JP5462053B2 - Copper powder for brake pads - Google Patents
Copper powder for brake pads Download PDFInfo
- Publication number
- JP5462053B2 JP5462053B2 JP2010080975A JP2010080975A JP5462053B2 JP 5462053 B2 JP5462053 B2 JP 5462053B2 JP 2010080975 A JP2010080975 A JP 2010080975A JP 2010080975 A JP2010080975 A JP 2010080975A JP 5462053 B2 JP5462053 B2 JP 5462053B2
- Authority
- JP
- Japan
- Prior art keywords
- copper powder
- particles
- copper
- mesh
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 128
- 239000002245 particle Substances 0.000 claims description 81
- 229910052802 copper Inorganic materials 0.000 claims description 22
- 239000010949 copper Substances 0.000 claims description 22
- 238000005868 electrolysis reaction Methods 0.000 description 13
- 239000000843 powder Substances 0.000 description 12
- 238000005245 sintering Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 239000011362 coarse particle Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000002783 friction material Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- -1 chlorine ions Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Electrolytic Production Of Metals (AREA)
- Powder Metallurgy (AREA)
Description
この発明は、放熱性に優れたブレーキパッドに好適な銅粉に関する。 The present invention relates to a copper powder suitable for a brake pad excellent in heat dissipation.
銅粉は、産業機械や鉄道車両、自動車用のブレーキに用いられる銅系焼結摩擦材の主成分として用いられるが、この銅粉に、摩擦調整材、潤滑材及び研削材を含む充填材等を混合して用いられる。このようなブレーキパッド用焼結摩擦材は、その気功率が重要な特性のひとつである。 Copper powder is used as the main component of copper-based sintered friction materials used in brakes for industrial machines, railway vehicles, and automobiles. Fillers containing friction modifiers, lubricants, and abrasives are used in this copper powder. Are used as a mixture. Such a sintered friction material for a brake pad is one of the important characteristics of the qigong rate.
気孔率を小さくすると、摩擦係数の低下を招くが、大きくすると焼結摩擦材の強度を弱くするという問題がある。これは、下記に示す特許文献1の背景技術に示されるような不具合がある。
このため、特許文献1では、10%以上の気孔率を有する外側ライニングと8%以下の気孔率を有する内側ライニングを形成し、外側ライニング材と裏板の銅被膜面との間に内側ライニング材を介在させた構造が提案されている。
If the porosity is reduced, the friction coefficient is lowered, but if it is increased, there is a problem that the strength of the sintered friction material is weakened. This has a problem as shown in the background art of Patent Document 1 shown below.
For this reason, in Patent Document 1, an outer lining having a porosity of 10% or more and an inner lining having a porosity of 8% or less are formed, and the inner lining material is provided between the outer lining material and the copper coating surface of the back plate. A structure with an intervening layer has been proposed.
また、特許文献2では、油中で作動するのに適した、全容積の30%以上の空孔容積を有する銅系焼結摩擦面材において、デンドライト組織で、且つ1.3g/cm3以下の見掛密度をもつ銅粉末を焼結することが記載されている。
また、粒径が75〜250μmの粗銅粉10〜40%に、粒径25μm以下の銅微粉90〜60%を加え、混合した後、650〜760°Cで熱処理した焼結塊を解砕した粉末冶金用銅粉が提案されている。
Moreover, in patent document 2, it is a dendrite structure | tissue and 1.3 g / cm < 3 > or less in the copper-type sintered friction face material which has a void volume of 30% or more of the total volume suitable for operating in oil. It is described that a copper powder having an apparent density of sinter is sintered.
Moreover, after adding 90-60% of copper fine powder with a particle size of 25 micrometers or less to 10-40% of coarse copper powder with a particle diameter of 75-250 micrometers, and mixing, the sintered lump heat-processed at 650-760 degreeC was crushed. Copper powder for powder metallurgy has been proposed.
上記のような銅粉とその製造方法の提案があるが、一定の強度を有しつつ、気孔率の高いブレーキパッドに好適な銅粉を見出すことができないというのが現状である。 Although there are proposals for the copper powder and its manufacturing method as described above, the present situation is that copper powder suitable for brake pads having a high porosity and a high porosity cannot be found.
本発明は、制御された粒度と粒径を持つ金属銅粒子を選択し、強度を有しつつ、気孔率の高い銅粉とし、ブレーキパッドに最適な銅粉を得ることを目的とする。 An object of the present invention is to select metal copper particles having a controlled particle size and particle size, obtain copper powder having high strength and high porosity, and obtain copper powder that is optimal for a brake pad.
以上から、以下の銅粉を提供するものである。
1)75μm以上(+200mesh)の粒径の銅粉が90%以上であり、かつ250μm以上(+60mesh)の粒径の銅粉が5−10%であることを特徴とするブレーキパッド用銅粉
2)銅粉に存在するアスペクトが1.6以下である銅粒が40%以上80%以下であることを特徴とする上記1)のブレーキパッド用銅粉
3)見掛密度が2〜3g/cm3であることを特徴とする上記1)又は2)記載のブレーキパッド用銅粉
From the above, the following copper powder is provided.
1) Copper powder 2 for brake pads, wherein copper powder having a particle size of 75 μm or more (+200 mesh) is 90% or more, and copper powder having a particle size of 250 μm or more (+60 mesh) is 5-10%. 1) Copper powder for brake pads according to 1) above, wherein the copper particles having an aspect ratio of 1.6 or less in the copper powder are 40% or more and 80% or less. 3) The apparent density is 2 to 3 g / cm. 3. The copper powder for brake pads according to 1) or 2) above, wherein
本発明は、制御された粒度と粒径を持つ金属銅粒子を選択し、強度を有しつつ、気孔率の高い銅粉とし、ブレーキパッドに最適な銅粉を提供できるという優れた効果を有する。 The present invention selects metal copper particles having a controlled particle size and particle size, and has an excellent effect that it can provide copper powder having high strength and high porosity, and optimal copper powder for a brake pad. .
気孔率の高い焼結材を作製する場合には粒度の大きい銅粉を用いることが望ましい。一般に、気孔率は、10〜40%が望ましいとされており、特に気孔率の高い焼結体を望む場合には、気孔率15%以上、より好ましくは気孔率20%以上が良い。このような気孔率を達成するための焼結摩耗材作製に好適な粒度は、75μm以上(+200mesh)の粒径が90%以上とする必要がある。
この銅粉の粒径は、従来使用されている銅粉の粒径に比べて、大きいという特徴がある。そして、このように、銅粉の粒径が大きい場合には、粒の小さいものに比べ、粒子間の接点が少なくなるため、銅表面の酸化層の影響がすくなく、熱伝導性が良いという利点もある。
When producing a sintered material having a high porosity, it is desirable to use copper powder having a large particle size. In general, the porosity is desirably 10 to 40%. When a sintered body having a high porosity is desired, the porosity is preferably 15% or more, more preferably 20% or more. The particle size suitable for producing a sintered wear material for achieving such a porosity needs to be a particle size of 75 μm or more (+200 mesh) of 90% or more.
This copper powder has a feature that the particle size of the copper powder is larger than the particle size of the copper powder used conventionally. In this way, when the particle size of the copper powder is large, the number of contact points between the particles is smaller than that of a small particle, so that the effect of the oxide layer on the copper surface is small and the heat conductivity is good. There is also.
しかしながら、銅粉の製造工程で、このような大きな粒子を作ろうとすると、粗大な粒子も多くなる傾向がある。このように銅粉の製造工程で発生する粗大な粒子は、焼結体の強度を低下させる要因となるので、避ける必要がある。
したがって、本発明では、250μm以上(+60mesh)の粒径となる粗大な粒子を5−10%にすることが必要となる。このように粒径に制限があるのが発明の大きな特徴の一つである。
However, when trying to make such large particles in the copper powder manufacturing process, there is a tendency for coarse particles to increase. In this way, coarse particles generated in the copper powder manufacturing process cause a decrease in the strength of the sintered body, and thus must be avoided.
Therefore, in this invention, it is necessary to make the coarse particle | grains used as a particle size of 250 micrometers or more (+60 mesh) into 5-10%. One of the major features of the invention is that the particle size is limited in this way.
すなわち、250μm以上(+60mesh)の粒子が10%を超える場合には、焼結体としたときに十分な強度を得ることができない。一方、250μm以上(+60mesh)の粒子を制御し過ぎ、5%未満となる製造条件下では、75μm未満(−200mesh)の粒子が増えることとなり、75μm以上(+200mesh)の粒子を90%以上とすることができなくなる。
したがって、250μm以上(+60mesh)の粒径の粒子は、5−10%とする必要がある。以上が、本願発明のブレーキパッド用銅粉の基本となるものである。
That is, when the particle size of 250 μm or more (+60 mesh) exceeds 10%, sufficient strength cannot be obtained when the sintered body is obtained. On the other hand, under production conditions where particles of 250 μm or more (+60 mesh) are controlled too much and less than 5%, particles of less than 75 μm (−200 mesh) increase, and particles of 75 μm or more (+200 mesh) are 90% or more. I can't do that.
Therefore, the particle size of 250 μm or more (+60 mesh) needs to be 5-10%. The above is the basis of the copper powder for brake pads of the present invention.
一方、電解銅粉は、製造条件によって、球形に近い粒子(図1のb)と細長い針状粒子(図1のa)ができる。粒子径の大きい銅粉を作ろうとすると、一般的には、細長い針状粒子が多くなる傾向がある。
細長い針状粒子はアスペクト比が大きく、長径が大きい分、粒度の大きい粉となる。しかしながら、あまりアスペクト比が大きいものは、短径との差が大きくなり、焼結の際に、粒子が砕かれるおそれがあり、砕かれた場合には、75μm未満(−200mesh)の粒子が多くなり、75μm以上(+200mesh)の粒子が90%を下回ることになる場合がある。
On the other hand, the electrolytic copper powder can be made into particles having a nearly spherical shape (b in FIG. 1) and elongated needle-like particles (a in FIG. 1) depending on the production conditions. In general, when making a copper powder having a large particle diameter, the number of elongated needle-shaped particles tends to increase.
The elongated needle-like particles have a large aspect ratio and a large major axis, and thus become a powder having a large particle size. However, when the aspect ratio is too large, the difference from the minor axis becomes large and the particles may be crushed during sintering. When crushed, there are many particles of less than 75 μm (−200 mesh). Therefore, particles of 75 μm or more (+200 mesh) may be less than 90%.
以上から、焼結品の製造工程の問題であるが、焼結の際には球形に近い粒子を多くすることが望ましいと言える。但し、細長い針状粒子は、図1からも分かるように細かい電着粒子の集まりであり、複雑な形状をしている。また、表面積も大きいため、適度な量であれば、これらの粒子が、球状の粒子の間に入り込むことで、粒子間の接触面積を増やすことに寄与する。したがって、適度な量の細長い針状粒子の存在はむしろ好ましいと言える。 From the above, although it is a problem in the manufacturing process of a sintered product, it can be said that it is desirable to increase the number of particles close to a spherical shape during sintering. However, the elongated needle-like particles are a collection of fine electrodeposited particles as shown in FIG. 1, and have a complicated shape. In addition, since the surface area is large, if the amount is appropriate, these particles enter between the spherical particles, thereby contributing to increasing the contact area between the particles. Therefore, the presence of a moderate amount of elongated needle-like particles is rather preferable.
そこで、本発明では、粒子のアスペクト比が1.6以下である粒子の割合が40%〜80%であることが、さらに望ましいと言える。なお、この数値は、粒子のアスペクト比が1.6を超える粒子が60%〜20%の範囲で存在することを許容するものであることを意味する。これは、上記に述べた理由によるものである。 Therefore, in the present invention, it can be said that it is further desirable that the ratio of particles having an aspect ratio of particles of 1.6 or less is 40% to 80%. This numerical value means that particles having an aspect ratio of more than 1.6 are allowed to exist in the range of 60% to 20%. This is due to the reason described above.
さらに、本願発明のブレーキパッド用銅粉の好ましい態様として、見掛密度が2〜3g/cm3であることを要件としているが、この見掛密度が2〜3g/cm3であると、摩擦調整材、潤滑材及び研削材を含む充填材等を合わせて、焼結する場合に銅粉が偏りなく混ぜることができる効果を有するためである。本願発明のブレーキパッド用銅粉この見掛密度に限定する必要はないが、この銅粉を用いることが好ましいと言える。 Further, a preferable embodiment of the copper powder brake pads of the present invention, although the requirement that the apparent density of 2 to 3 g / cm 3, when the apparent density is 2 to 3 g / cm 3, the friction This is because the copper powder can be mixed evenly when the filler, including the adjusting material, the lubricant, and the grinding material are combined and sintered. Although it is not necessary to limit to this apparent density, it can be said that it is preferable to use this copper powder.
本願発明のブレーキパッド用銅粉の電解銅粉の製造の代表例を示すと、次の通りである。例えば、球状に近い粒子を106μm以上(+145mesh)170μm未満(−80mesh)の銅粉が60%程度で、樹枝状の粒子も一部含まれるような銅粉を製造場合には、その条件の例は、以下のとおりである。 A representative example of the production of the electrolytic copper powder of the brake pad copper powder of the present invention is as follows. For example, in the case of producing a copper powder in which particles close to a spherical shape are about 60% of copper powder of 106 μm or more (+145 mesh) and less than 170 μm (−80 mesh) and some dendritic particles are also included, examples of the conditions Is as follows.
銅濃度;10−13g/l
(銅濃度が高ければ、球形丸い形状で粗いものができやすい。)
塩素イオン:1mg/l以下
(針状粒子を多量に発生させないため)
電流密度:通常5−6A/dm2程度とする。これ以外としても良い。
(電流密度が高いと、針状になりやすい。)
液温:通常35±5°C程度である。これ以外としても良い。
(高いほうが粗く、球形に近い粒子ができやすいので、温度は高めに設定するのが望ましいと言える。)
Copper concentration; 10-13 g / l
(If the copper concentration is high, it is easy to create a round shape with a round shape.)
Chlorine ion: 1 mg / l or less (in order not to generate a lot of acicular particles)
Current density: Usually about 5-6 A / dm 2 . It may be other than this.
(If the current density is high, it tends to be needle-like.)
Liquid temperature: Usually about 35 ± 5 ° C. It may be other than this.
(It is desirable to set the temperature higher because the higher the particle, the more likely it is to form particles that are nearly spherical.)
上記の製造条件を任意に選択することにより、球形に近い粗い粒子ができると同時に樹枝状の大きな粒子も適度に混入させた銅粉を得ることができる。この銅粉の製造方法は、新規に作成する銅粉として有効な方法である。
なお、75μm未満(−200mesh)の銅粉を10%未満にするためには、分級により75μm未満(−200mesh)の粒子を取り除いてもよい。また、粉砕によって得られた粒を加えてもよい。
この粒子の調整は任意であり、75μm以上(+200mesh)の粒径の銅粉が90%以上であり、かつ250μm以上(+60mesh)の粒径の銅粉が5−10%であるブレーキパッド用銅粉が得られれば、その手法は特に問題となるものではない。
By arbitrarily selecting the above-mentioned production conditions, it is possible to obtain copper powder in which coarse particles close to a spherical shape are formed, and at the same time, dendritic large particles are appropriately mixed. This method for producing copper powder is an effective method as a newly created copper powder.
In order to make the copper powder of less than 75 μm (−200 mesh) less than 10%, particles of less than 75 μm (−200 mesh) may be removed by classification. Moreover, you may add the particle | grains obtained by grinding | pulverization.
Adjustment of this particle | grain is arbitrary, the copper powder for brake pads whose copper powder with a particle size of 75 micrometers or more (+200 mesh) is 90% or more, and whose copper powder with a particle diameter of 250 micrometers or more (+60 mesh) is 5-10% If a powder is obtained, the method is not particularly problematic.
次に、本発明の実施例について説明する。なお、本実施例はあくまで一例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、実施例以外の態様あるいは変形を全て包含するものである。 Next, examples of the present invention will be described. In addition, a present Example is an example to the last, and is not restrict | limited to this example. That is, all aspects or modifications other than the embodiments are included within the scope of the technical idea of the present invention.
以下の実施例、比較例において、銅粉粒子の粒度分布、アスペクト、圧環強さ、気孔率(開放)については、次の方法を用いて測定した。
1)粒度分布(250μm以上(+60mesh)、250μm以上(+60mesh)):JIS Z2510(金属粉−乾式ふるい分けによる粒度試験方法を用いて測定。
2)アスペクト1.6以下の粒の個数(%):SEM写真100,000倍にて観察し、評価。
3)圧環強さ:JIS Z 2507(焼結軸受−圧環強さ試験方法)に基づいて測定。
4)気孔率(開放):JIS Z 2501(焼結金属材料−密度、含油率及び開放気孔率試験方法)に基づいて測定。
In the following examples and comparative examples, the particle size distribution, aspect, crushing strength, and porosity (openness) of copper powder particles were measured using the following methods.
1) Particle size distribution (250 μm or more (+60 mesh), 250 μm or more (+60 mesh)): JIS Z2510 (measured using a particle size test method by metal powder-dry sieving).
2) Number of grains having an aspect ratio of 1.6 or less (%): SEM photograph was observed at 100,000 times and evaluated.
3) Crushing strength: Measured based on JIS Z 2507 (sintered bearing-crushing strength test method).
4) Porosity (open): Measured based on JIS Z 2501 (sintered metal material-density, oil content and open porosity test method).
(実施例1)
銅濃度;9−11g/l、硫酸濃度;90−100g/l、塩素イオン濃度:<1mg/lの電解液を用い、陽極に電機銅地金板、陰極に圧延銅板を用いて、電流密度:5−6A/dm2、液温:35+5°Cとして、電解を行い、銅粉末を製造した。
生成した銅粉を洗浄処理した後乾燥して銅粉を得た。
Example 1
Copper concentration: 9-11 g / l, sulfuric acid concentration: 90-100 g / l, chloride ion concentration: <1 mg / l electrolyte solution, electric copper metal plate as anode, and rolled copper plate as cathode, current density : 5-6 A / dm 2 , liquid temperature: 35 + 5 ° C., electrolysis was performed to produce copper powder.
The produced copper powder was washed and dried to obtain copper powder.
この結果、75μm以上(+200mesh)が93%、250μm以上(+60mesh)が6%の銅粉が得られた。この銅粉は、アスペクト比が1.6以下の粒子が65%で、銅粉単味で金型成形した圧粉体を水素気流雰囲気中、780°Cで30分間焼結した焼結体の焼結密度6.5g/cm3における開放性気孔率が26.4%で全気孔率の97%であり、通気性が良好であり、強度(圧環強さ)が9.6kg/cm2となり、本願発明のブレーキパッドに適合する良好な銅粉末が得られた。
この特性の一覧を、表1に示す。また、このようにして得た銅粉末の顕微鏡写真を図1に示す。図1において、aはアスペクト比が1.6以下の粒子を示し、bはアスペクト比が1.6を超える粒子を示す。
この図に示すように、アスペクト比が1.6以下の粒子の中に、アスペクト比が1.6を超える粒子が、やや少ない量で混在している様子が分かる。
As a result, 75% or more (+200 mesh) of 93% and 250 μm or more (+60 mesh) of 6% copper powder was obtained. This copper powder is a sintered body obtained by sintering a green compact, which is 65% of particles having an aspect ratio of 1.6 or less, and sintered at 780 ° C. for 30 minutes in a hydrogen gas atmosphere. The open porosity at a sintered density of 6.5 g / cm 3 is 26.4% and 97% of the total porosity, the air permeability is good, and the strength (compression strength) is 9.6 kg / cm 2 . As a result, a good copper powder suitable for the brake pad of the present invention was obtained.
A list of these characteristics is shown in Table 1. Moreover, the microscope picture of the copper powder obtained in this way is shown in FIG. In FIG. 1, “a” indicates a particle having an aspect ratio of 1.6 or less, and “b” indicates a particle having an aspect ratio exceeding 1.6.
As shown in this figure, it can be seen that particles having an aspect ratio exceeding 1.6 are mixed in a slightly smaller amount among particles having an aspect ratio of 1.6 or less.
(実施例2)
実施例1と同様にして銅濃度;9−11g/l、硫酸濃度;90−100g/l、塩素イオン:<1mg/l、電流密度:5−6A/dm2、液温:35+5°Cとして、電解により、銅粉末を製造した。生成した銅粉を洗浄処理した後乾燥して銅粉を得た。
(Example 2)
As in Example 1, copper concentration: 9-11 g / l, sulfuric acid concentration: 90-100 g / l, chloride ion: <1 mg / l, current density: 5-6 A / dm 2 , liquid temperature: 35 + 5 ° C. Then, copper powder was produced by electrolysis. The produced copper powder was washed and dried to obtain copper powder.
この結果、電解条件の若干の相違により、75μm以上(+200mesh)が93%、250μm以上(+60mesh)が5%の銅粉が得られた。この銅粉は、アスペクト比が1.6以下の粒子が70%で、銅粉単味で金型成形した圧粉体を水素気流雰囲気中、780°Cで30分間焼結した焼結体の焼結密度6.5g/cm3における開放性気孔率が26.7%で全気孔率の98%であり、通気性が良好であり、強度(圧環強さ)が9.4kg/cm2となり、本願発明のブレーキパッドに適合する良好な銅粉末が得られた。
この特性の一覧を、同様に表1に示す。この結果、図1と類似した粒子形状の粉末が得られた。
As a result, copper powder of 75% or more (+200 mesh) of 93% and 250 μm or more (+60 mesh) of 5% was obtained due to slight differences in electrolysis conditions. This copper powder is a sintered body obtained by sintering a green compact that is 70% of particles having an aspect ratio of 1.6 or less and sintered at 780 ° C. for 30 minutes in a hydrogen gas atmosphere. The open porosity at a sintered density of 6.5 g / cm 3 is 26.7% and 98% of the total porosity, the air permeability is good, and the strength (crushing strength) is 9.4 kg / cm 2 . As a result, a good copper powder suitable for the brake pad of the present invention was obtained.
A list of these characteristics is also shown in Table 1. As a result, a powder having a particle shape similar to that shown in FIG. 1 was obtained.
(実施例3)
実施例1と同様にして銅濃度;9−11g/l、硫酸濃度;90−100g/l、塩素イオン:<1mg/l、電流密度:5−6A/dm2、液温:通常35+5°Cとして、電解により、銅粉末を製造した。生成した銅粉を洗浄処理した後乾燥して銅粉を得た。
(Example 3)
Copper concentration: 9-11 g / l, sulfuric acid concentration: 90-100 g / l, chloride ion: <1 mg / l, current density: 5-6 A / dm 2 , liquid temperature: normal 35 + 5 ° C. as in Example 1. As a result, copper powder was produced by electrolysis. The produced copper powder was washed and dried to obtain copper powder.
この結果、電解条件の若干の相違により、75μm以上(+200mesh)が98%、250μm以上(+60mesh)が6%の銅粉が得られた。この銅粉は、アスペクト比が1.6以下の粒子が50%で、銅粉単味で金型成形した圧粉体を水素気流雰囲気中、780℃で30分間焼結した焼結体の焼結密度6.5g/cm3における開放性気孔率が25.8%で全気孔率の95%であり、通気性が良好であり、強度(圧環強さ)が9.9kg/cm2となり、本願発明のブレーキパッドに適合する良好な銅粉末が得られた。
この特性の一覧を、同様に表1に示す。この結果、図1と類似した粒子形状の粉末が得られた。
As a result, a copper powder of 75% or more (+200 mesh) of 98% and 250 μm or more (+60 mesh) of 6% was obtained due to slight differences in electrolysis conditions. This copper powder is 50% of particles with an aspect ratio of 1.6 or less, and a sintered compact obtained by sintering a green compact molded with copper powder for 30 minutes at 780 ° C. in a hydrogen stream. The open porosity at a consolidation density of 6.5 g / cm 3 is 25.8% and 95% of the total porosity, the air permeability is good, and the strength (compression strength) is 9.9 kg / cm 2 . A good copper powder suitable for the brake pad of the present invention was obtained.
A list of these characteristics is also shown in Table 1. As a result, a powder having a particle shape similar to that shown in FIG. 1 was obtained.
(比較例1)
実施例1と同様にして電解銅粉を製造した。但し、実施例との電解の条件の相違は、次の通りである。銅濃度;9−10g/l、塩素イオン:2mg/l、電流密度:8A/dm2、液温:30±5°Cとして、電解により、銅粉末を製造した。生成した銅微粉を洗浄処理した後、乾燥して銅微粉を得た。
(Comparative Example 1)
An electrolytic copper powder was produced in the same manner as in Example 1. However, the difference in electrolysis conditions from the examples is as follows. Copper powder was produced by electrolysis at a copper concentration of 9-10 g / l, chlorine ions: 2 mg / l, current density: 8 A / dm 2 , and liquid temperature: 30 ± 5 ° C. The produced copper fine powder was washed and then dried to obtain copper fine powder.
この結果、75μm以上(+200mesh)が88%、250μm以上(+60mesh)が2%と粒径が小さく、本願発明に適合しない銅粉が得られた。この銅粉は、アスペクト比が1.6以下の粒子が70%であったが、銅粉単味で金型成形した圧粉体を水素気流雰囲気中、780℃で30分間焼結した焼結体の焼結密度6.5g/cm3における開放性気孔率が23.1%で全気孔率の85%であり、強度(圧環強さ)が10.7kg/cm2となり、強度は得られたものの、開放性気効率が低く良好とは言えなかった。これにより本願発明のブレーキパッドに適合しない銅粉末となった。この特性の一覧を、同様に表1に示す。 As a result, 75 μm or more (+200 mesh) was 88%, 250 μm or more (+60 mesh) was 2%, and the particle size was small, and a copper powder not suitable for the present invention was obtained. This copper powder had 70% of particles with an aspect ratio of 1.6 or less, but sintering was performed by sintering a green compact molded with copper powder for 30 minutes at 780 ° C. in a hydrogen gas atmosphere. The open porosity at a sintered density of 6.5 g / cm 3 is 23.1% and 85% of the total porosity, and the strength (compression strength) is 10.7 kg / cm 2 , and the strength is obtained. However, it was not good because the open air efficiency was low. This resulted in a copper powder that was not compatible with the brake pad of the present invention. A list of these characteristics is also shown in Table 1.
(比較例2)
実施例1と同様にして電解銅粉を製造した。但し、実施例との電解の条件の相違は、次の通りである。銅濃度;9−11g/l、塩素イオン:3mg/l、電流密度:通常6A/dm2、液温:通常45+5°Cとして、電解により、銅粉末を製造した。生成した銅粉を洗浄処理した後、乾燥して銅粉を得た。
(Comparative Example 2)
An electrolytic copper powder was produced in the same manner as in Example 1. However, the difference in electrolysis conditions from the examples is as follows. Copper powder: 9-11 g / l, chloride ion: 3 mg / l, current density: usually 6 A / dm 2 , liquid temperature: usually 45 + 5 ° C., and copper powder was produced by electrolysis. The produced copper powder was washed and then dried to obtain copper powder.
この結果、75μm以上(+200mesh)が93%、250μm以上(+60mesh)が15%と粒径が大となり、本願発明に適合しない銅粉が得られた。この銅粉は、アスペクト比が1.6以下の粒子が50%であったが、銅粉単味で金型成形した圧粉体を水素気流雰囲気中、780℃で30分間焼結した焼結体の焼結密度6.5g/cm3における開放性気孔率が26.7%で、全気孔率の98%であり通気性は良好だが、強度(圧環強さ)が6.9kg/cm2となり、良好とは言えなかった。これにより本願発明のブレーキパッドに適合しない銅粉末となった。この特性の一覧を、同様に表1に示す。 As a result, the particle size was as large as 93% for 75 μm or more (+200 mesh) and 15% for 250 μm or more (+60 mesh), and a copper powder not suitable for the present invention was obtained. This copper powder had 50% of particles with an aspect ratio of 1.6 or less, but sintering was performed by sintering a green compact molded with a simple powder of copper powder at 780 ° C. for 30 minutes in a hydrogen stream. The open porosity at a sintered density of 6.5 g / cm 3 was 26.7%, and the total porosity was 98%, and the air permeability was good, but the strength (crushing strength) was 6.9 kg / cm 2. It was not good. This resulted in a copper powder that was not compatible with the brake pad of the present invention. A list of these characteristics is also shown in Table 1.
(比較例3)
実施例1と同様にして電解銅粉を製造した。但し、実施例との電解の条件の相違は、次の通りである。銅濃度;8−10g/l、塩素イオン:0(<1mg/l)、電流密度:通常6A/dm2、液温:通常45±5°Cとして、電解により、銅粉末を製造した。生成した銅粉を洗浄処理した後、乾燥して銅粉を得た。
(Comparative Example 3)
An electrolytic copper powder was produced in the same manner as in Example 1. However, the difference in electrolysis conditions from the examples is as follows. Copper powder was produced by electrolysis at a copper concentration of 8-10 g / l, chloride ion: 0 (<1 mg / l), current density: usually 6 A / dm 2 , and liquid temperature: usually 45 ± 5 ° C. The produced copper powder was washed and then dried to obtain copper powder.
この結果、75μm以上(+200mesh)が93%、250μm以上(+60mesh)が6%であったが、この銅粉は、アスペクト比が1.6以下の粒子が90%となり、球状粉が多く、銅粉単味で金型成形した圧粉体を水素気流雰囲気中、780℃で30分間焼結した焼結体の焼結密度6.5g/cm3における開放性気孔率が26.9%で、全気孔率の99%であり通気性は良好だが、強度(圧環強さ)が4.6kg/cm2となり、良好とは言えなかった。これにより本願発明のブレーキパッドに適合しない銅粉末となった。この特性の一覧を、同様に表1に示す。 As a result, 75 μm or more (+200 mesh) was 93% and 250 μm or more (+60 mesh) was 6%, but this copper powder had 90% of particles with an aspect ratio of 1.6 or less, and there were many spherical powders. The open porosity at a sintered density of 6.5 g / cm 3 of a sintered compact obtained by sintering a green compact molded in a hydrogen gas atmosphere at 780 ° C. for 30 minutes is 26.9%, It was 99% of the total porosity and good air permeability, but the strength (crushing strength) was 4.6 kg / cm 2 , which was not good. This resulted in a copper powder that was not compatible with the brake pad of the present invention. A list of these characteristics is also shown in Table 1.
(比較例4)
実施例1と同様にして電解銅粉を製造した。但し、実施例との電解の条件の相違は、次の通りである。銅濃度;5−8g/l、塩素イオン:5mg/l、電流密度:9−10A/dm2、液温:通常35±5°Cとして、電解により、銅粉末を製造した。生成した銅微粉を洗浄処理した後、乾燥して銅微粉を得た。
(Comparative Example 4)
An electrolytic copper powder was produced in the same manner as in Example 1. However, the difference in electrolysis conditions from the examples is as follows. Copper concentration: 5-8 g / l, chlorine ion: 5 mg / l, current density: 9-10 A / dm 2 , liquid temperature: usually 35 ± 5 ° C., copper powder was produced by electrolysis. The produced copper fine powder was washed and then dried to obtain copper fine powder.
この結果、75μm以上(+200mesh)が93%、250μm以上(+60mesh)が7%であったが、この銅粉は、アスペクト比が1.6以下の粒子が20%で、針状の粒子が多く、銅粉単味で金型成形した圧粉体を水素気流雰囲気中、780℃で30分間焼結した焼結体の焼結密度6.5g/cm3における開放性気孔率が19.9%で全気孔率の73%であり、強度(圧環強さ)が12.5kg/cm2となり、強度は得られたものの、開放性気効率が低く、良好とは言えなかった。これにより本願発明のブレーキパッドに適合しない銅粉末となった。この特性の一覧を、同様に表1に示す。 As a result, 75% or more (+200 mesh) was 93% and 250 μm or more (+60 mesh) was 7%, but this copper powder had 20% of particles with an aspect ratio of 1.6 or less, and many acicular particles. An open porosity at a sintered density of 6.5 g / cm 3 of a sintered compact obtained by sintering a green compact molded with a simple powder of copper powder in a hydrogen stream atmosphere at 780 ° C. for 30 minutes is 19.9%. Thus, the porosity was 73% of the total porosity, and the strength (crushing strength) was 12.5 kg / cm 2. Although the strength was obtained, the open porosity was low and could not be said to be good. This resulted in a copper powder that was not compatible with the brake pad of the present invention. A list of these characteristics is also shown in Table 1.
本発明は、75μm以上(+200mesh)の粒径の銅粉が90%以上であり、かつ250μm以上(+60mesh)の粒径の銅粉が5−10%であるブレーキパッド用銅粉に関し、強度を有しつつ、気孔率の高い銅粉であり、ブレーキパッドに最適な銅粉として有用である。 The present invention relates to a copper powder for brake pads in which the copper powder having a particle size of 75 μm or more (+200 mesh) is 90% or more and the copper powder having a particle size of 250 μm or more (+60 mesh) is 5-10%. It is a copper powder having a high porosity while having it, and is useful as an optimal copper powder for a brake pad.
Claims (3)
3. The copper powder for brake pads according to claim 1 or 2, wherein the apparent density is 2 to 3 g / cm 3 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010080975A JP5462053B2 (en) | 2010-03-31 | 2010-03-31 | Copper powder for brake pads |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010080975A JP5462053B2 (en) | 2010-03-31 | 2010-03-31 | Copper powder for brake pads |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011214032A JP2011214032A (en) | 2011-10-27 |
JP5462053B2 true JP5462053B2 (en) | 2014-04-02 |
Family
ID=44944086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010080975A Active JP5462053B2 (en) | 2010-03-31 | 2010-03-31 | Copper powder for brake pads |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5462053B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103128272B (en) * | 2011-11-28 | 2016-08-10 | 重庆有研重冶新材料有限公司 | The technique that a kind of electrolysis produces copper powder |
EP3162466A4 (en) * | 2014-06-25 | 2018-02-21 | Sumitomo Metal Mining Co., Ltd. | Copper powder, and copper paste, electrically conductive coating material and electrically conductive sheet each produced using said copper powder |
KR20170003639A (en) * | 2014-07-07 | 2017-01-09 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Copper powder and electrically conductive paste, electrically conductive coating, electrically conductive sheet, and antistatic coating using same |
JP5858202B1 (en) * | 2014-08-26 | 2016-02-10 | 住友金属鉱山株式会社 | Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same |
US20170274453A1 (en) * | 2014-08-26 | 2017-09-28 | Sumitomo Metal Mining Co., Ltd. | Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same |
CN106604794A (en) * | 2014-09-12 | 2017-04-26 | 住友金属矿山株式会社 | Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder |
JP5790900B1 (en) * | 2014-09-12 | 2015-10-07 | 住友金属鉱山株式会社 | Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same |
WO2016151859A1 (en) * | 2015-03-26 | 2016-09-29 | 住友金属鉱山株式会社 | Silver-coated copper powder and conductive paste, conductive material, and conductive sheet using same |
WO2016151858A1 (en) * | 2015-03-26 | 2016-09-29 | 住友金属鉱山株式会社 | Copper powder and copper paste, conductive coating material, and conductive sheet using same |
JP5907302B1 (en) | 2015-05-15 | 2016-04-26 | 住友金属鉱山株式会社 | Copper powder, copper paste using the same, conductive paint, conductive sheet, and method for producing copper powder |
JP5907301B1 (en) | 2015-05-15 | 2016-04-26 | 住友金属鉱山株式会社 | Silver-coated copper powder, copper paste using the same, conductive paint, conductive sheet, and method for producing silver-coated copper powder |
JP6350475B2 (en) * | 2015-09-29 | 2018-07-04 | 住友金属鉱山株式会社 | Method for producing copper powder and method for producing conductive paste using the same |
CN110181039B (en) * | 2019-07-01 | 2023-07-14 | 重庆有研重冶新材料有限公司 | Copper powder for oil-impregnated bearing and method for producing the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6213479A (en) * | 1985-07-10 | 1987-01-22 | Sumitomo Electric Ind Ltd | Friction material |
GB2212517B (en) * | 1987-11-19 | 1992-01-15 | Ferodo Ltd | Sintered metal friction facing |
AT411765B (en) * | 1991-03-20 | 2004-05-25 | Hoerbiger & Co | FRICTION MATERIAL PRODUCED BY SINTER |
US5339931A (en) * | 1993-05-07 | 1994-08-23 | Allied-Signal Inc. | Porous copper powder modified friction material |
JPH0814291A (en) * | 1994-06-30 | 1996-01-16 | Tokai Carbon Co Ltd | Disc brake pad |
EP2307759B1 (en) * | 2008-08-08 | 2019-06-12 | Freni Brembo S.p.A. | Method for making a ceramic matrix material for friction components of brakes and ceramic matrix material made by such method |
-
2010
- 2010-03-31 JP JP2010080975A patent/JP5462053B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011214032A (en) | 2011-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5462053B2 (en) | Copper powder for brake pads | |
JP5059022B2 (en) | Iron-copper composite powder for powder metallurgy and method for producing the same | |
TWI648899B (en) | Powder, electrode containing the powder, and battery pack | |
JP4063151B2 (en) | Porous spherical nickel powder and method for producing the same | |
CZ301368B6 (en) | Tantalum powder, process for its preparation and use | |
JP5880789B1 (en) | A composite metal in which Cu is infiltrated into a compact formed from solid solution particles | |
JP6333098B2 (en) | Method for producing Ag / SnO2 electrical contact powder and method for producing Ag / SnO2 electrical contact material | |
JPH0925526A (en) | Production of oxide grain dispersed metal matrix composite | |
JP2018501620A (en) | Powders, electrodes and batteries containing such powders | |
JP2015196903A (en) | POWDER FOR Ag/SnO2 ELECTRIC CONTACT, Ag/SnO2 ELECTRIC CONTACT MATERIAL AND MANUFACTURING METHOD THEREFOR | |
WO2015133263A1 (en) | Method for producing electrode material | |
JP2009114486A (en) | Sintering assistant, aluminum-containing copper-based alloy powder to be sintered, and sintered compact formed by sintering the aluminum-containing copper-based alloy powder | |
JP2006210214A (en) | Metal powder for conductive paste and conductive paste | |
JP4217667B2 (en) | Method for producing capacitor anode based on niobium suboxide, powder mixture having niobium suboxide, powder for producing anode structure, powder mixture and powder aggregate, and solid electrolyte capacitor | |
TWI465589B (en) | Production method of sintered bronze alloy powder | |
JP2006280164A (en) | Electrical carbon brush and its manufacturing method | |
JP6242814B2 (en) | Niobium capacitor anode chemical and method for producing the same | |
US20180221960A1 (en) | Reduced iron powder and method for preparing same and bearing | |
JP2007169701A (en) | Material for electrical contact and its production method | |
JP7524011B2 (en) | Electrolytic copper fine powder for powder metallurgy | |
JP2016160523A (en) | Copper-molybdenum composite material and method for producing the same | |
JP2008095184A (en) | Oxide-coated nickel fine particle and method for producing the same | |
KR101505250B1 (en) | Partially alloyed iron powder and method of manufacturing the same | |
JP2544017B2 (en) | Method for producing copper powder for powder metallurgy | |
WO2019244999A1 (en) | Aluminum-based composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120913 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20130822 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5462053 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |