構造体4−4の外側に第2の電極9を配置し、この第1の電極8と第2の電極9との間に高電圧電源5からの高電圧を印加するようにしている。   In the example shown in FIG. 2, the honeycomb structures 4-1, 4-2, 4-3, and 4-4 are placed in the duct 1 at intervals along a direction orthogonal to the passage direction of the processing target gas GS. The first electrode 8 is disposed outside the honeycomb structure 4-1 disposed at one end of the honeycomb structures 4-1 to 4-4, and the honeycomb structure 4- disposed at the other end. The second electrode 9 is disposed outside the electrode 4, and a high voltage from the high voltage power supply 5 is applied between the first electrode 8 and the second electrode 9.

〔実施の形態3〕
また、図3に示すように、処理対象ガスGSの通過方向に対し沿って間隔を設けてハニカム構造体4−1,4−2,4−3,4−4をダクト1内に配置し、このハニカム構造体4−1〜4−4のうち一端に配置されるハニカム構造体4−1の外側に第1の電極8を配置し、他端に配置されるハニカム構造体4−4の外側に第2の電極9を配置し、この第1の電極8と第2の電極9との間に高電圧電源5からの高電圧を印加するようにしてもよい。
[Embodiment 3]
Further, as shown in FIG. 3, the honeycomb structures 4-1, 4-2, 4-3, and 4-4 are arranged in the duct 1 at intervals along the passage direction of the processing target gas GS, Among the honeycomb structures 4-1 to 4-4, the first electrode 8 is disposed outside the honeycomb structure 4-1 disposed at one end, and the outside of the honeycomb structure 4-4 disposed at the other end. Alternatively, the second electrode 9 may be disposed, and a high voltage from the high voltage power supply 5 may be applied between the first electrode 8 and the second electrode 9.

この場合、例えば、ハニカム構造体4−1を水分補給のための対象ハニカム構造体とし、ハニカム構造体4−1のガス流対向面4bに細管14の給水口14−1を接して設け、タンク16内の水分をハニカム構造体4−1の内部に補給するようにする。なお、ハニカム構造体4−1だけではなく、ハニカム構造体4−2も水分補給のための対象ハニカム構造体とし、同様にしてタンク16内の水分を補給するようにしてもよく、ハニカム構造体4−1〜4−4の全てを水分補給のための対象ハニカム構造体としてもよい。   In this case, for example, the honeycomb structure 4-1 is a target honeycomb structure for water replenishment, the water supply port 14-1 of the narrow tube 14 is provided in contact with the gas flow facing surface 4b of the honeycomb structure 4-1, and the tank The moisture in 16 is replenished to the inside of the honeycomb structure 4-1. Note that not only the honeycomb structure 4-1 but also the honeycomb structure 4-2 may be the target honeycomb structure for water replenishment, and the water in the tank 16 may be replenished in the same manner. All of 4-1 to 4-4 may be the target honeycomb structure for water replenishment.

なお、上述した実施の形態1〜3において、ハニカム構造体4はオゾンを分解する触媒機能を備えたものとしてもよく、処理対象ガスGSの通過方向の下流位置にオゾンを分解する触媒を設けるようにしてもよい。   In the first to third embodiments described above, the honeycomb structure 4 may be provided with a catalyst function for decomposing ozone, and a catalyst for decomposing ozone is provided at a downstream position in the passing direction of the processing target gas GS. It may be.

また、上述した実施の形態1では、1つのハニカム構造体群中のハニカム構造体4の数を2つとしたが、さらにその数を増やすようにしてもよい。また、ハニカム構造体群の数も2つに限られるものではなく、さらにその数を増やしてもよい。実施の形態2,3でも、同様であり、ハニカム構造体の数は2つ以上あればよい。   In Embodiment 1 described above, the number of honeycomb structures 4 in one honeycomb structure group is two, but the number may be further increased. Further, the number of honeycomb structure groups is not limited to two, and the number may be further increased. The same applies to Embodiments 2 and 3, and the number of honeycomb structures may be two or more.

また、上述した実施の形態1では、第1のハニカム構造体群と第2のハニカム構造体群とに単一の高電圧電源5からの高電圧を個別に印加するようにしたが、異なる高電圧電源からの高電圧を個別に印加するようにしてもよい。例えば、印加する高電圧の値を変えたり、印加する高電圧の種類(交流、直流など)を変えたり、印加する高電圧の周波数を変えたりすることにより、第1のハニカム構造体群と第2のハニカム構造体群とでプラズマの発生量を変えて、分解可能な有害ガスの種類を異ならせたりすることが可能となる。   In Embodiment 1 described above, a high voltage from a single high-voltage power supply 5 is individually applied to the first honeycomb structure group and the second honeycomb structure group. You may make it apply the high voltage from a voltage power supply separately. For example, by changing the value of the applied high voltage, changing the type of applied high voltage (AC, DC, etc.), or changing the frequency of the applied high voltage, the first honeycomb structure group and the first It is possible to change the kind of decomposable harmful gas by changing the amount of plasma generated in the two honeycomb structure groups.

また、上述した実施の形態1〜3において、副生成物としてオゾンを大量に発生させ、オゾン発生器として転用するようにしてもよい。   Moreover, in Embodiment 1-3 mentioned above, ozone may be generated in large quantities as a by-product, and you may make it divert as an ozone generator.

本発明のガス処理装置は、燃料電池等に用いられる水素を効率的に生成する目的で、炭化水素類等から水素含有ガスを生成する、いわゆる改質にも適用することができる。例えばオクタン(ガソリンの平均分子量に比較的近い物質)C818の場合は、本ガス処理装置に供給すると下記(1)式で示される化学反応が促進され、その結果水素ガスを効率よく生成することができる。
818+8H2O+4(O2+4N2)→8CO2+17H2+16N2・・・・(1)
The gas processing apparatus of the present invention can also be applied to so-called reforming for generating a hydrogen-containing gas from hydrocarbons or the like for the purpose of efficiently generating hydrogen used in a fuel cell or the like. For example, in the case of octane (substance relatively close to the average molecular weight of gasoline) C 8 H 18 , when supplied to this gas treatment device, the chemical reaction represented by the following formula (1) is promoted, and as a result, hydrogen gas is efficiently generated. can do.
C 8 H 18 + 8H 2 O + 4 (O 2 + 4N 2 ) → 8CO 2 + 17H 2 + 16N 2 ... (1)

1…ダクト(通風路)、4(4−1〜4−4)…ハニカム構造体、4a…貫通孔(セル)、4b…ガス流対向面、5…高電圧電源、8,9,11…電極、10(10−1,10−2,10−3)…空間、G(G1,G2,G3)…間隔、GS…処理対象ガス、14,15…細管、14−1,14−2,15−1,15−2…給水口、14−3,15−3…導水口、16,17…タンク(貯水槽)。   DESCRIPTION OF SYMBOLS 1 ... Duct (ventilation path), 4 (4-1 to 4-4) ... Honeycomb structure, 4a ... Through-hole (cell), 4b ... Gas flow opposing surface, 5 ... High voltage power supply, 8, 9, 11 ... Electrode, 10 (10-1, 10-2, 10-3) ... space, G (G1, G2, G3) ... interval, GS ... gas to be processed, 14, 15 ... capillary, 14-1, 14-2, 15-1, 15-2 ... water supply port, 14-3, 15-3 ... water inlet, 16, 17 ... tank (water tank).

Claims (4)

通風路に間隔を設けて配置され、前記通風路を流れる処理対象ガスが通過する多数の貫通孔を有する複数のハニカム構造体と、
前記複数のハニカム構造体のうち一端に配置されるハニカム構造体の外側に配置される第1の電極と、
前記複数のハニカム構造体のうち他端に配置されるハニカム構造体の外側に配置される第2の電極と、
前記第1の電極と前記第2の電極との間に高電圧を印加し前記ハニカム構造体の貫通孔および前記ハニカム構造体間の空間にプラズマを発生させる高電圧源とを備え、前記通風路の入口から出口へ向かう方向を前記処理対象ガスの通過方向としたガス処理装置において、
前記ハニカム構造体の少なくとも1つを水分補給のための対象ハニカム構造体とし、この対象ハニカム構造体の前記処理対象ガスの通過方向への流れに対向する上流側のガス流対向面に接して、その対象ハニカム構造体の内部に水分を補給する水分補給手段
を備えることを特徴とするガス処理装置。
A plurality of honeycomb structures having a large number of through-holes that are arranged at intervals in the ventilation path and through which the gas to be processed flowing through the ventilation path passes;
A first electrode disposed outside the honeycomb structure disposed at one end of the plurality of honeycomb structures;
A second electrode disposed outside the honeycomb structure disposed at the other end of the plurality of honeycomb structures;
And a high voltage source for generating a plasma in the space between the through hole and the honeycomb structure a high voltage is applied, wherein the honeycomb structure between the second electrode and the first electrode, the air passage In the gas processing apparatus in which the direction from the inlet to the outlet is the passing direction of the processing target gas ,
At least one of the honeycomb structures is a target honeycomb structure for water replenishment, and is in contact with an upstream gas flow facing surface facing the flow in the processing target gas flow direction of the target honeycomb structure, A gas treatment apparatus comprising a moisture replenishing means for replenishing moisture inside the target honeycomb structure.
通風路に間隔を設けて配置され、前記通風路を流れる処理対象ガスが通過する多数の貫通孔を有する複数のハニカム構造体と、
前記複数のハニカム構造体のうち隣り合う複数のハニカム構造体を1群のハニカム構造体群とし、このハニカム構造体群の両端に位置するハニカム構造体の外側に配置された第1および第2の電極と、
前記第1の電極と前記第2の電極との間に高電圧を印加し前記ハニカム構造体の貫通孔および前記ハニカム構造体間の空間にプラズマを発生させる高電圧源とを備え、前記通風路の入口から出口へ向かう方向を前記処理対象ガスの通過方向としたガス処理装置において、
前記ハニカム構造体の少なくとも1つを水分補給のための対象ハニカム構造体とし、この対象ハニカム構造体の前記処理対象ガスの通過方向への流れに対向する上流側のガス流対向面に接して、その対象ハニカム構造体の内部に水分を補給する水分補給手段
を備えることを特徴とするガス処理装置。
A plurality of honeycomb structures having a large number of through-holes that are arranged at intervals in the ventilation path and through which the gas to be processed flowing through the ventilation path passes;
A plurality of adjacent honeycomb structures among the plurality of honeycomb structures are used as one group of honeycomb structures, and the first and second arranged outside the honeycomb structures located at both ends of the honeycomb structures . Electrodes,
And a high voltage source for generating a plasma in the space between the through hole and the honeycomb structure a high voltage is applied, wherein the honeycomb structure between the second electrode and the first electrode, the air passage In the gas processing apparatus in which the direction from the inlet to the outlet is the passing direction of the processing target gas ,
At least one of the honeycomb structures is a target honeycomb structure for water replenishment, and is in contact with an upstream gas flow facing surface facing the flow in the processing target gas flow direction of the target honeycomb structure, A gas treatment apparatus comprising a moisture replenishing means for replenishing moisture inside the target honeycomb structure.
請求項1又は2に記載されたガス処理装置において、
前記ハニカム構造体は、前記処理対象ガスの通過方向に対し直交する方向に間隔を設けて配置されている
ことを特徴とするガス処理装置。
In the gas treatment device according to claim 1 or 2,
The said honeycomb structure is arrange | positioned at intervals in the direction orthogonal to the passage direction of the said process target gas. The gas processing apparatus characterized by the above-mentioned.
請求項1−3の何れか1項に記載されたガス処理装置において、
前記水分補給手段は、
貯水槽と、該貯水槽と前記対象ハニカム構造体のガス流対向面との間に配置される細管とからなる
ことを特徴とするガス処理装置。
In the gas treatment equipment according to any one of claims 1-3,
The hydration means is
A gas processing apparatus comprising: a water storage tank; and a thin tube disposed between the water storage tank and a gas flow facing surface of the target honeycomb structure.
JP2010077610A 2010-03-30 2010-03-30 Gas processing equipment Expired - Fee Related JP5416012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077610A JP5416012B2 (en) 2010-03-30 2010-03-30 Gas processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077610A JP5416012B2 (en) 2010-03-30 2010-03-30 Gas processing equipment

Publications (2)

Publication Number Publication Date
JP2011206705A JP2011206705A (en) 2011-10-20
JP5416012B2 true JP5416012B2 (en) 2014-02-12

Family

ID=44938406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077610A Expired - Fee Related JP5416012B2 (en) 2010-03-30 2010-03-30 Gas processing equipment

Country Status (1)

Country Link
JP (1) JP5416012B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106475029B (en) * 2015-08-27 2020-06-26 洪昆喨 High-voltage electro-catalytic discharge reactor
CN114191950A (en) * 2022-01-07 2022-03-18 河海大学 Quick clearing device of plasma formaldehyde discharges

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194669A (en) * 2007-01-15 2008-08-28 Yamatake Corp Gas treatment apparatus
JP2008194670A (en) * 2007-01-15 2008-08-28 Yamatake Corp Gas treatment apparatus

Also Published As

Publication number Publication date
JP2011206705A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP2008194670A (en) Gas treatment apparatus
EP2345312B1 (en) Apparatus and method for treating an object by plasma
JP6316047B2 (en) Gas processing equipment
KR100657476B1 (en) Surface discharge type air cleaning device
KR20110109575A (en) Air pollutants removal apparatus using mediated ions and reductants, and operation method thereof
KR20200069296A (en) Free radical generators and methods of use
JP5723195B2 (en) Gas processing equipment
JP5416012B2 (en) Gas processing equipment
JP2008194668A (en) Gas treatment apparatus
JP2008194669A (en) Gas treatment apparatus
KR100624732B1 (en) Surface discharge type air cleaning device
JP5242425B2 (en) Gas processing equipment
JP2012213720A (en) Gas treatment device
JP5688231B2 (en) Gas processing equipment
JP6774345B2 (en) Gas processing equipment
JP5486208B2 (en) Gas processing equipment
JP5271773B2 (en) Gas processing equipment
JP2009165939A (en) Gas treatment apparatus
JP4461273B2 (en) Exhaust gas nitrogen oxide removal method and exhaust gas nitrogen oxide removal apparatus
AU2020103321A4 (en) DEVICE FOR TREATING VOCs WITH PULSE CORONA AND CATALYST
JP2006187766A (en) Gas treatment apparatus and gas treatment cartridge
KR20030065068A (en) Mixture and one-body type purification apparatus with dielectric barrier structure
CN212680550U (en) Gas treatment device
JP2011206298A (en) Gas treatment equipment
JP2011206704A (en) Gas treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131114

R150 Certificate of patent or registration of utility model

Ref document number: 5416012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees