Nothing Special   »   [go: up one dir, main page]

JP5471854B2 - Physical quantity measuring device for rolling bearing units - Google Patents

Physical quantity measuring device for rolling bearing units Download PDF

Info

Publication number
JP5471854B2
JP5471854B2 JP2010128801A JP2010128801A JP5471854B2 JP 5471854 B2 JP5471854 B2 JP 5471854B2 JP 2010128801 A JP2010128801 A JP 2010128801A JP 2010128801 A JP2010128801 A JP 2010128801A JP 5471854 B2 JP5471854 B2 JP 5471854B2
Authority
JP
Japan
Prior art keywords
encoder
sensors
hub
rolling bearing
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010128801A
Other languages
Japanese (ja)
Other versions
JP2011252890A (en
Inventor
知之 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010128801A priority Critical patent/JP5471854B2/en
Publication of JP2011252890A publication Critical patent/JP2011252890A/en
Application granted granted Critical
Publication of JP5471854B2 publication Critical patent/JP5471854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

この発明は、自動車の車輪を懸架装置に対して回転自在に支持すると共に、この車輪に作用するアキシアル荷重等の物理量を測定する為に利用する、転がり軸受ユニットの物理量測定装置の改良に関する。   The present invention relates to an improvement in a physical quantity measuring device for a rolling bearing unit which is used for rotatably supporting a vehicle wheel with respect to a suspension device and measuring a physical quantity such as an axial load acting on the wheel.

自動車の走行安定性を確保する為のスタビリティコントロール装置等を適切に制御すべく、車輪(タイヤ)と路面との当接面(接地面)に作用する摩擦力(接地面でのアキシアル荷重、グリップ力)を知る目的で、例えば特許文献1に記載されている様な、荷重測定装置付転がり軸受ユニットが、各種知られている。この様な荷重測定装置付転がり軸受ユニットの1例に就いて、図5〜7により説明する。ナックル等の懸架装置の構成部材に支持固定された状態で使用時にも回転しない外輪1の内径側に、使用時に車輪を支持固定した状態でこの車輪と共に回転するハブ2を、それぞれが転動体である複数個の玉3、3を介して、回転自在に支持している。これら各玉3、3には、互いに逆向きの(背面組み合わせ型の)接触角と共に、予圧を付与している。   Friction force acting on the contact surface (ground surface) between the wheel (tire) and the road surface (axial load on the ground surface, For the purpose of knowing (grip force), for example, various types of rolling bearing units with a load measuring device as described in Patent Document 1 are known. An example of such a rolling bearing unit with a load measuring device will be described with reference to FIGS. Hubs 2 that rotate together with the wheels while being supported and fixed to the inner ring side of the outer ring 1 that does not rotate even when used while being supported and fixed to a structural member of a suspension device such as a knuckle are rolling elements. A plurality of balls 3 and 3 are rotatably supported. A preload is applied to each of the balls 3 and 3 together with contact angles opposite to each other (in combination with the back surface).

又、前記ハブ2の軸方向内端部(軸方向に関して内とは、車両への組み付け状態で当該車両の幅方向中央側を言う。これに対して、軸方向に関して外とは、同じく幅方向外側を言う。本明細書及び特許請求の範囲全体で同じ。)には、円筒状のエンコーダ4を、前記ハブ2と同心に支持固定している。又、前記外輪1の内端開口を塞ぐ有底円筒状のカバー5の内側に、1対のセンサ6a、6bを支持すると共に、これら両センサ6a、6bの検出部を、前記エンコーダ4の被検出面である外周面に近接対向させている。このうちのエンコーダ4は、磁性金属板製である。被検出面である、このエンコーダ4の外周面の先半部(軸方向内半部)には、透孔7、7と柱部8、8とを、円周方向に関して交互に且つ等間隔で配置している。   Further, the inner end of the hub 2 in the axial direction (inner with respect to the axial direction means the center side in the width direction of the vehicle when assembled to the vehicle. In this specification, the cylindrical encoder 4 is supported and fixed concentrically with the hub 2. A pair of sensors 6 a and 6 b are supported inside a bottomed cylindrical cover 5 that closes the inner end opening of the outer ring 1, and the detection parts of both the sensors 6 a and 6 b are connected to the encoder 4. The outer peripheral surface, which is the detection surface, is placed close to and opposed to the detection surface. Of these, the encoder 4 is made of a magnetic metal plate. In the front half of the outer peripheral surface of the encoder 4 (the inner half in the axial direction), which is the detection surface, the through holes 7 and 7 and the column portions 8 and 8 are alternately arranged at equal intervals in the circumferential direction. It is arranged.

これら各透孔7、7と各柱部8、8との境界は、前記エンコーダ4の軸方向に対し同じ角度だけ傾斜させると共に、この軸方向に対する傾斜方向を、前記エンコーダ4の軸方向中間部を境に互いに逆方向としている。従って、前記各透孔7、7と前記各柱部8、8とは、軸方向中間部が円周方向に関して最も突出した「く」字形となっている。そして、前記境界の傾斜方向が互いに異なる、前記被検出面の軸方向外半部と軸方向内半部とのうち、軸方向外半部を第一の特性変化部9とし、軸方向内半部を第二の特性変化部10としている。   The boundaries between the through holes 7 and 7 and the pillars 8 and 8 are inclined at the same angle with respect to the axial direction of the encoder 4, and the inclined direction with respect to the axial direction is set to the intermediate portion in the axial direction of the encoder 4. The directions are opposite to each other. Accordingly, each of the through holes 7 and 7 and each of the pillars 8 and 8 has a “<” shape with the axially intermediate portion protruding most in the circumferential direction. And among the axially outer half part and the axially inner half part of the detected surface, the inclination directions of the boundaries are different from each other, the axially outer half part is defined as the first characteristic changing part 9, and the axially inner half part This portion is the second characteristic changing portion 10.

又、前記両センサ6a、6bはそれぞれ、永久磁石と、検出部を構成する磁気検知素子とから成る。これら両センサ6a、6bは、前記カバー5の内側に支持固定した状態で、一方のセンサ6aの検出部を前記第一の特性変化部9に、他方のセンサ6bの検出部を前記第二の特性変化部10に、それぞれ近接対向させている。これら両センサ6a、6bの検出部が前記両特性変化部9、10に対向する位置は、前記エンコーダ4の円周方向に関して同じ位置としたり、或は、既知の値だけずらせている。又、前記外輪1とハブ2との間にアキシアル荷重が作用しない状態で、前記各透孔7、7及び柱部8、8の軸方向中間部で円周方向に関して最も突出した部分(境界の傾斜方向が変化する部分)が、前記両センサ6a、6bの検出部同士の間の丁度中央位置に存在する様に、各部材の設置位置を規制している。   Each of the sensors 6a and 6b is composed of a permanent magnet and a magnetic sensing element constituting a detection unit. These two sensors 6a and 6b are supported and fixed inside the cover 5, with the detection part of one sensor 6a serving as the first characteristic changing part 9 and the detection part of the other sensor 6b serving as the second sensor. The characteristic changing portions 10 are respectively close to and opposed to each other. The positions where the detection units of both the sensors 6a and 6b face the characteristic changing units 9 and 10 are the same in the circumferential direction of the encoder 4 or are shifted by a known value. Further, in the state where an axial load is not applied between the outer ring 1 and the hub 2, a portion that protrudes most in the circumferential direction in the axial direction intermediate portion of each of the through holes 7 and 7 and the column portions 8 and 8 (boundary boundary). The position where each member is installed is regulated so that the portion where the inclination direction changes) is just at the center position between the detection portions of the sensors 6a and 6b.

上述の様に構成する荷重測定装置付転がり軸受ユニットの場合、前記外輪1とハブ2との間にアキシアル荷重が作用し、これら外輪1とハブ2とがアキシアル方向に相対変位すると、前記両センサ6a、6bの出力信号が変化する位相がずれる。即ち、前記外輪1とハブ2との間にアキシアル荷重が作用していない、中立状態では、前記両センサ6a、6bの検出部は、図7の(A)の実線イ、イ上、即ち、前記最も突出した部分から軸方向に同じだけずれた部分に対向する。従って、前記両センサ6a、6bの出力信号の位相は、例えば同図の(C)に示す様に一致する。   In the case of a rolling bearing unit with a load measuring device configured as described above, when an axial load acts between the outer ring 1 and the hub 2 and the outer ring 1 and the hub 2 are relatively displaced in the axial direction, the two sensors The phase at which the output signals 6a and 6b change is shifted. That is, in the neutral state where an axial load is not applied between the outer ring 1 and the hub 2, the detection portions of the sensors 6a and 6b are shown as solid lines A and B in FIG. It faces a portion that is shifted from the most protruding portion by the same amount in the axial direction. Accordingly, the phases of the output signals of the two sensors 6a and 6b coincide with each other as shown in FIG.

これに対して、前記エンコーダ4を固定したハブ2に、図7の(A)で下向きのアキシアル荷重が作用した場合には、前記両センサ6a、6bの検出部は、図7の(A)の破線ロ、ロ上、即ち、前記最も突出した部分からの軸方向に関するずれが互いに異なる部分に対向する。この状態では前記両センサ6a、6bの出力信号の位相は、例えば同図の(B)に示す様にずれる。更に、前記エンコーダ4を固定したハブ2に、図7の(A)で上向きのアキシアル荷重が作用した場合には、前記両センサ6a、6bの検出部は、図7の(A)の鎖線ハ、ハ上、即ち、前記最も突出した部分からの軸方向に関するずれが、前述の場合と逆方向に互いに異なる部分に対向する。この状態では前記両センサ6a、6bの出力信号の位相は、例えば同図の(D)に示す様にずれる。   On the other hand, when a downward axial load is applied to the hub 2 to which the encoder 4 is fixed in FIG. 7A, the detecting portions of the sensors 6a and 6b are shown in FIG. , Opposite to the portions that are different from each other in the axial direction from the most protruding portion. In this state, the phases of the output signals of the sensors 6a and 6b are deviated as shown in FIG. Furthermore, when an upward axial load is applied to the hub 2 to which the encoder 4 is fixed as shown in FIG. 7A, the detecting portions of both the sensors 6a and 6b are connected to the chain-line hub shown in FIG. The deviation in the axial direction from the uppermost part, that is, the most protruding part, is opposed to different parts in the opposite direction to the above case. In this state, the phases of the output signals of the sensors 6a and 6b are deviated as shown in FIG.

上述の様に、特許文献1に記載される等により従来から知られている構造の場合には、前記両センサ6a、6bの出力信号の位相が、前記外輪1とハブ2との間に加わるアキシアル荷重の作用方向(これら外輪1とハブ2とのアキシアル方向の相対変位の方向)に応じた向きにずれる。又、このアキシアル荷重(相対変位量)により前記両センサ6a、6bの出力信号の位相がずれる程度は、このアキシアル荷重(相対変位量)が大きくなる程大きくなる。従って、前記両センサ6a、6bの出力信号の位相ずれの有無、ずれが存在する場合にはその向き及び大きさに基づいて、前記外輪1とハブ2とのアキシアル方向の相対変位量の向き及び大きさ、並びに、これら外輪1とハブ2との間に作用しているアキシアル荷重の作用方向及び大きさを求められる。尚、前記両センサ6a、6bの出力信号の位相差の、これら両センサ6a、6bの出力信号の1周期に対する割合(位相差/1周期=位相差比)に基づいて前記アキシアル方向の相対変位量及び荷重を算出する処理は、図示しない演算器により行う。この為、この演算器には、予め理論計算や実験により調べておいた、前記位相差比と前記アキシアル方向の相対変位量及び荷重との関係を、計算式やマップ等の型式で組み込んでおく。   As described above, in the case of a conventionally known structure as described in Patent Document 1, the phase of the output signals of the sensors 6a and 6b is applied between the outer ring 1 and the hub 2. It shifts in the direction corresponding to the acting direction of the axial load (the direction of the relative displacement between the outer ring 1 and the hub 2 in the axial direction). Further, the degree to which the phase of the output signals of the sensors 6a and 6b is shifted due to the axial load (relative displacement amount) increases as the axial load (relative displacement amount) increases. Accordingly, based on the presence or absence of the phase shift of the output signals of both the sensors 6a and 6b and the direction and magnitude of the shift, the direction of the relative displacement amount in the axial direction between the outer ring 1 and the hub 2 and The magnitude and the direction and magnitude of the axial load acting between the outer ring 1 and the hub 2 are determined. The relative displacement in the axial direction is based on the ratio of the phase difference between the output signals of the sensors 6a and 6b to one cycle of the output signals of the sensors 6a and 6b (phase difference / 1 cycle = phase difference ratio). The processing for calculating the amount and the load is performed by an arithmetic unit (not shown). For this reason, in this computing unit, the relationship between the phase difference ratio, the relative displacement amount in the axial direction, and the load, which has been examined in advance by theoretical calculation or experiment, is incorporated in a calculation formula, a map, or the like. .

尚、エンコーダとして径方向に着磁された永久磁石製のものを使用する構造も、例えば特許文献1の図32〜34、及び、この特許文献1の明細書中、これら各図の説明文中に記載される等により、従来から知られている。この様な永久磁石製のエンコーダには、被検出面である外周面に、S極とN極とを、円周方向に関して、交互に且つ等間隔に配置している。円周方向に隣り合うS極とN極との境界は、軸方向中間部が円周方向に関して最も突出した「く」字形としている。この様な永久磁石製のエンコーダを使用する場合には、センサ側の永久磁石は不要である。   In addition, the structure which uses the thing made from the permanent magnet magnetized in the radial direction as an encoder is also shown, for example in FIGS. 32-34 of patent document 1, and the description of each figure in the specification of this patent document 1. It has been known for some time. In such an encoder made of a permanent magnet, the S pole and the N pole are alternately arranged at equal intervals in the circumferential direction on the outer peripheral surface which is a detected surface. The boundary between the S pole and the N pole adjacent to each other in the circumferential direction has a “<” shape with the middle portion in the axial direction protruding most in the circumferential direction. When such a permanent magnet encoder is used, a permanent magnet on the sensor side is not necessary.

何れの構造のエンコーダを組み込んだ転がり軸受ユニットの物理量測定装置により前記アキシアル荷重を求めるにしても、このアキシアル荷重の測定精度を確保する為には、エンコーダとセンサとの、軸方向に関する位置決め精度を確保する事が必要である。この為に従来から、例えば特許文献2に記載された技術を利用する等により、前記位置決め精度を確保する事が考えられている。但し、単にこの位置決め精度を確保しただけでは、前記測定精度を確保する面から不十分である。この理由は、環境温度に伴って前記両センサ6a、6bを包埋支持しているホルダ11の寸法が変化する為である。即ち、これら両センサ6a、6bを適正位置に容易に支持固定する為には、これら両センサ6a、6bを合成樹脂製のホルダ11内の所定位置に包埋支持してセンサユニット12を構成し、このセンサユニット12を、前記カバー5等の固定の部分に支持固定する事が考えられる。   Regardless of the structure of the encoder that incorporates the encoder, the axial load is calculated using the physical quantity measuring device of the rolling bearing unit. In order to ensure the measurement accuracy of the axial load, the positioning accuracy in the axial direction between the encoder and the sensor is required. It is necessary to secure. For this reason, conventionally, it has been considered to secure the positioning accuracy by using, for example, a technique described in Patent Document 2. However, simply securing this positioning accuracy is not sufficient in terms of ensuring the measurement accuracy. This is because the dimensions of the holder 11 that embeds and supports the sensors 6a and 6b change with the environmental temperature. That is, in order to easily support and fix the two sensors 6a and 6b at appropriate positions, the sensor unit 12 is configured by embedding and supporting these sensors 6a and 6b in a predetermined position in the synthetic resin holder 11. The sensor unit 12 may be supported and fixed to a fixed part such as the cover 5.

但し、ホルダ11を構成する合成樹脂の線膨張係数は、前記転がり軸受ユニットの各部材や前記カバー5を構成する鉄系合金の線膨張係数よりも大きい。この為、温度変化に伴って、前記両センサ6a、6bの検出部と前記エンコーダ4の被検出面との位置関係がずれる。例えば図5に示した構造の場合、温度上昇時に前記両センサ6a、6bが前記エンコーダ4に対し、同図の左方にずれ、この結果、前記アキシアル荷重の測定値がずれる。この点に就いて、図5に図8〜9を加えて説明する。   However, the linear expansion coefficient of the synthetic resin constituting the holder 11 is larger than the linear expansion coefficient of each member of the rolling bearing unit and the iron-based alloy constituting the cover 5. For this reason, the positional relationship between the detection portions of the sensors 6a and 6b and the detected surface of the encoder 4 shifts with changes in temperature. For example, in the case of the structure shown in FIG. 5, when the temperature rises, the sensors 6a and 6b are shifted to the left in the figure with respect to the encoder 4, and as a result, the measured value of the axial load is shifted. This point will be described with reference to FIGS.

常温で、前記外輪1と前記ハブ2との間にアキシアル荷重が作用しない状態で、図8の(A)に示す様に、1対のセンサ6a、6bの検出部同士の丁度中央部に、互いに異なる特性部同士の境界の傾斜方向が変化する部分が存在する場合に就いて考える。この状態から環境温度が上昇し、前記ホルダ11が熱膨張すると、図8の(A)→(B)に示す様に、前記アキシアル荷重が変化した場合と同じ態様で、エンコーダ4の被検出面と1対のセンサ6a、6bの検出部とが、軸方向(図8の上下方向)に相対変位する。この様な相対変位が生じると、図9に実線→破線で示す様に、前記両センサ6a、6bの出力信号同士の間に存在する位相差が変化する。   In the state where an axial load does not act between the outer ring 1 and the hub 2 at room temperature, as shown in FIG. 8A, just in the center between the detection parts of the pair of sensors 6a and 6b, Consider a case where there is a portion where the inclination direction of the boundary between different characteristic portions changes. When the environmental temperature rises from this state and the holder 11 is thermally expanded, as shown in FIGS. 8A to 8B, the detected surface of the encoder 4 is the same as the case where the axial load is changed. And the detectors of the pair of sensors 6a and 6b are relatively displaced in the axial direction (vertical direction in FIG. 8). When such relative displacement occurs, the phase difference existing between the output signals of the sensors 6a and 6b changes as shown by the solid line → broken line in FIG.

この様に、前記熱膨張又は熱収縮に伴って前記位相差が変化すると、この位相差と前記状態量との間に成立する関係の零点(前記アキシアル荷重が作用していない状態での前記位相差の値)にずれが生じる。この為、このずれの分だけ、前記状態量の測定結果に誤差が生じる。この様な原因で生じる誤差に関しては、前記軸受部周辺等の温度を測定しつつ、演算器の側で零点を補正する事により、低減乃至解消する事は可能である。但し、前記熱膨張又は熱収縮に伴って生じる前記位相差の変化が過大になる事は、測定精度確保の面からは好ましくない。従って、前記熱膨張又は熱収縮に伴って生じる、前記位相差の変化量を、十分に抑えられる構造を実現する事が望まれる。特に、前記ホルダ11の材料である合成樹脂は、外輪1、ハブ2、玉3、3、カバー5等の、他の構成部材の材料である鉄系合金若しくはアルミニウム系合金等の金属に比べて、線膨張係数が大きい。この為、前記ホルダ11の熱膨張又は熱収縮に伴って生じる、前記位相差の変化量を、十分に抑えられる構造を実現する事が望まれる。   Thus, when the phase difference changes with the thermal expansion or contraction, the zero point of the relationship established between the phase difference and the state quantity (the position in the state where the axial load is not applied). Deviation occurs in the value of the phase difference. For this reason, an error occurs in the measurement result of the state quantity corresponding to the deviation. The error caused by such a cause can be reduced or eliminated by correcting the zero point on the arithmetic unit side while measuring the temperature around the bearing portion or the like. However, an excessive change in the phase difference caused by the thermal expansion or contraction is not preferable from the viewpoint of ensuring measurement accuracy. Therefore, it is desired to realize a structure that can sufficiently suppress the amount of change in the phase difference that occurs with the thermal expansion or contraction. In particular, the synthetic resin that is the material of the holder 11 is compared to a metal such as an iron-based alloy or aluminum-based alloy that is a material of other components such as the outer ring 1, the hub 2, the balls 3, 3, and the cover 5. The linear expansion coefficient is large. For this reason, it is desired to realize a structure that can sufficiently suppress the amount of change in the phase difference caused by thermal expansion or contraction of the holder 11.

この様な事情に対応して、特許文献3には、例えば図10に示す様な、ホルダ11aの熱膨張、熱収縮が荷重の測定誤差に結び付くのを抑える為の構造が記載されている。この従来構造の第2例の場合、前記ホルダ11aをカバー5aに対し、固定リング13を介して支持している。この固定リング13は、金属板により断面L字形で全体を円環状に構成したものであり、段付きの円筒部14と、この円筒部14の軸方向外端部に設けた内向フランジ状の円輪部15とを備える。そして、このうちの円輪部15を、前記ホルダ11aの径方向外端部の軸方向中央部(1対のセンサ6a、6bの検出部間の中央位置Oに一致する部分)にモールドしている。そして、この状態で、前記円筒部14の内端部乃至中央部(外端部に比べて大径の部分)を、前記カバー5aの中間部に締り嵌めで内嵌固定している。ハブ2の軸方向内端部には、永久磁石製のエンコーダ4aを外嵌固定している。前記両センサ6a、6bの検出部は、このエンコーダ4aの外周面に設けた被検出面に、幅方向片側と他側とに振り分けて対向させている。   Corresponding to such circumstances, Patent Document 3 describes a structure for suppressing the thermal expansion and contraction of the holder 11a from being associated with a load measurement error as shown in FIG. 10, for example. In the case of the second example of this conventional structure, the holder 11a is supported to the cover 5a via a fixing ring 13. The fixing ring 13 is an L-shaped cross section made of a metal plate and is formed in an annular shape as a whole. A stepped cylindrical portion 14 and an inward flange-shaped circle provided at the axially outer end of the cylindrical portion 14 are provided. Annulus 15 is provided. Of these, the annular portion 15 is molded into the axially central portion (the portion corresponding to the central position O between the detection portions of the pair of sensors 6a and 6b) of the radially outer end portion of the holder 11a. Yes. In this state, the inner end portion or the central portion (the portion having a larger diameter than the outer end portion) of the cylindrical portion 14 is fitted and fixed to the intermediate portion of the cover 5a by an interference fit. An encoder 4a made of a permanent magnet is fitted and fixed to the inner end of the hub 2 in the axial direction. The detectors of both the sensors 6a and 6b are opposed to the detected surface provided on the outer peripheral surface of the encoder 4a, with the width direction being one side and the other side.

この様に構成する従来構造の第2例の場合には、使用時の温度変化に伴い、前記ホルダ11aが熱膨張又は熱収縮すると、これに伴って前記両センサ6a、6bが、軸方向に関して互いに逆向きに、且つ、前記中央位置Oを基準として互いに同じ大きさで変位する。例えば、前記ホルダ11aが熱膨張する場合には、図11の(A)→(B)に示す様に、前記両センサ6a、6bが軸方向(図10の左右方向、図11の上下方向)に関して互いに遠ざかる向きに、且つ、前記中央位置Oを基準として互いに同じ大きさだけ変位する。この結果、例えば図12に実線→破線で示す様に、前記両センサ6a、6bの出力信号の位相が、互いに同じ向きに、且つ、互いに同じ大きさだけ変化する。熱収縮の場合も、変化の向きが熱膨張の場合と逆になるだけで、同様の結果が得られる。従って、従来構造の第2例の場合、前記ホルダ11aが熱膨張又は熱収縮する事に伴い、前記両センサ6a、6bの出力信号の位相がそれぞれ変化しても、これら両センサ6a、6bの出力信号同士の間に存在する位相差は変化しない。従って、使用時の温度変化に拘わらず、外輪1とハブ2との間に作用するアキシアル荷重の測定精度を良好に維持できる。   In the case of the second example of the conventional structure configured as described above, when the holder 11a is thermally expanded or contracted due to a temperature change during use, the sensors 6a and 6b are associated with each other in the axial direction. They are displaced in the opposite directions and with the same size with respect to the center position O as a reference. For example, when the holder 11a is thermally expanded, as shown in FIGS. 11A to 11B, both the sensors 6a and 6b are in the axial direction (the horizontal direction in FIG. 10 and the vertical direction in FIG. 11). Are displaced in the direction away from each other and by the same amount with respect to the central position O. As a result, for example, as indicated by a solid line → broken line in FIG. 12, the phases of the output signals of the sensors 6a and 6b change in the same direction and by the same magnitude. In the case of thermal contraction, the same result can be obtained only by changing the direction of change to the case of thermal expansion. Therefore, in the case of the second example of the conventional structure, even if the phase of the output signals of both the sensors 6a and 6b changes as the holder 11a thermally expands or contracts, both of the sensors 6a and 6b The phase difference existing between the output signals does not change. Therefore, the measurement accuracy of the axial load acting between the outer ring 1 and the hub 2 can be maintained well regardless of the temperature change during use.

上述の様な従来の第2例の構造によれば、線膨張係数の大きな合成樹脂製のホルダ11aの熱膨張、熱収縮が、前記外輪1とハブ2との間に作用するアキシアル荷重の測定精度を悪化させる事を防止できる。但し、上述の様な図10に示した構造は、前記外輪1に対して前記両センサ6a、6bを、前記カバー5aを介して支持固定している。これに対して、センサを、ナックルの如き懸架装置の構成部品等、車輪支持用転がり軸受ユニットの構成部品以外の部分に装着する構造を採用する事が考えられているが、この様な構造に関して、前記図10に示した従来の第2例の構造を採用する事はできない。この様に、センサを車輪支持用転がり軸受ユニットの構成部品以外の部分に装着する構造の1例として、特願2009−215463に開示された先発明に係る構造に就いて、図13により説明する。   According to the structure of the second conventional example as described above, measurement of the axial load in which the thermal expansion and contraction of the synthetic resin holder 11a having a large linear expansion coefficient acts between the outer ring 1 and the hub 2 is performed. It can prevent the accuracy from deteriorating. However, in the structure shown in FIG. 10 as described above, the sensors 6a and 6b are supported and fixed to the outer ring 1 via the cover 5a. On the other hand, it is considered to adopt a structure in which the sensor is mounted on a part other than the component parts of the wheel bearing rolling bearing unit, such as a component part of a suspension device such as a knuckle. The structure of the conventional second example shown in FIG. 10 cannot be adopted. As described above, a structure according to the prior invention disclosed in Japanese Patent Application No. 2009-215463 will be described with reference to FIG. 13 as an example of a structure in which the sensor is mounted on a portion other than the components of the wheel bearing rolling bearing unit. .

この先発明の構造の場合も、エンコーダ4bをハブ2aの軸方向内端部に支持固定している。このエンコーダ4bは、磁性金属板製の芯金16と、永久磁石製のエンコーダ本体17とを組み合わせて成る。このうちの芯金16は、小径円筒部と大径円筒部とを段部により連増させた断面クランク型で、全体を円環状としている。又、前記エンコーダ本体17は、このうちの大径円筒部の外周面に全周に亙り添着固定した状態で、全体を円筒状に構成している。このエンコーダ本体17の外周面には、S極とN極とを、円周方向に関して交互に且つ等間隔で配置すると共に、これらS極とN極との境界の形状を、それぞれ「く」字形状としている。この様なエンコーダ4bは、前記芯金16を構成する小径円筒部の軸方向外半部を、前記ハブ2aの軸方向内端部に締り嵌めで外嵌する事により、このハブ2aに対し、このハブ2aと同心に支持固定している。   Also in the structure of this prior invention, the encoder 4b is supported and fixed to the inner end of the hub 2a in the axial direction. The encoder 4b is formed by combining a cored bar 16 made of a magnetic metal plate and an encoder body 17 made of a permanent magnet. Of these, the metal core 16 is a crank-shaped cross section in which a small-diameter cylindrical portion and a large-diameter cylindrical portion are continuously increased by stepped portions, and has an annular shape as a whole. The encoder body 17 has a cylindrical shape as a whole in a state where the encoder body 17 is attached and fixed to the outer peripheral surface of the large-diameter cylindrical portion over the entire circumference. On the outer peripheral surface of the encoder body 17, S poles and N poles are alternately arranged at equal intervals in the circumferential direction, and the shape of the boundary between these S poles and N poles is set to “<”. It has a shape. In such an encoder 4b, the outer half in the axial direction of the small-diameter cylindrical portion constituting the cored bar 16 is externally fitted to the inner end in the axial direction of the hub 2a with an interference fit. It is supported and fixed concentrically with the hub 2a.

又、1対のセンサ6a、6bを、合成樹脂等により造られたホルダ11bの先端部に包埋支持して、センサユニット18を構成している。車体への組み付け状態で、このセンサユニット18は、前記両センサ6a、6bのうちの一方のセンサ6aの検出部を、前記エンコーダ本体17の外周面の軸方向片端部である第一特性変化部に、他方のセンサ6bの検出部を、同じく軸方向他半部である第二両特性変化部に、それぞれ径方向に近接対向させる。又、別のエンコーダ4cを、前記ハブ2aの軸方向内端寄り部分に支持固定している。この別のエンコーダ4cは、磁性金属板により断面L字形で全体を円環状に構成した芯金19と、この芯金19を構成する円輪部の軸方向内側面に全周に亙り添着固定した、永久磁石製で円輪状のエンコーダ本体20とから成る。このエンコーダ本体20の軸方向内側面には、S極とN極とを、円周方向に関して交互に且つ等間隔に配置している。これらS極とN極との境界の形状はそれぞれ、前記軸方向内側面の幅方向(径方向)に一致する直線形状としている。この様なエンコーダ4cは、前記芯金19を前記ハブ2aの軸方向内端寄り部分に締り嵌めで外嵌する事により、このハブ2aと同心に支持固定している。そして、前記エンコーダ4cの軸方向内側面に、別のセンサ6cの検出部を対向させている。このセンサ6cは、ホルダ11cの先端部に包埋保持された状態で、センサユニット18aを構成している。尚、図13に示した構造は、駆動輪用の構造であり、前記ハブ2aに等速ジョイントに付属のスプライン軸21を、軸方向内方から挿通し、更に抑えボルト22により抜け止めを図っている。   A pair of sensors 6a and 6b is embedded and supported at the tip of a holder 11b made of synthetic resin or the like to constitute a sensor unit 18. In the assembled state to the vehicle body, the sensor unit 18 includes a first characteristic changing portion which is a detection portion of one of the sensors 6a and 6b, which is one end portion in the axial direction of the outer peripheral surface of the encoder body 17. In addition, the detection part of the other sensor 6b is brought close to and opposed to the second both characteristic change parts which are also the other half part in the axial direction. Further, another encoder 4c is supported and fixed to a portion near the inner end in the axial direction of the hub 2a. This another encoder 4c is fixed to the entire circumference of a cored bar 19 which is L-shaped in cross section with a magnetic metal plate and is configured as a whole in an annular shape, and on the inner side surface in the axial direction of the annular part constituting the cored bar 19. The encoder body 20 is made of a permanent magnet and has a ring shape. On the inner side surface of the encoder body 20 in the axial direction, S poles and N poles are alternately arranged at equal intervals in the circumferential direction. The shape of the boundary between the S pole and the N pole is a linear shape that matches the width direction (radial direction) of the inner side surface in the axial direction. Such an encoder 4c is supported and fixed concentrically with the hub 2a by externally fitting the cored bar 19 to the portion near the inner end in the axial direction of the hub 2a. And the detection part of another sensor 6c is made to oppose the axial direction inner surface of the said encoder 4c. The sensor 6c constitutes a sensor unit 18a while being embedded and held at the tip of the holder 11c. The structure shown in FIG. 13 is a structure for a drive wheel. The spline shaft 21 attached to the constant velocity joint is inserted into the hub 2a from the inner side in the axial direction, and the retaining bolt 22 is used to prevent it from coming off. ing.

図13には、前記両センサユニット18、18aの具体的な支持構造に就いては記載していないが、実際の場合には、ナックル23等の、懸架装置の構成部品に、直接又は適宜のブラケットを介して支持する事になる。そして、外輪1aと前記ハブ2aとの間に作用するアキシアル荷重(或はこれら外輪1aとハブ2aとの軸方向に関する相対変位量)を測定する為のセンサユニット18に関しては、前述の図5に示した従来構造の第1例の場合と同様に、合成樹脂製のホルダ11bの熱膨張、熱収縮に伴う、測定誤差の問題を生じる。前記従来構造の第1例の様に、センサユニット12を外輪1に対し、カバー5を介して支持固定する構造であれば、前述の図10に示した従来の第2例の構造を適用する事により、前記測定誤差を抑えられるが、この第2例の構造を、上述の図13に示した様な、センサユニット18を懸架装置の構成部品に支持する構造に適用する事はできない。   Although FIG. 13 does not describe a specific support structure for the sensor units 18 and 18a, in the actual case, it is directly or appropriately applied to the components of the suspension device such as the knuckle 23. It will be supported through the bracket. The sensor unit 18 for measuring the axial load acting between the outer ring 1a and the hub 2a (or the relative displacement in the axial direction between the outer ring 1a and the hub 2a) is shown in FIG. As in the case of the first example of the conventional structure shown, there arises a problem of measurement error due to thermal expansion and thermal contraction of the synthetic resin holder 11b. If the sensor unit 12 is supported and fixed to the outer ring 1 via the cover 5 as in the first example of the conventional structure, the structure of the conventional second example shown in FIG. 10 is applied. Thus, the measurement error can be suppressed, but the structure of the second example cannot be applied to the structure in which the sensor unit 18 is supported on the components of the suspension device as shown in FIG.

本発明は、上述の様な事情に鑑みて、1対のセンサをホルダに包埋支持した構造で、このホルダの熱膨張、熱収縮が、これら両センサの出力信号に基づいて求める物理量の測定精度に及ぼす影響を低減できる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention is a structure in which a pair of sensors are embedded and supported in a holder, and the thermal expansion and contraction of the holder are measured based on the output signals of both sensors. It was invented to realize a structure capable of reducing the influence on accuracy.

本発明の転がり軸受ユニットの物理量測定装置は、転がり軸受ユニットと、エンコーダと、1対のセンサと、演算器とを備える。
このうちの転がり軸受ユニットは、懸架装置の構成部材に支持固定されて使用時にも回転しない外輪と、使用時に車輪と共に回転するハブとを、複数個の転動体を介して相対回転自在に組み合わせて成る。
又、前記エンコーダは、前記ハブの軸方向内端部に支持固定されている。そして、このハブと同心の外周面である被検出面の特性を円周方向に関して交互に変化させると共に、円周方向に隣り合って互いに異なる特性部同士の境界を、前記エンコーダの軸方向に一致する前記被検出面の幅方向に対し傾斜させている。又、前記各境界がこの中心軸の方向に対し傾斜している方向を、前記被検出面の片半部と他半部とで互いに逆としている。
又、前記両センサは、前記懸架装置の構成部材に支持固定されたホルダに保持された状態でそれぞれの検出部を前記被検出面の片半部と他半部とに振り分けて対向させている。そして、前記エンコーダの回転に伴う前記被検出面の特性変化に対応してそれぞれの出力信号を変化させる。
更に、前記演算器は、前記両センサの出力信号に基づいて、前記外輪と前記ハブとの間の相対変位量と、これら外輪とハブとの間に作用するアキシアル荷重とのうちの、少なくとも一方を算出する。
The physical quantity measuring device for a rolling bearing unit according to the present invention includes a rolling bearing unit, an encoder, a pair of sensors, and a calculator.
Of these, the rolling bearing unit is a combination of an outer ring that is supported and fixed to the structural member of the suspension device and does not rotate during use, and a hub that rotates together with the wheel during use in a relatively rotatable manner via a plurality of rolling elements. Become.
The encoder is supported and fixed to the inner end of the hub in the axial direction. The characteristics of the detected surface, which is the outer peripheral surface concentric with the hub, are alternately changed with respect to the circumferential direction, and the boundaries between the different characteristic portions adjacent to each other in the circumferential direction coincide with the axial direction of the encoder. The detected surface is inclined with respect to the width direction. In addition, the direction in which each boundary is inclined with respect to the direction of the central axis is opposite to each other in the half portion and the other half portion of the detected surface.
In addition, the two sensors are opposed to each other by separating the detection part into one half part and the other half part of the detection surface while being held by a holder supported and fixed to the structural member of the suspension device. . And each output signal is changed corresponding to the characteristic change of the said to-be-detected surface accompanying rotation of the said encoder.
Further, the computing unit is based on the output signals of the two sensors, and at least one of a relative displacement amount between the outer ring and the hub and an axial load acting between the outer ring and the hub. Is calculated.

特に、本発明の転がり軸受ユニットの物理量測定装置に於いては、前記各境界が前記エンコーダの中心軸の方向に対し傾斜している角度を、前記被検出面の片半部と他半部とで互いに同じとしている。又、前記エンコーダの軸方向に関して、前記懸架装置の構成部材に関する前記ホルダの取付面と、前記両センサの検出部の軸方向中央部とを、互いに同一位置に存在させている。   In particular, in the physical quantity measuring device for a rolling bearing unit according to the present invention, the angle at which each of the boundaries is inclined with respect to the direction of the central axis of the encoder is defined as one half and the other half of the detected surface. Are the same as each other. In addition, with respect to the axial direction of the encoder, the mounting surface of the holder relating to the structural member of the suspension device and the central portion in the axial direction of the detection portions of the two sensors are located at the same position.

この様な本発明の転がり軸受ユニットの物理量測定装置を実施する場合に好ましくは、請求項2に記載した発明の様に、前記外輪と前記ハブとの間にアキシアル荷重が作用せず、これら外輪とハブとが軸方向に関して中立位置に存在する状態で、前記ホルダの取付面と前記両センサの検出部の軸方向中央部とに加えて、前記エンコーダの被検出面に存在する各特性部同士の境界の傾斜方向が変化する部分も、軸方向に関して互いに同一位置に存在させる。
又、好ましくは、請求項3に記載した発明の様に、前記両センサの検出部の中央位置同士を結ぶ直線の方向を、エンコーダの中心軸の方向に一致させる。
更に、好ましくは、請求項4に記載した発明の様に、前記転がり軸受ユニットを、外周面に設けた静止側フランジを前記懸架装置の構成部材に対しねじ止め固定する事で、この構成部材に対し支持されるものとする。そして、前記静止側フランジの軸方向内側面と前記懸架装置の構成部材の軸方向外側面との間に所定厚さのシム板を挟持する事により、この構成部材に対するエンコーダの軸方向位置を調節する。
When the physical quantity measuring device for a rolling bearing unit according to the present invention is implemented, it is preferable that an axial load does not act between the outer ring and the hub as in the invention described in claim 2. In a state where the hub and the hub are in a neutral position in the axial direction, in addition to the mounting surface of the holder and the central portion in the axial direction of the detecting portions of the two sensors, the characteristic portions existing on the detected surface of the encoder The portions where the inclination direction of the boundary changes are also present at the same position in the axial direction.
Preferably, as in the invention described in claim 3, the direction of the straight line connecting the central positions of the detection portions of the two sensors is made to coincide with the direction of the central axis of the encoder.
Further, preferably, as in the invention described in claim 4, the rolling bearing unit is fixed to the structural member by fixing the stationary side flange provided on the outer peripheral surface to the structural member of the suspension device. It shall be supported. Then, by holding a shim plate having a predetermined thickness between the axial inner surface of the stationary flange and the axial outer surface of the suspension device component, the axial position of the encoder relative to this component is adjusted. To do.

上述の様に構成する本発明の転がり軸受ユニットの物理量測定装置によれば、1対のセンサをホルダに包埋支持した構造で、このホルダの熱膨張、熱収縮が、これら両センサの出力信号に基づいて求める物理量の測定精度に及ぼす影響を低減できる。
即ち、本発明の転がり軸受ユニットの物理量測定装置の場合には、懸架装置の構成部材に関するホルダの取付面と、前記両センサの検出部の軸方向中央部とが、互いに軸方向に関して同一位置に存在する。この為、前記ホルダの熱膨張、熱収縮に伴って前記両センサの検出部が、前述の図10に示した従来構造の第2例の場合と同様、図11に示す様に、中央位置である、前記懸架装置の構成部材に関するホルダの取付面を基準として、軸方向に関して逆側に、互いに同じ大きさだけ変位する。従って、前記両センサの出力信号の位相が、互いに同じ向きに、且つ、互いに同じ大きさだけ変化する。この為、前記ホルダが熱膨張又は熱収縮する事に伴い、前記両センサの出力信号の位相がそれぞれ変化しても、これら両センサの出力信号同士の間に存在する位相差は変化しない。従って、使用時の温度変化に拘わらず、外輪とハブとの間に作用するアキシアル荷重(これら外輪とハブとの軸方向相対変位量)の測定精度を良好に維持できる。
According to the physical quantity measuring device for a rolling bearing unit of the present invention configured as described above, a pair of sensors are embedded and supported in a holder, and the thermal expansion and contraction of the holder are the output signals of both sensors. It is possible to reduce the influence of the physical quantity obtained based on the measurement accuracy.
That is, in the case of the physical quantity measuring device for a rolling bearing unit according to the present invention, the mounting surface of the holder relating to the structural member of the suspension device and the central portion in the axial direction of the detecting portions of both sensors are in the same position with respect to the axial direction. Exists. For this reason, as shown in FIG. 11, the detection portions of the two sensors are moved at the central position as shown in FIG. 11 in accordance with the thermal expansion and contraction of the holder. The holders are displaced by the same amount on the opposite side in the axial direction with reference to the mounting surface of the holder related to the structural member of the suspension device. Therefore, the phases of the output signals of the two sensors change in the same direction and by the same magnitude. For this reason, even if the phases of the output signals of the two sensors change as the holder thermally expands or contracts, the phase difference existing between the output signals of the two sensors does not change. Therefore, the measurement accuracy of the axial load acting between the outer ring and the hub (the amount of axial relative displacement between the outer ring and the hub) can be favorably maintained regardless of the temperature change during use.

又、請求項2に記載した発明の様に、中立状態で、前記エンコーダの被検出面に存在する各特性部同士の境界の傾斜方向が変化する部分も同一位置に存在させれば、中立状態での、前記両センサの出力信号同士の間の位相差をゼロにできて、これら両センサの出力信号から前記アキシアル荷重を測定する為の演算を容易に行える。
又、請求項3に記載した発明の様に、前記両センサの検出部の中央位置同士を結ぶ直線の方向を、エンコーダの中心軸の方向に一致させれば、ホルダの熱膨張、熱収縮により、前記両センサの位置関係が円周方向に関してずれる事も防止できる。そして、この円周方向に関するずれに基づいて、前記アキシアル荷重に関して測定誤差が生じる事も防止できる。
更に、請求項4に記載した発明の様に、静止側フランジの軸方向内側面と懸架装置の構成部材の軸方向外側面との間に所定厚さのシム板を挟持する事により、この構成部材に対するエンコーダの軸方向位置を調節すれば、前記懸架装置の構成部材の寸法誤差等に拘らず、前記ホルダの取付面と前記両センサの検出部の軸方向中央部との軸方向位置を一致させる作業を容易に行える。
Further, as in the invention described in claim 2, in the neutral state, if the portion where the inclination direction of the boundary between the characteristic portions existing on the detected surface of the encoder changes also exists at the same position, the neutral state Thus, the phase difference between the output signals of the two sensors can be made zero, and the calculation for measuring the axial load from the output signals of both the sensors can be easily performed.
Further, as in the invention described in claim 3, if the direction of the straight line connecting the center positions of the detection portions of the two sensors is made to coincide with the direction of the central axis of the encoder, the holder is caused to thermally expand and contract. It is also possible to prevent the positional relationship between the two sensors from deviating with respect to the circumferential direction. And it can also prevent that a measurement error arises regarding the said axial load based on the shift | offset | difference regarding this circumferential direction.
Further, as in the invention described in claim 4, this structure is obtained by sandwiching a shim plate having a predetermined thickness between the axial inner surface of the stationary flange and the axial outer surface of the structural member of the suspension device. By adjusting the axial position of the encoder with respect to the member, the axial position of the mounting surface of the holder and the axial center of the detection parts of the two sensors are matched regardless of the dimensional error of the structural members of the suspension device. Can be easily performed.

本発明の実施の形態の1例を示す要部断面図。The principal part sectional view showing one example of an embodiment of the invention. センサユニットを取り出して図1の下方から見た図。The figure which took out the sensor unit and was seen from the lower part of FIG. センサユニット及びエンコーダを取り出して図1の左上方から見た状態で示す斜視図。The perspective view shown in the state which took out the sensor unit and the encoder and was seen from the upper left of FIG. 1対のセンサ及びエンコーダを取り出して図1の上方から見た図。The figure which took out a pair of sensor and encoder, and was seen from the upper part of FIG. 従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of a conventional structure. エンコーダの一部を径方向から見た図。The figure which looked at a part of encoder from the radial direction. アキシアル荷重を求められる理由を説明する為の模式図。The schematic diagram for demonstrating the reason for which an axial load is calculated | required. ホルダの熱膨張に伴って1対のセンサの出力信号同士の間の位相差が変化する理由を説明する為、これら両センサとエンコーダとを取り出し、通常状態(A)と温度上昇時の状態(B)とで示す模式図。In order to explain the reason why the phase difference between the output signals of a pair of sensors changes with the thermal expansion of the holder, both these sensors and the encoder are taken out, and the normal state (A) and the state when the temperature rises ( B) and a schematic diagram. ホルダの熱膨張に伴って1対のセンサの出力信号同士の間の位相差が変化する状態を示す線図。The diagram which shows the state from which the phase difference between the output signals of a pair of sensors changes with the thermal expansion of a holder. 従来構造の第2例であり、ホルダの熱膨張、熱収縮に伴う測定誤差を抑える為に考えられた構造を示す要部断面図。The principal part sectional drawing which is the 2nd example of the conventional structure, and shows the structure considered in order to suppress the measurement error accompanying the thermal expansion and thermal contraction of a holder. 測定誤差を抑えられる理由を説明する為の、図8と同様の図。The same figure as FIG. 8 for demonstrating the reason which can suppress a measurement error. 同じく図9と同様の図。The same figure as FIG. 先発明に係る構造を示す断面図。Sectional drawing which shows the structure which concerns on a prior invention.

図1〜4は、本発明の実施の形態の1例を示している。本例の転がり軸受ユニットの物理量測定装置は、転がり軸受ユニット24と、エンコーダ4bと、1対のセンサ6a、6bと、図示しない演算器とを備える。
このうちの転がり軸受ユニット24は、外輪1aと、ハブ2aと、それぞれが転動体である複数の玉3、3とを備える。このうちの外輪1aは、内周面に複列の外輪軌道を、外周面に静止側フランジ25を、それぞれ設けており、この静止側フランジ25を、懸架装置の構成部材であるナックル23にねじ止め固定し、使用時にも回転しない。尚、これら静止側フランジ25とナックル23との間にはシム板31を挟持している。そして、このシム板31として、適宜の厚さを有するものを選択使用する事により、前記ナックル23に対する前記外輪1aの軸方向位置、延いては、この外輪1aの内径側に設置された、前記ハブ2a及び前記エンコーダ4bの軸方向位置を調節可能としている。又、前記ハブ2aは、外周面に複列の内輪軌道と回転側フランジ26をそれぞれ設けたもので、使用時にはこの回転側フランジ26に結合固定した車輪と共に回転する。又、前記各玉3、3は、前記両外輪軌道と前記両内輪軌道との間に転動自在に設けられて、前記外輪1aの内径側に前記ハブ2aを、回転自在に支持する。本例の場合、このハブ2aの中心部に形成したスプライン孔27に、等速ジョイントに付属のスプライン軸28を挿入して、前記ハブ2aを回転駆動可能としている。
1 to 4 show an example of an embodiment of the present invention. The physical quantity measuring device for a rolling bearing unit of this example includes a rolling bearing unit 24, an encoder 4b, a pair of sensors 6a and 6b, and a calculator (not shown).
Of these, the rolling bearing unit 24 includes an outer ring 1a, a hub 2a, and a plurality of balls 3, 3 each of which is a rolling element. Of these, the outer ring 1a is provided with a double row outer ring raceway on the inner peripheral surface and a stationary flange 25 on the outer peripheral surface. The stationary flange 25 is screwed onto a knuckle 23, which is a component of the suspension device. It is fixed and does not rotate during use. A shim plate 31 is sandwiched between the stationary flange 25 and the knuckle 23. And as this shim plate 31, by selecting and using one having an appropriate thickness, the axial position of the outer ring 1a relative to the knuckle 23, and further, the inner diameter side of the outer ring 1a, The axial positions of the hub 2a and the encoder 4b can be adjusted. The hub 2a is provided with a double-row inner ring raceway and a rotation side flange 26 on the outer peripheral surface, and rotates with a wheel coupled and fixed to the rotation side flange 26 in use. The balls 3 and 3 are rotatably provided between the outer ring raceways and the inner ring raceways, and rotatably support the hub 2a on the inner diameter side of the outer ring 1a. In the case of this example, the spline shaft 28 attached to the constant velocity joint is inserted into the spline hole 27 formed at the center of the hub 2a so that the hub 2a can be driven to rotate.

又、前記エンコーダ4bは、磁性金属板製で断面クランク型の芯金16と永久磁石製のエンコーダ本体17とを組み合わせて成り、このうちの芯金16を前記ハブ2aの軸方向内端部に締り嵌めで外嵌する事により、このハブ2aと同心に支持固定されている。前記エンコーダ本体17の外周面にはS極とN極とを、円周方向に関して交互に且つ等間隔で変化させている。隣り合うS極とN極との境界は、前記エンコーダ4bの中心軸の方向(被検出面である、前記エンコーダ本体17の外周面の幅方向)に対し傾斜している。又、前記各境界が前記中心軸の方向に対し傾斜している方向は、前記被検出面の片半部と他半部とで互いに逆としている。更に、前記各境界が前記中心軸の方向に対し傾斜している角度は、前記被検出面の片半部と他半部とで互いに同じ(例えば45度)としている。尚、図示の例では、前記エンコーダ4bの周囲を、非磁性板製の保護カバー32で覆い、このエンコーダ4bを保護している。   The encoder 4b is made of a magnetic metal plate and has a combination of a crank-type cored bar 16 and a permanent magnet encoder body 17. The cored bar 16 is connected to the inner end of the hub 2a in the axial direction. It is supported and fixed concentrically with the hub 2a by externally fitting with an interference fit. On the outer peripheral surface of the encoder body 17, the S pole and the N pole are changed alternately at equal intervals in the circumferential direction. The boundary between the adjacent S poles and N poles is inclined with respect to the direction of the central axis of the encoder 4b (the width direction of the outer peripheral surface of the encoder body 17 that is the detected surface). In addition, the direction in which each boundary is inclined with respect to the direction of the central axis is opposite to each other in one half and the other half of the detected surface. Further, the angle at which each boundary is inclined with respect to the direction of the central axis is the same (for example, 45 degrees) in one half and the other half of the detected surface. In the illustrated example, the encoder 4b is protected by covering the periphery of the encoder 4b with a protective cover 32 made of a non-magnetic plate.

又、前記両センサ6a、6bは、前記ナックル23に支持固定された合成樹脂製のホルダ29に包埋保持された状態で、センサユニット30を構成している。そして、このセンサユニット30を前記ナックル23に支持固定した状態で、前記両センサ6a、6bの検出部を、それぞれ前記保護カバー32を介して、前記エンコーダ4bの被検出面(前記エンコーダ本体17の外周面)の片半部(図1、3、4の左半部)と他半部(図1、3、4の右半部)とに振り分けて対向させている。そして、前記エンコーダ4bの回転に伴う前記被検出面の特性変化に対応して、前記両センサ6a、6bの出力信号を、それぞれ変化させる様にしている。本例の場合、これら両センサ6a、6bの測定精度向上を図るべく、これら両センサ6a、6bとして、それぞれ1対ずつのホールICを前記エンコーダ4bの回転方向にずらせて配置した、差動式ホールICを使用している。差動式ホールICの構造及び作用に就いては、特許文献4、5等に記載されている他、一般に市販されている為、詳しい説明は省略する。図示の例では、前記両センサ6a、6bとして差動式ホールICを使用した事に伴い、これら両センサ6a、6bの検出部の中央位置を、前記1対ずつのホールICの中央部としている。本例の場合、これら両センサ6a、6bの検出部の中央位置同士を結ぶ直線の方向を、前記エンコーダ4bの中心軸の方向に一致させている。言い換えれば、前記両センサ6a、6bを、このエンコーダ4bの中心軸の方向に(円周方向にずらせずに)配列している。   The sensors 6a and 6b constitute a sensor unit 30 in a state of being embedded and held in a synthetic resin holder 29 supported and fixed to the knuckle 23. Then, in a state where the sensor unit 30 is supported and fixed to the knuckle 23, the detection portions of the sensors 6a and 6b are respectively connected to the detection surface (the encoder main body 17 of the encoder body 17) via the protective cover 32. The outer peripheral surface is divided into one half (the left half in FIGS. 1, 3 and 4) and the other half (the right half in FIGS. 1, 3 and 4) and face each other. The output signals of both the sensors 6a and 6b are changed in response to the change in the characteristics of the detected surface accompanying the rotation of the encoder 4b. In the case of this example, in order to improve the measurement accuracy of both the sensors 6a and 6b, a differential type in which a pair of Hall ICs are shifted in the rotation direction of the encoder 4b as the sensors 6a and 6b. Hall IC is used. The structure and operation of the differential Hall IC are described in Patent Documents 4 and 5, etc., and are generally commercially available, so detailed explanations are omitted. In the illustrated example, the differential Hall IC is used as both the sensors 6a and 6b, and the center position of the detection part of both the sensors 6a and 6b is the central part of the pair of Hall ICs. . In the case of this example, the direction of the straight line connecting the central positions of the detection parts of both the sensors 6a and 6b is made to coincide with the direction of the central axis of the encoder 4b. In other words, the sensors 6a and 6b are arranged in the direction of the central axis of the encoder 4b (without shifting in the circumferential direction).

上述の様なセンサユニット30を前記ナックル32に支持固定する為、前記ホルダ29の外径側側面の中間部に取付部33を形成している。前記センサユニット30を前記ナックル23に支持固定する際には、この取付部33の軸方向外側面とこのナックル23の軸方向内側面とを当接させる。前記エンコーダ4bの軸方向に関して、前記取付部33の軸方向外側面の位置と、前記両センサ6a、6bの検出部の軸方向中央部とは、互いに同一位置に存在する。この様な規制は、これら両センサ6a、6bを前記ホルダ29の所定位置に包埋支持すると同時に、前記取付部33を含む、このホルダ29を射出成型する際に行う。従って、上述の様にして前記センサユニット30を前記ナックル32に支持固定した状態では、前記エンコーダ4bの軸方向に関して、前記ナックル23に関する前記ホルダ29の取付面と、前記両センサ6a、6bの検出部の軸方向中央部とが、互いに同一位置(図1、2、4の鎖線α上)に存在する。   In order to support and fix the sensor unit 30 as described above to the knuckle 32, a mounting portion 33 is formed at an intermediate portion of the outer diameter side surface of the holder 29. When the sensor unit 30 is supported and fixed to the knuckle 23, the axially outer side surface of the mounting portion 33 and the axially inner side surface of the knuckle 23 are brought into contact with each other. With respect to the axial direction of the encoder 4b, the position of the outer surface in the axial direction of the mounting portion 33 and the central portion in the axial direction of the detection portions of the sensors 6a and 6b are in the same position. Such regulation is performed when the holder 29 including the mounting portion 33 is injection-molded while the sensors 6a and 6b are embedded and supported at predetermined positions of the holder 29. Therefore, in the state where the sensor unit 30 is supported and fixed to the knuckle 32 as described above, the mounting surface of the holder 29 with respect to the knuckle 23 and the detection of the sensors 6a and 6b with respect to the axial direction of the encoder 4b. The central part in the axial direction of the part exists at the same position (on the chain line α in FIGS. 1, 2 and 4).

更に、本例の転がり軸受ユニットの物理量測定装置の場合には、前記シム板31として、適切な厚さ寸法を有するものを選択する事により、前記エンコーダ4bの被検出面に存在する、S極とN極との境界の傾斜方向が変化する部分も、中立状態で、前記鎖線α上に位置させている。即ち、中立状態では、図4に示す様に、前記両センサ6a、6bの検出部が、前記傾斜方向が変化する部分、即ち、前記エンコーダ4bの被検出面の幅方向中央位置(前記鎖線α位置)から、軸方向反対側に同じ距離だけ離れた位置に対向する。この様な調節は、前記シム板31として適切な厚さ寸法を有するものを選択使用するのみで、前記ナックル23の寸法誤差に拘らず、容易に行える。   Furthermore, in the case of the physical quantity measuring device for the rolling bearing unit of the present example, by selecting the shim plate 31 having an appropriate thickness dimension, the S pole existing on the detected surface of the encoder 4b. The portion where the inclination direction of the boundary between the N pole and the N pole changes is also located on the chain line α in a neutral state. That is, in the neutral state, as shown in FIG. 4, the detecting portions of the sensors 6a and 6b are portions where the inclination direction changes, that is, the center position in the width direction of the detection surface of the encoder 4b (the chain line α From the position) on the opposite side in the axial direction by the same distance. Such adjustment can be easily performed regardless of the dimensional error of the knuckle 23 only by selecting and using the shim plate 31 having an appropriate thickness.

尚、前記演算器は、上述の様な1対のセンサ6a、6bの出力信号に基づいて、前記外輪1aと前記ハブ2aとの間の相対変位量と、これら外輪1aとハブ2aとの間に作用するアキシアル荷重とのうちの、少なくとも一方を算出する。この様に、前記両センサ6a、6bの出力信号に基づいて、例えば前記アキシアル荷重を算出する原理は、前述の図7で説明した通りであるから、重複する説明は省略する。   The computing unit calculates the relative displacement between the outer ring 1a and the hub 2a and the distance between the outer ring 1a and the hub 2a based on the output signals of the pair of sensors 6a and 6b as described above. At least one of the axial loads acting on is calculated. As described above, for example, the principle of calculating the axial load based on the output signals of the sensors 6a and 6b is as described in FIG.

上述の様に構成する本例の転がり軸受ユニットの物理量測定装置の場合には、ナックル23に対する合成樹脂製のホルダ29の取付面と、前記両センサ6a、6bの検出部の軸方向中央部とが、互いに軸方向に関して同一位置に存在する。この為、前記ホルダ29の熱膨張、熱収縮した場合にも、この熱膨張、熱収縮によっては、前記両センサ6a、6bの出力信号の位相がずれる事はない。即ち、温度変化に伴って前記ホルダ29が伸縮する場合、前記取付面が伸縮の起点となり、前記両センサ6a、6bが、軸方向に関して反対側に同じ長さだけ変位する。この結果、前述の図10に示した従来構造の第2例の場合と同様、前述の図11で説明した様に、前記両センサ6a、6bの出力信号同士の間に存在する位相差は変化しない。従って、使用時の温度変化に拘わらず、前記外輪1aと前記ハブ2aとの間に作用するアキシアル荷重の測定精度を良好に維持できる。   In the case of the physical quantity measuring device of the rolling bearing unit of the present example configured as described above, the mounting surface of the synthetic resin holder 29 with respect to the knuckle 23, and the axial central portion of the detecting portions of the sensors 6a and 6b, Are present at the same position in the axial direction. Therefore, even when the holder 29 is thermally expanded or contracted, the phases of the output signals of the sensors 6a and 6b are not shifted due to the thermal expansion and contraction. That is, when the holder 29 expands and contracts with a change in temperature, the mounting surface becomes the starting point of expansion and contraction, and the sensors 6a and 6b are displaced by the same length on the opposite side in the axial direction. As a result, as in the case of the second example of the conventional structure shown in FIG. 10, the phase difference existing between the output signals of the sensors 6a and 6b changes as described in FIG. do not do. Therefore, the measurement accuracy of the axial load acting between the outer ring 1a and the hub 2a can be satisfactorily maintained regardless of the temperature change during use.

又、本例の場合には、中立状態では、前記エンコーダ4bの被検出面に存在する、S極とN極との境界の傾斜方向が変化する部分も同一位置に存在している為、中立状態での、前記両センサ6a、6bの出力信号同士の間の位相差をゼロにできる。この結果、これら両センサ6a、6bの出力信号から前記アキシアル荷重を測定する為の演算を容易に行える。即ち、前記位相差からこのアキシアル荷重を求める為の式に零点を設定する必要がない(零点=0にできる)為、演算処理の速度を高めて、前記アキシアル荷重を迅速に求め、自動車の走行安定性を確保する為の処置をより適切に行える。   In the case of this example, in the neutral state, the portion where the inclination direction of the boundary between the S pole and the N pole changes on the detected surface of the encoder 4b also exists at the same position. The phase difference between the output signals of the two sensors 6a and 6b in the state can be made zero. As a result, the calculation for measuring the axial load can be easily performed from the output signals of both the sensors 6a and 6b. That is, since it is not necessary to set a zero point in the equation for obtaining this axial load from the phase difference (zero point can be set to 0), the speed of calculation processing is increased, the axial load is quickly obtained, and the vehicle travels. It is possible to more appropriately take measures to ensure stability.

更に、本例の場合には、前記両センサ6a、6bの検出部の中央位置同士を結ぶ直線の方向を、前記エンコーダ4bの中心軸の方向に一致させている為、前記ホルダ29の熱膨張、熱収縮により、前記両センサ6a、6bの位置関係が円周方向に関してずれる事を防止できる。即ち、これら両センサ6a、6bの設置位置が円周方向にずれていた場合、前記ホルダ29の熱膨張、熱収縮に伴って、これら両センサ6a、6bの円周方向に関するずれの大きさが変化し、これら両センサ6a、6bの出力信号同士の間に存在する位相差が、前記アキシアル荷重以外の要因で変化する。本例の場合、前記両センサ6a、6bの配列方向を上述の様に規制する事により、前記アキシアル荷重以外の要因で前記位相差が変化する事を防止し、このアキシアル荷重に関して測定誤差が生じる事を防止する。   Further, in the case of this example, the direction of the straight line connecting the center positions of the detection portions of the sensors 6a and 6b is made to coincide with the direction of the central axis of the encoder 4b. It is possible to prevent the positional relationship between the two sensors 6a and 6b from deviating with respect to the circumferential direction due to heat shrinkage. That is, when the installation positions of both the sensors 6a and 6b are shifted in the circumferential direction, the magnitude of the shift in the circumferential direction of both the sensors 6a and 6b is caused by the thermal expansion and contraction of the holder 29. The phase difference existing between the output signals of both the sensors 6a and 6b changes due to factors other than the axial load. In this example, by restricting the arrangement direction of the sensors 6a and 6b as described above, it is possible to prevent the phase difference from being changed due to factors other than the axial load, and a measurement error occurs with respect to the axial load. Prevent things.

本発明は、ハブに等速ジョイントのスプライン軸を組み付ける都合上、センサユニットを外輪に対し装着しにくい、図1に示した様な、駆動輪用の転がり軸受ユニットに関して適用する事が、特に効果がある。但し、本発明は、この様な駆動輪用に限らず、従動輪用の転がり軸受ユニットでも実施できる。   The present invention is particularly effective when applied to a rolling bearing unit for a drive wheel as shown in FIG. 1, in which the sensor unit is difficult to be attached to the outer ring for the convenience of assembling the spline shaft of the constant velocity joint to the hub. There is. However, the present invention is not limited to such a drive wheel, but can be implemented in a rolling bearing unit for a driven wheel.

1、1a 外輪
2、2a ハブ
3 玉
4、4a、4b、4c エンコーダ
5、5a カバー
6a、6b、6c センサ
7 透孔
8 柱部
9、9a 第一の特性変化部
10、10a 第二の特性変化部
11、11a、11b、11c ホルダ
12、12a センサユニット
13 固定リング
14 円筒部
15 円輪部
16 芯金
17 エンコーダ本体
18、18a センサユニット
19 芯金
20 エンコーダ本体
21 スプライン軸
22 抑えボルト
23 ナックル
24 転がり軸受ユニット
25 静止側フランジ
26 回転側フランジ
27 スプライン孔
28 スプライン軸
29 ホルダ
30 センサユニット
31 シム板
32 保護カバー
33 取付部
DESCRIPTION OF SYMBOLS 1, 1a Outer ring 2, 2a Hub 3 Ball 4, 4a, 4b, 4c Encoder 5, 5a Cover 6a, 6b, 6c Sensor 7 Through-hole 8 Pillar part 9, 9a First characteristic change part 10, 10a Second characteristic Change part 11, 11a, 11b, 11c Holder 12, 12a Sensor unit 13 Fixing ring 14 Cylindrical part 15 Annulus part 16 Core metal 17 Encoder main body 18, 18a Sensor unit 19 Core metal 20 Encoder main body 21 Spline shaft 22 Retaining bolt 23 Knuckle 24 Rolling bearing unit 25 Static side flange 26 Rotation side flange 27 Spline hole 28 Spline shaft 29 Holder 30 Sensor unit 31 Shim plate 32 Protective cover 33 Mounting part

特開2006−317420号公報JP 2006-317420 A 特開2007−309683号公報JP 2007-309683 A 特開2008−175546号公報JP 2008-175546 A 特開平8−220200号公報JP-A-8-220200 特開2007−93467号公報JP 2007-93467 A

Claims (4)

転がり軸受ユニットと、エンコーダと、1対のセンサと、演算器とを備え、
このうちの転がり軸受ユニットは、懸架装置の構成部材に支持固定されて使用時にも回転しない外輪と、使用時に車輪と共に回転するハブとを、複数個の転動体を介して相対回転自在に組み合わせて成るものであり、
前記エンコーダは、前記ハブの軸方向内端部に支持固定されて、このハブと同心の外周面である被検出面の特性を円周方向に関して交互に変化させると共に、円周方向に隣り合って互いに異なる特性部同士の境界を、前記エンコーダの軸方向に一致する前記被検出面の幅方向に対し傾斜させたものであって、これら各境界がこの中心軸の方向に対し傾斜している方向が、前記被検出面の片半部と他半部とで互いに逆であり、
前記両センサは、前記懸架装置の構成部材に支持固定されたホルダに保持された状態でそれぞれの検出部を前記被検出面の片半部と他半部とに振り分けて対向させていて、前記エンコーダの回転に伴う前記被検出面の特性変化に対応してそれぞれの出力信号を変化させるものであり、
前記演算器は、前記両センサの出力信号に基づいて、前記外輪と前記ハブとの間の相対変位量と、これら外輪とハブとの間に作用するアキシアル荷重とのうちの、少なくとも一方を算出するものである
転がり軸受ユニットの物理量測定装置に於いて、
前記各境界が前記エンコーダの中心軸の方向に対し傾斜している角度が、前記被検出面の片半部と他半部とで互いに同じであり、前記エンコーダの軸方向に関して、前記懸架装置の構成部材に関する前記ホルダの取付面と、前記両センサの検出部の軸方向中央部とが、互いに同一位置に存在する事を特徴とする
転がり軸受ユニットの物理量測定装置。
A rolling bearing unit, an encoder, a pair of sensors, and a calculator;
Of these, the rolling bearing unit is a combination of an outer ring that is supported and fixed to the structural member of the suspension device and does not rotate during use, and a hub that rotates together with the wheel during use in a relatively rotatable manner via a plurality of rolling elements. It consists of
The encoder is supported and fixed at the inner end in the axial direction of the hub, and alternately changes the characteristics of the detected surface, which is the outer peripheral surface concentric with the hub, with respect to the circumferential direction, and is adjacent to the circumferential direction. The boundary between different characteristic parts is inclined with respect to the width direction of the detected surface that coincides with the axial direction of the encoder, and each boundary is inclined with respect to the direction of the central axis. Are opposite to each other in one half and the other half of the detected surface,
The two sensors are arranged so as to face each other by separating the respective detection units into one half and the other half of the detected surface in a state of being held by a holder supported and fixed to the structural member of the suspension device, Each output signal is changed in response to a change in the characteristics of the detected surface as the encoder rotates,
The computing unit calculates at least one of a relative displacement amount between the outer ring and the hub and an axial load acting between the outer ring and the hub based on the output signals of the two sensors. In the physical quantity measuring device for rolling bearing units,
The angle at which each of the boundaries is inclined with respect to the direction of the central axis of the encoder is the same in one half and the other half of the detected surface, and with respect to the axial direction of the encoder, An apparatus for measuring a physical quantity of a rolling bearing unit, wherein a mounting surface of the holder with respect to a constituent member and an axially central portion of the detection portions of the two sensors are present at the same position.
外輪とハブとの間にアキシアル荷重が作用せず、これら外輪とハブとが軸方向に関して中立位置に存在する状態で、ホルダの取付面と両センサの検出部の軸方向中央部とに加えて、エンコーダの被検出面に存在する各特性部同士の境界の傾斜方向が変化する部分も、軸方向に関して互いに同一位置に存在する、請求項1に記載した転がり軸受ユニットの物理量測定装置。   An axial load does not act between the outer ring and the hub, and the outer ring and the hub are in a neutral position with respect to the axial direction, in addition to the mounting surface of the holder and the central part in the axial direction of the detection part of both sensors. The physical quantity measuring device for a rolling bearing unit according to claim 1, wherein portions where the inclination direction of the boundary between the characteristic portions existing on the detection surface of the encoder changes also exist at the same position with respect to the axial direction. 1対のセンサの検出部の中央位置同士を結ぶ直線の方向が、エンコーダの中心軸の方向に一致する、請求項1〜2のうちの何れか1項に記載した転がり軸受ユニットの物理量測定装置。   The physical quantity measuring device for a rolling bearing unit according to any one of claims 1 to 2, wherein a direction of a straight line connecting the center positions of the detection units of the pair of sensors coincides with a direction of a central axis of the encoder. . 転がり軸受ユニットが、外周面に設けた静止側フランジを懸架装置の構成部材に対しねじ止め固定する事で、この構成部材に対し支持されるものであり、前記静止側フランジの軸方向内側面と前記懸架装置の構成部材の軸方向外側面との間に所定厚さのシム板を挟持する事で、この構成部材に対するエンコーダの軸方向位置を調節する、請求項1〜3のうちの何れか1項に記載した転がり軸受ユニットの物理量測定装置。   The rolling bearing unit is supported by fixing the stationary side flange provided on the outer peripheral surface to the structural member of the suspension device by screwing, and the axially inner side surface of the stationary side flange The axial position of the encoder with respect to the constituent member is adjusted by sandwiching a shim plate having a predetermined thickness between the axially outer surface of the constituent member of the suspension device. The physical quantity measuring device of the rolling bearing unit described in item 1.
JP2010128801A 2010-06-04 2010-06-04 Physical quantity measuring device for rolling bearing units Active JP5471854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010128801A JP5471854B2 (en) 2010-06-04 2010-06-04 Physical quantity measuring device for rolling bearing units

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010128801A JP5471854B2 (en) 2010-06-04 2010-06-04 Physical quantity measuring device for rolling bearing units

Publications (2)

Publication Number Publication Date
JP2011252890A JP2011252890A (en) 2011-12-15
JP5471854B2 true JP5471854B2 (en) 2014-04-16

Family

ID=45416920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010128801A Active JP5471854B2 (en) 2010-06-04 2010-06-04 Physical quantity measuring device for rolling bearing units

Country Status (1)

Country Link
JP (1) JP5471854B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3517015B2 (en) * 1995-02-17 2004-04-05 本田技研工業株式会社 Magnetic field sensor
JP5099245B2 (en) * 2004-05-26 2012-12-19 日本精工株式会社 Rolling bearing unit with load measuring device
JP4844010B2 (en) * 2004-05-26 2011-12-21 日本精工株式会社 Rolling bearing unit with load measuring device
JP4957259B2 (en) * 2007-01-16 2012-06-20 日本精工株式会社 State quantity measuring device for rolling bearing units
JP2009103549A (en) * 2007-10-23 2009-05-14 Nsk Ltd Device for measuring state of quantity of rolling bearing unit
JP5251802B2 (en) * 2009-09-17 2013-07-31 日本精工株式会社 Physical quantity measuring device for rolling bearing units

Also Published As

Publication number Publication date
JP2011252890A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
JP4940937B2 (en) Rotating machine state quantity measuring device
EP1764521B1 (en) Sensor-equipped rolling bearing assembly
JP4844010B2 (en) Rolling bearing unit with load measuring device
JP2005090994A (en) Load measuring device for roller bearing unit
JP2006322928A (en) Displacement measuring device and load measuring device for rolling bearing unit
JP4957412B2 (en) Inspection method for state quantity measuring device of rolling bearing unit
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP5099245B2 (en) Rolling bearing unit with load measuring device
JP5471854B2 (en) Physical quantity measuring device for rolling bearing units
JP4957390B2 (en) Method for manufacturing rolling bearing unit with physical quantity measuring device
JP2008107177A (en) Hub unit for driving wheel with state quantity measuring device
JP2007078678A (en) Rotation supporting device with displacement measuring unit, and rotation supporting device with load measuring unit
JP4957259B2 (en) State quantity measuring device for rolling bearing units
JP2006258801A (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP5482476B2 (en) Physical quantity measuring device for rolling bearing units
JP2009001201A (en) Quantity-of-state measuring device for rotary machine
JP4957357B2 (en) Rotational support device state quantity measuring device
JP2009103549A (en) Device for measuring state of quantity of rolling bearing unit
JP2007171104A (en) Roller bearing unit with load-measuring device
JP4941140B2 (en) State quantity measuring device for rolling bearing units
JP2008224397A (en) Load measuring device for roller bearing unit
JP2006242241A (en) Ball bearing unit
JP4882403B2 (en) Encoder and state quantity measuring device
JP5003397B2 (en) Rotational support device state quantity measuring device
JP2011203203A (en) Physical quantity measuring device of rolling bearing unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5471854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150