Nothing Special   »   [go: up one dir, main page]

JP5472592B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP5472592B2
JP5472592B2 JP2009179318A JP2009179318A JP5472592B2 JP 5472592 B2 JP5472592 B2 JP 5472592B2 JP 2009179318 A JP2009179318 A JP 2009179318A JP 2009179318 A JP2009179318 A JP 2009179318A JP 5472592 B2 JP5472592 B2 JP 5472592B2
Authority
JP
Japan
Prior art keywords
transfer agent
formula
represented
hole transfer
photosensitive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009179318A
Other languages
Japanese (ja)
Other versions
JP2011033792A (en
Inventor
鋭司 栗本
啓介 下山
孝彰 池上
忠良 内田
秀樹 中村
巧 篠原
一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009179318A priority Critical patent/JP5472592B2/en
Publication of JP2011033792A publication Critical patent/JP2011033792A/en
Application granted granted Critical
Publication of JP5472592B2 publication Critical patent/JP5472592B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

本発明は、複写機、レーザプリンタ等に使用される電子写真感光体、これを用いた画像形成装置及びプロセスカートリッジに係り、特に、有機薄膜を使用した電子写真感光体に関する。   The present invention relates to an electrophotographic photosensitive member used for a copying machine, a laser printer, and the like, an image forming apparatus using the same, and a process cartridge, and more particularly to an electrophotographic photosensitive member using an organic thin film.

従来は、複写機やレーザプリンタ等に用いられる電子写真感光体には、セレン、セレン−テルル、セレン−砒素、アモルファスシリコン等の材料で構成された薄膜が感光層として用いられていた。
しかしながら、近年では、低価格で環境汚染の少ない有機感光体を用いたものが主流になりつつある。そのような有機感光体を感光層の構造で分類すると、単層分散型の感光層と機能分離型の感光層とに分けられる。
Conventionally, a thin film made of a material such as selenium, selenium-tellurium, selenium-arsenic, amorphous silicon or the like has been used as a photosensitive layer in an electrophotographic photosensitive member used in a copying machine, a laser printer, or the like.
However, in recent years, those using organic photoreceptors that are low in cost and have little environmental pollution are becoming mainstream. Such organic photoreceptors can be classified into a single-layer dispersion type photosensitive layer and a function-separated type photosensitive layer when classified by the structure of the photosensitive layer.

単層分散型感光体は、電荷移動剤の媒体中に電荷発生剤を分散させ、単層膜で電荷発生と電荷移動の両方の機能を持たせたものであり、機能分離型感光体は、電荷を発生させる電荷発生層(CGL)と、発生した電荷を移動させる電荷移動層(CTL)とを別々に成膜したものである。現在では、いずれの型の電子写真感光体とも実用に供されている。
有機感光体を帯電型で分類すると、正帯電型と負帯電型の2種類に分けられるが、現在知られている電子移動剤のうち、移動度が高いものはホール移動性のものがほとんどであり、材料の選択の余地が多いため感光体の特性の制御が容易なことから、実用化されている有機感光体は積層型の負帯感光体が主流となっている。
A monolayer dispersion type photoconductor is obtained by dispersing a charge generating agent in a medium of a charge transfer agent and having a function of both charge generation and charge transfer in a single layer film. A charge generation layer (CGL) that generates charges and a charge transfer layer (CTL) that moves the generated charges are formed separately. At present, both types of electrophotographic photoreceptors are in practical use.
Organic photoconductors can be classified into two types: positively charged and negatively charged. Among the currently known electron transfer agents, most of those with high mobility are those with hole mobility. In addition, since there is a lot of room for selection of materials, it is easy to control the characteristics of the photoconductor, and as a practical organic photoconductor, a laminated negative belt photoconductor is the mainstream.

一方、単層型の感光体は、塗布工程が少なく、コスト的に有利であるだけでなく、レーザ光のような単色光における干渉縞が発生し難い等の利点がある。
更に、感光層の表面近傍で入射光がほとんど吸収され電荷が発生するので、照射光の感光層中での拡散はほとんどなく、帯電後の表面電荷中和にいたるまでの電荷の移動距離が積層型の感光体に比べて少ない点が挙げられる。
このため、光および電荷の拡散による解像度低下が起こりにくく、高精細な画像形成が可能である。
また感光層中に電子移動剤と正孔移動剤とを含む単層型電子写真感光体では、正帯電および負帯電の両方の極性で用いることが可能であり、感光体の応用範囲を広げるとともに、感光体の品種削減によるコストの低減、高速化対応などにおいても有利となる。
また、正帯電で使用した場合はオゾンの影響が軽減できる。
On the other hand, a single-layer type photoreceptor has not only a small coating process and is advantageous in terms of cost, but also has an advantage that interference fringes in monochromatic light such as laser light hardly occur.
Furthermore, since incident light is almost absorbed near the surface of the photosensitive layer and charges are generated, there is almost no diffusion of irradiated light in the photosensitive layer, and the distance of charge movement until neutralization of the surface charge after charging is laminated. There are few points compared to the type of photoreceptor.
For this reason, resolution reduction due to diffusion of light and electric charges hardly occurs, and high-definition image formation is possible.
In addition, in a single layer type electrophotographic photosensitive member containing an electron transfer agent and a hole transfer agent in the photosensitive layer, it can be used in both positive and negative polarities, expanding the application range of the photosensitive member. Also, it is advantageous in reducing cost and speeding up by reducing the number of photoconductors.
In addition, the effect of ozone can be reduced when used with positive charging.

しかしながら、このような利点を持つ単層型感光体であるが、正帯電型でのみ実用化されており、負帯電型の単層感光体は実用化されていない。
また、正帯電型の単層感光体においても、負帯電積層感光体と匹敵するほどの帯電性、感光体感度を両立するものは得られていない。これは単層感光体が電子、正孔を同一膜中で移動させる機能が必要となり、さらに同一膜中に電荷発生機能を有するため、各機能を果たす材料開発、材料の組み合わせが難しいためである。
電子移動は電子移動剤が担うが、正孔移動剤のように高キャリヤ移動を果たす材料開発にいたっていない。
さらに単層感光体に用いる電子移動剤は、材料組み合わせにより互いが電荷移動錯体を形成し、溶解性、光透過性が著しく低下するものが存在し、正孔移動剤と電子移動剤との相性が非常に重要となり、電子移動剤、正孔移動剤を選定する目安が明確ではなかったのが現状である。
However, although it is a single layer type photoreceptor having such advantages, it is put into practical use only in the positively charged type, and the negatively charged type single layer photoreceptor is not put into practical use.
Also, no positively chargeable single-layer photoconductor that has both chargeability and photoconductor sensitivity comparable to those of a negatively charged laminated photoconductor has been obtained. This is because the single-layer photoconductor needs to have the function of moving electrons and holes in the same film, and also has a charge generation function in the same film, so it is difficult to develop materials and combine materials that fulfill each function. .
Electron transfer is carried out by an electron transfer agent, but a material that achieves high carrier transfer like a hole transfer agent has not been developed.
Furthermore, some electron transfer agents used in single-layer photoreceptors form charge transfer complexes with each other depending on the combination of materials, and the solubility and light transmission properties are significantly reduced. Compatibility between hole transfer agents and electron transfer agents exists. Is very important, and the standard for selecting an electron transfer agent and a hole transfer agent was not clear.

また、現在のところ、単層型感光体に用いることのできる電子移動剤としては、トリニトロフルオレノン(TNF)、テトラシアノエチレン、テトラシアノキノジメタン(TCNQ)、キノン、ジフェノキノン、ナフトキノン、アントラキノン及びこれらの誘導体等、特性上不充分な物質しか見出されていない。
具体的には、これらの電子移動剤には、次のような欠点がある。
(1)これらの電子移動剤のほとんどはバインダー樹脂との相溶性が悪く、感光層中に、高濃度で均一に分散させることができないため、含有量の不足から電気特性を満足させることができない。
(2)TNFは電子受容性が高く、そのため移動度も高いが、毒性が強いので実用に適さない。
(3)TCNQはきわめて高い電子受容性を示すが、強く着色しているため、感光層を形成させると本来は電荷発生剤に届くべき光を吸収してしまい、感度を低下させてしまううえに毒性も問題となる。
(4)ジフェノキノン骨格において、相溶性を向上させるために、非対称置換型化合物が提唱されているが、感度の高い正帯電型の電子写真感光体を作るために充分な性能の化合物は得られていない。
そこでこれを改善するため、特許文献1及び特許文献2において、非対称置換型化合物として、3−クロロ−5、3'、5'−トリ−tert−ブチルジフエノキノンをデン輸送物質として用いることが提案されている。
(5)しかし、正孔移動剤との組合せで、帯電−露光の耐久性で充分な特性を満足していない。
(6)電子移動度が低いため、負帯電型の単層感光体においては満足する感度が得られない。
以上述べたように、現状では正帯電、負帯電の両極性で適用できる単層感光体を実現するための電子移動剤と正孔移動剤との組合せによる感光体感度、安定性(帯電−露光繰り返しの安定性)において満足できるものは得られていない。
At present, as an electron transfer agent that can be used for a single layer type photoreceptor, trinitrofluorenone (TNF), tetracyanoethylene, tetracyanoquinodimethane (TCNQ), quinone, diphenoquinone, naphthoquinone, anthraquinone and Only substances with insufficient properties such as these derivatives have been found.
Specifically, these electron transfer agents have the following drawbacks.
(1) Most of these electron transfer agents have poor compatibility with the binder resin and cannot be uniformly dispersed at a high concentration in the photosensitive layer, so that the electrical characteristics cannot be satisfied due to insufficient content. .
(2) TNF has a high electron-accepting property and therefore has a high mobility, but is not suitable for practical use because of its high toxicity.
(3) Although TCNQ exhibits extremely high electron acceptability, it is strongly colored, and therefore, when a photosensitive layer is formed, it absorbs light that should originally reach the charge generating agent and lowers sensitivity. Toxicity is also a problem.
(4) In the diphenoquinone skeleton, an asymmetrically substituted compound has been proposed in order to improve the compatibility. However, a compound having sufficient performance for producing a highly sensitive positively charged electrophotographic photoreceptor has not been obtained. Absent.
Therefore, in order to improve this, in Patent Document 1 and Patent Document 2, 3-chloro-5, 3 ′, 5′-tri-tert-butyldiphenoquinone is used as a den transport material as an asymmetrically substituted compound. Proposed.
(5) However, the combination with the hole transfer agent does not satisfy the sufficient characteristics in the durability of charging-exposure.
(6) Since the electron mobility is low, satisfactory sensitivity cannot be obtained in a negatively charged single layer photoreceptor.
As described above, the sensitivity and stability of the photoreceptor (charge-exposure by combining an electron transfer agent and a hole transfer agent to realize a single-layer photoreceptor that can be applied in both positive and negative polarity at present. No satisfactory product has been obtained in terms of the stability of repetition.

本発明の目的は、上記従来技術の欠点を解消した高感度で且つ、両極性で使用できる単層感光体を提供することにある。   It is an object of the present invention to provide a single-layer photoreceptor that can be used with high sensitivity and in both polarities, eliminating the drawbacks of the prior art.

上記課題は、本発明の下記(1)〜()によって解決される。
(1)「導電性基体上に、感光層が設けられた単層電子写真感光体であって、前記感光層は、下記一般式(1)で表わされるジフェノキノン化合物を電子移動剤として含有し、且つ下記一般式(2)で表わされる正孔移動剤を含有するとともに、電荷発生剤としてチタニルフタロシアニンを含有し、該チタニルフタロシアニンは、CuKα線に対する回折角(2θ±0.2°)で、27.3°に最大ピークを持つことを特徴とする電子写真感光体。
The said subject is solved by following (1)-( 9 ) of this invention.
(1) “A single-layer electrophotographic photoreceptor having a photosensitive layer provided on a conductive substrate, wherein the photosensitive layer contains a diphenoquinone compound represented by the following general formula (1) as an electron transfer agent, In addition, it contains a hole transfer agent represented by the following general formula (2), and also contains titanyl phthalocyanine as a charge generating agent. The titanyl phthalocyanine has a diffraction angle (2θ ± 0.2 °) with respect to CuKα rays of 27. An electrophotographic photosensitive member having a maximum peak at 3 ° .

Figure 0005472592
(式中R、R、Rは飽和炭化水素であって、相互に同じであっても異なっていても
よい。
Figure 0005472592
(Wherein R 1 , R 2 and R 3 are saturated hydrocarbons and may be the same or different from each other.

Figure 0005472592
(式中、R〜Rは、各々独立に水素、ハロゲン原子、置換基を有してもよい炭素数1〜6のアルキル基、炭素数1〜6のアルコキシル基を表わす。)」、
(2)「前記一般式(1)で表わされるジフェノキノン化合物は、下記式(1a)で示される化合物であることを特徴とする前記第(1)項に記載の電子写真感光体。
Figure 0005472592
(Wherein R 4 to R 5 each independently represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, or an alkoxyl group having 1 to 6 carbon atoms).
(2) The electrophotographic photosensitive member according to item (1), wherein the diphenoquinone compound represented by the general formula (1) is a compound represented by the following formula (1a).

Figure 0005472592
(前記式(1a)において、t−Buは、tert−ブチル基を表わす。)」、
(3)「前記一般式(2)で表わされる正孔移動剤が下記式(2a)で表わされる構造を有する正孔移動剤であることを特徴とする前記第(1)項又は第(2)項に記載の電子写真感光体」、
Figure 0005472592
(In the formula (1a), t-Bu represents a tert-butyl group.) "
(3) The above-mentioned item (1) or (2), wherein the hole transfer agent represented by the general formula (2) is a hole transfer agent having a structure represented by the following formula (2a) Electrophotographic photosensitive member according to item) ”,

Figure 0005472592
(4)「前記一般式(2)で表わされる正孔移動剤が下記式(2b)で表わされる構造を有する正孔移動剤であることを特徴とする前記第(1)項又は第(2)項に記載の電子写真感光体」、
Figure 0005472592
(4) The above-mentioned item (1) or (2), wherein the hole transfer agent represented by the general formula (2) is a hole transfer agent having a structure represented by the following formula (2b) Electrophotographic photosensitive member according to item) ”,

Figure 0005472592
(5)「前記一般式(2)で表わされる正孔移動剤が下記式(2c)で表わされる構造を有する正孔移動剤であることを特徴とする前記第(1)項又は第(2)項に記載の電子写真感光体」
Figure 0005472592
(5) The above-mentioned item (1) or (2), wherein the hole transfer agent represented by the general formula (2) is a hole transfer agent having a structure represented by the following formula (2c) The electrophotographic photosensitive member according to the item)

Figure 0005472592
(6)「前記一般式(2)で表わされる正孔移動剤が下記式(2d)で表わされる構造を有する正孔移動剤であることを特徴とする前記第(1)項又は第(2)項に記載の電子写真感光体」、
Figure 0005472592
(6) The above-mentioned item (1) or (2), wherein the hole transfer agent represented by the general formula (2) is a hole transfer agent having a structure represented by the following formula (2d) Electrophotographic photosensitive member according to item) ”,

Figure 0005472592
(7)「前記一般式(2)で表わされる正孔移動剤が下記式(2e)で表わされる構造を有する正孔移動剤であることを特徴とする前記第(1)項又は第(2)項に記載の電子写真感光体」、
Figure 0005472592
(7) The above-mentioned item (1) or (2), wherein the hole transfer agent represented by the general formula (2) is a hole transfer agent having a structure represented by the following formula (2e) Electrophotographic photosensitive member according to item) ”,

Figure 0005472592
)「電子写真感光体、帯電手段、静電像形成手段、現像手段及び現像されたトナー像を転写する転写手段を有する画像形成装置において、前記電子写真感光体が、前記第(1)項乃至第()項のいずれかに記載の電子写真感光体であることを特徴とする画像形成装置」、
)「帯電手段、静電像形成手段、現像手段及び現像されたトナー像を転写する転写手段のうちの少なくとも1つの手段と前記第(1)項乃至第()項のいずれかに記載の電子写真感光体とを有し、画像形成装置に搭載可能なプロセスカートリッジ。」。
Figure 0005472592
( 8 ) "In an image forming apparatus having an electrophotographic photosensitive member, a charging unit, an electrostatic image forming unit, a developing unit, and a transfer unit that transfers a developed toner image, the electrophotographic photosensitive member is the first (1). An image forming apparatus comprising the electrophotographic photosensitive member according to any one of items 1 to ( 7 ),
( 9 ) "At least one of charging means, electrostatic image forming means, developing means, and transfer means for transferring the developed toner image, and any of the above-mentioned items (1) to ( 7 )" And a process cartridge that can be mounted on an image forming apparatus.

特定の電子移動剤と、特定の正孔輸送剤からなる最適な組合せによって、正孔、電子の移が効率よく行なわれ、高感度かつ繰り返しにおける帯電安定性が得られるために、本発明の感光体を用いることで安定した画像品質、高スピードな画像形成装置に適用できる。   The optimum combination of a specific electron transfer agent and a specific hole transport agent allows efficient transfer of holes and electrons, and provides high sensitivity and repeated charge stability. By using the body, it can be applied to an image forming apparatus with stable image quality and high speed.

本発明の一例の正帯電単層型の電子写真感光体の断面図Sectional view of positively charged single layer type electrophotographic photosensitive member of an example of the present invention 本発明で用いるチタニルフタロシアニンのX線回折図X-ray diffraction pattern of titanyl phthalocyanine used in the present invention 本発明で用いるチタニルフタロシアニンの別のX線回折図Another X-ray diffraction pattern of titanyl phthalocyanine used in the present invention 本発明の画像形成装置の1例を説明するための図である。It is a figure for demonstrating an example of the image forming apparatus of this invention. 本発明の画像形成装置用プロセスカートリッジの1例を説明するための図である。FIG. 3 is a view for explaining an example of a process cartridge for an image forming apparatus according to the present invention.

電子移動剤の置換基を電子吸引基とすることは従来から行なわれていたが、電子吸引基を含む化合物は電子移動剤自身の凝集力が高まるために、既知の電子移動剤ではバインダー樹脂との相溶性が悪くなり、そのため感光層中に高濃度に分散させることができず、実用に到っていなかった。
この相溶性を向上させるためには、上記のように、一般に電子移動剤を非対称構造にするとよいといわれており、従来技術でも、例えば以下のような非対称構造の電子移動剤が提案されている。
Although it has been conventionally performed that the electron-transfer agent is substituted with an electron-withdrawing group, a compound containing an electron-withdrawing group increases the cohesive force of the electron-transfer agent itself. Thus, the compatibility of the photosensitive layer was deteriorated, so that it could not be dispersed at a high concentration in the photosensitive layer and was not put into practical use.
In order to improve the compatibility, as described above, it is generally said that the electron transfer agent should have an asymmetric structure. In the prior art, for example, an electron transfer agent having the following asymmetric structure has been proposed. .

Figure 0005472592
(前記化学式(3)において、Meはメチル基、t−Buは、tert−ブチル基を表わす。)
しかしながら、上記化学反応で得られる上記式(3)の電子移動剤は、同じ置換基が2個存在しており、完全な非対称構造とはなっておらず、電子移動度も低い。
Figure 0005472592
(In the chemical formula (3), Me represents a methyl group, and t-Bu represents a tert-butyl group.)
However, the electron transfer agent of the above formula (3) obtained by the above chemical reaction has two identical substituents, does not have a completely asymmetric structure, and has a low electron mobility.

このような不完全非対称構造の電子移動剤に、電子吸引基を導入して電子移動度を向上させようとすると、非対称構造で得られた相溶性が導入された電子吸引基の凝集力によって打ち消されてしまう。
例えば、既知の下記式(4)で示される電子移動剤は、バインダー樹脂に数%しか溶解せず、実用にならない。
When an electron-withdrawing group is introduced into such an incompletely asymmetric structure of the electron transfer agent to improve the electron mobility, the compatibility obtained by the asymmetric structure is canceled by the cohesive force of the introduced electron-withdrawing group. It will be.
For example, the known electron transfer agent represented by the following formula (4) is only practically soluble in the binder resin and is not practical.

Figure 0005472592
Figure 0005472592

本発明者は鋭意検討の結果、特に、ジフェノキノン化合物を、いかなる対称軸も有さない完全非対称構造の特定ジフェノキノン化合物とすれば、電子吸引基を導入した場合でもバインダー樹脂との相溶性が良好であることを見出し、さらに、これと組合せ用いる正孔移動剤として特定のものを選択して用いたときには、特に良好な電子写真感光体特性を示すことを見出した。
即ち、ジフェノキノン化合物を、上記一般式(1)の構造としたのである。
As a result of intensive studies, the present inventor, in particular, if the diphenoquinone compound is a specific diphenoquinone compound having a completely asymmetric structure without any symmetry axis, the compatibility with the binder resin is good even when an electron withdrawing group is introduced. It was also found that when a specific hole-transfer agent used in combination with this was selected and used, particularly good electrophotographic photoreceptor characteristics were exhibited.
That is, the diphenoquinone compound has the structure of the general formula (1).

具体的には、R、R、Rを飽和炭化水素であって、相互に同じであるか異なるものとすると、該一般式(1)で表わされるジフェノキノン化合物は、電子移動度が高く、バインダー樹脂との相溶性もよいため、電子移動剤として用いた場合、感光層中に高濃度に均一に分散させることによって高感度の電子写真感光体を得ることができるようになるのである。
このような置換基R、R、Rで表わされる飽和炭化水素基には、具体的には、メチル基、エチル基、プロピル基等の直鎖飽和炭化水素基や、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、tert−ペンチル基等の分岐飽和炭化水素基や、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等の環式飽和炭化水素基や、これら直鎖、分岐、環式飽和炭化水素基同士の複合置換基等、炭素数やその構造に制限を受けずに用いることができる。
更に、前記置換基すべてをtert−ブチル基とする下記式(5)で表わされる化合物を均一に溶解させた液体に、HClガスを接触させることにより、容易に下記式(1a)で表わされる完全非対称のジフェノキノン化合物の合成ができる。
Specifically, when R 1 , R 2 , and R 3 are saturated hydrocarbons and are the same or different from each other, the diphenoquinone compound represented by the general formula (1) has high electron mobility. Because of its good compatibility with the binder resin, when used as an electron transfer agent, a highly sensitive electrophotographic photoreceptor can be obtained by uniformly dispersing it in the photosensitive layer at a high concentration.
Specific examples of the saturated hydrocarbon group represented by such substituents R 1 , R 2 , and R 3 include linear saturated hydrocarbon groups such as a methyl group, an ethyl group, and a propyl group, an isopropyl group, and an isobutyl group. Groups, sec-butyl groups, tert-butyl groups, branched saturated hydrocarbon groups such as tert-pentyl groups, cyclic saturated hydrocarbon groups such as cyclopropyl groups, cyclobutyl groups, cyclopentyl groups, cyclohexyl groups, etc. It can be used without being limited by the number of carbon atoms or its structure, such as a composite substituent between branched and cyclic saturated hydrocarbon groups.
Further, by bringing HCl gas into contact with a liquid in which a compound represented by the following formula (5) in which all the substituents are tert-butyl groups is uniformly dissolved, the complete formula represented by the following formula (1a) can be easily obtained. Asymmetric diphenoquinone compounds can be synthesized.

Figure 0005472592
Figure 0005472592

Figure 0005472592
Figure 0005472592

なお、ある特定の電荷発生剤に対して有効な電荷移動剤が、他の電荷発生剤に対しても有効であるとは限らず、逆にある特定の電荷移動剤に対して有効な電荷発生剤が、他の電子移動剤に対しても有効であるとは限らず、相性が存在する、ということが知られている。   Note that an effective charge transfer agent for a specific charge transfer agent is not necessarily effective for other charge transfer agents, and conversely, an effective charge generation for a specific charge transfer agent. It is known that the agent is not always effective against other electron transfer agents and has compatibility.

前記一般式(1)で表わされるジフェノキノン化合物(電子移動剤)と前記一般式(2)の正孔移動剤の組合せからなる電荷移動剤は、ジスアゾ顔料およびチタニルフタロシアニン、特にチタニルフタロシアニンを電荷発生剤とした場合に相性がよく、特にCukα特性X線回折におけるブラッグ角(2θ±0.2°)が27.2°に強いピークを有するチタニウムフタロシアニンを用いることが最良である(図2参照)。
また、Cukα特性X線回折におけるブラッグ角(2θ±0.2°)が7.6°及び28.6°にブロードなピークを有するチタニウムフタロシアニンを用いることができる(図3参照)。前記7.6°及び28.6°にブロードなピークを有するチタニウムフタロシアニンは、その他の特徴的な明瞭なピークも有さない。また、ピークは結晶状態や測定条件などによりブロード(幅広)になったり、スプリット(分裂)したり、シフト(角度の変化)することもあり得る。
図1の感光層(3)中の電荷発生材料の濃度は0.005重量%以上70重量%以下が一般的に用いられ、好ましくは0.5重量%以上5重量%以下である。電荷発生材料の濃度が低いと感光体感度が低下する傾向にあり、濃度が高くなると帯電性や膜強度が低下する傾向にある。
The charge transfer agent comprising a combination of the diphenoquinone compound (electron transfer agent) represented by the general formula (1) and the hole transfer agent of the general formula (2) is a charge generating agent comprising a disazo pigment and titanyl phthalocyanine, particularly titanyl phthalocyanine. In particular, it is best to use titanium phthalocyanine having a strong peak at a Bragg angle (2θ ± 0.2 °) of 27.2 ° in Cukα characteristic X-ray diffraction (see FIG. 2).
Further, titanium phthalocyanine having broad peaks at Bragg angles (2θ ± 0.2 °) of 7.6 ° and 28.6 ° in Cukα characteristic X-ray diffraction can be used (see FIG. 3). Titanium phthalocyanine having broad peaks at 7.6 ° and 28.6 ° does not have other characteristic clear peaks. In addition, the peak may become broad (spread), split (split), or shift (change in angle) depending on the crystal state or measurement conditions.
The concentration of the charge generating material in the photosensitive layer (3) in FIG. 1 is generally 0.005 wt% or more and 70 wt% or less, preferably 0.5 wt% or more and 5 wt% or less. When the concentration of the charge generating material is low, the photoreceptor sensitivity tends to decrease, and when the concentration is high, the chargeability and film strength tend to decrease.

以下、本発明の感光体に用いられる正孔移動剤としては種々のものが挙げられるが、うち、化学式(2a)〜(2e)で示される化合物が特に好ましいことが見い出された。
これらは、数ある正孔移動剤のうちで、多くの観点から見て特に優れたものとして定評があるというものではない。事実、これらを比較例として用いている従来技術も多く見受けられ、而してこの事実は、本発明における前記一般式(1)の電子移動剤と前記一般式(2)の正孔移動剤の組合せからなる電荷移動剤の予測困難性を示す1つの側面ということができる。
Hereinafter, various examples of the hole transfer agent used in the photoconductor of the present invention may be mentioned. Of these, the compounds represented by the chemical formulas (2a) to (2e) have been found to be particularly preferable.
These are not well-established as being particularly excellent from many viewpoints among the many hole transfer agents. In fact, many of the prior arts using these as comparative examples are also found, and thus this fact is related to the electron transfer agent of the general formula (1) and the hole transfer agent of the general formula (2) in the present invention. It can be said that it is one aspect which shows the difficulty of prediction of the charge transfer agent which consists of a combination.

Figure 0005472592
Figure 0005472592

Figure 0005472592
Figure 0005472592

Figure 0005472592
Figure 0005472592

Figure 0005472592
Figure 0005472592

Figure 0005472592
Figure 0005472592

上記式(2a)〜(2e)で表わされる化合物は、感光層中に1種類含有されてもよいし、2種類以上でもよい。   One type of compounds represented by the above formulas (2a) to (2e) may be contained in the photosensitive layer, or two or more types may be used.

感光層(3)中の正孔移動剤の濃度は要求される感光体性能や帯電極性により異なるため特に限定されないが、0.1重量%以上70重量%以下が好ましい。濃度が低いと正孔移動が不充分になり感光体特性に影響を与えることがあり、濃度が高いと樹脂との相溶性が悪くなり不均一な膜になったり樹脂濃度が低くなったりするため膜強度が低下する可能性がある。   The concentration of the hole transfer agent in the photosensitive layer (3) is not particularly limited because it varies depending on the required photoreceptor performance and charging polarity, but it is preferably 0.1% by weight or more and 70% by weight or less. If the concentration is low, hole movement may be insufficient, which may affect the characteristics of the photoconductor. If the concentration is high, the compatibility with the resin may deteriorate, resulting in a non-uniform film or low resin concentration. The film strength may decrease.

本発明の導電性基体には、アルミニウム、真鍮、ステンレス鋼、ニッケル、クロム、チタン、金、銀、銅、錫、白金、モリブデン、インジウム等の金属単体やその合金の加工体や、上記金属や炭素等の導電性物質を蒸着、メッキ等の方法で処理し、導電性を持たせたプラスチック板およびフィルム、さらに酸化錫、酸化インジウム、ヨウ化アルミニウムで被覆した導電性ガラス等を用いることができる。
導電性基体の種類や形状に制限されることなく、導電性を有する種々の材料を使用することができる。
一般には、円筒状のアルミニウム管単体やその表面をアルマイト処理したもの、または導電性樹脂を塗工したものがよく用いられている。
The conductive substrate of the present invention includes a single metal such as aluminum, brass, stainless steel, nickel, chromium, titanium, gold, silver, copper, tin, platinum, molybdenum and indium, a processed body of an alloy thereof, It is possible to use plastic plates and films that have been made conductive by depositing a conductive material such as carbon by a method such as vapor deposition or plating, and conductive glass coated with tin oxide, indium oxide, or aluminum iodide. .
Various materials having conductivity can be used without being limited by the type and shape of the conductive substrate.
In general, a cylindrical aluminum tube alone, a surface of which is anodized, or a material coated with a conductive resin is often used.

本発明の電子写真感光体に用いることができる電荷発生剤としては、上述したジスアゾ顔料やチタニルフタロシアニンが感度の相性がよい点で望ましいが、それに限定されるものではなく、その他、例えば、セレン、セレン−テルル、セレン−砒素、アモルファスシリコン、他のフタロシアニン顔料、モノアゾ顔料、ジスアゾ顔料、トリスアゾ顔料、ポリアゾ顔料、インジゴ顔料、スレン顔料、トルイジン顔料、ピラゾリン顔料、ペリレン顔料、キナクリドン顔料、ピリリウム塩等を用いることができる。
これらの電荷発生剤は単体で用いてもよいし、適切な光感度波長や増感作用を得るために2種類以上を混合して用いてもよい。
As the charge generating agent that can be used in the electrophotographic photosensitive member of the present invention, the above-mentioned disazo pigment and titanyl phthalocyanine are desirable in terms of good sensitivity compatibility, but are not limited thereto, and other examples include selenium, Selenium-tellurium, selenium-arsenic, amorphous silicon, other phthalocyanine pigments, monoazo pigments, disazo pigments, trisazo pigments, polyazo pigments, indigo pigments, selenium pigments, toluidine pigments, pyrazoline pigments, perylene pigments, quinacridone pigments, pyrylium salts, etc. Can be used.
These charge generating agents may be used alone or in combination of two or more in order to obtain an appropriate photosensitivity wavelength and sensitizing action.

また、前記一般式(1)中のR〜Rは、tert−ブチル基に限定されるものではなく、例えば、メチル基であれば、下記式(1b)で示される化合物が電子移動剤として得られる。 Moreover, R < 1 > -R < 3 > in the said General formula (1) is not limited to a tert- butyl group, For example, if it is a methyl group, the compound shown by following formula (1b) will be an electron transfer agent. As obtained.

Figure 0005472592
Figure 0005472592

また、上記化学式(1)で示されるジフェノキノン化合物は、1種類を単独で用いてもよいし、2種以上を混合して用いてもよい。
更に、前記一般式(1)で示されるジフェノキノン化合物は、感光層中に0.1重量%から80重量%の濃度で含まれていることが好ましい。
が電子移動剤として得られる。
Moreover, the diphenoquinone compound shown by the said Chemical formula (1) may be used individually by 1 type, and 2 or more types may be mixed and used for it.
Further, the diphenoquinone compound represented by the general formula (1) is preferably contained in the photosensitive layer at a concentration of 0.1 wt% to 80 wt%.
Is obtained as an electron transfer agent.

更に、これら前記一般式(1)で示される電子移動剤に、他の電子移動剤を添加することもでき、その場合には、感度を高めたり、残留電位を低下させたりすることができ、本発明の電子写真感光体の特性を改良することができる。   Furthermore, other electron transfer agents can be added to the electron transfer agent represented by the general formula (1). In that case, the sensitivity can be increased or the residual potential can be decreased. The characteristics of the electrophotographic photoreceptor of the present invention can be improved.

特性改良のために添加できる電子移動剤、正孔移動剤には、高分子化合物として、ポリビニルカルバゾール、ハロゲン化ポリビニルカルバゾール、ポリビニルピレン、ポリビニルインドロキノキサリン、ポリビニルベンゾチオフェン、ポリビニルアントラセン、ポリビニルアクリジン、ポリビニルピラゾリン、ポリアセチレン、ポリチオフェン、ポリピロール、ポリフェニレン、ポリフェニレンビニレン、ポリイソチアナフテン、ポリアニリン、ポリジアセチレン、ポリヘプタジイエン、ポリピリジンジイル、ポリキノリン、ポリフェニレンスルフィド、ポリフェロセニレン、ポリペリナフチレン、ポリフタロシアニン等の導電性高分子化合物を用いることができる。   Electron transfer agents and hole transfer agents that can be added to improve properties include polymer compounds such as polyvinyl carbazole, halogenated polyvinyl carbazole, polyvinyl pyrene, polyvinyl indoloquinoxaline, polyvinyl benzothiophene, polyvinyl anthracene, polyvinyl acridine, polyvinyl. Pyrazoline, polyacetylene, polythiophene, polypyrrole, polyphenylene, polyphenylene vinylene, polyisothianaphthene, polyaniline, polydiacetylene, polyheptadiene, polypyridinediyl, polyquinoline, polyphenylene sulfide, polyferrocenylene, polyperinaphthylene, polyphthalocyanine, etc. The conductive polymer compound can be used.

低分子化合物として、アントラセン、ピレン、フェナントレン等の多環芳香族化合物、インドール、カルバゾール、イミダゾール、等の含窒素複素環化合物、フルオレノン、フルオレン、オキサジアゾール、オキサゾール、ピラゾリン、ヒドラゾン、トリフェニルメタン、トリフェニルアミン、エナミン、スチルベン化合物などを使用することができる。   As low molecular weight compounds, polycyclic aromatic compounds such as anthracene, pyrene, phenanthrene, nitrogen-containing heterocyclic compounds such as indole, carbazole, imidazole, fluorenone, fluorene, oxadiazole, oxazole, pyrazoline, hydrazone, triphenylmethane, Triphenylamine, enamine, stilbene compounds and the like can be used.

また、ポリエチレンオキシド、ポリプロピレンオキシド、ポリアクリロニトリル、ポリメタクリル酸等の高分子化合物にLiイオン等の金属イオンをドープした高分子固体電解質等も用いることができる。   Further, a polymer solid electrolyte in which a polymer compound such as polyethylene oxide, polypropylene oxide, polyacrylonitrile, polymethacrylic acid or the like is doped with a metal ion such as Li ion can also be used.

さらに、テトラチアフルバレン−テトラシアノキノジメタンで代表される電子供与化合物と電子受容化合物で形成された有機電荷移動錯体等も用いることができ、これらを1種だけ添加しても、2種以上の化合物を混合して添加しても所望の感光体特性を得ることができる。   Furthermore, an organic charge transfer complex formed of an electron donating compound typified by tetrathiafulvalene-tetracyanoquinodimethane and an electron accepting compound can also be used. Desired photoreceptor characteristics can be obtained even when these compounds are mixed and added.

感光層を形成するために用いることができるバインダー樹脂には、ポリカーボネート樹脂、スチレン樹脂、アクリル樹脂、スチレン−アクリル樹脂、エチレン−酢酸ビニル樹脂、ポリプロピレン樹脂、塩化ビニル樹脂、塩素化ポリエーテル、塩化ビニル−酢酸ビニル樹脂、ポリエステル樹脂、フラン樹脂、ニトリル樹脂、アルキッド樹脂、ポリアセタール樹脂、ポリメチルペンテン樹脂、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリアリレート樹脂、ジアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリアリルスルホン樹脂、シリコン樹脂、ケトン樹脂、ポリビニルブチラール樹脂、ポリエーテル樹脂、フェノール樹脂、EVA樹脂、ACS樹脂、ABS樹脂及びエポキシアリレート等の光硬化樹脂等がある。これらは単体で用いても、共重合体を用いてもよく、また、それらを2種以上混合して使用することも可能である。また、分子量の異なった樹脂を混合して用いれば、硬度や耐摩耗性を改善できて好ましい。   Binder resins that can be used to form the photosensitive layer include polycarbonate resin, styrene resin, acrylic resin, styrene-acrylic resin, ethylene-vinyl acetate resin, polypropylene resin, vinyl chloride resin, chlorinated polyether, vinyl chloride. -Vinyl acetate resin, polyester resin, furan resin, nitrile resin, alkyd resin, polyacetal resin, polymethylpentene resin, polyamide resin, polyurethane resin, epoxy resin, polyarylate resin, diarylate resin, polysulfone resin, polyethersulfone resin, poly Photocurable resins such as allyl sulfone resin, silicon resin, ketone resin, polyvinyl butyral resin, polyether resin, phenol resin, EVA resin, ACS resin, ABS resin, and epoxy arylateThese may be used alone or as a copolymer, or they may be used in combination of two or more. Further, it is preferable to use a mixture of resins having different molecular weights because the hardness and wear resistance can be improved.

塗工液に使用する溶剤には、メタノール、エタノール、n−プロパノール、i−プロパノール、ブタノール等のアルコール類、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロヘプタン等の飽和脂肪族炭化水素、トルエン、キシレン等の芳香族炭化水素、ジクロロメタン、ジクロロエタン、クロロホルム、クロロベンゼン等の塩素系炭化水素、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、メトキシエタノール等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル等のエステル類、N,N−ジメチルホルムアミド、ジメチルスルホキシド等がある。これらは単独で用いても、2種類以上の溶剤を混合して用いてもよい。   Solvents used in the coating solution include alcohols such as methanol, ethanol, n-propanol, i-propanol, and butanol, saturated aliphatic hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, cycloheptane, toluene, Aromatic hydrocarbons such as xylene, chlorinated hydrocarbons such as dichloromethane, dichloroethane, chloroform, chlorobenzene, ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, methoxyethanol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, Esters such as ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, N, N-dimethylformamide, dimethyl sulfoxide, etc. . These may be used alone or as a mixture of two or more solvents.

本発明の感光体を製造するための塗工液には、電子写真感光体特性を損なわない範囲で、酸化防止剤、紫外線吸収剤、ラジカル捕捉剤、軟化剤、硬化剤、架橋剤等を添加することができ、感光体の特性、耐久性、機械特性を向上させられる。   Addition of antioxidants, ultraviolet absorbers, radical scavengers, softeners, curing agents, crosslinking agents, etc. to the coating solution for producing the photoreceptor of the present invention within the range not impairing the electrophotographic photoreceptor characteristics It is possible to improve the characteristics, durability, and mechanical characteristics of the photoreceptor.

さらに、分散安定剤、沈降防止剤、色分かれ防止剤、レベリング剤、消泡剤、増粘剤、艶消し剤等を添加すれば、感光体の仕上がり外観や、塗工液の寿命を改善できて好ましい。   Furthermore, the addition of dispersion stabilizers, anti-settling agents, anti-color separation agents, leveling agents, antifoaming agents, thickeners, matting agents, etc. can improve the finished appearance of the photoreceptor and the life of the coating solution. It is preferable.

本発明の電子写真感光体では、導電性支持体と感光層との間に、接着機能、バリヤー機能、支持体表面の欠陥被覆機能などを持つ下引き層を設けてもよい。
この下引き層としては、酸化アルミニウム、ポリエチレン樹脂、アクリル樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール樹脂、ポリアミド樹脂、ナイロン樹脂などを用いることができる。
それらの下引き層は、単独の樹脂で構成しても、あるいは2種類以上の樹脂を混合して構成してもよい。また、樹脂中に金属酸化物やカーボンを分散させた下引き層を用いることができる。
In the electrophotographic photoreceptor of the present invention, an undercoat layer having an adhesion function, a barrier function, a defect covering function on the support surface, and the like may be provided between the conductive support and the photosensitive layer.
As the undercoat layer, aluminum oxide, polyethylene resin, acrylic resin, epoxy resin, polycarbonate resin, polyurethane resin, vinyl chloride resin, vinyl acetate resin, polyvinyl butyral resin, polyamide resin, nylon resin, or the like can be used.
These undercoat layers may be composed of a single resin or a mixture of two or more resins. Further, an undercoat layer in which a metal oxide or carbon is dispersed in a resin can be used.

また感光層の上に、ポリビニルホルマール樹脂、ポリカーボネート樹脂、フッ素樹脂、ポリウレタン樹脂、シリコン樹脂等の有機薄膜や、シランカップリング剤の加水分解物で形成されるシロキサン構造体から成る薄膜を成膜して表面保護層を設けてもよく、その場合には、感光体の耐久性が向上するので好ましい。この表面保護層は、耐久性向上以外の他の機能を向上させるために設けてもよい。   On the photosensitive layer, an organic thin film such as polyvinyl formal resin, polycarbonate resin, fluororesin, polyurethane resin, and silicon resin, or a thin film composed of a siloxane structure formed from a hydrolyzate of a silane coupling agent is formed. A surface protective layer may be provided, and in that case, the durability of the photoreceptor is improved, which is preferable. This surface protective layer may be provided in order to improve functions other than the durability improvement.

<画像形成装置>
次に、図面を用いて本発明の画像形成装置、並びに、プロセスカートリッジ画像形成装置を詳しく説明する。
図4は、本発明の電子写真プロセス、及び画像形成装置を説明するための概略図であり、下記のような例も本発明の範疇に属するものである。
図4に示すように、感光体(1)はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであってもよい。帯電ローラ(12)、転写前チャージャ(15)、転写チャージャ(18)、分離チャージャ(19)、クリーニング前チャージャ(21)には、コロトロン、スコロトロン、固体帯電器(ソリッド・ステート・チャージャ)のほか、ローラ状の帯電部材あるいはブラシ状の帯電部材等が用いられ、公知の手段がすべて使用可能である。
帯電部材は、コロナ帯電等の非接触帯電方式やローラあるいはブラシを用いた帯電部材による接触帯電方式が一般的であり、本発明においてはいずれも有効に使用することが可能である。特に、帯電ローラは、コロトロンやスコロトロン等に比べてオゾンの発生量を大幅に低減することが可能であり、感光体の繰り返し使用時における安定性や画質劣化防止に有効である。
画像露光部(13)、除電ランプ(11)等の光源には、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの発光物全般を用いることができる。これらの中でも半導体レーザー(LD)や発光ダイオード(LED)が主に用いられる。
所望の波長域の光のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。
転写手段には、一般に前述の帯電器を使用することができるが、図に示すように、転写チャージャ(18)と、分離チャージャ(19)とを併用したものが効果的である。
また、このような転写手段を用いて、感光体からトナー像を紙に直接転写されるが、本発明においては感光体上のトナー像を一度中間転写体に転写し、その後中間転写体から紙に転写する中間転写方式であることが感光体の高耐久化、あるいは高画質化においてより好ましい。
現像ユニット(14)により、感光体(1)上に現像されたトナーは、転写紙(17)に転写されるが、すべてが転写されるわけではなく、感光体(1)上に残存するトナーも生ずる。
このようなトナーは、ファーブラシ(22)、あるいはクリーニングブレード(23)により、感光体(1)から除去される。このクリーニング工程は、クリーニングブラシだけで行なわれたり、ブレードと併用して行なわれることもあり、クリーニングブラシにはファーブラシ、マグファーブラシを始めとする公知のものが用いられる。クリーニングは、前述のとおり転写後に感光体(1)上に残ったトナー等を除く工程である
<Image forming apparatus>
Next, the image forming apparatus and the process cartridge image forming apparatus of the present invention will be described in detail with reference to the drawings.
FIG. 4 is a schematic diagram for explaining the electrophotographic process and the image forming apparatus of the present invention, and the following examples also belong to the category of the present invention.
As shown in FIG. 4, the photosensitive member (1) has a drum shape, but may have a sheet shape or an endless belt shape. For charging roller (12), pre-transfer charger (15), transfer charger (18), separation charger (19), pre-cleaning charger (21), in addition to corotron, scorotron, solid state charger (solid state charger) A roller-shaped charging member or a brush-shaped charging member is used, and all known means can be used.
As the charging member, a non-contact charging method such as corona charging or a contact charging method using a charging member using a roller or a brush is generally used, and any of them can be used effectively in the present invention. In particular, the charging roller can significantly reduce the amount of ozone generated compared to corotron, scorotron, etc., and is effective in stability and prevention of image quality deterioration when the photoreceptor is used repeatedly.
Examples of the light source such as the image exposure unit (13) and the charge removal lamp (11) include a fluorescent lamp, a tungsten lamp, a halogen lamp, a mercury lamp, a sodium lamp, a light emitting diode (LED), a semiconductor laser (LD), and an electroluminescence (EL). All of the luminescent materials can be used. Among these, a semiconductor laser (LD) and a light emitting diode (LED) are mainly used.
Various types of filters such as a sharp cut filter, a band pass filter, a near infrared cut filter, a dichroic filter, an interference filter, and a color temperature conversion filter can be used to irradiate only light in a desired wavelength range.
As the transfer means, the above-described charger can be generally used. However, as shown in the figure, a combination of the transfer charger (18) and the separation charger (19) is effective.
Further, the toner image is directly transferred from the photosensitive member to the paper using such a transfer unit. In the present invention, the toner image on the photosensitive member is once transferred to the intermediate transfer member, and then from the intermediate transfer member to the paper. An intermediate transfer method for transferring the toner to the photoconductor is more preferable for enhancing the durability or improving the image quality of the photoreceptor.
The toner developed on the photoreceptor (1) by the developing unit (14) is transferred to the transfer paper (17), but not all is transferred, and the toner remaining on the photoreceptor (1). Also occurs.
Such toner is removed from the photoreceptor (1) by the fur brush (22) or the cleaning blade (23). This cleaning process may be performed only with a cleaning brush or may be performed in combination with a blade, and known cleaning brushes such as a fur brush and a mag fur brush are used. As described above, the cleaning is a process of removing the toner remaining on the photoreceptor (1) after the transfer.

以上に示すような画像形成手段は、複写装置、ファクシミリ、プリンタ内に固定して組み込まれていてもよいが、プロセスカートリッジの形でそれら装置内に組み込まれてもよい。
前記プロセスカートリッジとは、本発明の光電変換素子を内臓蔵し、他に帯電手段、露光手段、現像手段、転写手段、クリーニング手段、除電手段の少なくとも1つを具備し、画像形成装置に着脱可能とした装置(部品)である。
本発明に係る感光体(1)の周囲に、帯電手段(12)、現像手段(14)、クリーニング手段)が配置され、移送されてきた転写紙(17)に現像後のトナー像を転写する転写チャージャ上に嵌合搭載されるプロセスカートリッジの一例を図8に示すが、ここでは除電手段は記載されていない。
The image forming means as described above may be fixedly incorporated in a copying apparatus, a facsimile, or a printer, but may be incorporated in these apparatuses in the form of a process cartridge.
The process cartridge includes the photoelectric conversion element of the present invention, and further includes at least one of a charging unit, an exposure unit, a developing unit, a transfer unit, a cleaning unit, and a charge eliminating unit, and is detachable from the image forming apparatus. This is a device (part).
A charging unit (12), a developing unit (14), and a cleaning unit) are arranged around the photoconductor (1) according to the present invention, and the developed toner image is transferred to the transferred transfer paper (17). An example of the process cartridge fitted and mounted on the transfer charger is shown in FIG. 8, but the neutralizing means is not described here.

以下、本発明を実施例により、さらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

<ジフェノキノンの製造例>
はじめに、本発明に用いた前記一般式(1)で表わされるジフェノキノン化合物の製造方法の一例を説明する。
先ず、2,6−ジ−tert−ブチルフェノール30.0gをクロロホルム300mlに溶かした溶液に、過マンガン酸カリウム91.8gを加え、温度を55〜60℃に保って25時間かき混ぜた。
次いで、無機物を濾別し、濃縮した後濾過し、得られた残渣をクロロホルム100mlに溶解し、少量のメタノールを加えて再結晶させたところ、赤褐色結晶として融点242〜243℃のジフェノキノンを得た。その重量を測定したところ21.5gであり、収率に換算すると72%であった。
<Example of production of diphenoquinone>
First, an example of the manufacturing method of the diphenoquinone compound represented by the said General formula (1) used for this invention is demonstrated.
First, 91.8 g of potassium permanganate was added to a solution prepared by dissolving 30.0 g of 2,6-di-tert-butylphenol in 300 ml of chloroform, and the mixture was stirred for 25 hours while maintaining the temperature at 55 to 60 ° C.
Next, the inorganic substance was filtered off, concentrated and filtered. The obtained residue was dissolved in 100 ml of chloroform and recrystallized by adding a small amount of methanol to obtain diphenoquinone having a melting point of 242 to 243 ° C. as reddish brown crystals. . When the weight was measured, it was 21.5g, and it was 72% when converted into a yield.

次に、酢酸300mlとクロロホルム120mlの混合液を用意し、それを反応溶媒として前記赤褐色結晶のジフェノキノン3.0gを溶解させ、窒素雰囲気下で室温に保ってHClガスを吹き込み、かき混ぜながら反応させた。
前記HClガスの吹き込みを7時間行なった後、室温で一晩かき混ぜ、沈殿を濾別した。濾液を減圧下で濃縮した後、水300mlを加えて濾過したところ3.8gの黄色固体の析出物が得られた。この3.8gの黄色個体析出物を25mlのメタノールに溶かし、少量の水を加えて再結晶させたところ、淡黄色結晶として融点150〜151℃のジフェノールを2.4g得た。収率に換算すると84%であった。
Next, a mixed liquid of 300 ml of acetic acid and 120 ml of chloroform was prepared, and 3.0 g of the reddish brown crystals of diphenoquinone was dissolved as a reaction solvent, and kept at room temperature in a nitrogen atmosphere, and HCl gas was blown and reacted while stirring. .
After blowing in the HCl gas for 7 hours, the mixture was stirred overnight at room temperature, and the precipitate was separated by filtration. The filtrate was concentrated under reduced pressure, and then 300 ml of water was added and filtered to obtain 3.8 g of a yellow solid precipitate. When 3.8 g of the yellow solid precipitate was dissolved in 25 ml of methanol and recrystallized by adding a small amount of water, 2.4 g of diphenol having a melting point of 150 to 151 ° C. was obtained as pale yellow crystals. In terms of yield, it was 84%.

前記2.4gのジフェノールをクロロホルム180mlに溶解し、二酸化鉛28.0gを加え、室温で3時間かき混ぜた後、残留物を濾別した。濾液を濃縮した後メタノール20mlを加えた。析出した結晶を濾過し、メタノールで洗浄したところ、赤紫色結晶として、融点155〜156℃の、前記式(1a)で示されるジフェノキノンを1.9g得た。収率に換算すると81%であった。
以上の反応過程を以下に示す。
The 2.4 g of diphenol was dissolved in 180 ml of chloroform, 28.0 g of lead dioxide was added, and the mixture was stirred at room temperature for 3 hours, and then the residue was separated by filtration. The filtrate was concentrated and 20 ml of methanol was added. The precipitated crystals were filtered and washed with methanol to obtain 1.9 g of diphenoquinone represented by the above formula (1a) having a melting point of 155 to 156 ° C. as reddish purple crystals. In terms of yield, it was 81%.
The above reaction process is shown below.

Figure 0005472592
以下の実施例で使用する前記式(1a)で示されたジフェノキノン化合物は、前記製造例の製造方法によって合成されたものである。一般式(1)で示される他のジフェノキノン化合物も、同様又は類似の方法により合成することができる。
Figure 0005472592
The diphenoquinone compound represented by the formula (1a) used in the following examples is synthesized by the production method of the production example. Other diphenoquinone compounds represented by the general formula (1) can also be synthesized by the same or similar method.

<チタニルフタロシアニンの製造例>
フタロジニトリル64.4gとα−クロロナフタレン150mlの混合物中に窒素気流下で6.5mlの四塩化チタンを5分間滴下した。滴下後、マントルヒーターにより200℃で2時間加熱して反応を完結させた。
その後析出物を濾過し、濾過残渣をαクロロナフタレンで洗浄した後、クロロホルムで洗浄し、さらにメタノールで洗浄した。
その後、濃アンモニア水60mlとイオン交換水60mlの混合液により沸点下で10時間の加水分解反応を行なったのち、室温で吸引濾過し、イオン交換水で洗浄が中性になるまで洗浄した。
その後、メタノールで洗浄したのち、90℃の熱風で10時間乾燥したところ、青紫色の結晶型チタニルフタロシアニン粉末64.6gを得た。
次に、約10倍量の濃硫酸に溶解し、水にあけて析出させ、濾過した粗ウエットケーキ30gを純水で中性になるまで水洗し、濾別しチタニルフタロシアニンウエットケーキ29gを得た。
前記ウエットケーキ10gをー5℃に冷やしたテトラヒドロフラン500ml中に投入し30分攪拌した後に濾別、乾燥しチタニルフタロシアニン9.5gを得た。得られたチタニルフタロシアニンはCu−Kα線に対するX線回折角(2θ±0.2°)は図2のように27.3°に最大回折角を有する物であった。
また、前記ウエットケーキ10gを乾燥させた。得られたチタニルフタロシアニンのX線回折角は図3のような(2θ)7.5°、28.8°にブロードなピークを有するものであった。
<Example of production of titanyl phthalocyanine>
Into a mixture of 64.4 g of phthalodinitrile and 150 ml of α-chloronaphthalene, 6.5 ml of titanium tetrachloride was dropped for 5 minutes under a nitrogen stream. After dropping, the reaction was completed by heating at 200 ° C. for 2 hours with a mantle heater.
Thereafter, the precipitate was filtered, and the filtration residue was washed with α-chloronaphthalene, then washed with chloroform, and further washed with methanol.
Thereafter, a hydrolysis reaction was performed at a boiling point for 10 hours with a mixed solution of 60 ml of concentrated ammonia water and 60 ml of ion-exchanged water, followed by suction filtration at room temperature and washing with ion-exchanged water until the washing became neutral.
Then, after washing with methanol and drying with hot air at 90 ° C. for 10 hours, 64.6 g of blue-violet crystalline titanyl phthalocyanine powder was obtained.
Next, it was dissolved in about 10 times the amount of concentrated sulfuric acid, poured into water and precipitated, and 30 g of the filtered crude wet cake was washed with pure water until neutral, and filtered to obtain 29 g of titanyl phthalocyanine wet cake. .
10 g of the wet cake was put into 500 ml of tetrahydrofuran cooled to −5 ° C., stirred for 30 minutes, filtered and dried to obtain 9.5 g of titanyl phthalocyanine. The obtained titanyl phthalocyanine had an X-ray diffraction angle (2θ ± 0.2 °) with respect to Cu—Kα ray having a maximum diffraction angle of 27.3 ° as shown in FIG.
Further, 10 g of the wet cake was dried. The X-ray diffraction angle of the resulting titanyl phthalocyanine had broad peaks at (2θ) 7.5 ° and 28.8 ° as shown in FIG.

本発明の電子写真感光体の一例について図面を用いて説明する。図1を参照し、(1)は本発明の一実施の形態である単層分散型の電子写真感光体であり、円筒状のアルミニウム管単体から成る導電性基体(2)と、該導電性基体(2)上に成膜された感光層(3)とを有している。   An example of the electrophotographic photosensitive member of the present invention will be described with reference to the drawings. Referring to FIG. 1, (1) is a single-layer dispersion type electrophotographic photosensitive member according to an embodiment of the present invention, and includes a conductive substrate (2) made of a single cylindrical aluminum tube, and the conductive material. And a photosensitive layer (3) formed on the substrate (2).

図1に示す感光層(3)を成膜するために、先ず、下記チタニルフタロシアニンの製造例により得られた図2に示すチタニルフタロシアニン0.5g、ガラスビーズ30ml、テトラヒドロフラン320mlと共にペイントシェイカーで5時間分散し、ガラスビーズを濾別しCGL液308mlを得る。
得られたCGL液に前記式(2a)の正孔移動剤25.2gと前記ジフェノキノンの製造例で得られた式(1a)のジフェノキノン25.2g、バインダー樹脂としてZ型ポリカーボネイト42g、を加えて溶解し、単層感光体用塗料を作成した、前記導電性基体(2)上に膜厚30μmの薄膜を塗工し、120℃、1時間の乾燥を行ない、前記感光層(3)を形成した。
In order to form the photosensitive layer (3) shown in FIG. 1, first, a paint shaker was used for 5 hours together with 0.5 g of titanyl phthalocyanine shown in FIG. 2 obtained by the following production example of titanyl phthalocyanine, 30 ml of glass beads and 320 ml of tetrahydrofuran. Disperse and filter the glass beads to obtain 308 ml of CGL solution.
To the obtained CGL liquid, 25.2 g of the hole transfer agent of the formula (2a), 25.2 g of the diphenoquinone of the formula (1a) obtained in the production example of the diphenoquinone, and 42 g of Z-type polycarbonate as a binder resin were added. Dissolved and prepared a coating for a single layer photoreceptor. A thin film with a thickness of 30 μm was applied on the conductive substrate (2) and dried at 120 ° C. for 1 hour to form the photosensitive layer (3). did.

実施例1において、式(2a)の正孔移動剤を、式(2b)のものに代えた以外は実施例1と同様にして感光体を作製した。   A photoconductor was prepared in the same manner as in Example 1 except that the hole transfer agent of the formula (2a) in Example 1 was changed to that of the formula (2b).

実施例1において、式(2a)のものを式(2c)で表わされる正孔移動剤に代えた以外は実施例1と同様にして感光体を作製した。   A photoconductor was prepared in the same manner as in Example 1 except that in Example 1, the one of formula (2a) was replaced with the hole transfer agent represented by formula (2c).

実施例1において、式(2a)のものを式(2d)で表わされる正孔移動剤に代えた以外は実施例1と同様にして感光体を作製した。   A photoconductor was prepared in the same manner as in Example 1 except that in Example 1, the one of formula (2a) was replaced with the hole transfer agent represented by formula (2d).

実施例1において、式(2a)のものを式(2e)で表わされる正孔移動剤に代えた以外は実施例1と同様にして感光体を作製した。   A photoconductor was prepared in the same manner as in Example 1 except that in Example 1, the one of formula (2a) was replaced with the hole transfer agent represented by formula (2e).

実施例1において、式(1a)のものを式(1b)で表わされる電子移動剤に代えた以外は実施例1と同様にして感光体を作製した。   A photoconductor was prepared in the same manner as in Example 1 except that in Example 1, the one of formula (1a) was replaced with the electron transfer agent represented by formula (1b).

実施例1において、式(1a)のものを式(1b)で表わされる電荷移動剤に、式(2a)を式(2b)の正孔移動剤に代えた以外は実施例1と同様にして感光体を作製した。   In Example 1, the same procedure as in Example 1 was performed except that the charge transfer agent represented by formula (1b) was replaced by the charge transfer agent represented by formula (1b) and the formula (2a) was replaced by the hole transfer agent represented by formula (2b). A photoconductor was prepared.

実施例1において、式(1a)のものを式(1b)で表わされる電荷移動剤に、式(2a)を式(2d)の正孔移動剤に代えた以外は実施例1と同様にして感光体を作製した。   In Example 1, the same procedure as in Example 1 was performed except that the charge transfer agent represented by formula (1b) was replaced with the charge transfer agent represented by formula (1b) and the formula (2a) was replaced with the hole transfer agent represented by formula (2d). A photoconductor was prepared.

実施例1において、図2のXRDスペクトルチャートを示す電荷発生剤を図3のXRDスペクトルチャートを示す電荷発生剤に代えた以外は実施例1と同様にして感光体を作製した。   A photoconductor was prepared in the same manner as in Example 1 except that the charge generator showing the XRD spectrum chart of FIG. 2 was replaced with the charge generator showing the XRD spectrum chart of FIG.

実施例1において、式(2a)のものを式(2b)の正孔移動剤に、図2のXRDスペクトルチャートを示す電荷発生剤を図3のXRDスペクトルチャートを示す電荷発生剤に代えた以外は実施例1と同様にして感光体を作製した。   In Example 1, except that the formula (2a) is replaced with the hole transfer agent of formula (2b), and the charge generator showing the XRD spectrum chart of FIG. 2 is replaced with the charge generator showing the XRD spectrum chart of FIG. Was prepared in the same manner as in Example 1.

実施例1において、式(2a)のものを式(2d)の正孔移動剤に、図2のXRDスペクトルチャートを示す電荷発生剤を図3のXRDスペクトルチャートを示す電荷発生剤に代えた以外は実施例1と同様にして感光体を作製した。   In Example 1, the formula (2a) was replaced with the hole transfer agent of formula (2d), and the charge generator showing the XRD spectrum chart of FIG. 2 was replaced with the charge generator showing the XRD spectrum chart of FIG. Was prepared in the same manner as in Example 1.

実施例1において、図2の電荷発生剤を下記式(6)のジスアゾ顔料に代えた以外は実施例1と同様にして感光体を作製した。   A photoconductor was prepared in the same manner as in Example 1 except that the charge generator in FIG. 2 was replaced with the disazo pigment of the following formula (6) in Example 1.

Figure 0005472592
Figure 0005472592

実施例1において、式(2a)のものを式(2b)の正孔移動剤に、図2のXRDスペクトルチャートを示す電荷発生剤を式(6)のジスアゾ顔料に代えた以外は実施例1と同様にして感光体を作製した。   Example 1 is the same as Example 1 except that the formula (2a) is replaced by the hole transfer agent of formula (2b) and the charge generating agent showing the XRD spectrum chart of FIG. 2 is replaced by the disazo pigment of formula (6). A photoreceptor was prepared in the same manner as described above.

実施例1において、式(2a)のものを式(2d)の正孔移動剤に、図2のXRDスペクトルチャートを示す電荷発生剤を式(6)のジスアゾ顔料に代えた以外は実施例1と同様にして感光体を作製した。   Example 1 except that the formula (2a) is replaced with the hole transfer agent of formula (2d) and the charge generating agent showing the XRD spectrum chart of FIG. 2 is replaced with the disazo pigment of formula (6) in Example 1. A photoreceptor was prepared in the same manner as described above.

<比較例1>
実施例1において、化学式(1a)で示すジフェノキノンに代えて、下記式(7)で示すジフェノキノンを用いて感光層を形成した。
<Comparative Example 1>
In Example 1, a photosensitive layer was formed using diphenoquinone represented by the following formula (7) instead of diphenoquinone represented by the chemical formula (1a).

Figure 0005472592
Figure 0005472592

<比較例2>
実施例1において、化学式(1a)で示すジフェノキノンに代えて、上記式(7)で示すジフェノキノンを用いて感光層を形成した。
また、式(2a)のものを式(2b)の正孔移動剤に代えた以外は実施例1と同様にして感光体を作製した。
<Comparative example 2>
In Example 1, a photosensitive layer was formed using diphenoquinone represented by the above formula (7) instead of diphenoquinone represented by the chemical formula (1a).
A photoconductor was prepared in the same manner as in Example 1 except that the formula (2a) was replaced with the hole transfer agent of formula (2b).

<比較例3>
実施例1において、式(2a)のものを下記式(8)で表わされる正孔移動剤に代えた以外は実施例1と同様にして感光体を作製した。
<Comparative Example 3>
A photoconductor was prepared in the same manner as in Example 1 except that in Example 1, the one represented by formula (2a) was replaced with the hole transfer agent represented by the following formula (8).

Figure 0005472592
Figure 0005472592

<比較例4>
実施例1において、式(2a)のものを下記式(9)で表わされる正孔移動剤に代えた以外は実施例1と同様にして感光体を作製した。
<Comparative Example 4>
A photoconductor was prepared in the same manner as in Example 1 except that in Example 1, the one of formula (2a) was replaced with the hole transfer agent represented by the following formula (9).

Figure 0005472592
Figure 0005472592

<比較例5>
実施例1において、式(2a)のものを下記式(10)で表わされる正孔移動剤に代えた以外は実施例1と同様にして感光体を作製した。
<Comparative Example 5>
A photoconductor was prepared in the same manner as in Example 1 except that in Example 1, the one represented by formula (2a) was replaced with a hole transfer agent represented by the following formula (10).

Figure 0005472592
Figure 0005472592

<比較例6>
実施例1において、式(2a)のものを下記式(11)で表わされる正孔移動剤に代えた以外は実施例1と同様にして感光体を作製した。
<Comparative Example 6>
A photoconductor was prepared in the same manner as in Example 1 except that in Example 1, the one represented by formula (2a) was replaced with a hole transfer agent represented by the following formula (11).

Figure 0005472592
Figure 0005472592

<比較例7>
実施例1において、図2のXRDスペクトルチャートを示す電荷発生剤を式(6)のジスアゾ顔料に代え、式(2a)のものを式(11)で表わされる正孔移動剤に代えた以外は実施例1と同様にして感光体を作製した。
<Comparative Example 7>
In Example 1, the charge generating agent showing the XRD spectrum chart of FIG. 2 was replaced with the disazo pigment of formula (6), and the one of formula (2a) was replaced with the hole transfer agent represented by formula (11). A photoconductor was produced in the same manner as in Example 1.

<比較例8>
実施例1において、図2のXRDスペクトルチャートを示す電荷発生剤を式(6)のジスアゾ顔料に代え、式(2a)のものを式(8)で表わされる正孔移動剤に代えた以外は実施例1と同様にして感光体を作製した。
<Comparative Example 8>
In Example 1, the charge generating agent showing the XRD spectrum chart of FIG. 2 was replaced with the disazo pigment of formula (6), and the one of formula (2a) was replaced with the hole transfer agent represented by formula (8). A photoconductor was produced in the same manner as in Example 1.

<単層分散型感光体の電気特性測定条件>
[正帯電極性評価方法]
コロナ放電電流が20μAとなるようにコロナ放電器を設定し、前記実施例1〜14、比較例1〜8において製造した単層分散型感光体を暗所にてコロナ放電により正帯電させて帯電電位を測定する。このときの表面電位が700Vになるように放電電流を調節し、780nmの光で露光し、各感光体の表面電位を700Vから350に半減させる露光量を測定した。このときの露光量を半減露光量(μJ/cm)とする。
この半減露光量は、感光体の感度を示す値であり、半減露光量の数値は小さいほど高感度な感光体を示し、高感度感光体は0.2μJ/cm、実用的な範囲としては0.45μJ/cm以下である。
また、各感光体の表面電位700Vで780nmの光(露光エネルギー2μJ/cm)を照射したときの表面電位を測定した。このときの表面電位を残留電位(VL)とする。
この残留電位は、帯電後減衰せずに感光体表面に除電しきれずに残った電荷であり、この電位が小さいほど実用上好ましく、一般的には100V以下が好ましい。
<Conditions for measuring electrical characteristics of single-layer dispersion type photoreceptor>
[Positive charge polarity evaluation method]
The corona discharger is set so that the corona discharge current is 20 μA, and the monolayer dispersion type photoconductors manufactured in Examples 1 to 14 and Comparative Examples 1 to 8 are positively charged by corona discharge in the dark. Measure the potential. The discharge current was adjusted so that the surface potential at this time was 700 V, and exposure was performed with light of 780 nm, and the exposure amount that reduced the surface potential of each photoconductor from 700 V to 350 was measured. Let the exposure amount at this time be a half exposure amount (μJ / cm 2 ).
This half-exposure amount is a value indicating the sensitivity of the photoconductor. The smaller the half-exposure amount, the more sensitive the photoconductor, and the high-sensitivity photoconductor is 0.2 μJ / cm 2 . 0.45 μJ / cm 2 or less.
Further, the surface potential when each photoconductor was irradiated with 780 nm light (exposure energy 2 μJ / cm 2 ) at a surface potential of 700 V was measured. The surface potential at this time is defined as a residual potential (VL).
This residual potential is a charge that does not decay after charging and remains on the surface of the photoreceptor without being completely discharged. Practically, the smaller the potential is, the more preferable it is 100 V or less.

[負帯電特性評価方法]
帯電極性を負帯電に切り替え、上記方法と同様に評価を実施した。
[Negative charging characteristics evaluation method]
The charge polarity was switched to negative charge, and the evaluation was performed in the same manner as the above method.

<測定結果>
実施例1〜14及び比較例1〜8の測定結果は、表1のとおりである。
<Measurement results>
The measurement results of Examples 1 to 14 and Comparative Examples 1 to 8 are as shown in Table 1.

Figure 0005472592
Figure 0005472592

<感光体実施例の評価結果>
本発明の実施例1〜14の感光体は0.1〜0.25μJ/cmと高感度であり残留電位も100v以下と低いことがわかる。
これに対し、比較例1及び2の電子移動剤は対称性が不充分であるため、電荷移動が悪く、充分な感度を得ることができない。
比較例3〜8は、他の正孔移動剤と組み合わせたものであるがこちらも電子移動剤と正孔移動剤の相性が悪く、感度が充分ではなく残留電位が悪くなっている。
比較例7及び8の他の電荷発生剤を用いた場合も同様であった。
<Evaluation results of photoconductor examples>
It can be seen that the photoreceptors of Examples 1 to 14 of the present invention have a high sensitivity of 0.1 to 0.25 μJ / cm 2 and a low residual potential of 100 V or less.
On the other hand, since the electron transfer agents of Comparative Examples 1 and 2 have insufficient symmetry, charge transfer is poor and sufficient sensitivity cannot be obtained.
Comparative Examples 3 to 8 are combinations with other hole transfer agents, but here too, the compatibility between the electron transfer agent and the hole transfer agent is poor, the sensitivity is not sufficient, and the residual potential is poor.
The same was true when other charge generating agents of Comparative Examples 7 and 8 were used.

以上述べてきたように、本発明に用いた電子移動剤と正孔輸送剤を組み合わせることで次のような特性を持っている。
(1)本発明の電子移動剤であるジフェノキノン化合物は、本発明の正孔輸送剤と組み合わせることで、高感度な正負両極性単層型感光体を得ることができる。
(2)本発明の電子移動剤と正孔輸送剤との組合せからなる電荷輸送剤に図2のチタニルフタロシアニンを組み合わせることで、高い電荷発生、高い電子、正孔移動効率によって、これまでにない高感度かつ帯電安定な感光体が得られる。
As described above, the combination of the electron transfer agent and the hole transfer agent used in the present invention has the following characteristics.
(1) The diphenoquinone compound, which is the electron transfer agent of the present invention, can be combined with the hole transfer agent of the present invention to obtain a highly sensitive positive / negative bipolar single layer type photoreceptor.
(2) By combining the titanyl phthalocyanine of FIG. 2 with the charge transfer agent comprising the combination of the electron transfer agent and the hole transfer agent of the present invention, high charge generation, high electron and hole transfer efficiency have never been achieved. A highly sensitive and charge-stable photoconductor can be obtained.

1 電子写真感光体
2 導電性基体
3 感光層
11 除電ランプ
12 帯電ローラ
13 画像露光部(画像露光手段)
14 現像ユニット(現像手段)
15 転写前チャージャ
16 レジストローラ
17 転写紙
18 転写チャージャ
19 分離チャージャ
20 分離爪
21 クリーニング前チャージャ
22 ファーブラシ
23 クリーニングブレード
DESCRIPTION OF SYMBOLS 1 Electrophotographic photoreceptor 2 Conductive base | substrate 3 Photosensitive layer 11 Static elimination lamp 12 Charging roller 13 Image exposure part (image exposure means)
14 Development unit (development means)
15 Pre-transfer charger 16 Registration roller 17 Transfer paper 18 Transfer charger 19 Separation charger 20 Separation claw 21 Pre-cleaning charger 22 Fur brush 23 Cleaning blade

特開平9−62018号公報JP-A-9-62018 特願2008−02804号明細書Japanese Patent Application No. 2008-02804

Claims (9)

導電性基体上に、感光層が設けられた単層電子写真感光体であって、前記感光層は、下記一般式(1)で表わされるジフェノキノン化合物を電子移動剤として含有し、且つ下記一般式(2)で表わされる正孔移動剤を含有するとともに、電荷発生剤としてチタニルフタロシアニンを含有し、該チタニルフタロシアニンは、CuKα線に対する回折角(2θ±0.2°)で、27.3°に最大ピークを持つことを特徴とする電子写真感光体。
Figure 0005472592
(式中R、R、Rは飽和炭化水素であって、相互に同じであっても異なっていても
よい。
Figure 0005472592
(式中、R〜Rは、各々独立に水素、ハロゲン原子、置換基を有してもよい炭素数1〜6のアルキル基、炭素数1〜6のアルコキシル基を表わす。)
A single-layer electrophotographic photosensitive member having a photosensitive layer provided on a conductive substrate, wherein the photosensitive layer contains a diphenoquinone compound represented by the following general formula (1) as an electron transfer agent, and the following general formula It contains a hole transfer agent represented by (2) and also contains titanyl phthalocyanine as a charge generator, and the titanyl phthalocyanine has a diffraction angle (2θ ± 0.2 °) with respect to CuKα rays at 27.3 °. An electrophotographic photoreceptor characterized by having a maximum peak .
Figure 0005472592
(Wherein R 1 , R 2 and R 3 are saturated hydrocarbons and may be the same or different from each other.
Figure 0005472592
(In the formula, R 4 to R 5 each independently represents hydrogen, a halogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, or an alkoxyl group having 1 to 6 carbon atoms.)
前記一般式(1)で表わされるジフェノキノン化合物は、下記式(1a)で示される化合物であることを特徴とする請求項1に記載の電子写真感光体。
Figure 0005472592
(前記式(1a)において、t−Buは、tert−ブチル基を表わす。)
2. The electrophotographic photoreceptor according to claim 1, wherein the diphenoquinone compound represented by the general formula (1) is a compound represented by the following formula (1a).
Figure 0005472592
(In the formula (1a), t-Bu represents a tert-butyl group.)
前記一般式(2)で表わされる正孔移動剤が下記式(2a)で表わされる構造を有する正孔移動剤であることを特徴とする請求項1又は2に記載の電子写真感光体。
Figure 0005472592
3. The electrophotographic photosensitive member according to claim 1, wherein the hole transfer agent represented by the general formula (2) is a hole transfer agent having a structure represented by the following formula (2a).
Figure 0005472592
前記一般式(2)で表わされる正孔移動剤が下記式(2b)で表わされる構造を有する正孔移動剤であることを特徴とする請求項1又は2に記載の電子写真感光体。
Figure 0005472592
3. The electrophotographic photoreceptor according to claim 1, wherein the hole transfer agent represented by the general formula (2) is a hole transfer agent having a structure represented by the following formula (2b).
Figure 0005472592
前記一般式(2)で表わされる正孔移動剤が下記式(2c)で表わされる構造を有する正孔移動剤であることを特徴とする請求項1又は2に記載の電子写真感光体。
Figure 0005472592
3. The electrophotographic photosensitive member according to claim 1, wherein the hole transfer agent represented by the general formula (2) is a hole transfer agent having a structure represented by the following formula (2c).
Figure 0005472592
前記一般式(2)で表わされる正孔移動剤が下記式(2d)で表わされる構造を有する正孔移動剤であることを特徴とする請求項1又は2に記載の電子写真感光体。
Figure 0005472592
3. The electrophotographic photoreceptor according to claim 1, wherein the hole transfer agent represented by the general formula (2) is a hole transfer agent having a structure represented by the following formula (2d).
Figure 0005472592
前記一般式(2)で表わされる正孔移動剤が下記式(2e)で表わされる構造を有する正孔移動剤であることを特徴とする請求項1又は2に記載の電子写真感光体。
Figure 0005472592
3. The electrophotographic photosensitive member according to claim 1, wherein the hole transfer agent represented by the general formula (2) is a hole transfer agent having a structure represented by the following formula (2e).
Figure 0005472592
電子写真感光体、帯電手段、静電像形成手段、現像手段及び現像されたトナー像を転写する転写手段を有する画像形成装置において、前記電子写真感光体が、請求項1乃至のいずれかに記載の電子写真感光体であることを特徴とする画像形成装置。 The image forming apparatus having an electrophotographic photosensitive member, a charging unit, an electrostatic image forming unit, a developing unit, and a transfer unit for transferring the developed toner image, wherein the electrophotographic photosensitive member is any one of claims 1 to 7. An image forming apparatus comprising the electrophotographic photosensitive member described above. 帯電手段、静電像形成手段、現像手段及び現像されたトナー像を転写する転写手段のうちの少なくとも1つの手段と請求項1乃至のいずれかに記載の電子写真感光体とを有し、画像形成装置に搭載可能なプロセスカートリッジ。 It has at least one means among a charging means, an electrostatic image forming means, a developing means, and a transferring means for transferring the developed toner image, and the electrophotographic photosensitive member according to any one of claims 1 to 7 , A process cartridge that can be mounted in an image forming apparatus.
JP2009179318A 2009-07-31 2009-07-31 Electrophotographic photoreceptor Expired - Fee Related JP5472592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179318A JP5472592B2 (en) 2009-07-31 2009-07-31 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009179318A JP5472592B2 (en) 2009-07-31 2009-07-31 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JP2011033792A JP2011033792A (en) 2011-02-17
JP5472592B2 true JP5472592B2 (en) 2014-04-16

Family

ID=43762936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179318A Expired - Fee Related JP5472592B2 (en) 2009-07-31 2009-07-31 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP5472592B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163361A (en) * 1986-12-25 1988-07-06 Canon Inc Electrophotographic sensitive body
JPH01105955A (en) * 1987-10-19 1989-04-24 Konica Corp Electrophotographic sensitive body
JP3778595B2 (en) * 1995-08-21 2006-05-24 新電元工業株式会社 Electrophotographic photoreceptor and method for synthesizing diphenoquinone compound
JP2981994B2 (en) * 1997-12-24 1999-11-22 コニカ株式会社 Image forming method
JP2001188365A (en) * 1999-12-28 2001-07-10 Sharp Corp Organic electrophotographic photoreceptor and producing method therefor
JP2005099695A (en) * 2003-08-28 2005-04-14 Ricoh Co Ltd Image forming apparatus

Also Published As

Publication number Publication date
JP2011033792A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP4823124B2 (en) Single-layer dispersion type photoreceptor, electrophotographic apparatus
CN101604125B (en) Electrophotographic photoconductor
JP2007233351A (en) Electrophotographic photoreceptor and electrophotographic device
JP5504702B2 (en) Electrophotographic photoreceptor
JP5790260B2 (en) Photoconductor, process cartridge, and image forming apparatus
JP2004145284A (en) Titanyl phthalocyanine compound, electrophotographic photoreceptor, and image forming apparatus
JPH05107784A (en) Electrophotographic photoreceptor
JP2000284511A (en) Electrophotographic photoreceptor
JP4144932B2 (en) Dichlorotin phthalocyanine crystal, process for producing the same, and electrophotographic photosensitive member using the same
JP5472592B2 (en) Electrophotographic photoreceptor
JP3778595B2 (en) Electrophotographic photoreceptor and method for synthesizing diphenoquinone compound
JP5552755B2 (en) Electrophotographic photoreceptor
JP6248400B2 (en) Photoconductor and image forming apparatus
JP3947491B2 (en) Electrophotographic photoreceptor and image forming apparatus
JP3694068B2 (en) Electrophotographic photoreceptor
JP4767712B2 (en) Triarylamine derivative, process for producing the same and electrophotographic photoreceptor
JP3787164B2 (en) Electrophotographic photoreceptor
JP3608877B2 (en) Quinone derivative and electrophotographic photoreceptor using the same
JP5472580B2 (en) Electrophotographic photoreceptor
JPH09295972A (en) Diazanaphtho(2,3-b)fluorene derivative and electrophotographic photoreceptor using the same
JP5472579B2 (en) Electrophotographic photoreceptor
JP4623849B2 (en) Phthalocyanine and production method thereof, photoelectric conversion element using phthalocyanine, and electrophotographic photosensitive member
JPH1026836A (en) Electrophotographic photoreceptor
JP3641069B2 (en) Phenanthrenebisenamine derivative and electrophotographic photoreceptor using the same
JPH09304953A (en) Electrophotographic photosensitive body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140121

LAPS Cancellation because of no payment of annual fees