JP5487224B2 - refrigerator - Google Patents
refrigerator Download PDFInfo
- Publication number
- JP5487224B2 JP5487224B2 JP2012030079A JP2012030079A JP5487224B2 JP 5487224 B2 JP5487224 B2 JP 5487224B2 JP 2012030079 A JP2012030079 A JP 2012030079A JP 2012030079 A JP2012030079 A JP 2012030079A JP 5487224 B2 JP5487224 B2 JP 5487224B2
- Authority
- JP
- Japan
- Prior art keywords
- fan
- refrigerator
- air
- compartment
- freezer compartment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/04—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
- F25D17/06—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
- F25D17/062—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
- F25D17/065—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/04—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
- F25D17/06—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
- F25D17/08—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/06—Walls
- F25D23/065—Details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D29/00—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/11—Fan speed control
- F25B2600/112—Fan speed control of evaporator fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2317/00—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
- F25D2317/06—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
- F25D2317/063—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation with air guides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2317/00—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
- F25D2317/06—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
- F25D2317/067—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by air ducts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2317/00—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
- F25D2317/06—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
- F25D2317/068—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
- F25D2317/0682—Two or more fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2323/00—General constructional features not provided for in other groups of this subclass
- F25D2323/002—Details for cooling refrigerating machinery
- F25D2323/0028—Details for cooling refrigerating machinery characterised by the fans
- F25D2323/00281—Two or more fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2400/00—General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
- F25D2400/28—Quick cooling
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Description
本発明は、冷蔵庫に関する。 The present invention relates to a refrigerator.
異なる温度帯の貯蔵室を複数備え、単一の冷却器で熱交換して発生した冷気を、複数の貯蔵室に対応した複数の送風手段によって、それぞれ送風する冷蔵庫が知られている。 There is known a refrigerator that includes a plurality of storage chambers of different temperature zones and that blows cold air generated by heat exchange with a single cooler by a plurality of air blowing means corresponding to the plurality of storage chambers.
特許文献1に記載の冷蔵庫では、冷蔵室ファンと冷凍室ファンを備え、冷蔵室と冷凍室に設けた温度センサで貯蔵室温度を検知し、温度センサと連動して貯蔵室の設定温度になるように冷蔵室ファンと冷凍室ファンの回転数を制御して、冷蔵室と冷凍室に送風する風量を調整している。 In the refrigerator described in Patent Document 1, a refrigerator compartment fan and a freezer compartment fan are provided, the temperature of the storage compartment is detected by a temperature sensor provided in the refrigerator compartment and the freezer compartment, and the set temperature of the storage compartment is obtained in conjunction with the temperature sensor. As described above, the rotational speeds of the refrigerator compartment fan and the freezer compartment fan are controlled to adjust the amount of air blown to the refrigerator compartment and the freezer compartment.
特許文献2に記載の冷蔵庫では、冷蔵室の風路途中にダンパを設けて、冷凍室を単独で冷却する運転を実施している。また、庫内検知温度に応じて、冷蔵室ファンと冷凍室ファンを制御することで、各貯蔵室の温度を細かく独立に制御することが記載されている。 In the refrigerator described in Patent Document 2, a damper is provided in the middle of the air path of the refrigerator compartment, and the operation of cooling the freezer compartment alone is performed. Further, it is described that the temperature of each storage room is finely and independently controlled by controlling the refrigerator compartment fan and the freezer compartment fan in accordance with the temperature detected in the refrigerator.
特許文献1に記載の冷蔵庫では、冷蔵室に投入する食品が多い場合、冷蔵室と同時に冷やす冷凍室まで冷やし過ぎにならないように、冷凍室ファンの回転数を調整している。また、一方のファンが駆動している場合、他方のファンを最小のファン回転数で駆動することでバルブのように作用させ、他方のファンを停止させている場合に発生する冷気流れの逆流を防ぐことが記載されている。 In the refrigerator described in Patent Document 1, when a large amount of food is put into the refrigerator compartment, the number of rotations of the freezer compartment fan is adjusted so that the refrigerator compartment is not cooled too much at the same time as the refrigerator compartment. Also, when one fan is driving, the other fan is driven at the minimum fan speed to act like a valve, and the reverse flow of the cold air flow that occurs when the other fan is stopped It is described to prevent.
しかしながら、冷蔵室と冷凍室に冷気を送風するそれぞれの風路途中に、送風を遮断するダンパ(冷気フラップ)を備えていないため、冷蔵室と冷凍室を同時に冷却する運転が基本となり、冷蔵室ファン、または冷凍室ファンのいずれかを停止した冷却運転を実施しようとしても、ファンを停止した側への逆流の抑制が困難となる。 However, since there are no dampers (cold air flaps) in the middle of the air passages for sending cool air to the refrigerating room and freezer room, the operation is to cool the refrigerating room and freezer room at the same time. Even if it is attempted to perform a cooling operation in which either the fan or the freezer compartment fan is stopped, it is difficult to suppress the backflow to the side where the fan is stopped.
単一の冷却器を備えた冷蔵庫では、省エネルギー性を高めるために、庫内の温度に合わせた蒸発温度(冷却器温度)で冷凍サイクルを運転することが重要である。特に、冷蔵室を単独で冷却する運転モード(冷蔵室単独冷却運転)を設けて、蒸発温度を高めることによって、冷凍サイクルの効率を上げることができる。 In a refrigerator equipped with a single cooler, it is important to operate the refrigeration cycle at an evaporation temperature (cooler temperature) that matches the temperature in the refrigerator in order to enhance energy saving. In particular, the efficiency of the refrigeration cycle can be increased by providing an operation mode (cooling room single cooling operation) for cooling the refrigerating chamber alone to increase the evaporation temperature.
しかし、特許文献1にこのような省エネルギー運転に関する記載がない。省エネルギー性を高めた冷蔵室単独冷却運転の場合、冷蔵室ファンを運転し、冷凍室ファンを停止する。このとき、冷凍室ファンを完全に停止させると、冷凍室ファンの送風方向と逆流する流れが発生する。すなわち、冷蔵室側を循環する冷気の一部が冷凍室冷気戻り口から冷凍室内に流入し、冷凍室ファンの吐出側(冷凍室冷却運転時の冷気流れの下流側)から吸込側(冷凍室冷却運転時の冷気流れの上流側)に向かって流れる逆流現象が見られる。このため、冷凍室ファンを最小の回転数で回してバルブのように作用させ、逆流現象を防止すると記載されている。 However, there is no description regarding such energy saving operation in Patent Document 1. In the case of cooling room independent cooling operation with improved energy saving, the refrigerator compartment fan is operated and the freezer compartment fan is stopped. At this time, if the freezer compartment fan is completely stopped, a flow is generated that flows backward in the blowing direction of the freezer compartment fan. That is, a part of the cold air circulating in the freezer compartment flows into the freezer compartment from the freezer compartment cooler return port, and the suction side (freezer compartment) from the discharge side of the freezer compartment fan (downstream of the cold air flow during the freezer compartment cooling operation). There is a backflow phenomenon that flows toward the upstream side of the cold air flow during the cooling operation. For this reason, it is described that the freezer compartment fan is rotated at a minimum number of rotations to act like a valve to prevent a backflow phenomenon.
しかしながら、冷蔵室ファンと同等程度の大きさの冷凍室ファンを用いる場合、逆流を防止するために従来の1/100程度の低回転数で冷凍室ファンを運転する必要がある。そのため、通常の冷凍室冷却運転時のファン回転数と、逆流を防止する際のファン回転数とを、同じ駆動源(モータ)を用いて運転することは困難である。 However, when a freezer compartment fan having a size equivalent to that of the refrigerator compartment fan is used, it is necessary to operate the freezer compartment fan at a rotation speed as low as about 1/100 of the conventional one in order to prevent backflow. For this reason, it is difficult to operate the fan rotational speed during the normal freezer compartment cooling operation and the fan rotational speed at the time of preventing backflow using the same drive source (motor).
また、冷蔵室ファンよりも小形の冷凍室ファンを用いて低風量を実現させる構成が考えられるが、通常の冷凍室冷却運転時に必要な風量を得るために高速運転となり、騒音の問題も生じる。 In addition, a configuration in which a low air volume is realized by using a smaller freezer compartment fan than the refrigerator compartment fan is conceivable. However, a high speed operation is required to obtain a necessary air volume during a normal freezer compartment cooling operation, which causes a problem of noise.
加えて、冷凍室への逆流現象を防止するために、冷凍室ファンを十分に低速にした運転ができない場合、冷蔵室を冷却するには適するものの、冷凍室を冷却するには適さない温度帯の冷気が、冷凍室ファンによって冷凍室に送風されることになり、冷凍室の温度上昇を引き起こすおそれがある。 In addition, in order to prevent the reverse flow phenomenon to the freezer compartment, a temperature range that is suitable for cooling the refrigerator compartment but not for cooling the freezer compartment when the freezer compartment fan cannot be operated at a sufficiently low speed. The cold air is blown to the freezer compartment by the freezer compartment fan, which may cause an increase in the temperature of the freezer compartment.
特許文献2に記載の冷蔵庫では、冷蔵室の風路途中に送風を遮断するダンパを備えているので、冷凍室と冷蔵室を同時に冷却する運転と、冷凍室を単独で冷却する運転を実施している。 The refrigerator described in Patent Document 2 includes a damper that blocks air flow in the air path of the refrigeration room. Therefore, an operation for cooling the freezing room and the refrigeration room at the same time and an operation for cooling the freezing room independently are performed. ing.
しかしながら、省エネルギー性を高めるための冷蔵室単独冷却運転に関する記載はなく、冷蔵室単独冷却運転を実施した際の冷蔵室と冷凍室の冷気の流れに関する記載もない。 However, there is no description about the cooling room single cooling operation for improving the energy saving performance, and there is no description about the flow of cold air in the freezing room and the freezing room when the cooling room single cooling operation is performed.
このように、特許文献1及び特許文献2においては、冷蔵室冷却用の冷蔵室ファンと冷凍室冷却用の冷凍室ファンを備えた冷蔵庫が開示されているが、冷蔵室単独冷却運転を実施して省エネルギー性を高める運転について記載されていない。また、冷蔵室単独冷却運転の場合と同じ冷気循環であって、冷蔵室を短時間で急速に冷やす冷蔵室急速冷却運転に関する記載もない。 As described above, Patent Document 1 and Patent Document 2 disclose a refrigerator having a refrigerator compartment fan for cooling the refrigerator compartment and a refrigerator compartment fan for cooling the refrigerator compartment. However, it does not describe the operation that improves energy saving. Moreover, it is the same cold air circulation as the case of the refrigerator compartment independent cooling operation, and there is no description about the refrigerator compartment rapid cooling operation which cools the refrigerator compartment rapidly in a short time.
本発明は、以上のような問題点に鑑みてなされたものであり、冷蔵室を単独で冷却する運転を実施する際の冷凍室への冷気流入を抑制することで、省エネルギー性及び食品保存性を向上させた冷蔵庫を提供することを目的とする。 The present invention has been made in view of the above problems, and is capable of saving energy and preserving food by suppressing the inflow of cold air into the freezer compartment when performing the operation of cooling the refrigerator compartment alone. An object of the present invention is to provide a refrigerator with improved quality.
上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、複数の貯蔵室と、前記複数の貯蔵室のそれぞれに冷気を送風する第一の送風機及び第二の送風機と、を備えた冷蔵庫において、前記第一の送風機が設けられる風路と、前記第二の送風機が設けられる風路とは境界部を隔てて一部が隣接して設けられて、前記第一の送風機が設けられる風路の前記第一の送風機の吐出側と、前記第二の送風機が設けられる風路の前記第二の送風機の吐出側とが隣接する前記境界部に、互いの風路を繋ぐ風量制御部を設けたことを特徴とする。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-described problems. To give an example, a plurality of storage chambers, and a first blower and a second blower for blowing cool air to each of the plurality of storage chambers, The air passage in which the first blower is provided and the air passage in which the second blower is provided are provided partially adjacent to each other with a boundary portion therebetween, A mutual air path is formed in the boundary portion where the discharge side of the first fan of the air path provided with the blower and the discharge side of the second fan of the air path provided with the second fan are adjacent to each other. It is characterized in that a connecting air volume control unit is provided.
本発明によれば、冷蔵室を単独で冷却する運転を実施する際の冷凍室への冷気流入を抑制することで、省エネルギー性及び食品保存性を向上させた冷蔵庫を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the refrigerator which improved energy saving property and food preservability can be provided by suppressing the cold air | flow inflow to the freezer compartment at the time of implementing the driving | operation which cools a refrigerator compartment independently.
本発明の実施形態について図面を用いて説明する。
図1は、本発明の実施形態に係る冷蔵庫の正面図であって、ドアの開放状態を示す正面図である。図2は、本発明の実施形態に係る冷蔵庫のドアを除いて、冷気循環経路を説明する正面透視図である。図3は、図2のA−A断面図であって、冷凍室と冷蔵室の冷気循環経路を示す図である。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a front view of a refrigerator according to an embodiment of the present invention, and is a front view showing an open state of a door. FIG. 2 is a front perspective view illustrating a cold air circulation path except for a refrigerator door according to an embodiment of the present invention. FIG. 3 is a cross-sectional view taken along the line AA of FIG. 2 and shows a cold air circulation path between the freezer compartment and the refrigerator compartment.
なお、本実施例で単に冷蔵庫と記載した場合、冷蔵温度帯室と冷凍温度帯室を備えた冷凍冷蔵庫を含むものとする。 In addition, when it only describes as a refrigerator in a present Example, the refrigerator refrigerator provided with the refrigerator temperature zone room and the freezing temperature zone room shall be included.
冷蔵庫本体1は内容積が600Lから700Lを有する大形の冷蔵庫で、冷蔵庫本体1の幅は750〜800mmあり、それに応じて庫内の循環冷気を冷却する冷却器16の幅は500mmを超える。また、冷却器16の下部には冷却器16に成長した霜を解かすために、加熱手段である除霜ヒータ41を設けてある。除霜ヒータ41によって冷却器16に付着した霜を加熱する除霜運転中に生じる除霜水は、冷却器16の下方に設けた水受け部である樋28から、外部に排出する構成である。 The refrigerator main body 1 is a large refrigerator having an internal volume of 600L to 700L, the width of the refrigerator main body 1 is 750 to 800 mm, and the width of the cooler 16 that cools the circulating cold air in the refrigerator accordingly exceeds 500 mm. Further, a defrost heater 41 as a heating means is provided at the lower part of the cooler 16 in order to defrost the frost that has grown on the cooler 16. The defrosting water generated during the defrosting operation in which the frost attached to the cooler 16 is heated by the defrosting heater 41 is configured to be discharged to the outside from the eaves 28 that are water receiving portions provided below the cooler 16. .
庫内には断熱仕切り壁9を隔てて上側に冷凍温度帯の冷凍室3(冷凍温度帯室、貯蔵室)、下側に冷蔵温度帯の冷蔵室4(冷蔵温度帯室、貯蔵室)が配置されている。すなわち、複数の貯蔵室が設けられている。 A freezer compartment 3 (freezer temperature zone room, storage room) on the upper side with a heat insulating partition wall 9 in the interior, and a refrigeration room 4 (refrigeration temperature zone room, storage room) in the refrigeration temperature zone on the lower side. Has been placed. That is, a plurality of storage rooms are provided.
冷凍室3には、貯蔵空間を上下に区画する棚19が設けられている。同様に、冷蔵室4には、貯蔵空間を上下に区画する棚19が上下方向に複数段設けられている。 The freezer compartment 3 is provided with a shelf 19 that divides the storage space vertically. Similarly, the refrigerator compartment 4 has a plurality of shelves 19 that vertically divide the storage space.
冷蔵室4の下部には、野菜や果物等の青果物を収納するのに適した収納ケース20を設けている。収納ケース20内には直接冷気が吹き出されず、収納ケース20の周囲を冷気が包むようにして、間接的に冷却される。これにより、青果物に直接冷気が吹きつけられないので、乾燥を抑制できる。なお、収納ケース20は必ずしも完全な密閉構造である必要はなく、収納ケース20の隙間から冷気がある程度流入する構造であってもよい。 A storage case 20 suitable for storing fruits and vegetables such as vegetables and fruits is provided at the bottom of the refrigerator compartment 4. The cool air is not blown directly into the storage case 20 but is indirectly cooled so that the cool air wraps around the storage case 20. Thereby, since cold air is not sprayed directly on fruits and vegetables, drying can be suppressed. Note that the storage case 20 does not necessarily have a completely sealed structure, and may have a structure in which cold air flows to some extent from the gap between the storage cases 20.
冷凍室3と冷蔵室4の前面(冷蔵庫本体1を正面から見て前方側)には、それぞれ開口が形成されている。この開口は、それぞれ冷凍室ドア7と冷蔵室ドア8によって開閉可能である。冷蔵室ドア8の貯蔵空間側には、冷蔵室ドア収納部10を上下方向に複数段備えている。冷蔵室ドア収納部10は、上部が開口したポケット形状であって、清涼飲料水やミネラルウォーターが充填されたペットボトルや缶等の飲料容器11を収納するのに適しており、使用者が飲料容器11を出し入れし易い。 Openings are respectively formed on the front surfaces of the freezer compartment 3 and the refrigerator compartment 4 (the front side when the refrigerator main body 1 is viewed from the front). This opening can be opened and closed by a freezer compartment door 7 and a refrigerator compartment door 8, respectively. On the storage space side of the refrigerator compartment door 8, a plurality of stages of refrigerator compartment door storage portions 10 are provided in the vertical direction. The refrigerator compartment door storage unit 10 has a pocket shape with an open top, and is suitable for storing beverage containers 11 such as plastic bottles and cans filled with soft drinks or mineral water. The container 11 can be easily taken in and out.
冷凍室3の奥側(冷蔵庫本体1を正面から見て冷凍室3内の後方側)の仕切り部12には、上部に冷凍室冷気吐出口2と、その下部に冷凍室冷気戻り口5を設けている。なお、冷凍室冷気吐出口2は、棚19で区画された複数の貯蔵空間のそれぞれに対応して冷気を吹き出すように、上下方向に複数設けられている。 The partition 12 on the back side of the freezer compartment 3 (the rear side in the freezer compartment 3 when the refrigerator main body 1 is viewed from the front) has a freezer compartment cool air discharge port 2 at the top and a freezer compartment cool air return port 5 at the bottom. Provided. In addition, the freezer compartment cold air discharge port 2 is provided with two or more up and down directions so that cold air may be blown off corresponding to each of the some storage space divided by the shelf 19. FIG.
冷蔵室4の奥側(冷蔵庫本体1を正面から見て冷蔵室4内の後方側)の冷蔵室仕切り部39には、棚19で区画された各貯蔵空間に冷気を送風するように、上下方向に複数の第一冷蔵室冷気吐出口6が設けられている。この第一冷蔵室冷気吐出口6は、左右に所定間隔で対に設けられた第一冷蔵室風路15に連通して複数設けており、幅の広い貯蔵空間の左右隅々まで冷気が供給できるようにしている。 The refrigerator compartment partition 39 on the back side of the refrigerator compartment 4 (the rear side in the refrigerator compartment 4 when the refrigerator main body 1 is viewed from the front) is arranged so as to blow cool air into each storage space partitioned by the shelf 19. A plurality of first refrigerator compartment cold air discharge ports 6 are provided in the direction. A plurality of the first refrigerator compartment cold air outlets 6 are provided in communication with the first refrigerator compartment air passage 15 provided in pairs at predetermined intervals on the left and right sides, and cold air is supplied to the left and right corners of the wide storage space. I can do it.
また、断熱仕切り壁9には、前後方向に第二冷蔵室風路17が設けられている。この第二冷蔵室風路17の前方端は、冷蔵室4に連通する第二冷蔵室冷気吐出口26が形成されている。第二冷蔵室冷気吐出口26は、冷蔵室ドア収納部10の上方付近に形成されており、冷蔵室ドア収納部10に直接冷気が供給される構成である。 Further, the heat insulating partition wall 9 is provided with a second refrigerator compartment air passage 17 in the front-rear direction. At the front end of the second refrigerator compartment air passage 17, a second refrigerator compartment cold air outlet 26 communicating with the refrigerator compartment 4 is formed. The second refrigerating room cold air discharge port 26 is formed in the vicinity of the upper side of the refrigerating room door storage unit 10, and is configured such that the cold air is directly supplied to the refrigerating room door storage unit 10.
第一冷蔵室風路15と第二冷蔵室風路17は、風路21と連通している。風路21は、冷凍室3後方に設けた冷却器16の右側を通り、断熱仕切り壁9付近で冷蔵庫本体1の幅方向に広がる。そして、幅方向に広がった断熱仕切り壁9付近で、風路21は第一冷蔵室風路15と第二冷蔵室風路17に分岐している。 The first refrigerator compartment air passage 15 and the second refrigerator compartment air passage 17 communicate with the air passage 21. The air passage 21 passes through the right side of the cooler 16 provided behind the freezer compartment 3 and extends in the width direction of the refrigerator main body 1 near the heat insulating partition wall 9. In the vicinity of the heat insulating partition wall 9 extending in the width direction, the air passage 21 is branched into a first refrigerator compartment air passage 15 and a second refrigerator compartment air passage 17.
第一冷蔵室風路15と第二冷蔵室風路17に分岐する前の風路21には、冷蔵室4への冷気の供給量を制御する冷蔵室冷気制御手段である冷蔵室ダンパ40が設けられている。 In the air passage 21 before branching into the first refrigerator compartment air passage 15 and the second refrigerator compartment air passage 17, a refrigerator compartment damper 40, which is a refrigerator compartment cold air control means for controlling the amount of cold air supplied to the refrigerator compartment 4, is provided. Is provided.
また、冷蔵室仕切り部39の下部であって、収納ケース20の後方には、冷蔵室冷気戻り口25が設けられている。冷蔵室冷気戻り口25に連通する冷蔵室戻り風路27は、左右の第一冷蔵室風路15の間であって、冷蔵室4のほぼ背面中央を上下方向に設けている。 Further, at the lower part of the refrigerator compartment partition 39 and behind the storage case 20, a refrigerator compartment cold air return port 25 is provided. The refrigerating room return air passage 27 communicating with the refrigerating room cold air return port 25 is between the left and right first refrigerating room air passages 15, and the center of the back surface of the refrigerating room 4 is provided vertically.
冷凍室3の仕切り部12奥側の冷却器16上方には、冷凍室3に冷気を送風する冷凍室ファン13(冷凍温度帯室送風手段、第二の送風機)と、冷蔵室4に冷気を送風する冷蔵室ファン14(冷蔵温度帯室送風手段、第一の送風機)を左右に並べて設けている。冷凍室ファン13と冷蔵室ファン14は、ファン支持部材18で所定位置に固定、支持されており、仕切り部12よりも前方の貯蔵空間に露出しない構成である。 Above the cooler 16 on the far side of the partition 12 in the freezer compartment 3, a freezer compartment fan 13 (freezing temperature zone air blower, second blower) that blows cool air into the freezer compartment 3, and cool air into the refrigerator compartment 4. The refrigerator compartment fan 14 (refrigeration temperature zone chamber blowing means, first blower) for blowing air is provided side by side. The freezer compartment fan 13 and the refrigerator compartment fan 14 are fixed and supported at predetermined positions by a fan support member 18 and are not exposed to the storage space in front of the partition portion 12.
また、冷凍室ファン13と冷蔵室ファン14の前方(冷凍室3側)の仕切り部12には、それぞれファン前面部13a、14aを設けている。このファン前面部13a、14aは、透明又は半透明の窓状の部材であり、ファン前面部13a、14aを隔てて冷凍室ファン13と冷蔵室ファン14を冷凍室3側から視認可能である。 In addition, fan front portions 13 a and 14 a are provided in the partition portion 12 in front of the freezer compartment fan 13 and the refrigerator compartment fan 14 (on the freezer compartment 3 side), respectively. The fan front face portions 13a and 14a are transparent or semi-transparent window-like members, and the freezer compartment fan 13 and the refrigerator compartment fan 14 can be viewed from the freezer compartment 3 side with the fan front face portions 13a and 14a interposed therebetween.
図3に示すように、冷凍室3を冷却する場合、冷凍室ファン13を運転することで、冷却器16で冷却された冷気が冷凍室冷気吐出口2から冷凍室3に送風される。冷凍室3に送風された冷気は、冷凍室冷気戻り口5から冷却器16に戻されて、再び熱交換して冷却される。なお、この時、冷蔵室ダンパ40を閉じておくことで、冷蔵室4に冷気を供給せずに、冷凍室3のみ冷却することができる。 As shown in FIG. 3, when the freezer compartment 3 is cooled, by operating the freezer compartment fan 13, the cold air cooled by the cooler 16 is blown from the freezer compartment cold air outlet 2 to the freezer compartment 3. The cold air blown into the freezer compartment 3 is returned from the freezer compartment cold air return port 5 to the cooler 16 and is again cooled by heat exchange. At this time, by closing the refrigerator compartment damper 40, only the freezer compartment 3 can be cooled without supplying cold air to the refrigerator compartment 4.
一方、図2及び図3に示すように、冷蔵室4を冷却する場合、冷蔵室ファン14を運転することで、冷却器16で冷却された冷気は、風路21、冷蔵室ダンパ40を通過した後、第一冷蔵室風路15と第二冷蔵室風路17に分配されて、それぞれ第一冷蔵室冷気吐出口6と第二冷蔵室冷気吐出口26から冷蔵室4に送風される。第一冷蔵室冷気吐出口6から吐出された冷気は、主に棚19に載置した収納物を冷却する。第二冷蔵室冷気吐出口26から吐出された冷気は、主に冷蔵室ドア収納部10内の収納物を冷却する。 On the other hand, as shown in FIGS. 2 and 3, when the refrigerator compartment 4 is cooled, the cold air cooled by the cooler 16 passes through the air passage 21 and the refrigerator compartment damper 40 by operating the refrigerator compartment fan 14. Then, it distributes to the 1st refrigerator compartment air path 15 and the 2nd refrigerator compartment air path 17, and it ventilates to the refrigerator compartment 4 from the 1st refrigerator compartment cold air discharge port 6 and the 2nd refrigerator compartment cold air discharge port 26, respectively. The cool air discharged from the first refrigerator compartment cool air outlet 6 mainly cools the stored items placed on the shelf 19. The cool air discharged from the second refrigerator compartment cold air outlet 26 mainly cools the stored items in the refrigerator compartment door storage unit 10.
冷蔵室冷気戻り口25は、収納ケース20の背面側に設けてあり、冷蔵室4の背面側中央部に設けた冷蔵室戻り風路27を経由して冷却器16に下方から戻される。 The refrigerating room cold air return port 25 is provided on the back side of the storage case 20, and is returned to the cooler 16 from below via a refrigerating room return air passage 27 provided in the center on the back side of the refrigerating room 4.
冷凍室3と冷蔵室4を同時に冷やす場合は、冷凍室ファン13と冷蔵室ファン14を運転し、冷蔵室ダンパ40を開にして庫内を冷却することができる。 When the freezer compartment 3 and the refrigerator compartment 4 are cooled simultaneously, the refrigerator compartment fan 13 and the refrigerator compartment fan 14 can be operated, and the refrigerator compartment damper 40 can be opened to cool the inside of the refrigerator.
冷蔵庫の省エネルギー性を考慮すると、冷凍温度帯となる冷却器16は、冷凍室3の奥側に設置するのが良い。冷凍室ファン13によって吐出された冷気は、冷凍室ファン13前方の仕切り部12に設けた冷凍室冷気吐出口2から冷凍室3に吐出されて冷凍室冷気戻り口5から戻る冷気循環風路であるため、冷凍室3側の通風抵抗は比較的小さくなり易い。 Considering the energy saving property of the refrigerator, the cooler 16 that is in the freezing temperature zone is preferably installed on the back side of the freezer compartment 3. The cold air discharged by the freezer fan 13 is discharged from the freezer cold air outlet 2 provided in the partition 12 in front of the freezer fan 13 to the freezer room 3 and returned from the freezer cold air return port 5 through a cold air circulation air path. Therefore, the ventilation resistance on the freezer compartment 3 side tends to be relatively small.
一方、冷蔵室4側の冷気循環風路は、冷凍室3側よりも距離が長くなる。また、冷蔵室4の食品収納スペース(内容積)の拡大化を図ると、冷気風路の通風抵抗が大きくなり易い。 On the other hand, the cold air circulation air path on the refrigerator compartment 4 side is longer than the freezer compartment 3 side. Moreover, if the food storage space (internal volume) of the refrigerator compartment 4 is expanded, the ventilation resistance of the cold air passage tends to increase.
庫内温度は、冷凍室用温度検知器及び冷蔵室用温度検知器(何れも図示せず)の出力に基づき、制御装置50に記憶されたプログラムによって制御される。冷凍室ファン13、冷蔵室ファン14、冷蔵室ダンパ40、圧縮機22を、制御装置50でそれぞれ制御した冷却運転を実施することによって、庫内温度が制御される。 The internal temperature is controlled by a program stored in the control device 50 based on the outputs of the freezer temperature detector and the refrigerator temperature detector (both not shown). The internal temperature is controlled by performing a cooling operation in which the control unit 50 controls the freezer compartment fan 13, the refrigerator compartment fan 14, the refrigerator compartment damper 40, and the compressor 22 respectively.
ここで、単一の冷却器16で冷凍室3と冷蔵室4を冷却する冷蔵庫の場合、冷蔵室4を単独で冷却する冷蔵室単独冷却運転を設けると、冷蔵温度帯の貯蔵室温度に合わせた蒸発温度によって、冷凍サイクルの高効率運転が実施できる。 Here, in the case of a refrigerator that cools the freezer compartment 3 and the refrigerator compartment 4 with a single cooler 16, if the refrigerator compartment single cooling operation for cooling the refrigerator compartment 4 alone is provided, it matches the storage compartment temperature in the refrigerator compartment. Depending on the evaporation temperature, the refrigeration cycle can be operated efficiently.
この場合、冷蔵室単独冷却運転を実施するために、冷凍室ファン13の吐出側(冷凍室ファン13の冷気下流側)に冷凍室3側への送風を遮断する冷凍室専用ダンパを設けることも考えられる。しかしながら、幅が広い大形の冷蔵庫では、通風抵抗の増加を抑えるために、冷凍室ダンパを大型化して設置する必要があるので、設置スペースの確保やダンパの密閉性を高めることを考慮すると、適切ではない。 In this case, in order to carry out the independent cooling operation of the freezer compartment, a freezer compartment damper for blocking air flow to the freezer compartment 3 side may be provided on the discharge side of the freezer compartment fan 13 (the cool air downstream side of the freezer compartment fan 13). Conceivable. However, in a large refrigerator with a wide width, in order to suppress an increase in ventilation resistance, it is necessary to install a freezer damper with a larger size, so in consideration of securing the installation space and improving the sealing performance of the damper, Not appropriate.
次に、冷凍室ファン13、冷蔵室ファン14、及び冷蔵室冷気調整手段である冷蔵室ダンパ40を備えた実施形態の冷蔵庫の風路構成において、冷蔵室側を冷却する場合の各部の動作を、図4aと図4bを用いて説明する。ここでは、従来の冷蔵庫の風路構成で発生する冷蔵室単独冷却運転時の逆流現象(詳細は後述する)を、風量制御部37によって抑制した場合の冷気流れを示している。 Next, in the airflow configuration of the refrigerator of the embodiment provided with the freezer fan 13, the refrigerator compartment fan 14, and the refrigerator compartment damper 40 which is the refrigerator compartment cold air adjusting means, the operation of each part when cooling the refrigerator compartment side is performed. This will be described with reference to FIGS. 4a and 4b. Here, a cold air flow is shown when the air flow control unit 37 suppresses a reverse flow phenomenon (details will be described later) that occur in the cooling room single cooling operation that occurs in the air path configuration of the conventional refrigerator.
図4aは、冷蔵室単独冷却運転時の、各部の動作を模式的に示した図である。冷凍室3を冷却する冷凍室ファン13と、冷蔵室4を冷却する冷蔵室ファン14のそれぞれの吐出側風路、すなわち、冷却器16から冷蔵室4に至る風路の一部と、冷却器16から冷凍室3へ至る風路の一部は、互いに境界部Lを隔てて隣接するように配置されている(図8参照)。この隣接する冷凍室3側の吐出風路3f(風路)と、冷蔵室4側の吐出風路4f(風路)は、それぞれ境界部として対向する突出部23、24が設けられており、この突出部23、24を接するように配置することで、吐出風路3f、4fが仕切られている(図6b、図7b、図8参照)。さらに、突出部23、24が互いに対向する境界部Lの部分には、冷凍室3側の吐出風路3fと冷蔵室4側の吐出風路4fを互いに繋ぐ風量制御部37を設けている。 FIG. 4 a is a diagram schematically showing the operation of each part during the cooling room single cooling operation. The discharge side air passages of the freezer compartment fan 13 for cooling the freezer compartment 3 and the refrigerating compartment fan 14 for cooling the refrigerating compartment 4, that is, a part of the air passage from the cooler 16 to the refrigerating compartment 4, and the cooler A part of the air path from 16 to the freezer compartment 3 is arranged so as to be adjacent to each other with the boundary portion L therebetween (see FIG. 8). The adjacent discharge air passage 3f (air passage) on the side of the freezer compartment 3 and the discharge air passage 4f (air passage) on the side of the refrigerating compartment 4 are provided with projecting portions 23 and 24 that face each other as boundary portions, Disposing the projecting portions 23 and 24 so as to contact each other partitions the discharge air passages 3f and 4f (see FIGS. 6b, 7b, and 8). Further, an air volume control unit 37 that connects the discharge air passage 3f on the freezer compartment 3 side and the discharge air passage 4f on the refrigerator compartment 4 side to each other is provided at the boundary portion L where the projecting portions 23 and 24 face each other.
圧縮機22、放熱器29、絞り30(減圧手段)、冷却器16を順番に冷媒が流れる配管31によって接続した冷凍サイクルを形成している。放熱器29には放熱を促進させるために、放熱ファン32を備えている。図4aでは、冷蔵室4を単独で冷却するので、圧縮機22はON(稼働)、冷凍室ファン13はOFF(停止)、冷蔵室ファン14はON(稼働)、冷蔵室ダンパ40はOPEN(開)として、冷気33は冷蔵室ダンパ40を通過して冷蔵室4を冷却している。 A refrigeration cycle is formed in which the compressor 22, the radiator 29, the throttle 30 (decompression unit), and the cooler 16 are sequentially connected by a pipe 31 through which the refrigerant flows. The heat radiator 29 is provided with a heat radiating fan 32 in order to promote heat radiation. In FIG. 4a, since the refrigerator compartment 4 is cooled independently, the compressor 22 is ON (operation), the freezer fan 13 is OFF (stopped), the refrigerator fan 14 is ON (operation), and the refrigerator damper 40 is OPEN ( As open), the cold air 33 passes through the refrigerator compartment damper 40 to cool the refrigerator compartment 4.
冷却器16の蒸発温度を高くして省エネルギー運転を実施するために、圧縮機22は低速運転となる。すなわち、冷蔵室4は約5℃、冷凍室3は約−18℃に維持されるのが一般的であるが、冷蔵室4を単独で冷却する際には、冷凍温度帯を考慮しなくても良いので、圧縮機22を低速運転して蒸発温度を上げることが可能となり、省エネルギー運転ができる。 In order to increase the evaporation temperature of the cooler 16 and perform the energy saving operation, the compressor 22 operates at a low speed. That is, the refrigerator compartment 4 is generally maintained at about 5 ° C. and the freezer compartment 3 is maintained at about −18 ° C. However, when the refrigerator compartment 4 is cooled alone, the freezing temperature zone is not considered. Therefore, the compressor 22 can be operated at a low speed to increase the evaporation temperature, and an energy saving operation can be performed.
省エネルギー運転を目的にした圧縮機22の低速運転の他に、冷蔵室4に食品を多く投入した場合や、所定時間内におけるドア開放時間が長くなった場合等に実施される、冷蔵室の急速冷却運転も、図4aの模式図に示す冷気の流れとなる。但し、この場合に圧縮機22は高速回転で運転される。なお、これらの冷却運転は冷蔵庫本体1に設けた制御装置50によって制御される。 In addition to the low-speed operation of the compressor 22 for the purpose of energy-saving operation, the rapid operation of the refrigerating room is carried out when a large amount of food is put into the refrigerating room 4 or when the door opening time becomes long within a predetermined time. The cooling operation is also the flow of cold air shown in the schematic diagram of FIG. However, in this case, the compressor 22 is operated at a high speed. These cooling operations are controlled by a control device 50 provided in the refrigerator main body 1.
図4bは、霜を冷熱源とする霜利用冷却運転時の、各部の動作を模式的に示した図である。なお、風路構成は図4aと同様である。霜を冷熱源としているので、冷却できるのは冷蔵温度帯室のみである(野菜貯蔵室を備えた冷蔵庫の場合、野菜貯蔵室も含む)。図4aと同様に、冷蔵室ファン14はON(運転)、冷蔵室ダンパ40はOPEN(開)とするが、圧縮機22はOFF(停止)にする。 FIG. 4b is a diagram schematically showing the operation of each part during the frost cooling operation using frost as a cold heat source. The air path configuration is the same as in FIG. 4a. Since frost is used as a cold heat source, only the refrigerated temperature zone can be cooled (in the case of a refrigerator equipped with a vegetable storage room, the vegetable storage room is also included). Similar to FIG. 4a, the refrigerator compartment fan 14 is turned on (running), the refrigerator compartment damper 40 is opened (OPEN), but the compressor 22 is turned off (stopped).
冷蔵室ファン14を運転することにより、冷却器16に付いた霜層の温度上昇と共に冷却器16の温度も上昇させる。冷却器16の温度を高めた後に、圧縮機22をONにして冷蔵室単独冷却運転を実施すると、冷凍サイクルの効率が高くなるので、省エネルギー効果が得られる。 By operating the refrigerator compartment fan 14, the temperature of the cooler 16 is raised with the temperature rise of the frost layer attached to the cooler 16. If the compressor 22 is turned on after the temperature of the cooler 16 is raised and the refrigerator compartment single cooling operation is performed, the efficiency of the refrigeration cycle is increased, so that an energy saving effect is obtained.
霜利用冷却運転は、冷却器16に設けた温度センサ、及び冷凍室3、冷蔵室4に設けた温度センサ、庫外に設けた温度センサ(いずれも図示なし)で検知する温度によって、冷蔵室ファン14の回転数を制御している。霜利用冷却運転には、冷蔵室ファン14を運転しながら冷却器16の下部に設けた除霜ヒータ41の通電を制御する除霜運転も含まれている。すなわち、加熱手段の加熱量、加熱時間、通電量等を制御することで、霜利用冷却運転を制御する。但し、除霜運転中であるため圧縮機22はOFFにする。除霜ヒータ41を通電しながら冷蔵室ファン14を運転することによって、霜を冷熱源として冷蔵室4も冷却することができ、従来、解かして捨てていた霜の冷熱エネルギーを有効活用して除霜時の省エネルギー化を図ることができる。また、圧縮機22を停止して冷蔵室ファン14を稼働させた霜利用冷却運転と、除霜ヒータ41に通電しながら冷蔵室ファン14を稼働させる除霜運転は、いずれも霜を冷熱源とした冷却であり、霜の水分を含んだ冷気を冷蔵室4に送風することができるので、冷蔵室4内に設けた野菜の保存に適した冷却も省エネルギー運転に加えて実施できる。 The frost-based cooling operation is performed according to the temperature detected by the temperature sensor provided in the cooler 16, the temperature sensor provided in the freezer compartment 3 and the refrigerator compartment 4, and the temperature sensor provided outside the compartment (all not shown). The rotational speed of the fan 14 is controlled. The defrosting cooling operation includes a defrosting operation for controlling energization of the defrosting heater 41 provided at the lower part of the cooler 16 while operating the refrigerator compartment fan 14. That is, the frost utilization cooling operation is controlled by controlling the heating amount, heating time, energization amount, and the like of the heating means. However, since the defrosting operation is being performed, the compressor 22 is turned off. By operating the refrigerator compartment fan 14 while energizing the defrost heater 41, the refrigerator compartment 4 can also be cooled using the frost as a source of refrigeration. Energy saving during frost can be achieved. Moreover, both the frost utilization cooling operation | movement which stopped the compressor 22 and operated the refrigerator compartment fan 14, and the defrosting operation | movement which operate | moves the refrigerator compartment fan 14 while supplying with electricity to the defrost heater 41 are using frost as a cold source. In addition to the energy saving operation, cooling suitable for the preservation of vegetables provided in the refrigerator compartment 4 can be carried out.
以上をまとめると、単一の冷却器16であっても冷凍室ファン13と冷蔵室ファン14、冷蔵室ダンパ40、圧縮機22の動作を組み合わせることによって、冷凍サイクルの効率を向上させた冷蔵室単独冷却運転が実施できる。冷蔵室単独冷却運転と同様の冷気流れとなる霜利用冷却運転や、冷蔵室ファン14を運転しながら除霜ヒータ41に通電する除霜運転も実施できる風路構造を備えている。更に、圧縮機22の高速運転を行う冷蔵室4の急速冷却運転も同様な冷気流れとなり、実施することができる。 In summary, even with a single cooler 16, a refrigerator compartment in which the efficiency of the refrigeration cycle is improved by combining the operations of the refrigerator compartment fan 13, refrigerator compartment fan 14, refrigerator compartment damper 40, and compressor 22. A single cooling operation can be performed. It has an air passage structure that can also perform a frost-utilizing cooling operation in which the cooling air flow is the same as that in the refrigerator-only cooling operation and a defrosting operation in which the defrost heater 41 is energized while operating the refrigerator fan 14. Furthermore, the rapid cooling operation of the refrigerating chamber 4 that performs high-speed operation of the compressor 22 can be performed with a similar cold air flow.
また、図4a、図4bに示した冷却運転以外にも、冷凍室ファン13を運転し、冷凍室3を冷却する冷凍室冷却運転(冷蔵室ダンパ40はCLOSE(閉))、冷凍室ファン13と冷蔵室ファン14を運転し、冷凍室3と冷蔵室4を同時に冷却する冷蔵・冷凍室冷却運転(冷蔵室ダンパ40はOPEN(開))も、庫内の設定温度、あるいは庫内の熱負荷に応じて実施される。 In addition to the cooling operation shown in FIGS. 4a and 4b, the freezer compartment fan 13 is operated to cool the freezer compartment 3 (the refrigerator compartment damper 40 is CLOSE), and the freezer compartment fan 13 is operated. And the refrigerator compartment fan 14 are operated to cool the freezer compartment 3 and the refrigerator compartment 4 at the same time (refrigeration compartment damper 40 is OPEN (open)), the set temperature inside the compartment or the heat inside the compartment Implemented according to load.
次に、従来の冷蔵庫の風路構成において、冷蔵室4側を冷却する際に発生する逆流現象を、図5a、図5bを用いて詳細に説明する。 Next, the backflow phenomenon that occurs when the refrigerator compartment 4 side is cooled in the conventional refrigerator air passage configuration will be described in detail with reference to FIGS. 5a and 5b.
図5aは、従来の冷蔵庫における冷凍室への逆流現象を模式的に示した図である。なお、簡略化のため冷凍サイクルの構成図は省略してある。図5bは、従来の冷蔵庫における冷蔵室ファン回転数と、冷蔵室及び冷凍室の風量との関係を示した図である。なお、冷凍室ファン13は停止した状態である。 FIG. 5a is a diagram schematically showing a reverse flow phenomenon to a freezer compartment in a conventional refrigerator. For simplification, the configuration diagram of the refrigeration cycle is omitted. FIG. 5b is a diagram showing the relationship between the number of rotations of the refrigerator compartment fan in the conventional refrigerator and the air volume of the refrigerator compartment and the freezer compartment. In addition, the freezer compartment fan 13 is in a stopped state.
冷蔵室104の冷気風路は、冷凍室103の冷気風路よりも通風抵抗が大きくなるため、図4a、図4bに示した冷気流れのようにはならず、冷蔵室104側を循環する冷気133の一部は、冷蔵室冷気戻り口125から冷却器116に流入せず、冷却器116を通過しないで冷凍室冷気戻り口105から冷凍室103に流入する、いわゆる逆流冷気135(点線の矢印)が発生する。冷凍室103に流入した逆流冷気135は、冷凍室ファン113の吐出側(通常の冷気流れの下流側)から、冷蔵室ファン114の吸込側(通常の冷気流れの上流側)に流れ、冷蔵室ダンパ140、冷蔵室冷気吐出口106を経て、再び冷蔵室104に送風される。冷却器116に霜が成長した場合には、更に逆流現象が顕著になって現れる。 The cold air passage in the refrigerator compartment 104 has a larger ventilation resistance than the cold air passage in the freezer compartment 103, and thus the cold air flow shown in FIGS. 4 a and 4 b does not become the same as the cold air circulating in the refrigerator compartment 104 side. A part of 133 does not flow into the cooler 116 from the refrigerating room cool air return port 125, and flows into the freezer chamber 103 from the freezer cold air return port 105 without passing through the cooler 116. ) Occurs. The backflow cold air 135 that has flowed into the freezer compartment 103 flows from the discharge side of the freezer compartment fan 113 (downstream side of the normal cold air flow) to the suction side of the cold compartment fan 114 (upstream side of the normal cold air flow). The air is again blown into the refrigerator compartment 104 via the damper 140 and the refrigerator outlet 106. When frost grows in the cooler 116, the reverse flow phenomenon becomes more prominent.
図5bに示すように、冷蔵室単独冷却運転時、霜冷却利用運転時、冷蔵室ファン14を運転した除霜運転時、冷蔵室急速冷却運転時のそれぞれにおける冷蔵室ファン114回転数を、N1からN2に高くすると、冷蔵室104側の冷蔵室風量55は直線的に増加(正流方向)する。しかし、冷蔵室104を循環する冷気の一部は、冷凍室103の冷凍室冷気戻り口105から流入して逆流するため、冷凍室ファン113を停止しても冷凍室103に流入する冷凍室風量56としては、直線的に増加する、ただし、その流れは冷凍室冷気戻り口105から流入する逆流となる。 As shown in FIG. 5b, the number of rotations of the refrigerating room fan 114 in each of the refrigerating room independent cooling operation, the frost cooling using operation, the defrosting operation in which the refrigerating room fan 14 is operated, and the refrigerating room rapid cooling operation are expressed as N1. When it is increased from N2 to N2, the refrigerator air volume 55 on the refrigerator compartment 104 side increases linearly (in the positive flow direction). However, since a part of the cold air circulating in the refrigerator compartment 104 flows back from the freezer compartment cold air return port 105 of the freezer compartment 103 and flows backward, the amount of freezer compartment air flowing into the freezer compartment 103 even when the freezer compartment fan 113 is stopped. 56 increases linearly, but the flow becomes a reverse flow flowing in from the freezer compartment cool air return port 105.
省エネルギー性を重視した冷蔵室単独冷却運転では、圧縮機を低速で運転するため、循環冷気の温度は冷凍室冷却運転時に比べて高くなり、逆流冷気135によって冷蔵室冷却運転中に冷凍室温度が上昇してしまう恐れがある。 In the refrigerator compartment single cooling operation that emphasizes energy saving, the compressor is operated at a low speed, so the temperature of the circulating cold air is higher than that in the freezer compartment cooling operation, and the freezer compartment temperature is increased during the refrigerator compartment cooling operation by the backflow cold air 135. There is a risk of rising.
更に、水分を多く含んだ冷蔵室104側の冷気が冷凍室103に逆流冷気135として流入するため、冷凍室冷気戻り口105付近に霜が発生し易くなり、冷凍室103の壁面にも霜が成長することがある。 Further, since the cold air on the side of the refrigerator compartment 104 containing a large amount of water flows into the freezer compartment 103 as the backflow cold air 135, frost is likely to be generated near the freezer compartment cold air return port 105, and frost is also formed on the wall surface of the freezer compartment 103. May grow.
この場合、除霜ヒータによって冷却器116に発生する霜を解かすことができるが、冷凍室103内の壁面に成長した霜を解かす手段はなく、使い勝手が低下する。更に、冷凍食品の表面にも霜が成長する恐れがあり、食品の保存性が悪化する。 In this case, although the frost generated in the cooler 116 can be defrosted by the defrost heater, there is no means for defrosting the frost that has grown on the wall surface in the freezer compartment 103, and usability is reduced. Furthermore, frost may grow on the surface of the frozen food, and the storage stability of the food deteriorates.
冷蔵室104側を循環する冷気の一部が冷却器116を通過しなくなるので、冷蔵室104の冷却性能も悪化することになる。同様に、圧縮機の運転を停止して冷蔵室104に冷気を送風する霜利用冷却運転の場合には(図4b)、圧縮機122を運転する場合よりも冷蔵室104側を循環する冷気温度が高くなるので、冷凍室103への逆流による温度上昇の影響は更に大きくなる。 Since a part of the cool air circulating in the refrigerator compartment 104 does not pass through the cooler 116, the cooling performance of the refrigerator compartment 104 is also deteriorated. Similarly, in the case of frost-based cooling operation in which the compressor operation is stopped and cold air is blown into the refrigerator compartment 104 (FIG. 4b), the cold air temperature circulating on the refrigerator compartment 104 side than when the compressor 122 is operated. Therefore, the influence of the temperature rise due to the backflow to the freezer compartment 103 is further increased.
次に冷凍室ファン13と、冷蔵室ファン14のそれぞれの吐出側風路に設けた風量制御部37の構造について詳細に説明する。 Next, the structure of the air volume control unit 37 provided in each discharge side air passage of the freezer compartment fan 13 and the refrigerator compartment fan 14 will be described in detail.
図6aは、本発明の実施形態に係るファン支持部材の正面図である。図6bは、図6aのB−B断面図である。図7aは、本発明の実施形態に係る仕切り部の背面図である。図7bは、図7aのD−D断面図である。図8は、図6bのファン支持部材と図7bの仕切り部を組み合わせた状態の断面図である。 FIG. 6 a is a front view of the fan support member according to the embodiment of the present invention. 6b is a cross-sectional view taken along the line BB of FIG. 6a. FIG. 7 a is a rear view of the partition portion according to the embodiment of the present invention. FIG. 7b is a cross-sectional view taken along the line DD of FIG. 7a. FIG. 8 is a cross-sectional view of the state in which the fan support member of FIG. 6B and the partition portion of FIG. 7B are combined.
図8に示すように、ファン支持部材18の前方側に仕切り部12を組み合わせ、冷凍室3と冷蔵室4に送風できるように冷凍室ファン13と冷蔵室ファン14の吐出側(ファンよりも冷気流れの下流側)の冷気風路を隣接するように形成している。冷凍室ファン13と冷蔵室ファン14は、それぞれのファンの吸込側(ファンよりも冷気流れの上流側)と吐出側(ファンよりも冷気流れの下流側)の風路を仕切るために、ファン支持部材18に併設して設置している。冷蔵室ファン14と風路21の外周部には、突出部23を設けてあり(図6a、図6b参照)、風路21は第二冷蔵室冷気吐出口26と第一冷蔵室冷気吐出口6に接続してある。一方、仕切り部12にも突出部24を設けてあり、ファン支持部材18に設けた突出部23と突出部24の一部を接触させるようにして、ファン支持部材18と仕切り部12を組み合わせ、冷凍室ファン13によって発生する冷気が通過する風路abcdと、冷蔵室ファン14によって発生する冷気が通過する風路befcが、互いに境界部Lを隔てて隣接するようにそれぞれの冷気風路を形成している(図8参照)。 As shown in FIG. 8, the partition 12 is combined with the front side of the fan support member 18, and the discharge side of the freezer compartment fan 13 and the refrigerating compartment fan 14 (cooler air than the fan) so that air can be sent to the freezer compartment 3 and the refrigerating compartment 4. A cold air passage on the downstream side of the flow is formed so as to be adjacent. The freezer compartment fan 13 and the refrigerator compartment fan 14 support the fan in order to partition the air passages on the suction side (upstream side of the cool air flow from the fan) and the discharge side (downstream side of the cool air flow from the fan). It is installed side by side with the member 18. Projections 23 are provided on the outer peripheral portions of the refrigerator compartment fan 14 and the air passage 21 (see FIGS. 6a and 6b). The air passage 21 has a second refrigerator compartment cold air outlet 26 and a first refrigerator compartment cold air outlet. 6 is connected. On the other hand, the partition part 12 is also provided with a protrusion 24, and the fan support member 18 and the partition part 12 are combined so that the protrusion 23 provided on the fan support member 18 and a part of the protrusion 24 are brought into contact with each other. The air passage abcd through which the cold air generated by the freezer compartment fan 13 passes and the air passage befc through which the cold air produced by the refrigerator compartment fan 14 pass are formed so as to be adjacent to each other with a boundary portion L therebetween. (See FIG. 8).
すなわち、冷凍室ファン13によって風路abcdに冷凍室3に送風される冷気は、仕切り部12に設けた冷凍室冷気吐出口2から冷凍室3に送風される。突出部24と突出部23は互いに対向させた一部分を接触させて風路abcdと風路befcを仕切ることができれば良いので、例えば突出部23は樹脂性の部材、突出部24はスポンジ等のシール材として接触させる構成でも良い。 That is, the cold air blown to the freezer compartment 3 in the air path abcd by the freezer compartment fan 13 is sent to the freezer compartment 3 from the freezer compartment cold air discharge port 2 provided in the partition part 12. Since the projecting portion 24 and the projecting portion 23 are only required to be able to partition the air path abcd and the air path befc by contacting a portion facing each other, for example, the projecting section 23 is a resin member, and the projecting section 24 is a seal such as a sponge. The structure made to contact as a material may be sufficient.
冷凍室ファン13と冷蔵室ファン14を備えたファン支持部材18と、それぞれのファン吐出側に設けた仕切り部12は、組み立て性や冷却器16、ファン13、14等の保守性を考慮し、分割して設計する場合が多く、ファン支持部材18と仕切り部12は所定の位置に設けたネジ等により固定されるのが一般的である。 The fan support member 18 provided with the freezer compartment fan 13 and the refrigerator compartment fan 14 and the partition portion 12 provided on each fan discharge side take into consideration the ease of assembly and maintainability of the cooler 16, the fans 13, 14 and the like. In many cases, the design is divided and the fan support member 18 and the partition portion 12 are generally fixed by screws or the like provided at predetermined positions.
仕切り部12とファン支持部材18にそれぞれ対向して設けた突出部24と突出部23の接合部を、接着材や溶着(例えば、熱板溶着、振動溶着、超音波溶着)により接着固定する場合には、接合部に隙間を形成させないことを目的としているので、隙間がないのが前提である。 When the bonding portion of the protruding portion 24 and the protruding portion 23 provided facing the partition portion 12 and the fan support member 18 is bonded and fixed by an adhesive or welding (for example, hot plate welding, vibration welding, ultrasonic welding). Since it aims at not forming a clearance gap in a junction part, it is a premise that there is no clearance gap.
一方、接着や溶着(例えば、熱板溶着、振動溶着、超音波溶着)を用いることなく突出部23と突出部24をそれぞれ分割した部材で対向させて接触させた場合は、接合部に隙間を形成していると見なすことができる。従って、突出部23、24をそれぞれ分割した部材で対向させて接触させると接触面に隙間が形成される。すなわち、冷凍室ファン13と冷蔵室ファン14の隣接した吐出側風路に風量制御部37が形成され、冷蔵室4側を冷却する際に発生する逆流現象を抑制することができる。 On the other hand, when the protruding portion 23 and the protruding portion 24 are made to face each other with a divided member without using adhesion or welding (for example, hot plate welding, vibration welding, ultrasonic welding), a gap is formed in the bonding portion. It can be regarded as forming. Therefore, a gap is formed on the contact surface when the projecting portions 23 and 24 are brought into contact with each other by the divided members. That is, the air volume control unit 37 is formed in the discharge side air passage adjacent to the freezer compartment fan 13 and the refrigerator compartment fan 14, and the reverse flow phenomenon that occurs when the refrigerator compartment 4 side is cooled can be suppressed.
冷蔵室ファン14によって風路befcに冷蔵室4に送風される冷気が吐出され、風路21を経由して第一冷蔵室冷気吐出口6、第二冷蔵室冷気吐出口26から冷蔵室4に送風される。また、仕切り部12の外周部には、柔軟性を有するシール材42を設けることで、密閉性を高めている。 Cold air blown into the refrigerator compartment 4 is discharged to the air passage befc by the refrigerator compartment fan 14, and the first refrigerator compartment cold air outlet 6 and the second refrigerator compartment cold air outlet 26 are transferred to the refrigerator compartment 4 through the air passage 21. Be blown. Further, a sealing material 42 having flexibility is provided on the outer peripheral portion of the partition portion 12 to enhance the sealing performance.
なお、風量制御部37は、少なくとも冷凍室ファン13と冷蔵室ファン14との間にあればよく、例えば、それ以外の風路abcd、befcの外周は、接着や溶着した構成であってもよい。 Note that the air volume control unit 37 only needs to be at least between the freezer compartment fan 13 and the refrigerator compartment fan 14. For example, the outer circumferences of the other air passages abcd and befc may be bonded or welded. .
また、ファン支持部材18と仕切り部12の両方に突出部23、24を設けた場合は、突出部23、24間に風量制御部37を設けた構成について説明したが、これに限るものではない。例えば、ファン支持部材18から仕切り部12側に突出する突出部23を設けた場合、突出部23と仕切り部12との間に風量制御部37を設ければよく、仕切り部12からファン支持部材18側に突出する突出部24を設けた場合、突出部24とファン支持部材18との間に風量制御部37を設ければよい。 Further, in the case where the protrusions 23 and 24 are provided in both the fan support member 18 and the partition part 12, the configuration in which the air volume control part 37 is provided between the protrusions 23 and 24 has been described, but the present invention is not limited thereto. . For example, when the protrusion 23 that protrudes from the fan support member 18 toward the partition portion 12 is provided, the air volume control unit 37 may be provided between the protrusion 23 and the partition portion 12, and the fan support member from the partition portion 12. When the protruding portion 24 protruding to the 18 side is provided, the air volume control portion 37 may be provided between the protruding portion 24 and the fan support member 18.
次に、図9aは、本発明の実施形態に係る冷蔵室の単独冷却運転時における、冷凍室への冷気流入を抑制した状態の冷気流れを模式的に示した図である。 Next, FIG. 9a is a diagram schematically showing a cold air flow in a state where the inflow of cold air to the freezer compartment is suppressed during the single cooling operation of the refrigerator compartment according to the embodiment of the present invention.
冷凍室3を冷却する冷凍室ファン13と、冷蔵室4を冷却する冷蔵室ファン14のそれぞれの吐出側風路は互いに隣接するように配置されており、突出部23、24を対向して接触させて吐出側風路が仕切られている。ここで、突出部23と突出部24から構成されるファン吐出側の仕切りの一部に風量制御部37を設け、風量制御流れ38を発生させる。冷蔵室ファン14の吐出空気の一部となる風量制御流れ38を、風量制御部37を通して、冷凍室ファン13下流を経て、冷凍室冷気吐出口2から冷凍室3に流入させるようにする。 The discharge side air passages of the freezer compartment fan 13 for cooling the freezer compartment 3 and the refrigerating compartment fan 14 for cooling the refrigerating compartment 4 are arranged so as to be adjacent to each other, and the projecting portions 23 and 24 are in contact with each other. Thus, the discharge side air passage is partitioned. Here, an air volume control unit 37 is provided in a part of the fan discharge side partition constituted by the protrusion 23 and the protrusion 24 to generate an air volume control flow 38. The air volume control flow 38 that is a part of the discharge air of the refrigerator compartment fan 14 is caused to flow from the freezer compartment cold air outlet 2 to the freezer compartment 3 through the air quantity controller 37 and downstream of the freezer compartment fan 13.
風量制御流れ38は、冷凍室冷気戻り口5から冷凍室3に逆流してくる逆流冷気35の流れと反対方向に流れるため、逆流の発生を抑制する効果が得られることが分かる。図8に示したように、本実施例の冷蔵庫では、互いに別部材として設けたファン支持部材18と、仕切り部12を、冷凍室3の奥側(冷蔵庫本体1を正面から見て後方側)に組み合わせて配置すると、ファン支持部材18に設けたリブ状の突出部23と仕切り部12に設けたリブ状の突出部24によって、冷凍室ファン13による冷気風路abcdと、冷蔵室ファン14による冷気風路befcが、互いに左右(冷蔵庫本体1の幅方向)に隣接するように形成される。突出部23と突出部24を対向させて形成される冷凍室ファン13と冷蔵室ファン14の吐出側仕切り部は、ファン支持部材18と仕切り部12を別部材で構成しているため、突出部23と突出部24が互いに接触する部分に隙間が形成されて、風量制御部37を形成できる。なお、突出部23あるいは突出部24が互いに接触する部分に複数箇所の隙間が生じて、それらを足し合わせることによって、風量制御部37の機能を持たせる構成でも良い。 It can be seen that the air flow control flow 38 flows in the opposite direction to the flow of the backflow cold air 35 that flows back to the freezer compartment 3 from the freezer compartment cool air return port 5, so that the effect of suppressing the occurrence of backflow is obtained. As shown in FIG. 8, in the refrigerator of the present embodiment, the fan support member 18 and the partition portion 12 provided as separate members are arranged on the back side of the freezer compartment 3 (rear side when the refrigerator main body 1 is viewed from the front). The rib-like projecting portion 23 provided on the fan support member 18 and the rib-like projecting portion 24 provided on the partition portion 12 cause the cold air flow path abcd by the freezer compartment fan 13 and the refrigerator compartment fan 14 to be arranged. The cold air passages befc are formed so as to be adjacent to each other on the left and right (the width direction of the refrigerator main body 1). Since the discharge-side partition part of the freezer compartment fan 13 and the refrigerator compartment fan 14 formed by making the projecting part 23 and the projecting part 24 face each other, the fan support member 18 and the partition part 12 are configured as separate members. A gap is formed at a portion where the protrusion 23 and the protrusion 24 come into contact with each other, and the air volume control unit 37 can be formed. In addition, the structure which gives the function of the air volume control part 37 by producing | generating the clearance gap of several places in the part which the protrusion part 23 or the protrusion part 24 mutually contacts, and adding them may be sufficient.
以上のように、ファン支持部材18と仕切り部12からなる突出部23、24を別部材で構成すると、容易に風量制御部37を設けることができ、冷蔵室単独冷却時の冷凍室冷気戻り口5から流入する逆流冷気35による冷凍室3の温度上昇等の悪影響を緩和させることができる。 As described above, if the projecting portions 23 and 24 including the fan support member 18 and the partitioning portion 12 are configured as separate members, the air volume control unit 37 can be easily provided, and the freezer compartment cool air return port when the refrigerator is cooled alone. Thus, adverse effects such as a temperature rise in the freezer compartment 3 caused by the backflow cold air 35 flowing in from 5 can be mitigated.
なお、風量制御部37を設ける場合、仕切り部12、ファン支持部材18を別体ではなく、仕切り部12、ファン支持部材18を一体の構成としてもよい。 In addition, when providing the air volume control part 37, the partition part 12 and the fan support member 18 are not separated, and the partition part 12 and the fan support member 18 may be integrated.
次に、風量制御部37の大きさと逆流抑制効果について説明する。
図9bは、本発明の実施形態に係る風量制御部の大きさと、冷蔵室及び冷凍室の風量との関係を示す図である。
Next, the size of the air volume control unit 37 and the backflow suppression effect will be described.
FIG. 9b is a diagram showing the relationship between the size of the air volume control unit according to the embodiment of the present invention and the air volumes of the refrigerator compartment and the freezer compartment.
図9bは、風量制御部37の大きさを変更して、その際の風量を測定したものである。風量は、図の上側ほど通常の冷気流れ方向に大きくなり、下側ほど通常の冷気流れの逆方向に大きくなることを示している。 FIG. 9 b shows the measurement of the air volume at that time by changing the size of the air volume control unit 37. It is shown that the air volume increases in the normal cold air flow direction toward the upper side of the figure, and increases in the reverse direction of the normal cold air flow toward the lower side.
図9bに示すように、冷蔵室単独冷却運転(冷蔵室ファン14運転、冷凍室ファン13停止)を行う場合、風量制御部37がない場合(大きさD1)、すなわち、ファン支持部材18と仕切り部12のそれぞれに設けた突出部23と突出部24の接触部が接着されている場合や、あるいはファン支持部材18と仕切り部12が一体化されて、隣接する冷気風路abcdと冷気風路befcが形成される場合、逆流域の冷凍室風量56が最も大きくなる。風量制御部37をD2、D3、D0と大きくすると、逆流域の冷凍室風量56は抑制されていく。対象とする冷蔵庫の運転によって風量制御部37の大きさは異なるが、例えば、検討用に用いた内容積600Lクラスの冷蔵庫では、風量制御部37の大きさはφ25mm相当の孔(大きさD0)で逆流をほぼ抑えることができる。 As shown in FIG. 9b, when the refrigerator compartment single cooling operation (refrigerator compartment fan 14 operation, freezer compartment fan 13 stop) is performed, when there is no air volume control unit 37 (size D1), that is, the fan support member 18 and the partition When the contact part of the protrusion part 23 and the protrusion part 24 which were provided in each of the part 12 is adhere | attached, or the fan support member 18 and the partition part 12 are integrated, adjacent cold air path abcd and cold air path When the befc is formed, the freezing chamber air volume 56 in the reverse flow region becomes the largest. When the air volume control unit 37 is increased to D2, D3, and D0, the freezer compartment air volume 56 in the reverse flow region is suppressed. Although the size of the air volume control unit 37 differs depending on the operation of the target refrigerator, for example, in a refrigerator with an internal volume of 600 L used for examination, the size of the air volume control unit 37 is a hole corresponding to φ25 mm (size D0). The backflow can be almost suppressed.
突出部23あるいは突出部24が互いに接触する部分に複数の隙間が形成される場合には、それらを足し合わせて大きさφ25mm程度の孔に相当させれば良い。なお、冷蔵室風量55は風量制御部37を流れる風量制御流れ38の影響により、風量制御部37が大きくなるに従い、若干流量は減少する。冷蔵室4に送風する風量を一部利用して、風量制御部37を通過させる風量制御流れ38を発生させるので、風量制御部37の大きさの上限値は、少なくとも冷蔵室4に送風する風路befcの断面積よりも小さくする。 When a plurality of gaps are formed in the portion where the protrusion 23 or the protrusion 24 contacts each other, they may be added to correspond to a hole having a size of about φ25 mm. Note that the flow rate of the refrigerator air volume 55 slightly decreases as the air volume control unit 37 increases due to the influence of the air volume control flow 38 that flows through the air volume control unit 37. Since the air volume control flow 38 that passes through the air volume control unit 37 is generated using a part of the air volume that is blown into the refrigerator compartment 4, the upper limit value of the size of the air volume controller 37 is at least the wind that is blown into the refrigerator compartment 4. The cross-sectional area of the path befc is made smaller.
図9cは、本発明の実施形態に係る冷蔵室と冷凍室の温度経時変化を示す図である。冷凍室3、冷蔵室4の庫内温度は、それぞれの庫内に設けた温度センサ(図示なし)によって測定される値で、庫内設定値と庫内温度センサの検出値を基に制御装置50に記憶された制御方法に従って運転する。冷凍室冷却運転では、冷凍室温度47は上限となる温度TF1(時間t1)から下限となる温度TF2(時間t2)まで冷却される。この時、冷蔵室ダンパ40はCLOSE、冷凍室ファン13はON、冷蔵室ファン14はOFFとなる。 FIG. 9c is a diagram showing a temperature change of the refrigerator compartment and the freezer compartment according to the embodiment of the present invention. The internal temperature of the freezer compartment 3 and the refrigerator compartment 4 is a value measured by a temperature sensor (not shown) provided in each of the internal compartments, and is a control device based on the internal set value and the detection value of the internal temperature sensor. The operation is performed according to the control method stored in 50. In the freezer compartment cooling operation, the freezer compartment temperature 47 is cooled from the upper limit temperature TF1 (time t1) to the lower limit temperature TF2 (time t2). At this time, the refrigerator compartment damper 40 is CLOSE, the freezer compartment fan 13 is ON, and the refrigerator compartment fan 14 is OFF.
冷凍室冷却運転中に、冷蔵室温度は温度TR1から上限となる温度TR2に到達した場合、冷蔵室単独運転を実施する。この時、冷蔵室ダンパ40はOPEN、冷蔵室ファン14はON、冷凍室ファン13はOFFとなる。冷蔵室温度43は時間の経過とともに低下するが、冷凍室温度は逆流冷気35の影響により温度上昇する。このように、風量制御部37を設けていない場合は、冷蔵室単独冷却運転中の冷凍室温度45は上昇する。一方、風量制御部37の大きさをD2、D3とすると(図9b参照)、それぞれ破線で示す冷凍室温度46、冷凍室温度44と温度上昇が緩和されていく。 During the freezer compartment cooling operation, when the refrigerator compartment temperature reaches the upper limit temperature TR2 from the temperature TR1, the refrigerator compartment is operated alone. At this time, the refrigerator compartment damper 40 is OPEN, the refrigerator compartment fan 14 is ON, and the freezer compartment fan 13 is OFF. Although the refrigerator compartment temperature 43 decreases with the passage of time, the freezer compartment temperature rises due to the influence of the backflow cold air 35. Thus, when the air volume control part 37 is not provided, the freezer compartment temperature 45 during the refrigerator compartment single cooling operation rises. On the other hand, if the magnitude | size of the air volume control part 37 is set to D2 and D3 (refer FIG. 9b), the freezer compartment temperature 46 and the freezer compartment temperature 44 and temperature rise which are each shown with a broken line will be relieve | moderated.
次に、図10は、図6aのC−C断面図であって、本発明の他の実施形態に係る図である。この実施例では、突出部23の一部に切り欠き部51を予め設け、風量制御部37の機能を持たせた構成である。本実施例では、風量制御部37の大きさを一義的に決められるので、逆流を抑制する効果が更に高まる。図10には、突出部23の一部に、他部よりも低くなるように切り欠き部51を設けているが、突出部24にこの切り欠き部51を設けてもよい。また、図8に示すように、仕切り部12とファン支持部材18を別部材としているが、切り欠き部51を予め突出部23、24の少なくともいずれか一方又は両方に設けておけば、仕切り部12とファン支持部材18を一体化させても構わない。 Next, FIG. 10 is a cross-sectional view taken along the line C-C in FIG. 6A, and is a diagram according to another embodiment of the present invention. In this embodiment, a notch 51 is provided in advance in a part of the projecting portion 23, and the function of the air volume control unit 37 is provided. In the present embodiment, since the size of the air volume control unit 37 can be uniquely determined, the effect of suppressing the backflow is further enhanced. In FIG. 10, a notch 51 is provided in a part of the protrusion 23 so as to be lower than the other part. However, the notch 51 may be provided in the protrusion 24. Further, as shown in FIG. 8, the partition 12 and the fan support member 18 are separate members. However, if the notch 51 is provided in advance in at least one or both of the protrusions 23 and 24, the partition 12 and the fan support member 18 may be integrated.
次に、図11は、図8と異なる実施形態を示す図である。ファン支持部材18と仕切り部12を一体化させた仕切り空間部材52の内部に、冷凍室ファン13と冷蔵室ファン14それぞれの吐出側空間に仕切り部材53を設け、冷凍室ファン13の吐出側冷気風路abcd、冷蔵室ファン14の吐出側冷気風路befcとを互いに隣接して設けている。前記仕切り部材53には、風量を可変させる機構を備えた可変式風量制御部54を設けている。可変式風量制御部54は、例えばフラップ57を電動で可動できるダンパが挙げられる。仕切り部材53に設ける風量制御部の大きさは、数十ミリ程度の大きさの孔を想定しているので、可変式風量制御部54は小形になる。図11では、可変式風量制御部54としてフラップを用いた電動式ダンパを挙げているが、絞り羽根機講やバタフライ弁などにより風量制御部37の風路断面積を調整する方式を採用しても良い。 Next, FIG. 11 is a diagram showing an embodiment different from FIG. A partition member 53 is provided in the discharge side space of each of the freezer compartment fan 13 and the refrigerator compartment fan 14 inside the partition space member 52 in which the fan support member 18 and the partition portion 12 are integrated, and the discharge side cool air of the freezer compartment fan 13 is provided. The air path abcd and the discharge-side cold air path befc of the refrigerator compartment fan 14 are provided adjacent to each other. The partition member 53 is provided with a variable air volume control unit 54 having a mechanism for changing the air volume. Examples of the variable air volume control unit 54 include a damper that can electrically move the flap 57. Since the size of the air volume control section provided in the partition member 53 is assumed to be a hole having a size of about several tens of millimeters, the variable air volume control section 54 is small. In FIG. 11, an electric damper using a flap is cited as the variable air volume control unit 54. Also good.
ここで、冷凍室専用のダンパを冷凍室側の風路途中に設け、冷蔵室単独冷却運転時には冷凍室専用ダンパを閉にして、冷凍室側への逆流冷気35を直接抑制することも考えられる。しかしながら、冷凍室側の通風抵抗が増えないように冷凍室専用ダンパを冷凍室風路途中に設けるためには、冷凍室専用ダンパは大形になる。設置スペースを考慮すると仕切り部材53に可変式風量制御部54を設けて、冷凍室3への逆流を抑制した方が良い。また、冷却器16には霜が成長するため、冷蔵室単独冷却運転時に冷却器16を通過する風量が変化し、冷凍室冷気戻り口5から冷凍室3へ逆流する風量も変化する。 Here, it is also conceivable to provide a damper dedicated to the freezer compartment in the middle of the air path on the freezer compartment side, and to close the freezer compartment damper at the time of the independent cooling operation of the refrigerator compartment, thereby directly suppressing the backflow cold air 35 to the freezer compartment side. . However, in order to provide the freezer compartment damper in the freezer compartment so that the ventilation resistance on the freezer compartment side does not increase, the freezer compartment damper becomes large. Considering the installation space, it is better to provide the variable air volume control unit 54 in the partition member 53 to suppress the backflow to the freezer compartment 3. Further, since frost grows in the cooler 16, the amount of air passing through the cooler 16 during the refrigerating chamber independent cooling operation changes, and the amount of air flowing backward from the freezer compartment cold air return port 5 to the freezer compartment 3 also changes.
冷蔵室単独冷却運転が始まると可変式風量制御部54によって、図9cのグラフに示す冷凍室温度44の温度変化を想定して、予め決めた開度にフラップを開けておく。冷却運転時間が長くなってくると、冷却器16に霜が成長してくるため、逆流冷気35の風量が増えて冷凍室温度46のように上昇する現象が見られるようになる。その場合には、可変式風量制御部54のフラップ開度を大きくして風量制御流れを増やし、予め想定した冷凍室の温度上昇割合となるように調整すれば良い。但し、図9(b)で説明したように、可変式風量制御部54の最大の開口部の大きさは、少なくとも冷蔵室4に送風する風路becfの断面積よりも小さくなるようにしている。 When the refrigerating room independent cooling operation is started, the variable air volume control unit 54 opens a flap at a predetermined opening assuming a temperature change of the freezing room temperature 44 shown in the graph of FIG. 9c. As the cooling operation time becomes longer, frost grows in the cooler 16, so that a phenomenon in which the airflow of the backflow cold air 35 increases and the temperature of the freezer compartment 46 rises can be seen. In that case, the flap opening degree of the variable air volume control unit 54 may be increased to increase the air volume control flow, and the temperature may be adjusted so that the temperature rise rate of the freezer compartment is assumed in advance. However, as described with reference to FIG. 9B, the size of the maximum opening of the variable air volume control unit 54 is set to be at least smaller than the cross-sectional area of the air passage becf that blows air to the refrigerator compartment 4. .
また、図4bに示した霜利用冷却運転も冷蔵室4を循環する冷却のため、冷蔵室4側を循環する冷気の一部が、冷凍室冷気戻り口5から冷凍室3に逆流する現象が発生する。逆流現象を抑制するために風量制御部37を設けているが、霜利用冷却運転中に逆流によって冷凍室温度センサで検出される温度が所定の値を超える場合、霜利用冷却運転を止めて圧縮機22を稼働させる制御手段を更に持たせてもよい。 In addition, the frost-utilizing cooling operation shown in FIG. 4b also causes a phenomenon in which a part of the cold air circulating in the refrigerator compartment 4 flows back from the freezer compartment cold air return port 5 to the freezer compartment 3 because of the cooling circulating in the refrigerator compartment 4. Occur. In order to suppress the reverse flow phenomenon, the air volume control unit 37 is provided, but when the temperature detected by the freezer temperature sensor due to the reverse flow during the frost-based cooling operation exceeds a predetermined value, the frost-based cooling operation is stopped and compressed. Control means for operating the machine 22 may be further provided.
冷蔵室単独冷却運転、霜利用冷却運転、及び冷蔵室ファン14を稼働する除霜運転では、冷蔵室4を循環する冷気の一部の逆流冷気35を抑制させる目的で、風量制御部37、あるいは可変式風量制御部54を設けている。更に逆流冷気35の抑制以外にも、冷凍運転時に冷凍室3に送風する風量を増やすことができる。例えば、急速冷凍運転をする場合、冷凍室ファン13に加えて冷蔵室ファン14も運転させ、冷蔵室ダンパ40を閉にすると、冷凍室ファン13のみを運転した時に得られる風量に加えて、風量制御部37、あるいは可変式風量制御部54を通過する風量分だけ増やすことができ、急速冷凍運転時の冷却性能が高まる。 In the refrigerator compartment single cooling operation, the frost utilization cooling operation, and the defrosting operation that operates the refrigerator compartment fan 14, the air volume control unit 37, or for the purpose of suppressing a part of the cold air 35 that circulates in the refrigerator compartment 4, or A variable air volume control unit 54 is provided. Furthermore, in addition to the suppression of the backflow cold air 35, the amount of air blown to the freezer compartment 3 during the freezing operation can be increased. For example, in the case of quick freezing operation, when the refrigerator compartment fan 14 is operated in addition to the refrigerator compartment fan 13 and the refrigerator compartment damper 40 is closed, the air volume is obtained in addition to the air volume obtained when only the refrigerator compartment fan 13 is operated. The amount of air passing through the control unit 37 or the variable air volume control unit 54 can be increased, and the cooling performance during the quick freezing operation is enhanced.
以上より、本発明の実施例として説明した各構成によれば、単一の冷却器、冷蔵室ファン、冷凍室ファン、冷蔵室ダンパを備えた冷蔵庫において、冷蔵室単独冷却運転を実施する際に発生する、冷凍室戻り口から冷凍室への逆流現象を抑制して、省エネルギー性を高めた冷蔵室単独冷却運転を実施することを目的とする。更に、冷蔵室単独冷却運転を実施する際に発生する冷凍室への逆流を抑制することにより、冷凍室や冷凍食品の表面に発生する霜を抑制し、省エネルギー性と冷凍食品の保存性を合わせて向上させることができる。 As mentioned above, according to each composition explained as an example of the present invention, in a refrigerator provided with a single cooler, a refrigerating room fan, a freezing room fan, a refrigerating room damper, when carrying out a refrigerating room independent cooling operation An object of the present invention is to carry out a cooling room single cooling operation that suppresses the backflow phenomenon from the freezer return port to the freezing room and enhances energy saving. In addition, by suppressing the backflow to the freezer compartment that occurs when the refrigerator is cooled alone, frost generated on the surface of the freezer compartment and frozen food is suppressed, and energy conservation and storage stability of frozen food are combined. Can be improved.
また、省エネルギー性を考慮した冷蔵室単独冷却運転だけでなく、冷気循環経路が同様となる冷蔵室急速冷却運転も可能となる。 Moreover, not only the refrigerator compartment single cooling operation in consideration of energy saving property but also the refrigerator compartment rapid cooling operation with the same cool air circulation path is possible.
1 冷蔵庫本体
2 冷凍室冷気吐出口
3 冷凍室(冷凍温度帯室、貯蔵室)
3f 冷凍室側の吐出風路(冷凍室送風路、風路)
4 冷蔵室(冷蔵温度帯室、貯蔵室)
4f 冷蔵室側の吐出風路(冷蔵室送風路、風路)
5 冷凍室冷気戻り口
6 第一冷蔵室冷気吐出口
7 冷凍室ドア
8 冷蔵室ドア
9 断熱仕切り壁
10 冷蔵室ドア収納部
11 飲料容器
12 仕切り部
13 冷凍室ファン(冷凍温度帯室送風手段、第二の送風機)
13a、14a ファン前面部
14 冷蔵室ファン(冷蔵温度帯室送風手段、第一の送風機)
15 第一冷蔵室風路
16 冷却器
17 第二冷蔵室風路
18 ファン支持部材
19 棚
20 収納ケース
21 風路
22 圧縮機
23、24 突出部(境界部)
25 冷蔵室冷気戻り口
26 第二冷蔵室冷気吐出口
27 冷蔵室戻り風路
28 樋(水受け部)
29 放熱器
30 絞り(減圧手段)
31 配管
33 冷気
35 逆流冷気
37 風量制御部
38 風量制御流れ
40 冷蔵室ダンパ(冷蔵室冷気調整手段)
41 除霜ヒータ(加熱手段)
42 シール材
43 冷蔵室温度
44、45、46、47 冷凍室温度
50 制御装置
51 切り欠き部
52 仕切り空間部材
53 仕切り部材
54 可変式風量制御部
55 冷蔵室風量
56 冷凍室風量
57 フラップ
1 Refrigerator body 2 Freezer compartment cold air outlet 3 Freezer compartment (freezing temperature zone room, storage room)
3f Freezer compartment discharge air passage (freezer compartment air passage, air passage)
4 Refrigerated room (refrigerated temperature zone, storage room)
4f Discharge air passage on the refrigerator compartment side (refrigerator compartment air passage, air passage)
5 Freezer compartment cold air return port 6 First refrigerator compartment cold air outlet 7 Freezer compartment door 8 Refrigerator compartment door 9 Insulating partition wall 10 Refrigerator compartment door storage part 11 Beverage container 12 Partition part 13 Freezer compartment fan (freezing temperature zone air blowing means, Second blower)
13a, 14a Fan front face part 14 Refrigeration room fan (refrigeration temperature zone chamber blowing means, first blower)
15 First refrigerator compartment air passage 16 Cooler 17 Second refrigerator compartment air passage 18 Fan support member 19 Shelf 20 Storage case 21 Air passage 22 Compressors 23 and 24 Projection (boundary portion)
25 Cold room cold air return port 26 Second cold room cold air discharge port 27 Cold room return air passage 28 樋 (water receiving part)
29 Radiator 30 Restriction (pressure reduction means)
31 Pipe 33 Cold air 35 Backflow cold air 37 Air volume control part 38 Air quantity control flow 40 Cold room damper (refrigeration room cold air adjustment means)
41 Defrost heater (heating means)
42 Sealing material 43 Refrigerating room temperature 44, 45, 46, 47 Freezing room temperature 50 Control device 51 Notch part 52 Partition space member 53 Partition member 54 Variable air volume control part 55 Refrigerating room air quantity 56 Freezing room air quantity 57 Flap
Claims (4)
前記第一の送風機が設けられる風路と、前記第二の送風機が設けられる風路とは境界部を隔てて一部が隣接して設けられて、前記第一の送風機が設けられる風路の前記第一の送風機の吐出側と、前記第二の送風機が設けられる風路の前記第二の送風機の吐出側とが隣接する前記境界部に、互いの風路を繋ぐ風量制御部を設けたことを特徴とする冷蔵庫。 In a refrigerator comprising a plurality of storage chambers, and a first blower and a second blower that blow cool air to each of the plurality of storage chambers,
The air passage in which the first blower is provided and the air passage in which the second blower is provided are provided adjacent to each other across a boundary portion, and the air passage in which the first blower is provided. An air volume control unit for connecting the air paths to each other is provided at the boundary between the discharge side of the first fan and the discharge side of the second fan of the air path in which the second fan is provided. A refrigerator characterized by that.
前記冷蔵室送風路の前記冷蔵室ファンの吐出側と、前記冷凍室送風路の前記冷凍室ファンの吐出側は、少なくとも互いの一部が前記ファン支持部材と前記仕切り部との間に境界部を隔てて隣接するように配置されて、
前記冷蔵室送風路と前記冷凍室送風路が隣接する前記境界部は、前記ファン支持部材から前記仕切り部側に突出する突出部、又は前記仕切り部から前記ファン支持部材側に突出する突出部のいずれか又は両方が設けられ、前記境界部の一部に前記冷蔵室送風路と前記冷凍室送風路を連通する風量制御部を設けたことを特徴とする冷蔵庫。 A refrigeration room having a refrigeration temperature zone, a freezing room having a refrigeration temperature zone, a refrigeration room fan for blowing cold air to the refrigeration room, a freezer room fan for blowing cold air to the freezer room, and the refrigeration room fan are provided A refrigerator compartment air passage, a freezer compartment air passage provided with the freezer compartment fan, a fan support member for supporting the refrigerator compartment fan and the freezer compartment fan, and a front portion of the refrigerator compartment fan and the freezer compartment fan. A refrigerator provided with a partition part,
At least a part of the discharge side of the refrigerator compartment fan in the refrigerator compartment air passage and the discharge side of the freezer compartment fan in the freezer compartment fan passage are between the fan support member and the partition portion. Arranged adjacent to each other,
The boundary portion where the refrigerator compartment air passage and the freezer compartment air passage are adjacent is a protrusion that protrudes from the fan support member toward the partition portion, or a protrusion that protrudes from the partition portion toward the fan support member. Either or both are provided, The refrigerator which characterized by providing the air volume control part which connects the said refrigerator compartment ventilation path and the said freezer compartment ventilation path in a part of said boundary part.
前記ファン支持部材から前記仕切り部側に突出する突出部を設けた場合、前記突出部と前記仕切り部との間、
前記仕切り部から前記ファン支持部材側に突出する突出部を設けた場合、前記突出部と前記ファン支持部材との間、
前記ファン支持部材と前記仕切り部の両方に突出部を設けた場合、該突出部間に設けたことを特徴とする、請求項2記載の冷蔵庫。 The air volume control unit
When providing a protruding portion that protrudes from the fan support member toward the partition portion, between the protruding portion and the partition portion,
When providing a protrusion that protrudes from the partition to the fan support member side, between the protrusion and the fan support member,
The refrigerator according to claim 2, wherein when both the fan support member and the partition portion are provided with protrusions, the refrigerator is provided between the protrusions.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012030079A JP5487224B2 (en) | 2012-02-15 | 2012-02-15 | refrigerator |
KR1020130002489A KR101396956B1 (en) | 2012-02-15 | 2013-01-09 | Refrigerator |
CN201310050901.7A CN103256774B (en) | 2012-02-15 | 2013-02-16 | Refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012030079A JP5487224B2 (en) | 2012-02-15 | 2012-02-15 | refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013167382A JP2013167382A (en) | 2013-08-29 |
JP5487224B2 true JP5487224B2 (en) | 2014-05-07 |
Family
ID=48960858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012030079A Active JP5487224B2 (en) | 2012-02-15 | 2012-02-15 | refrigerator |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5487224B2 (en) |
KR (1) | KR101396956B1 (en) |
CN (1) | CN103256774B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015040633A (en) * | 2013-08-20 | 2015-03-02 | 日立アプライアンス株式会社 | Refrigerator |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6254385B2 (en) * | 2013-08-29 | 2017-12-27 | アクア株式会社 | refrigerator |
CN103900325B (en) * | 2014-04-14 | 2016-08-17 | 合肥美菱股份有限公司 | A kind of multi-fan refrigerator air duct |
SG11201609610WA (en) * | 2014-07-03 | 2017-01-27 | Mitsubishi Electric Corp | Refrigerator |
CN105444499B (en) * | 2015-12-25 | 2018-05-11 | 青岛海尔股份有限公司 | Ducting system, refrigerator and its control method |
KR101852677B1 (en) * | 2016-05-26 | 2018-04-26 | 엘지전자 주식회사 | Refrigerator |
US11692756B2 (en) * | 2019-12-09 | 2023-07-04 | Lg Electronics Inc. | Refrigerator |
KR20210116088A (en) * | 2020-03-17 | 2021-09-27 | 엘지전자 주식회사 | refrigerator |
KR20240109501A (en) * | 2023-01-04 | 2024-07-11 | 삼성전자주식회사 | Refrigerator |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR940009644A (en) | 1992-10-09 | 1994-05-20 | 배순훈 | Refrigeration temperature control method and device |
KR970007204A (en) * | 1995-07-20 | 1997-02-21 | 배순훈 | Cold air circulation system |
NZ314264A (en) * | 1997-02-18 | 1999-06-29 | Fisher & Paykel Ltd Substitute | Refrigeration apparatus comprising at least two compartments wherein the temperature of each compartment is independently controlled and temperatures are achieved simultaneously |
KR100281709B1 (en) * | 1997-12-31 | 2001-02-15 | 구자홍 | Freezing prevention structure of the cold air supply part of the refrigerator |
KR20000009637U (en) * | 1998-11-09 | 2000-06-05 | 전주범 | Air curtain device of the refrigerator |
KR100570534B1 (en) | 2000-01-07 | 2006-04-13 | 삼성전자주식회사 | Cool air regulator of refrigerator |
KR20080003660A (en) * | 2006-07-03 | 2008-01-08 | 주식회사 대우일렉트로닉스 | Refrigerator with temperature changing room |
CN101435648A (en) * | 2008-12-12 | 2009-05-20 | 海信科龙电器股份有限公司 | Cold storage room circulation heat utilization defrosting refrigeration system and control method thereof |
-
2012
- 2012-02-15 JP JP2012030079A patent/JP5487224B2/en active Active
-
2013
- 2013-01-09 KR KR1020130002489A patent/KR101396956B1/en active IP Right Grant
- 2013-02-16 CN CN201310050901.7A patent/CN103256774B/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015040633A (en) * | 2013-08-20 | 2015-03-02 | 日立アプライアンス株式会社 | Refrigerator |
Also Published As
Publication number | Publication date |
---|---|
KR101396956B1 (en) | 2014-05-19 |
CN103256774A (en) | 2013-08-21 |
JP2013167382A (en) | 2013-08-29 |
CN103256774B (en) | 2015-08-05 |
KR20130094227A (en) | 2013-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5487224B2 (en) | refrigerator | |
JP5909427B2 (en) | refrigerator | |
KR102627719B1 (en) | Refrigerator | |
JP6131116B2 (en) | refrigerator | |
JP5957684B2 (en) | refrigerator | |
JP2012037073A (en) | Refrigerator | |
AU2007339559A1 (en) | Cooling a separate room in a refrigerator | |
CN103339454B (en) | Freezer | |
JP2009063245A (en) | Refrigerator | |
JP4960399B2 (en) | refrigerator | |
JP4488966B2 (en) | refrigerator | |
JP2015218938A (en) | refrigerator | |
WO2023217181A1 (en) | Refrigerator, and air duct system thereof | |
JP2012007759A (en) | Refrigerator | |
JP2008057902A (en) | Refrigerator | |
JP2018155488A (en) | refrigerator | |
JP5941838B2 (en) | refrigerator | |
JP2019138481A (en) | refrigerator | |
JP5404549B2 (en) | Freezer refrigerator | |
JP4630849B2 (en) | refrigerator | |
JP2004003710A (en) | Refrigerator | |
JP7454458B2 (en) | refrigerator | |
JP2021042865A (en) | refrigerator | |
JP6383936B2 (en) | refrigerator | |
JP6398073B2 (en) | refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130828 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130828 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140224 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5487224 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |